1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
4 Copyright (c) 2001, 2002 by D-Link Corporation
6 Created 03-May-2001, base on Linux' sundance.c.
11 #include <linux/dma-mapping.h>
13 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
16 #define dr32(reg) ioread32(ioaddr + (reg))
17 #define dr16(reg) ioread16(ioaddr + (reg))
18 #define dr8(reg) ioread8(ioaddr + (reg))
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10; /* Rx frame count each interrupt */
29 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50 UpdateStats | LinkEvent)
52 static void dl2k_enable_int(struct netdev_private *np)
54 void __iomem *ioaddr = np->ioaddr;
56 dw16(IntEnable, DEFAULT_INTR);
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
88 static const struct ethtool_ops ethtool_ops;
90 static const struct net_device_ops netdev_ops = {
92 .ndo_start_xmit = start_xmit,
93 .ndo_stop = rio_close,
94 .ndo_get_stats = get_stats,
95 .ndo_validate_addr = eth_validate_addr,
96 .ndo_set_mac_address = eth_mac_addr,
97 .ndo_set_rx_mode = set_multicast,
98 .ndo_eth_ioctl = rio_ioctl,
99 .ndo_tx_timeout = rio_tx_timeout,
103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
105 struct net_device *dev;
106 struct netdev_private *np;
108 int chip_idx = ent->driver_data;
110 void __iomem *ioaddr;
114 err = pci_enable_device (pdev);
119 err = pci_request_regions (pdev, "dl2k");
121 goto err_out_disable;
123 pci_set_master (pdev);
127 dev = alloc_etherdev (sizeof (*np));
130 SET_NETDEV_DEV(dev, &pdev->dev);
132 np = netdev_priv(dev);
134 /* IO registers range. */
135 ioaddr = pci_iomap(pdev, 0, 0);
138 np->eeprom_addr = ioaddr;
141 /* MM registers range. */
142 ioaddr = pci_iomap(pdev, 1, 0);
144 goto err_out_iounmap;
147 np->chip_id = chip_idx;
149 spin_lock_init (&np->tx_lock);
150 spin_lock_init (&np->rx_lock);
152 /* Parse manual configuration */
155 if (card_idx < MAX_UNITS) {
156 if (media[card_idx] != NULL) {
158 if (strcmp (media[card_idx], "auto") == 0 ||
159 strcmp (media[card_idx], "autosense") == 0 ||
160 strcmp (media[card_idx], "0") == 0 ) {
162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 strcmp (media[card_idx], "4") == 0) {
166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 strcmp (media[card_idx], "3") == 0) {
170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 strcmp (media[card_idx], "2") == 0) {
174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 strcmp (media[card_idx], "1") == 0) {
178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 strcmp (media[card_idx], "6") == 0) {
182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 strcmp (media[card_idx], "5") == 0) {
190 if (jumbo[card_idx] != 0) {
192 dev->mtu = MAX_JUMBO;
195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 dev->mtu = mtu[card_idx];
198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
200 if (rx_coalesce > 0 && rx_timeout > 0) {
201 np->rx_coalesce = rx_coalesce;
202 np->rx_timeout = rx_timeout;
205 np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 np->rx_flow = (rx_flow == 0) ? 0 : 1;
210 else if (tx_coalesce > TX_RING_SIZE-1)
211 tx_coalesce = TX_RING_SIZE - 1;
213 dev->netdev_ops = &netdev_ops;
214 dev->watchdog_timeo = TX_TIMEOUT;
215 dev->ethtool_ops = ðtool_ops;
217 dev->features = NETIF_F_IP_CSUM;
219 /* MTU range: 68 - 1536 or 8000 */
220 dev->min_mtu = ETH_MIN_MTU;
221 dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
223 pci_set_drvdata (pdev, dev);
225 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
228 goto err_out_iounmap;
229 np->tx_ring = ring_space;
230 np->tx_ring_dma = ring_dma;
232 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
235 goto err_out_unmap_tx;
236 np->rx_ring = ring_space;
237 np->rx_ring_dma = ring_dma;
239 /* Parse eeprom data */
242 /* Find PHY address */
243 err = find_miiphy (dev);
245 goto err_out_unmap_rx;
248 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
250 /* Set media and reset PHY */
252 /* default Auto-Negotiation for fiber deivices */
253 if (np->an_enable == 2) {
257 /* Auto-Negotiation is mandatory for 1000BASE-T,
258 IEEE 802.3ab Annex 28D page 14 */
259 if (np->speed == 1000)
263 err = register_netdev (dev);
265 goto err_out_unmap_rx;
269 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 dev->name, np->name, dev->dev_addr, irq);
272 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
276 "rx_coalesce:\t%d packets\n"
277 "rx_timeout: \t%d ns\n",
278 np->rx_coalesce, np->rx_timeout*640);
280 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
284 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
287 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
291 pci_iounmap(pdev, np->ioaddr);
293 pci_iounmap(pdev, np->eeprom_addr);
297 pci_release_regions (pdev);
299 pci_disable_device (pdev);
304 find_miiphy (struct net_device *dev)
306 struct netdev_private *np = netdev_priv(dev);
307 int i, phy_found = 0;
311 for (i = 31; i >= 0; i--) {
312 int mii_status = mii_read (dev, i, 1);
313 if (mii_status != 0xffff && mii_status != 0x0000) {
