]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/sh_flctl.c
Linux 6.14-rc3
[linux.git] / drivers / mtd / nand / raw / sh_flctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH FLCTL nand controller
4  *
5  * Copyright (c) 2008 Renesas Solutions Corp.
6  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7  *
8  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9  */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sh_dma.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/rawnand.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/mtd/sh_flctl.h>
30
31 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
32                                         struct mtd_oob_region *oobregion)
33 {
34         struct nand_chip *chip = mtd_to_nand(mtd);
35
36         if (section)
37                 return -ERANGE;
38
39         oobregion->offset = 0;
40         oobregion->length = chip->ecc.bytes;
41
42         return 0;
43 }
44
45 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
46                                          struct mtd_oob_region *oobregion)
47 {
48         if (section)
49                 return -ERANGE;
50
51         oobregion->offset = 12;
52         oobregion->length = 4;
53
54         return 0;
55 }
56
57 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
58         .ecc = flctl_4secc_ooblayout_sp_ecc,
59         .free = flctl_4secc_ooblayout_sp_free,
60 };
61
62 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
63                                         struct mtd_oob_region *oobregion)
64 {
65         struct nand_chip *chip = mtd_to_nand(mtd);
66
67         if (section >= chip->ecc.steps)
68                 return -ERANGE;
69
70         oobregion->offset = (section * 16) + 6;
71         oobregion->length = chip->ecc.bytes;
72
73         return 0;
74 }
75
76 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
77                                          struct mtd_oob_region *oobregion)
78 {
79         struct nand_chip *chip = mtd_to_nand(mtd);
80
81         if (section >= chip->ecc.steps)
82                 return -ERANGE;
83
84         oobregion->offset = section * 16;
85         oobregion->length = 6;
86
87         if (!section) {
88                 oobregion->offset += 2;
89                 oobregion->length -= 2;
90         }
91
92         return 0;
93 }
94
95 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
96         .ecc = flctl_4secc_ooblayout_lp_ecc,
97         .free = flctl_4secc_ooblayout_lp_free,
98 };
99
100 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
101
102 static struct nand_bbt_descr flctl_4secc_smallpage = {
103         .offs = 11,
104         .len = 1,
105         .pattern = scan_ff_pattern,
106 };
107
108 static struct nand_bbt_descr flctl_4secc_largepage = {
109         .offs = 0,
110         .len = 2,
111         .pattern = scan_ff_pattern,
112 };
113
114 static void empty_fifo(struct sh_flctl *flctl)
115 {
116         writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
117         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
118 }
119
120 static void start_translation(struct sh_flctl *flctl)
121 {
122         writeb(TRSTRT, FLTRCR(flctl));
123 }
124
125 static void timeout_error(struct sh_flctl *flctl, const char *str)
126 {
127         dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
128 }
129
130 static void wait_completion(struct sh_flctl *flctl)
131 {
132         uint32_t timeout = LOOP_TIMEOUT_MAX;
133
134         while (timeout--) {
135                 if (readb(FLTRCR(flctl)) & TREND) {
136                         writeb(0x0, FLTRCR(flctl));
137                         return;
138                 }
139                 udelay(1);
140         }
141
142         timeout_error(flctl, __func__);
143         writeb(0x0, FLTRCR(flctl));
144 }
145
146 static void flctl_dma_complete(void *param)
147 {
148         struct sh_flctl *flctl = param;
149
150         complete(&flctl->dma_complete);
151 }
152
153 static void flctl_release_dma(struct sh_flctl *flctl)
154 {
155         if (flctl->chan_fifo0_rx) {
156                 dma_release_channel(flctl->chan_fifo0_rx);
157                 flctl->chan_fifo0_rx = NULL;
158         }
159         if (flctl->chan_fifo0_tx) {
160                 dma_release_channel(flctl->chan_fifo0_tx);
161                 flctl->chan_fifo0_tx = NULL;
162         }
163 }
164
165 static void flctl_setup_dma(struct sh_flctl *flctl)
166 {
167         dma_cap_mask_t mask;
168         struct dma_slave_config cfg;
169         struct platform_device *pdev = flctl->pdev;
170         struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
171         int ret;
172
173         if (!pdata)
174                 return;
175
176         if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
177                 return;
178
179         /* We can only either use DMA for both Tx and Rx or not use it at all */
180         dma_cap_zero(mask);
181         dma_cap_set(DMA_SLAVE, mask);
182
183         flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
184                                 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
185         dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
186                 flctl->chan_fifo0_tx);
187
188         if (!flctl->chan_fifo0_tx)
189                 return;
190
191         memset(&cfg, 0, sizeof(cfg));
192         cfg.direction = DMA_MEM_TO_DEV;
193         cfg.dst_addr = flctl->fifo;
194         cfg.src_addr = 0;
195         ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
196         if (ret < 0)
197                 goto err;
198
199         flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
200                                 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
201         dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
202                 flctl->chan_fifo0_rx);
203
204         if (!flctl->chan_fifo0_rx)
205                 goto err;
206
