1 // SPDX-License-Identifier: GPL-2.0 OR MIT
3 * Rockchip NAND Flash controller driver.
4 * Copyright (C) 2020 Rockchip Inc.
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
22 * NFC Page Data Layout:
23 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24 * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
26 * NAND Page Data Layout:
27 * 1024 * n data + m Bytes oob
28 * Original Bad Block Mask Location:
29 * First byte of oob(spare).
30 * nand_chip->oob_poi data layout:
31 * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
34 /* NAND controller register definition */
38 #define NFC_FMCTL (0x00)
39 #define FMCTL_CE_SEL_M 0xFF
40 #define FMCTL_CE_SEL(x) (1 << (x))
41 #define FMCTL_WP BIT(8)
42 #define FMCTL_RDY BIT(9)
44 #define NFC_FMWAIT (0x04)
45 #define FLCTL_RST BIT(0)
46 #define FLCTL_WR (1) /* 0: read, 1: write */
47 #define FLCTL_XFER_ST BIT(2)
48 #define FLCTL_XFER_EN BIT(3)
49 #define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
50 #define FLCTL_XFER_READY BIT(20)
51 #define FLCTL_XFER_SECTOR (22)
52 #define FLCTL_TOG_FIX BIT(29)
54 #define BCHCTL_BANK_M (7 << 5)
55 #define BCHCTL_BANK (5)
58 #define DMA_WR (1) /* 0: write, 1: read */
60 #define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
61 #define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
62 #define DMA_INC_NUM (9) /* 1 - 16 */
64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65 (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66 #define INT_DMA BIT(0)
67 #define NFC_BANK (0x800)
68 #define NFC_BANK_STEP (0x100)
69 #define BANK_DATA (0x00)
70 #define BANK_ADDR (0x04)
71 #define BANK_CMD (0x08)
72 #define NFC_SRAM0 (0x1000)
73 #define NFC_SRAM1 (0x1400)
74 #define NFC_SRAM_SIZE (0x400)
75 #define NFC_TIMEOUT (500000)
76 #define NFC_MAX_OOB_PER_STEP 128
77 #define NFC_MIN_OOB_PER_STEP 64
78 #define MAX_DATA_SIZE 0xFFFC
79 #define MAX_ADDRESS_CYC 6
80 #define NFC_ECC_MAX_MODES 4
81 #define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
82 #define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
83 #define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
84 #define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
93 * struct rk_ecc_cnt_status: represent a ecc status data.
94 * @err_flag_bit: error flag bit index at register.
95 * @low: ECC count low bit index at register.
96 * @low_mask: mask bit.
97 * @low_bn: ECC count low bit number.
98 * @high: ECC count high bit index at register.
99 * @high_mask: mask bit
101 struct rk_ecc_cnt_status {
111 * struct nfc_cfg: Rockchip NAND controller configuration
113 * @ecc_strengths: ECC strengths
114 * @ecc_cfgs: ECC config values
115 * @flctl_off: FLCTL register offset
116 * @bchctl_off: BCHCTL register offset
117 * @dma_data_buf_off: DMA_DATA_BUF register offset
118 * @dma_oob_buf_off: DMA_OOB_BUF register offset
119 * @dma_cfg_off: DMA_CFG register offset
120 * @dma_st_off: DMA_ST register offset
121 * @bch_st_off: BCG_ST register offset
122 * @randmz_off: RANDMZ register offset
123 * @int_en_off: interrupt enable register offset
124 * @int_clr_off: interrupt clean register offset
125 * @int_st_off: interrupt status register offset
126 * @oob0_off: oob0 register offset
127 * @oob1_off: oob1 register offset
128 * @ecc0: represent ECC0 status data
129 * @ecc1: represent ECC1 status data
133 u8 ecc_strengths[NFC_ECC_MAX_MODES];
134 u32 ecc_cfgs[NFC_ECC_MAX_MODES];
138 u32 dma_data_buf_off;
148 struct rk_ecc_cnt_status ecc0;
149 struct rk_ecc_cnt_status ecc1;
152 struct rk_nfc_nand_chip {
153 struct list_head node;
154 struct nand_chip chip;
162 u8 sels[] __counted_by(nsels);
166 struct nand_controller controller;
167 const struct nfc_cfg *cfg;
179 struct completion done;
180 struct list_head chips;
187 unsigned long assigned_cs;
190 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
192 return container_of(chip, struct rk_nfc_nand_chip, chip);
195 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
197 return (u8 *)p + i * chip->ecc.size;
200 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
204 poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
209 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