319 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
326 parse_eeprom (struct net_device *dev)
328 struct netdev_private *np = netdev_priv(dev);
329 void __iomem *ioaddr = np->ioaddr;
334 PSROM_t psrom = (PSROM_t) sromdata;
338 for (i = 0; i < 128; i++)
339 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
341 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
343 crc = ~ether_crc_le (256 - 4, sromdata);
344 if (psrom->crc != cpu_to_le32(crc)) {
345 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
351 /* Set MAC address */
352 eth_hw_addr_set(dev, psrom->mac_addr);
354 if (np->chip_id == CHIP_IP1000A) {
355 np->led_mode = psrom->led_mode;
359 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
363 /* Parse Software Information Block */
365 psib = (u8 *) sromdata;
369 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 printk (KERN_ERR "Cell data error\n");
374 case 0: /* Format version */
376 case 1: /* End of cell */
378 case 2: /* Duplex Polarity */
379 np->duplex_polarity = psib[i];
380 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
382 case 3: /* Wake Polarity */
383 np->wake_polarity = psib[i];
385 case 9: /* Adapter description */
386 j = (next - i > 255) ? 255 : next - i;
387 memcpy (np->name, &(psib[i]), j);
393 case 8: /* Reversed */
395 default: /* Unknown cell */
404 static void rio_set_led_mode(struct net_device *dev)
406 struct netdev_private *np = netdev_priv(dev);
407 void __iomem *ioaddr = np->ioaddr;
410 if (np->chip_id != CHIP_IP1000A)
413 mode = dr32(ASICCtrl);
414 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
416 if (np->led_mode & 0x01)
417 mode |= IPG_AC_LED_MODE;
418 if (np->led_mode & 0x02)
419 mode |= IPG_AC_LED_MODE_BIT_1;
420 if (np->led_mode & 0x08)
421 mode |= IPG_AC_LED_SPEED;
423 dw32(ASICCtrl, mode);
426 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
428 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
431 static void free_list(struct net_device *dev)
433 struct netdev_private *np = netdev_priv(dev);
437 /* Free all the skbuffs in the queue. */
438 for (i = 0; i < RX_RING_SIZE; i++) {
439 skb = np->rx_skbuff[i];
441 dma_unmap_single(&np->pdev->dev,
442 desc_to_dma(&np->rx_ring[i]),
443 skb->len, DMA_FROM_DEVICE);
445 np->rx_skbuff[i] = NULL;
447 np->rx_ring[i].status = 0;
448 np->rx_ring[i].fraginfo = 0;
450 for (i = 0; i < TX_RING_SIZE; i++) {
451 skb = np->tx_skbuff[i];
453 dma_unmap_single(&np->pdev->dev,
454 desc_to_dma(&np->tx_ring[i]),
455 skb->len, DMA_TO_DEVICE);
457 np->tx_skbuff[i] = NULL;
462 static void rio_reset_ring(struct netdev_private *np)
471 for (i = 0; i < TX_RING_SIZE; i++)
472 np->tx_ring[i].status = cpu_to_le64(TFDDone);
474 for (i = 0; i < RX_RING_SIZE; i++)
475 np->rx_ring[i].status = 0;
478 /* allocate and initialize Tx and Rx descriptors */
479 static int alloc_list(struct net_device *dev)
481 struct netdev_private *np = netdev_priv(dev);
485 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
487 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488 for (i = 0; i < TX_RING_SIZE; i++) {
489 np->tx_skbuff[i] = NULL;
490 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491 ((i + 1) % TX_RING_SIZE) *
492 sizeof(struct netdev_desc));
495 /* Initialize Rx descriptors & allocate buffers */
496 for (i = 0; i < RX_RING_SIZE; i++) {
497 /* Allocated fixed size of skbuff */
500 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
501 np->rx_skbuff[i] = skb;
507 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508 ((i + 1) % RX_RING_SIZE) *
509 sizeof(struct netdev_desc));
510 /* Rubicon now supports 40 bits of addressing space. */
511 np->rx_ring[i].fraginfo =
512 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513 np->rx_buf_sz, DMA_FROM_DEVICE));
514 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
520 static void rio_hw_init(struct net_device *dev)
522 struct netdev_private *np = netdev_priv(dev);
523 void __iomem *ioaddr = np->ioaddr;
527 /* Reset all logic functions */
529 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
532 rio_set_led_mode(dev);
534 /* DebugCtrl bit 4, 5, 9 must set */
535 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
537 if (np->chip_id == CHIP_IP1000A &&
538 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539 /* PHY magic taken from ipg driver, undocumented registers */
540 mii_write(dev, np->phy_addr, 31, 0x0001);
541 mii_write(dev, np->phy_addr, 27, 0x01e0);
542 mii_write(dev, np->phy_addr, 31, 0x0002);
543 mii_write(dev, np->phy_addr, 27, 0xeb8e);
544 mii_write(dev, np->phy_addr, 31, 0x0000);
545 mii_write(dev, np->phy_addr, 30, 0x005e);
546 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
547 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
551 mii_set_media_pcs(dev);
557 dw16(MaxFrameSize, MAX_JUMBO+14);
560 dw32(RFDListPtr0, np->rx_ring_dma);
561 dw32(RFDListPtr1, 0);
563 /* Set station address */
564 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565 * too. However, it doesn't work on IP1000A so we use 16-bit access.