207         cfg.direction = DMA_DEV_TO_MEM;
208         cfg.dst_addr = 0;
209         cfg.src_addr = flctl->fifo;
210         ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
211         if (ret < 0)
212                 goto err;
213
214         init_completion(&flctl->dma_complete);
215
216         return;
217
218 err:
219         flctl_release_dma(flctl);
220 }
221
222 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
223 {
224         struct sh_flctl *flctl = mtd_to_flctl(mtd);
225         uint32_t addr = 0;
226
227         if (column == -1) {
228                 addr = page_addr;       /* ERASE1 */
229         } else if (page_addr != -1) {
230                 /* SEQIN, READ0, etc.. */
231                 if (flctl->chip.options & NAND_BUSWIDTH_16)
232                         column >>= 1;
233                 if (flctl->page_size) {
234                         addr = column & 0x0FFF;
235                         addr |= (page_addr & 0xff) << 16;
236                         addr |= ((page_addr >> 8) & 0xff) << 24;
237                         /* big than 128MB */
238                         if (flctl->rw_ADRCNT == ADRCNT2_E) {
239                                 uint32_t        addr2;
240                                 addr2 = (page_addr >> 16) & 0xff;
241                                 writel(addr2, FLADR2(flctl));
242                         }
243                 } else {
244                         addr = column;
245                         addr |= (page_addr & 0xff) << 8;
246                         addr |= ((page_addr >> 8) & 0xff) << 16;
247                         addr |= ((page_addr >> 16) & 0xff) << 24;
248                 }
249         }
250         writel(addr, FLADR(flctl));
251 }
252
253 static void wait_rfifo_ready(struct sh_flctl *flctl)
254 {
255         uint32_t timeout = LOOP_TIMEOUT_MAX;
256
257         while (timeout--) {
258                 uint32_t val;
259                 /* check FIFO */
260                 val = readl(FLDTCNTR(flctl)) >> 16;
261                 if (val & 0xFF)
262                         return;
263                 udelay(1);
264         }
265         timeout_error(flctl, __func__);
266 }
267
268 static void wait_wfifo_ready(struct sh_flctl *flctl)
269 {
270         uint32_t len, timeout = LOOP_TIMEOUT_MAX;
271
272         while (timeout--) {
273                 /* check FIFO */
274                 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
275                 if (len >= 4)
276                         return;
277                 udelay(1);
278         }
279         timeout_error(flctl, __func__);
280 }
281
282 static enum flctl_ecc_res_t wait_recfifo_ready
283                 (struct sh_flctl *flctl, int sector_number)
284 {
285         uint32_t timeout = LOOP_TIMEOUT_MAX;
286         void __iomem *ecc_reg[4];
287         int i;
288         int state = FL_SUCCESS;
289         uint32_t data, size;
290
291         /*
292          * First this loops checks in FLDTCNTR if we are ready to read out the
293          * oob data. This is the case if either all went fine without errors or
294          * if the bottom part of the loop corrected the errors or marked them as
295          * uncorrectable and the controller is given time to push the data into
296          * the FIFO.
297          */
298         while (timeout--) {
299                 /* check if all is ok and we can read out the OOB */
300                 size = readl(FLDTCNTR(flctl)) >> 24;
301                 if ((size & 0xFF) == 4)
302                         return state;
303
304                 /* check if a correction code has been calculated */
305                 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
306                         /*
307                          * either we wait for the fifo to be filled or a
308                          * correction pattern is being generated
309                          */
310                         udelay(1);
311                         continue;
312                 }
313
314                 /* check for an uncorrectable error */
315                 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
316                         /* check if we face a non-empty page */
317                         for (i = 0; i < 512; i++) {
318                                 if (flctl->done_buff[i] != 0xff) {
319                                         state = FL_ERROR; /* can't correct */
320                                         break;
321                                 }
322                         }
323
324                         if (state == FL_SUCCESS)
325                                 dev_dbg(&flctl->pdev->dev,
326                                 "reading empty sector %d, ecc error ignored\n",
327                                 sector_number);
328
329                         writel(0, FL4ECCCR(flctl));
330                         continue;
331                 }
332
333                 /* start error correction */
334                 ecc_reg[0] = FL4ECCRESULT0(flctl);
335                 ecc_reg[1] = FL4ECCRESULT1(flctl);
336                 ecc_reg[2] = FL4ECCRESULT2(flctl);
337                 ecc_reg[3] = FL4ECCRESULT3(flctl);
338
339                 for (i = 0; i < 3; i++) {
340                         uint8_t org;
341                         unsigned int index;
342
343                         data = readl(ecc_reg[i]);
344
345                         if (flctl->page_size)
346                                 index = (512 * sector_number) +
347                                         (data >> 16);
348                         else
349                                 index = data >> 16;
350
351                         org = flctl->done_buff[index];
352                         flctl->done_buff[index] = org ^ (data & 0xFF);
353                 }
354                 state = FL_REPAIRABLE;
355                 writel(0, FL4ECCCR(flctl));
356         }
357
358         timeout_error(flctl, __func__);