211 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
214 poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
219 static inline int rk_nfc_data_len(struct nand_chip *chip)
221 return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
224 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
226 struct rk_nfc *nfc = nand_get_controller_data(chip);
228 return nfc->page_buf + i * rk_nfc_data_len(chip);
231 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
233 struct rk_nfc *nfc = nand_get_controller_data(chip);
235 return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
238 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
240 struct rk_nfc *nfc = nand_get_controller_data(chip);
243 for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
244 if (strength == nfc->cfg->ecc_strengths[i]) {
245 reg = nfc->cfg->ecc_cfgs[i];
250 if (i >= NFC_ECC_MAX_MODES)
253 writel(reg, nfc->regs + nfc->cfg->bchctl_off);
255 /* Save chip ECC setting */
256 nfc->cur_ecc = strength;
261 static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
263 struct rk_nfc *nfc = nand_get_controller_data(chip);
264 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
265 struct nand_ecc_ctrl *ecc = &chip->ecc;
269 nfc->selected_bank = -1;
270 /* Deselect the currently selected target. */
271 val = readl_relaxed(nfc->regs + NFC_FMCTL);
272 val &= ~FMCTL_CE_SEL_M;
273 writel(val, nfc->regs + NFC_FMCTL);
277 nfc->selected_bank = rknand->sels[cs];
278 nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
280 val = readl_relaxed(nfc->regs + NFC_FMCTL);
281 val &= ~FMCTL_CE_SEL_M;
282 val |= FMCTL_CE_SEL(nfc->selected_bank);
284 writel(val, nfc->regs + NFC_FMCTL);
287 * Compare current chip timing with selected chip timing and
290 if (nfc->cur_timing != rknand->timing) {
291 writel(rknand->timing, nfc->regs + NFC_FMWAIT);
292 nfc->cur_timing = rknand->timing;
296 * Compare current chip ECC setting with selected chip ECC setting and
299 if (nfc->cur_ecc != ecc->strength)
300 rk_nfc_hw_ecc_setup(chip, ecc->strength);
303 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
308 rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
309 val & FMCTL_RDY, 10, NFC_TIMEOUT);
314 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
318 for (i = 0; i < len; i++)
319 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
323 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
327 for (i = 0; i < len; i++)
328 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
331 static int rk_nfc_cmd(struct nand_chip *chip,
332 const struct nand_subop *subop)
334 struct rk_nfc *nfc = nand_get_controller_data(chip);
335 unsigned int i, j, remaining, start;
336 int reg_offset = nfc->band_offset;
342 for (i = 0; i < subop->ninstrs; i++) {
343 const struct nand_op_instr *instr = &subop->instrs[i];
345 switch (instr->type) {
346 case NAND_OP_CMD_INSTR:
347 writeb(instr->ctx.cmd.opcode,
348 nfc->regs + reg_offset + BANK_CMD);
351 case NAND_OP_ADDR_INSTR:
352 remaining = nand_subop_get_num_addr_cyc(subop, i);
353 start = nand_subop_get_addr_start_off(subop, i);
355 for (j = 0; j < 8 && j + start < remaining; j++)
356 writeb(instr->ctx.addr.addrs[j + start],
357 nfc->regs + reg_offset + BANK_ADDR);
360 case NAND_OP_DATA_IN_INSTR:
361 case NAND_OP_DATA_OUT_INSTR:
362 start = nand_subop_get_data_start_off(subop, i);
363 cnt = nand_subop_get_data_len(subop, i);
365 if (instr->type == NAND_OP_DATA_OUT_INSTR) {
366 outbuf = instr->ctx.data.buf.out + start;
367 rk_nfc_write_buf(nfc, outbuf, cnt);
369 inbuf = instr->ctx.data.buf.in + start;
370 rk_nfc_read_buf(nfc, inbuf, cnt);
374 case NAND_OP_WAITRDY_INSTR:
375 if (rk_nfc_wait_ioready(nfc) < 0) {
377 dev_err(nfc->dev, "IO not ready\n");
386 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
387 NAND_OP_PARSER_PATTERN(
389 NAND_OP_PARSER_PAT_CMD_ELEM(true),
390 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
391 NAND_OP_PARSER_PAT_CMD_ELEM(true),
392 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
393 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
394 NAND_OP_PARSER_PATTERN(
396 NAND_OP_PARSER_PAT_CMD_ELEM(true),
397 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