567 for (i = 0; i < 3; i++)
568 dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
572 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
574 /* Set RIO to poll every N*320nsec. */
575 dw8(RxDMAPollPeriod, 0x20);
576 dw8(TxDMAPollPeriod, 0xff);
577 dw8(RxDMABurstThresh, 0x30);
578 dw8(RxDMAUrgentThresh, 0x30);
579 dw32(RmonStatMask, 0x0007ffff);
580 /* clear statistics */
585 /* priority field in RxDMAIntCtrl */
586 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
588 dw16(VLANId, np->vlan);
589 /* Length/Type should be 0x8100 */
590 dw32(VLANTag, 0x8100 << 16 | np->vlan);
591 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
592 VLAN information tagged by TFC' VID, CFI fields. */
593 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
597 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
600 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
601 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
602 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
603 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
604 dw16(MACCtrl, macctrl);
607 static void rio_hw_stop(struct net_device *dev)
609 struct netdev_private *np = netdev_priv(dev);
610 void __iomem *ioaddr = np->ioaddr;
612 /* Disable interrupts */
615 /* Stop Tx and Rx logics */
616 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
619 static int rio_open(struct net_device *dev)
621 struct netdev_private *np = netdev_priv(dev);
622 const int irq = np->pdev->irq;
631 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
638 timer_setup(&np->timer, rio_timer, 0);
639 np->timer.expires = jiffies + 1 * HZ;
640 add_timer(&np->timer);
642 netif_start_queue (dev);
649 rio_timer (struct timer_list *t)
651 struct netdev_private *np = from_timer(np, t, timer);
652 struct net_device *dev = pci_get_drvdata(np->pdev);
654 int next_tick = 1*HZ;
657 spin_lock_irqsave(&np->rx_lock, flags);
658 /* Recover rx ring exhausted error */
659 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
660 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
661 /* Re-allocate skbuffs to fill the descriptor ring */
662 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
664 entry = np->old_rx % RX_RING_SIZE;
665 /* Dropped packets don't need to re-allocate */
666 if (np->rx_skbuff[entry] == NULL) {
667 skb = netdev_alloc_skb_ip_align(dev,
670 np->rx_ring[entry].fraginfo = 0;
672 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
676 np->rx_skbuff[entry] = skb;
677 np->rx_ring[entry].fraginfo =
678 cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
679 np->rx_buf_sz, DMA_FROM_DEVICE));
681 np->rx_ring[entry].fraginfo |=
682 cpu_to_le64((u64)np->rx_buf_sz << 48);
683 np->rx_ring[entry].status = 0;
686 spin_unlock_irqrestore (&np->rx_lock, flags);
687 np->timer.expires = jiffies + next_tick;
688 add_timer(&np->timer);
692 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
694 struct netdev_private *np = netdev_priv(dev);
695 void __iomem *ioaddr = np->ioaddr;
697 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
698 dev->name, dr32(TxStatus));
701 netif_trans_update(dev); /* prevent tx timeout */
705 start_xmit (struct sk_buff *skb, struct net_device *dev)
707 struct netdev_private *np = netdev_priv(dev);
708 void __iomem *ioaddr = np->ioaddr;
709 struct netdev_desc *txdesc;
711 u64 tfc_vlan_tag = 0;
713 if (np->link_status == 0) { /* Link Down */
717 entry = np->cur_tx % TX_RING_SIZE;
718 np->tx_skbuff[entry] = skb;
719 txdesc = &np->tx_ring[entry];
722 if (skb->ip_summed == CHECKSUM_PARTIAL) {
724 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
729 tfc_vlan_tag = VLANTagInsert |
730 ((u64)np->vlan << 32) |
731 ((u64)skb->priority << 45);
733 txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
734 skb->len, DMA_TO_DEVICE));
735 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
737 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
738 * Work around: Always use 1 descriptor in 10Mbps mode */
739 if (entry % np->tx_coalesce == 0 || np->speed == 10)
740 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
743 (1 << FragCountShift));
745 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
747 (1 << FragCountShift));
750 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
752 dw32(CountDown, 10000);
753 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
754 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
755 < TX_QUEUE_LEN - 1 && np->speed != 10) {
757 } else if (!netif_queue_stopped(dev)) {
758 netif_stop_queue (dev);
761 /* The first TFDListPtr */
762 if (!dr32(TFDListPtr0)) {
763 dw32(TFDListPtr0, np->tx_ring_dma +
764 entry * sizeof (struct netdev_desc));
765 dw32(TFDListPtr1, 0);
772 rio_interrupt (int irq, void *dev_instance)
774 struct net_device *dev = dev_instance;
775 struct netdev_private *np = netdev_priv(dev);
776 void __iomem *ioaddr = np->ioaddr;
778 int cnt = max_intrloop;
782 int_status = dr16(IntStatus);