359         return FL_TIMEOUT;      /* timeout */
360 }
361
362 static void wait_wecfifo_ready(struct sh_flctl *flctl)
363 {
364         uint32_t timeout = LOOP_TIMEOUT_MAX;
365         uint32_t len;
366
367         while (timeout--) {
368                 /* check FLECFIFO */
369                 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
370                 if (len >= 4)
371                         return;
372                 udelay(1);
373         }
374         timeout_error(flctl, __func__);
375 }
376
377 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
378                                         int len, enum dma_data_direction dir)
379 {
380         struct dma_async_tx_descriptor *desc = NULL;
381         struct dma_chan *chan;
382         enum dma_transfer_direction tr_dir;
383         dma_addr_t dma_addr;
384         dma_cookie_t cookie;
385         uint32_t reg;
386         int ret = 0;
387         unsigned long time_left;
388
389         if (dir == DMA_FROM_DEVICE) {
390                 chan = flctl->chan_fifo0_rx;
391                 tr_dir = DMA_DEV_TO_MEM;
392         } else {
393                 chan = flctl->chan_fifo0_tx;
394                 tr_dir = DMA_MEM_TO_DEV;
395         }
396
397         dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
398
399         if (!dma_mapping_error(chan->device->dev, dma_addr))
400                 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401                         tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
402
403         if (desc) {
404                 reg = readl(FLINTDMACR(flctl));
405                 reg |= DREQ0EN;
406                 writel(reg, FLINTDMACR(flctl));
407
408                 desc->callback = flctl_dma_complete;
409                 desc->callback_param = flctl;
410                 cookie = dmaengine_submit(desc);
411                 if (dma_submit_error(cookie)) {
412                         ret = dma_submit_error(cookie);
413                         dev_warn(&flctl->pdev->dev,
414                                  "DMA submit failed, falling back to PIO\n");
415                         goto out;
416                 }
417
418                 dma_async_issue_pending(chan);
419         } else {
420                 /* DMA failed, fall back to PIO */
421                 flctl_release_dma(flctl);
422                 dev_warn(&flctl->pdev->dev,
423                          "DMA failed, falling back to PIO\n");
424                 ret = -EIO;
425                 goto out;
426         }
427
428         time_left =
429         wait_for_completion_timeout(&flctl->dma_complete,
430                                 msecs_to_jiffies(3000));
431
432         if (time_left == 0) {
433                 dmaengine_terminate_all(chan);
434                 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
435                 ret = -ETIMEDOUT;
436         }
437
438 out:
439         reg = readl(FLINTDMACR(flctl));
440         reg &= ~DREQ0EN;
441         writel(reg, FLINTDMACR(flctl));
442
443         dma_unmap_single(chan->device->dev, dma_addr, len, dir);
444
445         /* ret == 0 is success */
446         return ret;
447 }
448
449 static void read_datareg(struct sh_flctl *flctl, int offset)
450 {
451         unsigned long data;
452         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
453
454         wait_completion(flctl);
455
456         data = readl(FLDATAR(flctl));
457         *buf = le32_to_cpu(data);
458 }
459
460 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
461 {
462         int i, len_4align;
463         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
464
465         len_4align = (rlen + 3) / 4;
466
467         /* initiate DMA transfer */
468         if (flctl->chan_fifo0_rx && rlen >= 32 &&
469                 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
470                         goto convert;   /* DMA success */
471
472         /* do polling transfer */
473         for (i = 0; i < len_4align; i++) {
474                 wait_rfifo_ready(flctl);
475                 buf[i] = readl(FLDTFIFO(flctl));
476         }
477
478 convert:
479         for (i = 0; i < len_4align; i++)
480                 buf[i] = be32_to_cpu(buf[i]);
481 }
482
483 static enum flctl_ecc_res_t read_ecfiforeg
484                 (struct sh_flctl *flctl, uint8_t *buff, int sector)
485 {
486         int i;
487         enum flctl_ecc_res_t res;
488         unsigned long *ecc_buf = (unsigned long *)buff;
489
490         res = wait_recfifo_ready(flctl , sector);
491
492         if (res != FL_ERROR) {
493                 for (i = 0; i < 4; i++) {
494                         ecc_buf[i] = readl(FLECFIFO(flctl));
495                         ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
496                 }
497         }
498
499         return res;
500 }
501
502 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
503                                                 unsigned int offset)
504 {
505         int i, len_4align;
506         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
507
508         len_4align = (rlen + 3) / 4;
509         for (i = 0; i < len_4align; i++) {
510                 wait_wfifo_ready(flctl);
511                 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
512         }
513 }
514
515 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
516                                                 unsigned int offset)
517 {
518         int i, len_4align;
519         unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
520
521         len_4align = (rlen + 3) / 4;
522
523         for (i = 0; i < len_4align; i++)
524                 buf[i] = cpu_to_be32(buf[i]);
525
526         /* initiate DMA transfer */
527         if (flctl->chan_fifo0_tx && rlen >= 32 &&
528                 !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
529                         return; /* DMA success */
530