398 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
399 NAND_OP_PARSER_PAT_CMD_ELEM(true),
400 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
403 static int rk_nfc_exec_op(struct nand_chip *chip,
404 const struct nand_operation *op,
408 rk_nfc_select_chip(chip, op->cs);
410 return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
414 static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
415 const struct nand_interface_config *conf)
417 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
418 struct rk_nfc *nfc = nand_get_controller_data(chip);
419 const struct nand_sdr_timings *timings;
420 u32 rate, tc2rw, trwpw, trw2c;
423 timings = nand_get_sdr_timings(conf);
430 if (IS_ERR(nfc->nfc_clk))
431 rate = clk_get_rate(nfc->ahb_clk);
433 rate = clk_get_rate(nfc->nfc_clk);
435 /* Turn clock rate into kHz. */
441 trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
442 trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
444 temp = timings->tREA_max / 1000;
445 temp = DIV_ROUND_UP(temp * rate, 1000000);
451 * ACCON: access timing control register
452 * -------------------------------------
454 * 17:12: csrw, clock cycles from the falling edge of CSn to the
455 * falling edge of RDn or WRn
457 * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
458 * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
462 /* Save chip timing */
463 rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
468 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
469 dma_addr_t dma_data, dma_addr_t dma_oob)
471 u32 dma_reg, fl_reg, bch_reg;
473 dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
474 (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
476 fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
477 (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
479 if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
480 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
481 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
482 (nfc->selected_bank << BCHCTL_BANK);
483 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
486 writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
487 writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
488 writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
489 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
490 fl_reg |= FLCTL_XFER_ST;
491 writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
494 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
499 ptr = nfc->regs + nfc->cfg->flctl_off;
501 return readl_relaxed_poll_timeout(ptr, reg,
502 reg & FLCTL_XFER_READY,
506 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
507 int oob_on, int page)
509 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
510 struct rk_nfc *nfc = nand_get_controller_data(chip);
511 struct mtd_info *mtd = nand_to_mtd(chip);
512 struct nand_ecc_ctrl *ecc = &chip->ecc;
513 int i, pages_per_blk;
515 pages_per_blk = mtd->erasesize / mtd->writesize;
516 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
517 (page < (pages_per_blk * rknand->boot_blks)) &&
518 rknand->boot_ecc != ecc->strength) {
520 * There's currently no method to notify the MTD framework that
521 * a different ECC strength is in use for the boot blocks.
527 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
529 for (i = 0; i < ecc->steps; i++) {
530 /* Copy data to the NFC buffer. */
532 memcpy(rk_nfc_data_ptr(chip, i),
533 rk_nfc_buf_to_data_ptr(chip, buf, i),
536 * The first four bytes of OOB are reserved for the
537 * boot ROM. In some debugging cases, such as with a
538 * read, erase and write back test these 4 bytes stored
539 * in OOB also need to be written back.
541 * The function nand_block_bad detects bad blocks like:
543 * bad = chip->oob_poi[chip->badblockpos];
545 * chip->badblockpos == 0 for a large page NAND Flash,
546 * so chip->oob_poi[0] is the bad block mask (BBM).
548 * The OOB data layout on the NFC is:
550 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
554 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
556 * The code here just swaps the first 4 bytes with the last
557 * 4 bytes without losing any data.