783 dw16(IntStatus, int_status);
784 int_status &= DEFAULT_INTR;
785 if (int_status == 0 || --cnt < 0)
788 /* Processing received packets */
789 if (int_status & RxDMAComplete)
790 receive_packet (dev);
791 /* TxDMAComplete interrupt */
792 if ((int_status & (TxDMAComplete|IntRequested))) {
794 tx_status = dr32(TxStatus);
795 if (tx_status & 0x01)
796 tx_error (dev, tx_status);
797 /* Free used tx skbuffs */
798 rio_free_tx (dev, 1);
801 /* Handle uncommon events */
803 (HostError | LinkEvent | UpdateStats))
804 rio_error (dev, int_status);
806 if (np->cur_tx != np->old_tx)
807 dw32(CountDown, 100);
808 return IRQ_RETVAL(handled);
812 rio_free_tx (struct net_device *dev, int irq)
814 struct netdev_private *np = netdev_priv(dev);
815 int entry = np->old_tx % TX_RING_SIZE;
816 unsigned long flag = 0;
819 spin_lock(&np->tx_lock);
821 spin_lock_irqsave(&np->tx_lock, flag);
823 /* Free used tx skbuffs */
824 while (entry != np->cur_tx) {
827 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
829 skb = np->tx_skbuff[entry];
830 dma_unmap_single(&np->pdev->dev,
831 desc_to_dma(&np->tx_ring[entry]), skb->len,
834 dev_consume_skb_irq(skb);
838 np->tx_skbuff[entry] = NULL;
839 entry = (entry + 1) % TX_RING_SIZE;
842 spin_unlock(&np->tx_lock);
844 spin_unlock_irqrestore(&np->tx_lock, flag);
847 /* If the ring is no longer full, clear tx_full and
848 call netif_wake_queue() */
850 if (netif_queue_stopped(dev) &&
851 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
852 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
853 netif_wake_queue (dev);
858 tx_error (struct net_device *dev, int tx_status)
860 struct netdev_private *np = netdev_priv(dev);
861 void __iomem *ioaddr = np->ioaddr;
865 frame_id = (tx_status & 0xffff0000);
866 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
867 dev->name, tx_status, frame_id);
868 dev->stats.tx_errors++;
869 /* Ttransmit Underrun */
870 if (tx_status & 0x10) {
871 dev->stats.tx_fifo_errors++;
872 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
873 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875 TxReset | DMAReset | FIFOReset | NetworkReset);
876 /* Wait for ResetBusy bit clear */
877 for (i = 50; i > 0; i--) {
878 if (!(dr16(ASICCtrl + 2) & ResetBusy))
882 rio_set_led_mode(dev);
883 rio_free_tx (dev, 1);
884 /* Reset TFDListPtr */
885 dw32(TFDListPtr0, np->tx_ring_dma +
886 np->old_tx * sizeof (struct netdev_desc));
887 dw32(TFDListPtr1, 0);
889 /* Let TxStartThresh stay default value */
892 if (tx_status & 0x04) {
893 dev->stats.tx_fifo_errors++;
894 /* TxReset and clear FIFO */
895 dw16(ASICCtrl + 2, TxReset | FIFOReset);
896 /* Wait reset done */
897 for (i = 50; i > 0; i--) {
898 if (!(dr16(ASICCtrl + 2) & ResetBusy))
902 rio_set_led_mode(dev);
903 /* Let TxStartThresh stay default value */
905 /* Maximum Collisions */
906 if (tx_status & 0x08)
907 dev->stats.collisions++;
909 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
913 receive_packet (struct net_device *dev)
915 struct netdev_private *np = netdev_priv(dev);
916 int entry = np->cur_rx % RX_RING_SIZE;
919 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
921 struct netdev_desc *desc = &np->rx_ring[entry];
925 if (!(desc->status & cpu_to_le64(RFDDone)) ||
926 !(desc->status & cpu_to_le64(FrameStart)) ||
927 !(desc->status & cpu_to_le64(FrameEnd)))
930 /* Chip omits the CRC. */
931 frame_status = le64_to_cpu(desc->status);
932 pkt_len = frame_status & 0xffff;
935 /* Update rx error statistics, drop packet. */
936 if (frame_status & RFS_Errors) {
937 dev->stats.rx_errors++;
938 if (frame_status & (RxRuntFrame | RxLengthError))
939 dev->stats.rx_length_errors++;
940 if (frame_status & RxFCSError)
941 dev->stats.rx_crc_errors++;
942 if (frame_status & RxAlignmentError && np->speed != 1000)
943 dev->stats.rx_frame_errors++;
944 if (frame_status & RxFIFOOverrun)
945 dev->stats.rx_fifo_errors++;
949 /* Small skbuffs for short packets */
950 if (pkt_len > copy_thresh) {
951 dma_unmap_single(&np->pdev->dev,
955 skb_put (skb = np->rx_skbuff[entry], pkt_len);
956 np->rx_skbuff[entry] = NULL;
957 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
958 dma_sync_single_for_cpu(&np->pdev->dev,
962 skb_copy_to_linear_data (skb,
963 np->rx_skbuff[entry]->data,
965 skb_put (skb, pkt_len);
966 dma_sync_single_for_device(&np->pdev->dev,
971 skb->protocol = eth_type_trans (skb, dev);
973 /* Checksum done by hw, but csum value unavailable. */
974 if (np->pdev->pci_rev_id >= 0x0c &&
975 !(frame_status & (TCPError | UDPError | IPError))) {
976 skb->ip_summed = CHECKSUM_UNNECESSARY;
981 entry = (entry + 1) % RX_RING_SIZE;
983 spin_lock(&np->rx_lock);
985 /* Re-allocate skbuffs to fill the descriptor ring */
987 while (entry != np->cur_rx) {
989 /* Dropped packets don't need to re-allocate */
990 if (np->rx_skbuff[entry] == NULL) {
991 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