531         /* do polling transfer */
532         for (i = 0; i < len_4align; i++) {
533                 wait_wecfifo_ready(flctl);
534                 writel(buf[i], FLECFIFO(flctl));
535         }
536 }
537
538 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
539 {
540         struct sh_flctl *flctl = mtd_to_flctl(mtd);
541         uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
542         uint32_t flcmdcr_val, addr_len_bytes = 0;
543
544         /* Set SNAND bit if page size is 2048byte */
545         if (flctl->page_size)
546                 flcmncr_val |= SNAND_E;
547         else
548                 flcmncr_val &= ~SNAND_E;
549
550         /* default FLCMDCR val */
551         flcmdcr_val = DOCMD1_E | DOADR_E;
552
553         /* Set for FLCMDCR */
554         switch (cmd) {
555         case NAND_CMD_ERASE1:
556                 addr_len_bytes = flctl->erase_ADRCNT;
557                 flcmdcr_val |= DOCMD2_E;
558                 break;
559         case NAND_CMD_READ0:
560         case NAND_CMD_READOOB:
561         case NAND_CMD_RNDOUT:
562                 addr_len_bytes = flctl->rw_ADRCNT;
563                 flcmdcr_val |= CDSRC_E;
564                 if (flctl->chip.options & NAND_BUSWIDTH_16)
565                         flcmncr_val |= SEL_16BIT;
566                 break;
567         case NAND_CMD_SEQIN:
568                 /* This case is that cmd is READ0 or READ1 or READ00 */
569                 flcmdcr_val &= ~DOADR_E;        /* ONLY execute 1st cmd */
570                 break;
571         case NAND_CMD_PAGEPROG:
572                 addr_len_bytes = flctl->rw_ADRCNT;
573                 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
574                 if (flctl->chip.options & NAND_BUSWIDTH_16)
575                         flcmncr_val |= SEL_16BIT;
576                 break;
577         case NAND_CMD_READID:
578                 flcmncr_val &= ~SNAND_E;
579                 flcmdcr_val |= CDSRC_E;
580                 addr_len_bytes = ADRCNT_1;
581                 break;
582         case NAND_CMD_STATUS:
583         case NAND_CMD_RESET:
584                 flcmncr_val &= ~SNAND_E;
585                 flcmdcr_val &= ~(DOADR_E | DOSR_E);
586                 break;
587         default:
588                 break;
589         }
590
591         /* Set address bytes parameter */
592         flcmdcr_val |= addr_len_bytes;
593
594         /* Now actually write */
595         writel(flcmncr_val, FLCMNCR(flctl));
596         writel(flcmdcr_val, FLCMDCR(flctl));
597         writel(flcmcdr_val, FLCMCDR(flctl));
598 }
599
600 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
601                                  int oob_required, int page)
602 {
603         struct mtd_info *mtd = nand_to_mtd(chip);
604
605         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
606         if (oob_required)
607                 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
608         return 0;
609 }
610
611 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
612                                   int oob_required, int page)
613 {
614         struct mtd_info *mtd = nand_to_mtd(chip);
615
616         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
617         chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
618         return nand_prog_page_end_op(chip);
619 }
620
621 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
622 {
623         struct sh_flctl *flctl = mtd_to_flctl(mtd);
624         int sector, page_sectors;
625         enum flctl_ecc_res_t ecc_result;
626
627         page_sectors = flctl->page_size ? 4 : 1;
628
629         set_cmd_regs(mtd, NAND_CMD_READ0,
630                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
631
632         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
633                  FLCMNCR(flctl));
634         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
635         writel(page_addr << 2, FLADR(flctl));
636
637         empty_fifo(flctl);
638         start_translation(flctl);
639
640         for (sector = 0; sector < page_sectors; sector++) {
641                 read_fiforeg(flctl, 512, 512 * sector);
642
643                 ecc_result = read_ecfiforeg(flctl,
644                         &flctl->done_buff[mtd->writesize + 16 * sector],
645                         sector);
646
647                 switch (ecc_result) {
648                 case FL_REPAIRABLE:
649                         dev_info(&flctl->pdev->dev,
650                                 "applied ecc on page 0x%x", page_addr);
651                         mtd->ecc_stats.corrected++;
652                         break;
653                 case FL_ERROR:
654                         dev_warn(&flctl->pdev->dev,
655                                 "page 0x%x contains corrupted data\n",
656                                 page_addr);
657                         mtd->ecc_stats.failed++;
658                         break;
659                 default:
660                         ;
661                 }
662         }
663
664         wait_completion(flctl);
665
666         writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
667                         FLCMNCR(flctl));
668 }
669
670 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
671 {
672         struct sh_flctl *flctl = mtd_to_flctl(mtd);
673         int page_sectors = flctl->page_size ? 4 : 1;
674         int i;
675
676         set_cmd_regs(mtd, NAND_CMD_READ0,
677                 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
678
679         empty_fifo(flctl);
680
681         for (i = 0; i < page_sectors; i++) {
682                 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
683                 writel(16, FLDTCNTR(flctl));
684
685                 start_translation(flctl);
686                 read_fiforeg(flctl, 16, 16 * i);
687                 wait_completion(flctl);
688         }
689 }
690
691 static void execmd_write_page_sector(struct mtd_info *mtd)