559 * The chip->oob_poi data layout:
561 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
563 * The rk_nfc_ooblayout_free() function already has reserved
564 * these 4 bytes together with 2 bytes for BBM
565 * by reducing it's length:
567 * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
570 memcpy(rk_nfc_oob_ptr(chip, i),
571 rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
574 memcpy(rk_nfc_oob_ptr(chip, i),
575 rk_nfc_buf_to_oob_ptr(chip, i - 1),
577 /* Copy ECC data to the NFC buffer. */
578 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579 rk_nfc_buf_to_oob_ecc_ptr(chip, i),
583 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
584 rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
585 return nand_prog_page_end_op(chip);
588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589 int oob_on, int page)
591 struct mtd_info *mtd = nand_to_mtd(chip);
592 struct rk_nfc *nfc = nand_get_controller_data(chip);
593 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594 struct nand_ecc_ctrl *ecc = &chip->ecc;
595 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596 NFC_MIN_OOB_PER_STEP;
597 int pages_per_blk = mtd->erasesize / mtd->writesize;
598 int ret = 0, i, boot_rom_mode = 0;
599 dma_addr_t dma_data, dma_oob;
603 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
606 memcpy(nfc->page_buf, buf, mtd->writesize);
608 memset(nfc->page_buf, 0xFF, mtd->writesize);
611 * The first blocks (4, 8 or 16 depending on the device) are used
612 * by the boot ROM and the first 32 bits of OOB need to link to
613 * the next page address in the same block. We can't directly copy
614 * OOB data from the MTD framework, because this page address
615 * conflicts for example with the bad block marker (BBM),
616 * so we shift all OOB data including the BBM with 4 byte positions.
617 * As a consequence the OOB size available to the MTD framework is
618 * also reduced with 4 bytes.
620 * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
622 * If a NAND is not a boot medium or the page is not a boot block,
623 * the first 4 bytes are left untouched by writing 0xFF to them.
625 * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
627 * The code here just swaps the first 4 bytes with the last
628 * 4 bytes without losing any data.
630 * The chip->oob_poi data layout:
632 * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
634 * Configure the ECC algorithm supported by the boot ROM.
636 if ((page < (pages_per_blk * rknand->boot_blks)) &&
637 (chip->options & NAND_IS_BOOT_MEDIUM)) {
639 if (rknand->boot_ecc != ecc->strength)
640 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
643 for (i = 0; i < ecc->steps; i++) {
645 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
647 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
649 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
651 if (nfc->cfg->type == NFC_V9)
652 nfc->oob_buf[i] = tmp;
654 nfc->oob_buf[i * (oob_step / 4)] = tmp;
657 dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
658 mtd->writesize, DMA_TO_DEVICE);
659 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
660 ecc->steps * oob_step,
663 reinit_completion(&nfc->done);
664 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
666 rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
668 ret = wait_for_completion_timeout(&nfc->done,
669 msecs_to_jiffies(100));
671 dev_warn(nfc->dev, "write: wait dma done timeout.\n");
673 * Whether the DMA transfer is completed or not. The driver
674 * needs to check the NFC`s status register to see if the data
675 * transfer was completed.
677 ret = rk_nfc_wait_for_xfer_done(nfc);
679 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
681 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
684 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
685 rk_nfc_hw_ecc_setup(chip, ecc->strength);
688 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
692 return nand_prog_page_end_op(chip);
695 static int rk_nfc_write_oob(struct nand_chip *chip, int page)
697 return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
700 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
703 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
704 struct rk_nfc *nfc = nand_get_controller_data(chip);
705 struct mtd_info *mtd = nand_to_mtd(chip);
706 struct nand_ecc_ctrl *ecc = &chip->ecc;
707 int i, pages_per_blk;
709 pages_per_blk = mtd->erasesize / mtd->writesize;
710 if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
711 (page < (pages_per_blk * rknand->boot_blks)) &&
712 rknand->boot_ecc != ecc->strength) {
714 * There's currently no method to notify the MTD framework that
715 * a different ECC strength is in use for the boot blocks.