993 np->rx_ring[entry].fraginfo = 0;
995 "%s: receive_packet: "
996 "Unable to re-allocate Rx skbuff.#%d\n",
1000 np->rx_skbuff[entry] = skb;
1001 np->rx_ring[entry].fraginfo =
1002 cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1003 np->rx_buf_sz, DMA_FROM_DEVICE));
1005 np->rx_ring[entry].fraginfo |=
1006 cpu_to_le64((u64)np->rx_buf_sz << 48);
1007 np->rx_ring[entry].status = 0;
1008 entry = (entry + 1) % RX_RING_SIZE;
1011 spin_unlock(&np->rx_lock);
1016 rio_error (struct net_device *dev, int int_status)
1018 struct netdev_private *np = netdev_priv(dev);
1019 void __iomem *ioaddr = np->ioaddr;
1022 /* Link change event */
1023 if (int_status & LinkEvent) {
1024 if (mii_wait_link (dev, 10) == 0) {
1025 printk (KERN_INFO "%s: Link up\n", dev->name);
1027 mii_get_media_pcs (dev);
1029 mii_get_media (dev);
1030 if (np->speed == 1000)
1031 np->tx_coalesce = tx_coalesce;
1033 np->tx_coalesce = 1;
1035 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1036 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1037 macctrl |= (np->tx_flow) ?
1038 TxFlowControlEnable : 0;
1039 macctrl |= (np->rx_flow) ?
1040 RxFlowControlEnable : 0;
1041 dw16(MACCtrl, macctrl);
1042 np->link_status = 1;
1043 netif_carrier_on(dev);
1045 printk (KERN_INFO "%s: Link off\n", dev->name);
1046 np->link_status = 0;
1047 netif_carrier_off(dev);
1051 /* UpdateStats statistics registers */
1052 if (int_status & UpdateStats) {
1056 /* PCI Error, a catastronphic error related to the bus interface
1057 occurs, set GlobalReset and HostReset to reset. */
1058 if (int_status & HostError) {
1059 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1060 dev->name, int_status);
1061 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1063 rio_set_led_mode(dev);
1067 static struct net_device_stats *
1068 get_stats (struct net_device *dev)
1070 struct netdev_private *np = netdev_priv(dev);
1071 void __iomem *ioaddr = np->ioaddr;
1075 unsigned int stat_reg;
1077 /* All statistics registers need to be acknowledged,
1078 else statistic overflow could cause problems */
1080 dev->stats.rx_packets += dr32(FramesRcvOk);
1081 dev->stats.tx_packets += dr32(FramesXmtOk);
1082 dev->stats.rx_bytes += dr32(OctetRcvOk);
1083 dev->stats.tx_bytes += dr32(OctetXmtOk);
1085 dev->stats.multicast = dr32(McstFramesRcvdOk);
1086 dev->stats.collisions += dr32(SingleColFrames)
1087 + dr32(MultiColFrames);
1089 /* detailed tx errors */
1090 stat_reg = dr16(FramesAbortXSColls);
1091 dev->stats.tx_aborted_errors += stat_reg;
1092 dev->stats.tx_errors += stat_reg;
1094 stat_reg = dr16(CarrierSenseErrors);
1095 dev->stats.tx_carrier_errors += stat_reg;
1096 dev->stats.tx_errors += stat_reg;
1098 /* Clear all other statistic register. */
1099 dr32(McstOctetXmtOk);
1100 dr16(BcstFramesXmtdOk);
1101 dr32(McstFramesXmtdOk);
1102 dr16(BcstFramesRcvdOk);
1103 dr16(MacControlFramesRcvd);
1104 dr16(FrameTooLongErrors);
1105 dr16(InRangeLengthErrors);
1106 dr16(FramesCheckSeqErrors);
1107 dr16(FramesLostRxErrors);
1108 dr32(McstOctetXmtOk);
1109 dr32(BcstOctetXmtOk);
1110 dr32(McstFramesXmtdOk);
1111 dr32(FramesWDeferredXmt);
1112 dr32(LateCollisions);
1113 dr16(BcstFramesXmtdOk);
1114 dr16(MacControlFramesXmtd);
1115 dr16(FramesWEXDeferal);
1118 for (i = 0x100; i <= 0x150; i += 4)
1121 dr16(TxJumboFrames);
1122 dr16(RxJumboFrames);
1123 dr16(TCPCheckSumErrors);
1124 dr16(UDPCheckSumErrors);
1125 dr16(IPCheckSumErrors);
1130 clear_stats (struct net_device *dev)
1132 struct netdev_private *np = netdev_priv(dev);
1133 void __iomem *ioaddr = np->ioaddr;
1138 /* All statistics registers need to be acknowledged,
1139 else statistic overflow could cause problems */
1145 dr32(McstFramesRcvdOk);
1146 dr32(SingleColFrames);
1147 dr32(MultiColFrames);
1148 dr32(LateCollisions);
1149 /* detailed rx errors */
1150 dr16(FrameTooLongErrors);
1151 dr16(InRangeLengthErrors);
1152 dr16(FramesCheckSeqErrors);
1153 dr16(FramesLostRxErrors);
1155 /* detailed tx errors */
1156 dr16(FramesAbortXSColls);
1157 dr16(CarrierSenseErrors);
1159 /* Clear all other statistic register. */
1160 dr32(McstOctetXmtOk);
1161 dr16(BcstFramesXmtdOk);
1162 dr32(McstFramesXmtdOk);
1163 dr16(BcstFramesRcvdOk);
1164 dr16(MacControlFramesRcvd);
1165 dr32(McstOctetXmtOk);
1166 dr32(BcstOctetXmtOk);
1167 dr32(McstFramesXmtdOk);
1168 dr32(FramesWDeferredXmt);
1169 dr16(BcstFramesXmtdOk);
1170 dr16(MacControlFramesXmtd);
1171 dr16(FramesWEXDeferal);
1173 for (i = 0x100; i <= 0x150; i += 4)
1176 dr16(TxJumboFrames);
1177 dr16(RxJumboFrames);
1178 dr16(TCPCheckSumErrors);
1179 dr16(UDPCheckSumErrors);
1180 dr16(IPCheckSumErrors);
1185 set_multicast (struct net_device *dev)
1187 struct netdev_private *np = netdev_priv(dev);
1188 void __iomem *ioaddr = np->ioaddr;
1192 hash_table[0] = hash_table[1] = 0;
1193 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1194 hash_table[1] |= 0x02000000;
1195 if (dev->flags & IFF_PROMISC) {