692 {
693         struct sh_flctl *flctl = mtd_to_flctl(mtd);
694         int page_addr = flctl->seqin_page_addr;
695         int sector, page_sectors;
696
697         page_sectors = flctl->page_size ? 4 : 1;
698
699         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
700                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
701
702         empty_fifo(flctl);
703         writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
704         writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
705         writel(page_addr << 2, FLADR(flctl));
706         start_translation(flctl);
707
708         for (sector = 0; sector < page_sectors; sector++) {
709                 write_fiforeg(flctl, 512, 512 * sector);
710                 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
711         }
712
713         wait_completion(flctl);
714         writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
715 }
716
717 static void execmd_write_oob(struct mtd_info *mtd)
718 {
719         struct sh_flctl *flctl = mtd_to_flctl(mtd);
720         int page_addr = flctl->seqin_page_addr;
721         int sector, page_sectors;
722
723         page_sectors = flctl->page_size ? 4 : 1;
724
725         set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
726                         (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
727
728         for (sector = 0; sector < page_sectors; sector++) {
729                 empty_fifo(flctl);
730                 set_addr(mtd, sector * 528 + 512, page_addr);
731                 writel(16, FLDTCNTR(flctl));    /* set read size */
732
733                 start_translation(flctl);
734                 write_fiforeg(flctl, 16, 16 * sector);
735                 wait_completion(flctl);
736         }
737 }
738
739 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
740                         int column, int page_addr)
741 {
742         struct mtd_info *mtd = nand_to_mtd(chip);
743         struct sh_flctl *flctl = mtd_to_flctl(mtd);
744         uint32_t read_cmd = 0;
745
746         pm_runtime_get_sync(&flctl->pdev->dev);
747
748         flctl->read_bytes = 0;
749         if (command != NAND_CMD_PAGEPROG)
750                 flctl->index = 0;
751
752         switch (command) {
753         case NAND_CMD_READ1:
754         case NAND_CMD_READ0:
755                 if (flctl->hwecc) {
756                         /* read page with hwecc */
757                         execmd_read_page_sector(mtd, page_addr);
758                         break;
759                 }
760                 if (flctl->page_size)
761                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
762                                 | command);
763                 else
764                         set_cmd_regs(mtd, command, command);
765
766                 set_addr(mtd, 0, page_addr);
767
768                 flctl->read_bytes = mtd->writesize + mtd->oobsize;
769                 if (flctl->chip.options & NAND_BUSWIDTH_16)
770                         column >>= 1;
771                 flctl->index += column;
772                 goto read_normal_exit;
773
774         case NAND_CMD_READOOB:
775                 if (flctl->hwecc) {
776                         /* read page with hwecc */
777                         execmd_read_oob(mtd, page_addr);
778                         break;
779                 }
780
781                 if (flctl->page_size) {
782                         set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
783                                 | NAND_CMD_READ0);
784                         set_addr(mtd, mtd->writesize, page_addr);
785                 } else {
786                         set_cmd_regs(mtd, command, command);
787                         set_addr(mtd, 0, page_addr);
788                 }
789                 flctl->read_bytes = mtd->oobsize;
790                 goto read_normal_exit;
791
792         case NAND_CMD_RNDOUT:
793                 if (flctl->hwecc)
794                         break;
795
796                 if (flctl->page_size)
797                         set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
798                                 | command);
799                 else
800                         set_cmd_regs(mtd, command, command);
801
802                 set_addr(mtd, column, 0);
803
804                 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
805                 goto read_normal_exit;
806
807         case NAND_CMD_READID:
808                 set_cmd_regs(mtd, command, command);
809
810                 /* READID is always performed using an 8-bit bus */
811                 if (flctl->chip.options & NAND_BUSWIDTH_16)
812                         column <<= 1;
813                 set_addr(mtd, column, 0);
814
815                 flctl->read_bytes = 8;
816                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
817                 empty_fifo(flctl);
818                 start_translation(flctl);
819                 read_fiforeg(flctl, flctl->read_bytes, 0);
820                 wait_completion(flctl);
821                 break;
822
823         case NAND_CMD_ERASE1:
824                 flctl->erase1_page_addr = page_addr;
825                 break;
826
827         case NAND_CMD_ERASE2:
828                 set_cmd_regs(mtd, NAND_CMD_ERASE1,
829                         (command << 8) | NAND_CMD_ERASE1);
830                 set_addr(mtd, -1, flctl->erase1_page_addr);
831                 start_translation(flctl);
832                 wait_completion(flctl);
833                 break;
834
835         case NAND_CMD_SEQIN:
836                 if (!flctl->page_size) {
837                         /* output read command */
838                         if (column >= mtd->writesize) {
839                                 column -= mtd->writesize;
840                                 read_cmd = NAND_CMD_READOOB;
841                         } else if (column < 256) {