720 nand_read_page_op(chip, page, 0, NULL, 0);
721 rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
722 for (i = 0; i < ecc->steps; i++) {
724 * The first four bytes of OOB are reserved for the
725 * boot ROM. In some debugging cases, such as with a read,
726 * erase and write back test, these 4 bytes also must be
727 * saved somewhere, otherwise this information will be
728 * lost during a write back.
731 memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
732 rk_nfc_oob_ptr(chip, i),
735 memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
736 rk_nfc_oob_ptr(chip, i),
739 /* Copy ECC data from the NFC buffer. */
740 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
741 rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
744 /* Copy data from the NFC buffer. */
746 memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
747 rk_nfc_data_ptr(chip, i),
754 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
757 struct mtd_info *mtd = nand_to_mtd(chip);
758 struct rk_nfc *nfc = nand_get_controller_data(chip);
759 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
760 struct nand_ecc_ctrl *ecc = &chip->ecc;
761 int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
762 NFC_MIN_OOB_PER_STEP;
763 int pages_per_blk = mtd->erasesize / mtd->writesize;
764 dma_addr_t dma_data, dma_oob;
765 int ret = 0, i, cnt, boot_rom_mode = 0;
766 int max_bitflips = 0, bch_st, ecc_fail = 0;
770 nand_read_page_op(chip, page, 0, NULL, 0);
772 dma_data = dma_map_single(nfc->dev, nfc->page_buf,
775 dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
776 ecc->steps * oob_step,
780 * The first blocks (4, 8 or 16 depending on the device)
781 * are used by the boot ROM.
782 * Configure the ECC algorithm supported by the boot ROM.
784 if ((page < (pages_per_blk * rknand->boot_blks)) &&
785 (chip->options & NAND_IS_BOOT_MEDIUM)) {
787 if (rknand->boot_ecc != ecc->strength)
788 rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
791 reinit_completion(&nfc->done);
792 writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
793 rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
795 ret = wait_for_completion_timeout(&nfc->done,
796 msecs_to_jiffies(100));
798 dev_warn(nfc->dev, "read: wait dma done timeout.\n");
800 * Whether the DMA transfer is completed or not. The driver
801 * needs to check the NFC`s status register to see if the data
802 * transfer was completed.
804 ret = rk_nfc_wait_for_xfer_done(nfc);
806 dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
808 dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
813 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
817 for (i = 0; i < ecc->steps; i++) {
819 oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
821 oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
823 if (nfc->cfg->type == NFC_V9)
824 tmp = nfc->oob_buf[i];
826 tmp = nfc->oob_buf[i * (oob_step / 4)];
829 *oob++ = (u8)(tmp >> 8);
830 *oob++ = (u8)(tmp >> 16);
831 *oob++ = (u8)(tmp >> 24);
834 for (i = 0; i < (ecc->steps / 2); i++) {
835 bch_st = readl_relaxed(nfc->regs +
836 nfc->cfg->bch_st_off + i * 4);
837 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
838 bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
839 mtd->ecc_stats.failed++;
842 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
843 mtd->ecc_stats.corrected += cnt;
844 max_bitflips = max_t(u32, max_bitflips, cnt);
846 cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
847 mtd->ecc_stats.corrected += cnt;
848 max_bitflips = max_t(u32, max_bitflips, cnt);
853 memcpy(buf, nfc->page_buf, mtd->writesize);
856 if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
857 rk_nfc_hw_ecc_setup(chip, ecc->strength);
863 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
870 static int rk_nfc_read_oob(struct nand_chip *chip, int page)
872 return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