1196 /* Receive all frames promiscuously. */
1197 rx_mode = ReceiveAllFrames;
1198 } else if ((dev->flags & IFF_ALLMULTI) ||
1199 (netdev_mc_count(dev) > multicast_filter_limit)) {
1200 /* Receive broadcast and multicast frames */
1201 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1202 } else if (!netdev_mc_empty(dev)) {
1203 struct netdev_hw_addr *ha;
1204 /* Receive broadcast frames and multicast frames filtering
1207 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1208 netdev_for_each_mc_addr(ha, dev) {
1210 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1211 /* The inverted high significant 6 bits of CRC are
1212 used as an index to hashtable */
1213 for (bit = 0; bit < 6; bit++)
1214 if (crc & (1 << (31 - bit)))
1215 index |= (1 << bit);
1216 hash_table[index / 32] |= (1 << (index % 32));
1219 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1222 /* ReceiveVLANMatch field in ReceiveMode */
1223 rx_mode |= ReceiveVLANMatch;
1226 dw32(HashTable0, hash_table[0]);
1227 dw32(HashTable1, hash_table[1]);
1228 dw16(ReceiveMode, rx_mode);
1231 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1233 struct netdev_private *np = netdev_priv(dev);
1235 strscpy(info->driver, "dl2k", sizeof(info->driver));
1236 strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1239 static int rio_get_link_ksettings(struct net_device *dev,
1240 struct ethtool_link_ksettings *cmd)
1242 struct netdev_private *np = netdev_priv(dev);
1243 u32 supported, advertising;
1245 if (np->phy_media) {
1247 supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1248 advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1249 cmd->base.port = PORT_FIBRE;
1252 supported = SUPPORTED_10baseT_Half |
1253 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1254 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1255 SUPPORTED_Autoneg | SUPPORTED_MII;
1256 advertising = ADVERTISED_10baseT_Half |
1257 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1258 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1259 ADVERTISED_Autoneg | ADVERTISED_MII;
1260 cmd->base.port = PORT_MII;
1262 if (np->link_status) {
1263 cmd->base.speed = np->speed;
1264 cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1266 cmd->base.speed = SPEED_UNKNOWN;
1267 cmd->base.duplex = DUPLEX_UNKNOWN;
1270 cmd->base.autoneg = AUTONEG_ENABLE;
1272 cmd->base.autoneg = AUTONEG_DISABLE;
1274 cmd->base.phy_address = np->phy_addr;
1276 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1278 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1284 static int rio_set_link_ksettings(struct net_device *dev,
1285 const struct ethtool_link_ksettings *cmd)
1287 struct netdev_private *np = netdev_priv(dev);
1288 u32 speed = cmd->base.speed;
1289 u8 duplex = cmd->base.duplex;
1291 netif_carrier_off(dev);
1292 if (cmd->base.autoneg == AUTONEG_ENABLE) {
1293 if (np->an_enable) {
1302 if (np->speed == 1000) {
1304 duplex = DUPLEX_FULL;
1305 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1310 np->full_duplex = (duplex == DUPLEX_FULL);
1314 np->full_duplex = (duplex == DUPLEX_FULL);
1316 case SPEED_1000: /* not supported */
1325 static u32 rio_get_link(struct net_device *dev)
1327 struct netdev_private *np = netdev_priv(dev);
1328 return np->link_status;
1331 static const struct ethtool_ops ethtool_ops = {
1332 .get_drvinfo = rio_get_drvinfo,
1333 .get_link = rio_get_link,
1334 .get_link_ksettings = rio_get_link_ksettings,
1335 .set_link_ksettings = rio_set_link_ksettings,
1339 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1342 struct netdev_private *np = netdev_priv(dev);
1343 struct mii_ioctl_data *miidata = if_mii(rq);
1345 phy_addr = np->phy_addr;
1348 miidata->phy_id = phy_addr;
1351 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1354 if (!capable(CAP_NET_ADMIN))
1356 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1364 #define EEP_READ 0x0200
1365 #define EEP_BUSY 0x8000
1366 /* Read the EEPROM word */
1367 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1368 static int read_eeprom(struct netdev_private *np, int eep_addr)
1370 void __iomem *ioaddr = np->eeprom_addr;
1373 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1375 if (!(dr16(EepromCtrl) & EEP_BUSY))
1376 return dr16(EepromData);
1381 enum phy_ctrl_bits {
1382 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1386 #define mii_delay() dr8(PhyCtrl)
1388 mii_sendbit (struct net_device *dev, u32 data)
1390 struct netdev_private *np = netdev_priv(dev);
1391 void __iomem *ioaddr = np->ioaddr;
1393 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1396 dw8(PhyCtrl, data | MII_CLK);
1401 mii_getbit (struct net_device *dev)
1403 struct netdev_private *np = netdev_priv(dev);
1404 void __iomem *ioaddr = np->ioaddr;
1407 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1410 dw8(PhyCtrl, data | MII_CLK);
1412 return (dr8(PhyCtrl) >> 1) & 1;
1416 mii_send_bits (struct net_device *dev, u32 data, int len)