842                                 read_cmd = NAND_CMD_READ0;
843                         } else {
844                                 column -= 256;
845                                 read_cmd = NAND_CMD_READ1;
846                         }
847                 }
848                 flctl->seqin_column = column;
849                 flctl->seqin_page_addr = page_addr;
850                 flctl->seqin_read_cmd = read_cmd;
851                 break;
852
853         case NAND_CMD_PAGEPROG:
854                 empty_fifo(flctl);
855                 if (!flctl->page_size) {
856                         set_cmd_regs(mtd, NAND_CMD_SEQIN,
857                                         flctl->seqin_read_cmd);
858                         set_addr(mtd, -1, -1);
859                         writel(0, FLDTCNTR(flctl));     /* set 0 size */
860                         start_translation(flctl);
861                         wait_completion(flctl);
862                 }
863                 if (flctl->hwecc) {
864                         /* write page with hwecc */
865                         if (flctl->seqin_column == mtd->writesize)
866                                 execmd_write_oob(mtd);
867                         else if (!flctl->seqin_column)
868                                 execmd_write_page_sector(mtd);
869                         else
870                                 pr_err("Invalid address !?\n");
871                         break;
872                 }
873                 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
874                 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
875                 writel(flctl->index, FLDTCNTR(flctl));  /* set write size */
876                 start_translation(flctl);
877                 write_fiforeg(flctl, flctl->index, 0);
878                 wait_completion(flctl);
879                 break;
880
881         case NAND_CMD_STATUS:
882                 set_cmd_regs(mtd, command, command);
883                 set_addr(mtd, -1, -1);
884
885                 flctl->read_bytes = 1;
886                 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
887                 start_translation(flctl);
888                 read_datareg(flctl, 0); /* read and end */
889                 break;
890
891         case NAND_CMD_RESET:
892                 set_cmd_regs(mtd, command, command);
893                 set_addr(mtd, -1, -1);
894
895                 writel(0, FLDTCNTR(flctl));     /* set 0 size */
896                 start_translation(flctl);
897                 wait_completion(flctl);
898                 break;
899
900         default:
901                 break;
902         }
903         goto runtime_exit;
904
905 read_normal_exit:
906         writel(flctl->read_bytes, FLDTCNTR(flctl));     /* set read size */
907         empty_fifo(flctl);
908         start_translation(flctl);
909         read_fiforeg(flctl, flctl->read_bytes, 0);
910         wait_completion(flctl);
911 runtime_exit:
912         pm_runtime_put_sync(&flctl->pdev->dev);
913         return;
914 }
915
916 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
917 {
918         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
919         int ret;
920
921         switch (chipnr) {
922         case -1:
923                 flctl->flcmncr_base &= ~CE0_ENABLE;
924
925                 pm_runtime_get_sync(&flctl->pdev->dev);
926                 writel(flctl->flcmncr_base, FLCMNCR(flctl));
927
928                 if (flctl->qos_request) {
929                         dev_pm_qos_remove_request(&flctl->pm_qos);
930                         flctl->qos_request = 0;
931                 }
932
933                 pm_runtime_put_sync(&flctl->pdev->dev);
934                 break;
935         case 0:
936                 flctl->flcmncr_base |= CE0_ENABLE;
937
938                 if (!flctl->qos_request) {
939                         ret = dev_pm_qos_add_request(&flctl->pdev->dev,
940                                                         &flctl->pm_qos,
941                                                         DEV_PM_QOS_RESUME_LATENCY,
942                                                         100);
943                         if (ret < 0)
944                                 dev_err(&flctl->pdev->dev,
945                                         "PM QoS request failed: %d\n", ret);
946                         flctl->qos_request = 1;
947                 }
948
949                 if (flctl->holden) {
950                         pm_runtime_get_sync(&flctl->pdev->dev);
951                         writel(HOLDEN, FLHOLDCR(flctl));
952                         pm_runtime_put_sync(&flctl->pdev->dev);
953                 }
954                 break;
955         default:
956                 BUG();
957         }
958 }
959
960 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
961 {
962         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
963
964         memcpy(&flctl->done_buff[flctl->index], buf, len);
965         flctl->index += len;
966 }
967
968 static uint8_t flctl_read_byte(struct nand_chip *chip)
969 {
970         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
971         uint8_t data;
972
973         data = flctl->done_buff[flctl->index];
974         flctl->index++;
975         return data;
976 }
977
978 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
979 {
980         struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
981
982         memcpy(buf, &flctl->done_buff[flctl->index], len);
983         flctl->index += len;
984 }
985
986 static int flctl_chip_attach_chip(struct nand_chip *chip)
987 {
988         u64 targetsize = nanddev_target_size(&chip->base);
989         struct mtd_info *mtd = nand_to_mtd(chip);
990         struct sh_flctl *flctl = mtd_to_flctl(mtd);
991
992         /*
993          * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
994          * Add the SEL_16BIT flag in flctl->flcmncr_base.
995          */
996         if (chip->options & NAND_BUSWIDTH_16)
997                 flctl->flcmncr_base |= SEL_16BIT;
998
999         if (mtd->writesize == 512) {
1000                 flctl->page_size = 0;
1001                 if (targetsize > (32 << 20)) {
1002                         /* big than 32MB */
1003                         flctl->rw_ADRCNT = ADRCNT_4;
1004                         flctl->erase_ADRCNT = ADRCNT_3;
1005                 } else if (targetsize > (2 << 16)) {
1006                         /* big than 128KB */
1007                         flctl->rw_ADRCNT = ADRCNT_3;
1008                         flctl->erase_ADRCNT = ADRCNT_2;
1009                 } else {
1010                         flctl->rw_ADRCNT = ADRCNT_2;
1011                         flctl->erase_ADRCNT = ADRCNT_1;
1012                 }
1013         } else {
1014                 flctl->page_size = 1;
1015                 if (targetsize > (128 << 20)) {
1016                         /* big than 128MB */
1017                         flctl->rw_ADRCNT = ADRCNT2_E;
1018                         flctl->erase_ADRCNT = ADRCNT_3;
1019                 } else if (targetsize > (8 << 16)) {
1020                         /* big than 512KB */
1021                         flctl->rw_ADRCNT = ADRCNT_4;
1022                         flctl->erase_ADRCNT = ADRCNT_2;
1023                 } else {
1024                         flctl->rw_ADRCNT = ADRCNT_3;
1025                         flctl->erase_ADRCNT = ADRCNT_1;
1026                 }
1027         }
1028
1029         if (flctl->hwecc) {
1030                 if (mtd->writesize == 512) {
1031                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1032                         chip->badblock_pattern = &flctl_4secc_smallpage;
1033                 } else {
1034                         mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1035                         chip->badblock_pattern = &flctl_4secc_largepage;
1036                 }
1037
1038                 chip->ecc.size = 512;
1039                 chip->ecc.bytes = 10;
1040                 chip->ecc.strength = 4;
1041                 chip->ecc.read_page = flctl_read_page_hwecc;
1042                 chip->ecc.write_page = flctl_write_page_hwecc;
1043                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1044
1045                 /* 4 symbols ECC enabled */
1046                 flctl->flcmncr_base |= _4ECCEN;
1047         } else {
1048                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1049                 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1050         }
1051
1052         return 0;
1053 }
1054
1055 static const struct nand_controller_ops flctl_nand_controller_ops = {
1056         .attach_chip = flctl_chip_attach_chip,
1057 };
1058
1059 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1060 {
1061         struct sh_flctl *flctl = dev_id;
1062
1063         dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1064         writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1065
1066         return IRQ_HANDLED;
1067 }
1068
1069 struct flctl_soc_config {
1070         unsigned long flcmncr_val;
1071         unsigned has_hwecc:1;
1072         unsigned use_holden:1;
1073 };
1074
1075 static struct flctl_soc_config flctl_sh7372_config = {
1076         .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1077         .has_hwecc = 1,
1078         .use_holden = 1,
1079 };
1080
1081 static const struct of_device_id of_flctl_match[] = {
1082         { .compatible = "renesas,shmobile-flctl-sh7372",
1083                                 .data = &flctl_sh7372_config },
1084         {},
1085 };
1086 MODULE_DEVICE_TABLE(of, of_flctl_match);
1087
1088 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1089 {
1090         const struct flctl_soc_config *config;
1091         struct sh_flctl_platform_data *pdata;
1092
1093         config = of_device_get_match_data(dev);
1094         if (!config) {
1095                 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1096                 return NULL;
1097         }
1098
1099         pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1100                                                                 GFP_KERNEL);
1101         if (!pdata)
1102                 return NULL;
1103
1104         /* set SoC specific options */
1105         pdata->flcmncr_val = config->flcmncr_val;
1106         pdata->has_hwecc = config->has_hwecc;
1107         pdata->use_holden = config->use_holden;
1108
1109         return pdata;
1110 }
1111
1112 static int flctl_probe(struct platform_device *pdev)
1113 {
1114         struct resource *res;
1115         struct sh_flctl *flctl;
1116         struct mtd_info *flctl_mtd;
1117         struct nand_chip *nand;
1118         struct sh_flctl_platform_data *pdata;
1119         int ret;
1120         int irq;
1121
1122         flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1123         if (!flctl)
1124                 return -ENOMEM;
1125
1126         flctl->reg = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1127         if (IS_ERR(flctl->reg))
1128                 return PTR_ERR(flctl->reg);
1129         flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1130
1131         irq = platform_get_irq(pdev, 0);
1132         if (irq < 0)
1133                 return irq;
1134
1135         ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136                                "flste", flctl);
1137         if (ret) {
1138                 dev_err(&pdev->dev, "request interrupt failed.\n");
1139                 return ret;
1140         }
1141
1142         if (pdev->dev.of_node)
1143                 pdata = flctl_parse_dt(&pdev->dev);
1144         else
1145                 pdata = dev_get_platdata(&pdev->dev);
1146
1147         if (!pdata) {
1148                 dev_err(&pdev->dev, "no setup data defined\n");
1149                 return -EINVAL;
1150         }
1151
1152         platform_set_drvdata(pdev, flctl);
1153         nand = &flctl->chip;
1154         flctl_mtd = nand_to_mtd(nand);
1155         nand_set_flash_node(nand, pdev->dev.of_node);
1156         flctl_mtd->dev.parent = &pdev->dev;
1157         flctl->pdev = pdev;
1158         flctl->hwecc = pdata->has_hwecc;
1159         flctl->holden = pdata->use_holden;
1160         flctl->flcmncr_base = pdata->flcmncr_val;
1161         flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1162
1163         /* Set address of hardware control function */
1164         /* 20 us command delay time */
1165         nand->legacy.chip_delay = 20;
1166
1167         nand->legacy.read_byte = flctl_read_byte;
1168         nand->legacy.write_buf = flctl_write_buf;
1169         nand->legacy.read_buf = flctl_read_buf;
1170         nand->legacy.select_chip = flctl_select_chip;
1171         nand->legacy.cmdfunc = flctl_cmdfunc;
1172         nand->legacy.set_features = nand_get_set_features_notsupp;
1173         nand->legacy.get_features = nand_get_set_features_notsupp;
1174
1175         if (pdata->flcmncr_val & SEL_16BIT)
1176                 nand->options |= NAND_BUSWIDTH_16;
1177
1178         nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1179
1180         pm_runtime_enable(&pdev->dev);
1181         pm_runtime_resume(&pdev->dev);
1182
1183         flctl_setup_dma(flctl);
1184
1185         nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186         ret = nand_scan(nand, 1);
1187         if (ret)
1188                 goto err_chip;
1189
1190         ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191         if (ret)
1192                 goto cleanup_nand;
1193
1194         return 0;
1195
1196 cleanup_nand:
1197         nand_cleanup(nand);
1198 err_chip:
1199         flctl_release_dma(flctl);
1200         pm_runtime_disable(&pdev->dev);
1201         return ret;
1202 }
1203
1204 static void flctl_remove(struct platform_device *pdev)
1205 {
1206         struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207         struct nand_chip *chip = &flctl->chip;
1208         int ret;
1209
1210         flctl_release_dma(flctl);
1211         ret = mtd_device_unregister(nand_to_mtd(chip));
1212         WARN_ON(ret);
1213         nand_cleanup(chip);
1214         pm_runtime_disable(&pdev->dev);
1215 }
1216
1217 static struct platform_driver flctl_driver = {
1218         .probe          = flctl_probe,
1219         .remove         = flctl_remove,
1220         .driver = {
1221                 .name   = "sh_flctl",
1222                 .of_match_table = of_flctl_match,
1223         },
1224 };
1225
1226 module_platform_driver(flctl_driver);
1227
1228 MODULE_LICENSE("GPL v2");
1229 MODULE_AUTHOR("Yoshihiro Shimoda");
1230 MODULE_DESCRIPTION("SuperH FLCTL driver");
1231 MODULE_ALIAS("platform:sh_flctl");
This page took 0.102303 seconds and 4 git commands to generate.