875 static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
877 /* Disable flash wp. */
878 writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
879 /* Config default timing 40ns at 150 Mhz NFC clock. */
880 writel(0x1081, nfc->regs + NFC_FMWAIT);
881 nfc->cur_timing = 0x1081;
882 /* Disable randomizer and DMA. */
883 writel(0, nfc->regs + nfc->cfg->randmz_off);
884 writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
885 writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
888 static irqreturn_t rk_nfc_irq(int irq, void *id)
890 struct rk_nfc *nfc = id;
893 sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
894 ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
899 writel(sta, nfc->regs + nfc->cfg->int_clr_off);
900 writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
902 complete(&nfc->done);
907 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
911 if (!IS_ERR(nfc->nfc_clk)) {
912 ret = clk_prepare_enable(nfc->nfc_clk);
914 dev_err(dev, "failed to enable NFC clk\n");
919 ret = clk_prepare_enable(nfc->ahb_clk);
921 dev_err(dev, "failed to enable ahb clk\n");
922 clk_disable_unprepare(nfc->nfc_clk);
929 static void rk_nfc_disable_clks(struct rk_nfc *nfc)
931 clk_disable_unprepare(nfc->nfc_clk);
932 clk_disable_unprepare(nfc->ahb_clk);
935 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
936 struct mtd_oob_region *oob_region)
938 struct nand_chip *chip = mtd_to_nand(mtd);
939 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
944 oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
945 oob_region->offset = 2;
950 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
951 struct mtd_oob_region *oob_region)
953 struct nand_chip *chip = mtd_to_nand(mtd);
954 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
959 oob_region->length = mtd->oobsize - rknand->metadata_size;
960 oob_region->offset = rknand->metadata_size;
965 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
966 .free = rk_nfc_ooblayout_free,
967 .ecc = rk_nfc_ooblayout_ecc,
970 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
972 struct nand_chip *chip = mtd_to_nand(mtd);
973 struct rk_nfc *nfc = nand_get_controller_data(chip);
974 struct nand_ecc_ctrl *ecc = &chip->ecc;
975 const u8 *strengths = nfc->cfg->ecc_strengths;
976 u8 max_strength, nfc_max_strength;
979 nfc_max_strength = nfc->cfg->ecc_strengths[0];
980 /* If optional dt settings not present. */
981 if (!ecc->size || !ecc->strength ||
982 ecc->strength > nfc_max_strength) {
983 chip->ecc.size = 1024;
984 ecc->steps = mtd->writesize / ecc->size;
987 * HW ECC always requests the number of ECC bytes per 1024 byte
988 * blocks. The first 4 OOB bytes are reserved for sys data.
990 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
992 if (max_strength > nfc_max_strength)
993 max_strength = nfc_max_strength;
995 for (i = 0; i < 4; i++) {
996 if (max_strength >= strengths[i])
1001 dev_err(nfc->dev, "unsupported ECC strength\n");
1005 ecc->strength = strengths[i];
1007 ecc->steps = mtd->writesize / ecc->size;
1008 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1013 static int rk_nfc_attach_chip(struct nand_chip *chip)
1015 struct mtd_info *mtd = nand_to_mtd(chip);
1016 struct device *dev = mtd->dev.parent;
1017 struct rk_nfc *nfc = nand_get_controller_data(chip);
1018 struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1019 struct nand_ecc_ctrl *ecc = &chip->ecc;
1020 int new_page_len, new_oob_len;
1024 if (chip->options & NAND_BUSWIDTH_16) {
1025 dev_err(dev, "16 bits bus width not supported");
1029 if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1032 ret = rk_nfc_ecc_init(dev, mtd);
1036 rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1038 if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1040 "driver needs at least %d bytes of meta data\n",
1041 NFC_SYS_DATA_SIZE + 2);
1045 /* Check buffer first, avoid duplicate alloc buffer. */
1046 new_page_len = mtd->writesize + mtd->oobsize;
1047 if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1048 buf = krealloc(nfc->page_buf, new_page_len,
1049 GFP_KERNEL | GFP_DMA);
1052 nfc->page_buf = buf;
1053 nfc->page_buf_size = new_page_len;
1056 new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1057 if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1058 buf = krealloc(nfc->oob_buf, new_oob_len,
1059 GFP_KERNEL | GFP_DMA);
1061 kfree(nfc->page_buf);
1062 nfc->page_buf = NULL;
1066 nfc->oob_buf_size = new_oob_len;
1069 if (!nfc->page_buf) {
1070 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1073 nfc->page_buf_size = new_page_len;
1076 if (!nfc->oob_buf) {
1077 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1078 if (!nfc->oob_buf) {
1079 kfree(nfc->page_buf);
1080 nfc->page_buf = NULL;
1083 nfc->oob_buf_size = new_oob_len;
1086 chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1087 chip->ecc.write_page = rk_nfc_write_page_hwecc;
1088 chip->ecc.write_oob = rk_nfc_write_oob;
1090 chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1091 chip->ecc.read_page = rk_nfc_read_page_hwecc;
1092 chip->ecc.read_oob = rk_nfc_read_oob;
1097 static const struct nand_controller_ops rk_nfc_controller_ops = {
1098 .attach_chip = rk_nfc_attach_chip,
1099 .exec_op = rk_nfc_exec_op,
1100 .setup_interface = rk_nfc_setup_interface,
1103 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1104 struct device_node *np)
1106 struct rk_nfc_nand_chip *rknand;
1107 struct nand_chip *chip;
1108 struct mtd_info *mtd;
1114 if (!of_get_property(np, "reg", &nsels))
1116 nsels /= sizeof(u32);
1117 if (!nsels || nsels > NFC_MAX_NSELS) {
1118 dev_err(dev, "invalid reg property size %d\n", nsels);
1122 rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1127 rknand->nsels = nsels;
1128 for (i = 0; i < nsels; i++) {
1129 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1131 dev_err(dev, "reg property failure : %d\n", ret);
1135 if (tmp >= NFC_MAX_NSELS) {
1136 dev_err(dev, "invalid CS: %u\n", tmp);
1140 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1141 dev_err(dev, "CS %u already assigned\n", tmp);
1145 rknand->sels[i] = tmp;
1148 chip = &rknand->chip;
1149 chip->controller = &nfc->controller;
1151 nand_set_flash_node(chip, np);
1153 nand_set_controller_data(chip, nfc);
1155 chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1156 chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1158 /* Set default mode in case dt entry is missing. */
1159 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1161 mtd = nand_to_mtd(chip);
1162 mtd->owner = THIS_MODULE;
1163 mtd->dev.parent = dev;
1166 dev_err(nfc->dev, "NAND label property is mandatory\n");
1170 mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1171 rk_nfc_hw_init(nfc);
1172 ret = nand_scan(chip, nsels);
1176 if (chip->options & NAND_IS_BOOT_MEDIUM) {
1177 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1178 rknand->boot_blks = ret ? 0 : tmp;
1180 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1182 rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1185 ret = mtd_device_register(mtd, NULL, 0);
1187 dev_err(dev, "MTD parse partition error\n");
1192 list_add_tail(&rknand->node, &nfc->chips);
1197 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1199 struct rk_nfc_nand_chip *rknand, *tmp;
1200 struct nand_chip *chip;
1203 list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1204 chip = &rknand->chip;
1205 ret = mtd_device_unregister(nand_to_mtd(chip));
1208 list_del(&rknand->node);
1212 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1214 struct device_node *np = dev->of_node;
1215 int nchips = of_get_child_count(np);
1218 if (!nchips || nchips > NFC_MAX_NSELS) {
1219 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1224 for_each_child_of_node_scoped(np, nand_np) {
1225 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1227 rk_nfc_chips_cleanup(nfc);
1235 static struct nfc_cfg nfc_v6_cfg = {
1237 .ecc_strengths = {60, 40, 24, 16},
1239 0x00040011, 0x00040001, 0x00000011, 0x00000001,
1243 .dma_cfg_off = 0x10,
1244 .dma_data_buf_off = 0x14,
1245 .dma_oob_buf_off = 0x18,
1248 .randmz_off = 0x150,
1249 .int_en_off = 0x16C,
1250 .int_clr_off = 0x170,
1251 .int_st_off = 0x174,
1272 static struct nfc_cfg nfc_v8_cfg = {
1274 .ecc_strengths = {16, 16, 16, 16},
1276 0x00000001, 0x00000001, 0x00000001, 0x00000001,
1280 .dma_cfg_off = 0x10,
1281 .dma_data_buf_off = 0x14,
1282 .dma_oob_buf_off = 0x18,
1285 .randmz_off = 0x150,
1286 .int_en_off = 0x16C,
1287 .int_clr_off = 0x170,
1288 .int_st_off = 0x174,
1309 static struct nfc_cfg nfc_v9_cfg = {
1311 .ecc_strengths = {70, 60, 40, 16},
1313 0x00000001, 0x06000001, 0x04000001, 0x02000001,
1317 .dma_cfg_off = 0x30,
1318 .dma_data_buf_off = 0x34,
1319 .dma_oob_buf_off = 0x38,
1321 .bch_st_off = 0x150,
1322 .randmz_off = 0x208,
1323 .int_en_off = 0x120,
1324 .int_clr_off = 0x124,
1325 .int_st_off = 0x128,
1346 static const struct of_device_id rk_nfc_id_table[] = {
1348 .compatible = "rockchip,px30-nfc",
1352 .compatible = "rockchip,rk2928-nfc",
1356 .compatible = "rockchip,rv1108-nfc",
1361 MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1363 static int rk_nfc_probe(struct platform_device *pdev)
1365 struct device *dev = &pdev->dev;
1369 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1373 nand_controller_init(&nfc->controller);
1374 INIT_LIST_HEAD(&nfc->chips);
1375 nfc->controller.ops = &rk_nfc_controller_ops;
1377 nfc->cfg = of_device_get_match_data(dev);
1380 init_completion(&nfc->done);
1382 nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1383 if (IS_ERR(nfc->regs)) {
1384 ret = PTR_ERR(nfc->regs);
1388 nfc->nfc_clk = devm_clk_get(dev, "nfc");
1389 if (IS_ERR(nfc->nfc_clk)) {
1390 dev_dbg(dev, "no NFC clk\n");
1391 /* Some earlier models, such as rk3066, have no NFC clk. */
1394 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1395 if (IS_ERR(nfc->ahb_clk)) {
1396 dev_err(dev, "no ahb clk\n");
1397 ret = PTR_ERR(nfc->ahb_clk);
1401 ret = rk_nfc_enable_clks(dev, nfc);
1405 irq = platform_get_irq(pdev, 0);
1411 writel(0, nfc->regs + nfc->cfg->int_en_off);
1412 ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1414 dev_err(dev, "failed to request NFC irq\n");
1418 platform_set_drvdata(pdev, nfc);
1420 ret = rk_nfc_nand_chips_init(dev, nfc);
1422 dev_err(dev, "failed to init NAND chips\n");
1428 rk_nfc_disable_clks(nfc);
1433 static void rk_nfc_remove(struct platform_device *pdev)
1435 struct rk_nfc *nfc = platform_get_drvdata(pdev);
1437 kfree(nfc->page_buf);
1438 kfree(nfc->oob_buf);
1439 rk_nfc_chips_cleanup(nfc);
1440 rk_nfc_disable_clks(nfc);
1443 static int __maybe_unused rk_nfc_suspend(struct device *dev)
1445 struct rk_nfc *nfc = dev_get_drvdata(dev);
1447 rk_nfc_disable_clks(nfc);
1452 static int __maybe_unused rk_nfc_resume(struct device *dev)
1454 struct rk_nfc *nfc = dev_get_drvdata(dev);
1455 struct rk_nfc_nand_chip *rknand;
1456 struct nand_chip *chip;
1460 ret = rk_nfc_enable_clks(dev, nfc);
1464 /* Reset NAND chip if VCC was powered off. */
1465 list_for_each_entry(rknand, &nfc->chips, node) {
1466 chip = &rknand->chip;
1467 for (i = 0; i < rknand->nsels; i++)
1468 nand_reset(chip, i);
1474 static const struct dev_pm_ops rk_nfc_pm_ops = {
1475 SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1478 static struct platform_driver rk_nfc_driver = {
1479 .probe = rk_nfc_probe,
1480 .remove = rk_nfc_remove,
1482 .name = "rockchip-nfc",
1483 .of_match_table = rk_nfc_id_table,
1484 .pm = &rk_nfc_pm_ops,
1488 module_platform_driver(rk_nfc_driver);
1490 MODULE_LICENSE("Dual MIT/GPL");
1492 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1493 MODULE_ALIAS("platform:rockchip-nand-controller");