1420 for (i = len - 1; i >= 0; i--) {
1421 mii_sendbit (dev, data & (1 << i));
1426 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1433 mii_send_bits (dev, 0xffffffff, 32);
1434 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1435 /* ST,OP = 0110'b for read operation */
1436 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1437 mii_send_bits (dev, cmd, 14);
1439 if (mii_getbit (dev))
1442 for (i = 0; i < 16; i++) {
1443 retval |= mii_getbit (dev);
1448 return (retval >> 1) & 0xffff;
1454 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1459 mii_send_bits (dev, 0xffffffff, 32);
1460 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1461 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1462 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1463 mii_send_bits (dev, cmd, 32);
1469 mii_wait_link (struct net_device *dev, int wait)
1473 struct netdev_private *np;
1475 np = netdev_priv(dev);
1476 phy_addr = np->phy_addr;
1479 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1480 if (bmsr & BMSR_LSTATUS)
1483 } while (--wait > 0);
1487 mii_get_media (struct net_device *dev)
1494 struct netdev_private *np;
1496 np = netdev_priv(dev);
1497 phy_addr = np->phy_addr;
1499 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500 if (np->an_enable) {
1501 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1502 /* Auto-Negotiation not completed */
1505 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1506 mii_read (dev, phy_addr, MII_LPA);
1507 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1508 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1509 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1511 np->full_duplex = 1;
1512 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1513 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1515 np->full_duplex = 0;
1516 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1517 } else if (negotiate & ADVERTISE_100FULL) {
1519 np->full_duplex = 1;
1520 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1521 } else if (negotiate & ADVERTISE_100HALF) {
1523 np->full_duplex = 0;
1524 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1525 } else if (negotiate & ADVERTISE_10FULL) {
1527 np->full_duplex = 1;
1528 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1529 } else if (negotiate & ADVERTISE_10HALF) {
1531 np->full_duplex = 0;
1532 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1534 if (negotiate & ADVERTISE_PAUSE_CAP) {
1537 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1541 /* else tx_flow, rx_flow = user select */
1543 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1544 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1545 case BMCR_SPEED1000:
1546 printk (KERN_INFO "Operating at 1000 Mbps, ");
1549 printk (KERN_INFO "Operating at 100 Mbps, ");
1552 printk (KERN_INFO "Operating at 10 Mbps, ");
1554 if (bmcr & BMCR_FULLDPLX) {
1555 printk (KERN_CONT "Full duplex\n");
1557 printk (KERN_CONT "Half duplex\n");
1561 printk(KERN_INFO "Enable Tx Flow Control\n");
1563 printk(KERN_INFO "Disable Tx Flow Control\n");
1565 printk(KERN_INFO "Enable Rx Flow Control\n");
1567 printk(KERN_INFO "Disable Rx Flow Control\n");
1573 mii_set_media (struct net_device *dev)
1580 struct netdev_private *np;
1581 np = netdev_priv(dev);
1582 phy_addr = np->phy_addr;
1584 /* Does user set speed? */
1585 if (np->an_enable) {
1586 /* Advertise capabilities */
1587 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1588 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1589 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1590 ADVERTISE_100HALF | ADVERTISE_10HALF |
1591 ADVERTISE_100BASE4);
1592 if (bmsr & BMSR_100FULL)
1593 anar |= ADVERTISE_100FULL;
1594 if (bmsr & BMSR_100HALF)
1595 anar |= ADVERTISE_100HALF;
1596 if (bmsr & BMSR_100BASE4)
1597 anar |= ADVERTISE_100BASE4;
1598 if (bmsr & BMSR_10FULL)
1599 anar |= ADVERTISE_10FULL;
1600 if (bmsr & BMSR_10HALF)
1601 anar |= ADVERTISE_10HALF;
1602 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1603 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1605 /* Enable Auto crossover */
1606 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1607 pscr |= 3 << 5; /* 11'b */
1608 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1610 /* Soft reset PHY */
1611 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1612 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1613 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1616 /* Force speed setting */
1617 /* 1) Disable Auto crossover */
1618 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1620 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1623 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1625 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1628 bmcr = 0x1940; /* must be 0x1940 */
1629 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630 mdelay (100); /* wait a certain time */
1632 /* 4) Advertise nothing */
1633 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1635 /* 5) Set media and Power Up */
1637 if (np->speed == 100) {
1638 bmcr |= BMCR_SPEED100;
1639 printk (KERN_INFO "Manual 100 Mbps, ");
1640 } else if (np->speed == 10) {
1641 printk (KERN_INFO "Manual 10 Mbps, ");
1643 if (np->full_duplex) {
1644 bmcr |= BMCR_FULLDPLX;
1645 printk (KERN_CONT "Full duplex\n");
1647 printk (KERN_CONT "Half duplex\n");
1650 /* Set 1000BaseT Master/Slave setting */
1651 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1652 mscr |= MII_MSCR_CFG_ENABLE;
1653 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1655 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1662 mii_get_media_pcs (struct net_device *dev)
1667 struct netdev_private *np;
1669 np = netdev_priv(dev);
1670 phy_addr = np->phy_addr;
1672 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1673 if (np->an_enable) {
1674 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1675 /* Auto-Negotiation not completed */
1678 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1679 mii_read (dev, phy_addr, PCS_ANLPAR);
1681 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1682 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1683 np->full_duplex = 1;
1685 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1686 np->full_duplex = 0;
1688 if (negotiate & PCS_ANAR_PAUSE) {
1691 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1695 /* else tx_flow, rx_flow = user select */
1697 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1698 printk (KERN_INFO "Operating at 1000 Mbps, ");
1699 if (bmcr & BMCR_FULLDPLX) {
1700 printk (KERN_CONT "Full duplex\n");
1702 printk (KERN_CONT "Half duplex\n");
1706 printk(KERN_INFO "Enable Tx Flow Control\n");
1708 printk(KERN_INFO "Disable Tx Flow Control\n");
1710 printk(KERN_INFO "Enable Rx Flow Control\n");
1712 printk(KERN_INFO "Disable Rx Flow Control\n");
1718 mii_set_media_pcs (struct net_device *dev)
1724 struct netdev_private *np;
1725 np = netdev_priv(dev);
1726 phy_addr = np->phy_addr;
1728 /* Auto-Negotiation? */
1729 if (np->an_enable) {
1730 /* Advertise capabilities */
1731 esr = mii_read (dev, phy_addr, PCS_ESR);
1732 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1733 ~PCS_ANAR_HALF_DUPLEX &
1734 ~PCS_ANAR_FULL_DUPLEX;
1735 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1736 anar |= PCS_ANAR_HALF_DUPLEX;
1737 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1738 anar |= PCS_ANAR_FULL_DUPLEX;
1739 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1740 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1742 /* Soft reset PHY */
1743 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1744 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1745 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1748 /* Force speed setting */
1751 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1753 if (np->full_duplex) {
1754 bmcr = BMCR_FULLDPLX;
1755 printk (KERN_INFO "Manual full duplex\n");
1758 printk (KERN_INFO "Manual half duplex\n");
1760 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1763 /* Advertise nothing */
1764 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1771 rio_close (struct net_device *dev)
1773 struct netdev_private *np = netdev_priv(dev);
1774 struct pci_dev *pdev = np->pdev;
1776 netif_stop_queue (dev);
1780 free_irq(pdev->irq, dev);
1781 del_timer_sync (&np->timer);
1789 rio_remove1 (struct pci_dev *pdev)
1791 struct net_device *dev = pci_get_drvdata (pdev);
1794 struct netdev_private *np = netdev_priv(dev);
1796 unregister_netdev (dev);
1797 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1799 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1802 pci_iounmap(pdev, np->ioaddr);
1804 pci_iounmap(pdev, np->eeprom_addr);
1806 pci_release_regions (pdev);
1807 pci_disable_device (pdev);
1811 #ifdef CONFIG_PM_SLEEP
1812 static int rio_suspend(struct device *device)
1814 struct net_device *dev = dev_get_drvdata(device);
1815 struct netdev_private *np = netdev_priv(dev);
1817 if (!netif_running(dev))
1820 netif_device_detach(dev);
1821 del_timer_sync(&np->timer);
1827 static int rio_resume(struct device *device)
1829 struct net_device *dev = dev_get_drvdata(device);
1830 struct netdev_private *np = netdev_priv(dev);
1832 if (!netif_running(dev))
1837 np->timer.expires = jiffies + 1 * HZ;
1838 add_timer(&np->timer);
1839 netif_device_attach(dev);
1840 dl2k_enable_int(np);
1845 static DEFINE_SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1846 #define RIO_PM_OPS (&rio_pm_ops)
1850 #define RIO_PM_OPS NULL
1852 #endif /* CONFIG_PM_SLEEP */
1854 static struct pci_driver rio_driver = {
1856 .id_table = rio_pci_tbl,
1857 .probe = rio_probe1,
1858 .remove = rio_remove1,
1859 .driver.pm = RIO_PM_OPS,
1862 module_pci_driver(rio_driver);
1864 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */