]> Git Repo - linux.git/blob - drivers/mtd/nand/raw/rockchip-nand-controller.c
Linux 6.14-rc3
[linux.git] / drivers / mtd / nand / raw / rockchip-nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Rockchip NAND Flash controller driver.
4  * Copyright (C) 2020 Rockchip Inc.
5  * Author: Yifeng Zhao <[email protected]>
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20
21 /*
22  * NFC Page Data Layout:
23  *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
24  *      1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
25  *      ......
26  * NAND Page Data Layout:
27  *      1024 * n data + m Bytes oob
28  * Original Bad Block Mask Location:
29  *      First byte of oob(spare).
30  * nand_chip->oob_poi data layout:
31  *      4Bytes sys data + .... + 4Bytes sys data + ECC data.
32  */
33
34 /* NAND controller register definition */
35 #define NFC_READ                        (0)
36 #define NFC_WRITE                       (1)
37
38 #define NFC_FMCTL                       (0x00)
39 #define   FMCTL_CE_SEL_M                0xFF
40 #define   FMCTL_CE_SEL(x)               (1 << (x))
41 #define   FMCTL_WP                      BIT(8)
42 #define   FMCTL_RDY                     BIT(9)
43
44 #define NFC_FMWAIT                      (0x04)
45 #define   FLCTL_RST                     BIT(0)
46 #define   FLCTL_WR                      (1)     /* 0: read, 1: write */
47 #define   FLCTL_XFER_ST                 BIT(2)
48 #define   FLCTL_XFER_EN                 BIT(3)
49 #define   FLCTL_ACORRECT                BIT(10) /* Auto correct error bits. */
50 #define   FLCTL_XFER_READY              BIT(20)
51 #define   FLCTL_XFER_SECTOR             (22)
52 #define   FLCTL_TOG_FIX                 BIT(29)
53
54 #define   BCHCTL_BANK_M                 (7 << 5)
55 #define   BCHCTL_BANK                   (5)
56
57 #define   DMA_ST                        BIT(0)
58 #define   DMA_WR                        (1)     /* 0: write, 1: read */
59 #define   DMA_EN                        BIT(2)
60 #define   DMA_AHB_SIZE                  (3)     /* 0: 1, 1: 2, 2: 4 */
61 #define   DMA_BURST_SIZE                (6)     /* 0: 1, 3: 4, 5: 8, 7: 16 */
62 #define   DMA_INC_NUM                   (9)     /* 1 - 16 */
63
64 #define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
65           (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
66 #define   INT_DMA                       BIT(0)
67 #define NFC_BANK                        (0x800)
68 #define NFC_BANK_STEP                   (0x100)
69 #define   BANK_DATA                     (0x00)
70 #define   BANK_ADDR                     (0x04)
71 #define   BANK_CMD                      (0x08)
72 #define NFC_SRAM0                       (0x1000)
73 #define NFC_SRAM1                       (0x1400)
74 #define NFC_SRAM_SIZE                   (0x400)
75 #define NFC_TIMEOUT                     (500000)
76 #define NFC_MAX_OOB_PER_STEP            128
77 #define NFC_MIN_OOB_PER_STEP            64
78 #define MAX_DATA_SIZE                   0xFFFC
79 #define MAX_ADDRESS_CYC                 6
80 #define NFC_ECC_MAX_MODES               4
81 #define NFC_MAX_NSELS                   (8) /* Some Socs only have 1 or 2 CSs. */
82 #define NFC_SYS_DATA_SIZE               (4) /* 4 bytes sys data in oob pre 1024 data.*/
83 #define RK_DEFAULT_CLOCK_RATE           (150 * 1000 * 1000) /* 150 Mhz */
84 #define ACCTIMING(csrw, rwpw, rwcs)     ((csrw) << 12 | (rwpw) << 5 | (rwcs))
85
86 enum nfc_type {
87         NFC_V6,
88         NFC_V8,
89         NFC_V9,
90 };
91
92 /**
93  * struct rk_ecc_cnt_status: represent a ecc status data.
94  * @err_flag_bit: error flag bit index at register.
95  * @low: ECC count low bit index at register.
96  * @low_mask: mask bit.
97  * @low_bn: ECC count low bit number.
98  * @high: ECC count high bit index at register.
99  * @high_mask: mask bit
100  */
101 struct rk_ecc_cnt_status {
102         u8 err_flag_bit;
103         u8 low;
104         u8 low_mask;
105         u8 low_bn;
106         u8 high;
107         u8 high_mask;
108 };
109
110 /**
111  * struct nfc_cfg: Rockchip NAND controller configuration
112  * @type: NFC version
113  * @ecc_strengths: ECC strengths
114  * @ecc_cfgs: ECC config values
115  * @flctl_off: FLCTL register offset
116  * @bchctl_off: BCHCTL register offset
117  * @dma_data_buf_off: DMA_DATA_BUF register offset
118  * @dma_oob_buf_off: DMA_OOB_BUF register offset
119  * @dma_cfg_off: DMA_CFG register offset
120  * @dma_st_off: DMA_ST register offset
121  * @bch_st_off: BCG_ST register offset
122  * @randmz_off: RANDMZ register offset
123  * @int_en_off: interrupt enable register offset
124  * @int_clr_off: interrupt clean register offset
125  * @int_st_off: interrupt status register offset
126  * @oob0_off: oob0 register offset
127  * @oob1_off: oob1 register offset
128  * @ecc0: represent ECC0 status data
129  * @ecc1: represent ECC1 status data
130  */
131 struct nfc_cfg {
132         enum nfc_type type;
133         u8 ecc_strengths[NFC_ECC_MAX_MODES];
134         u32 ecc_cfgs[NFC_ECC_MAX_MODES];
135         u32 flctl_off;
136         u32 bchctl_off;
137         u32 dma_cfg_off;
138         u32 dma_data_buf_off;
139         u32 dma_oob_buf_off;
140         u32 dma_st_off;
141         u32 bch_st_off;
142         u32 randmz_off;
143         u32 int_en_off;
144         u32 int_clr_off;
145         u32 int_st_off;
146         u32 oob0_off;
147         u32 oob1_off;
148         struct rk_ecc_cnt_status ecc0;
149         struct rk_ecc_cnt_status ecc1;
150 };
151
152 struct rk_nfc_nand_chip {
153         struct list_head node;
154         struct nand_chip chip;
155
156         u16 boot_blks;
157         u16 metadata_size;
158         u32 boot_ecc;
159         u32 timing;
160
161         u8 nsels;
162         u8 sels[] __counted_by(nsels);
163 };
164
165 struct rk_nfc {
166         struct nand_controller controller;
167         const struct nfc_cfg *cfg;
168         struct device *dev;
169
170         struct clk *nfc_clk;
171         struct clk *ahb_clk;
172         void __iomem *regs;
173
174         u32 selected_bank;
175         u32 band_offset;
176         u32 cur_ecc;
177         u32 cur_timing;
178
179         struct completion done;
180         struct list_head chips;
181
182         u8 *page_buf;
183         u32 *oob_buf;
184         u32 page_buf_size;
185         u32 oob_buf_size;
186
187         unsigned long assigned_cs;
188 };
189
190 static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
191 {
192         return container_of(chip, struct rk_nfc_nand_chip, chip);
193 }
194
195 static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
196 {
197         return (u8 *)p + i * chip->ecc.size;
198 }
199
200 static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
201 {
202         u8 *poi;
203
204         poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
205
206         return poi;
207 }
208
209 static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
210 {
211         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
212         u8 *poi;
213
214         poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
215
216         return poi;
217 }
218
219 static inline int rk_nfc_data_len(struct nand_chip *chip)
220 {
221         return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
222 }
223
224 static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
225 {
226         struct rk_nfc *nfc = nand_get_controller_data(chip);
227
228         return nfc->page_buf + i * rk_nfc_data_len(chip);
229 }
230
231 static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
232 {
233         struct rk_nfc *nfc = nand_get_controller_data(chip);
234
235         return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
236 }
237
238 static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
239 {
240         struct rk_nfc *nfc = nand_get_controller_data(chip);
241         u32 reg, i;
242
243         for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
244                 if (strength == nfc->cfg->ecc_strengths[i]) {
245                         reg = nfc->cfg->ecc_cfgs[i];
246                         break;
247                 }
248         }
249
250         if (i >= NFC_ECC_MAX_MODES)
251                 return -EINVAL;
252
253         writel(reg, nfc->regs + nfc->cfg->bchctl_off);
254
255         /* Save chip ECC setting */
256         nfc->cur_ecc = strength;
257
258         return 0;
259 }
260
261 static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
262 {
263         struct rk_nfc *nfc = nand_get_controller_data(chip);
264         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
265         struct nand_ecc_ctrl *ecc = &chip->ecc;
266         u32 val;
267
268         if (cs < 0) {
269                 nfc->selected_bank = -1;
270                 /* Deselect the currently selected target. */
271                 val = readl_relaxed(nfc->regs + NFC_FMCTL);
272                 val &= ~FMCTL_CE_SEL_M;
273                 writel(val, nfc->regs + NFC_FMCTL);
274                 return;
275         }
276
277         nfc->selected_bank = rknand->sels[cs];
278         nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
279
280         val = readl_relaxed(nfc->regs + NFC_FMCTL);
281         val &= ~FMCTL_CE_SEL_M;
282         val |= FMCTL_CE_SEL(nfc->selected_bank);
283
284         writel(val, nfc->regs + NFC_FMCTL);
285
286         /*
287          * Compare current chip timing with selected chip timing and
288          * change if needed.
289          */
290         if (nfc->cur_timing != rknand->timing) {
291                 writel(rknand->timing, nfc->regs + NFC_FMWAIT);
292                 nfc->cur_timing = rknand->timing;
293         }
294
295         /*
296          * Compare current chip ECC setting with selected chip ECC setting and
297          * change if needed.
298          */
299         if (nfc->cur_ecc != ecc->strength)
300                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
301 }
302
303 static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
304 {
305         int rc;
306         u32 val;
307
308         rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
309                                         val & FMCTL_RDY, 10, NFC_TIMEOUT);
310
311         return rc;
312 }
313
314 static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
315 {
316         int i;
317
318         for (i = 0; i < len; i++)
319                 buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
320                                        BANK_DATA);
321 }
322
323 static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
324 {
325         int i;
326
327         for (i = 0; i < len; i++)
328                 writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
329 }
330
331 static int rk_nfc_cmd(struct nand_chip *chip,
332                       const struct nand_subop *subop)
333 {
334         struct rk_nfc *nfc = nand_get_controller_data(chip);
335         unsigned int i, j, remaining, start;
336         int reg_offset = nfc->band_offset;
337         u8 *inbuf = NULL;
338         const u8 *outbuf;
339         u32 cnt = 0;
340         int ret = 0;
341
342         for (i = 0; i < subop->ninstrs; i++) {
343                 const struct nand_op_instr *instr = &subop->instrs[i];
344
345                 switch (instr->type) {
346                 case NAND_OP_CMD_INSTR:
347                         writeb(instr->ctx.cmd.opcode,
348                                nfc->regs + reg_offset + BANK_CMD);
349                         break;
350
351                 case NAND_OP_ADDR_INSTR:
352                         remaining = nand_subop_get_num_addr_cyc(subop, i);
353                         start = nand_subop_get_addr_start_off(subop, i);
354
355                         for (j = 0; j < 8 && j + start < remaining; j++)
356                                 writeb(instr->ctx.addr.addrs[j + start],
357                                        nfc->regs + reg_offset + BANK_ADDR);
358                         break;
359
360                 case NAND_OP_DATA_IN_INSTR:
361                 case NAND_OP_DATA_OUT_INSTR:
362                         start = nand_subop_get_data_start_off(subop, i);
363                         cnt = nand_subop_get_data_len(subop, i);
364
365                         if (instr->type == NAND_OP_DATA_OUT_INSTR) {
366                                 outbuf = instr->ctx.data.buf.out + start;
367                                 rk_nfc_write_buf(nfc, outbuf, cnt);
368                         } else {
369                                 inbuf = instr->ctx.data.buf.in + start;
370                                 rk_nfc_read_buf(nfc, inbuf, cnt);
371                         }
372                         break;
373
374                 case NAND_OP_WAITRDY_INSTR:
375                         if (rk_nfc_wait_ioready(nfc) < 0) {
376                                 ret = -ETIMEDOUT;
377                                 dev_err(nfc->dev, "IO not ready\n");
378                         }
379                         break;
380                 }
381         }
382
383         return ret;
384 }
385
386 static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
387         NAND_OP_PARSER_PATTERN(
388                 rk_nfc_cmd,
389                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
390                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
391                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
392                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
393                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
394         NAND_OP_PARSER_PATTERN(
395                 rk_nfc_cmd,
396                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
397                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
398                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
399                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
400                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
401 );
402
403 static int rk_nfc_exec_op(struct nand_chip *chip,
404                           const struct nand_operation *op,
405                           bool check_only)
406 {
407         if (!check_only)
408                 rk_nfc_select_chip(chip, op->cs);
409
410         return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
411                                       check_only);
412 }
413
414 static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
415                                   const struct nand_interface_config *conf)
416 {
417         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
418         struct rk_nfc *nfc = nand_get_controller_data(chip);
419         const struct nand_sdr_timings *timings;
420         u32 rate, tc2rw, trwpw, trw2c;
421         u32 temp;
422
423         timings = nand_get_sdr_timings(conf);
424         if (IS_ERR(timings))
425                 return -EOPNOTSUPP;
426
427         if (target < 0)
428                 return 0;
429
430         if (IS_ERR(nfc->nfc_clk))
431                 rate = clk_get_rate(nfc->ahb_clk);
432         else
433                 rate = clk_get_rate(nfc->nfc_clk);
434
435         /* Turn clock rate into kHz. */
436         rate /= 1000;
437
438         tc2rw = 1;
439         trw2c = 1;
440
441         trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
442         trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
443
444         temp = timings->tREA_max / 1000;
445         temp = DIV_ROUND_UP(temp * rate, 1000000);
446
447         if (trwpw < temp)
448                 trwpw = temp;
449
450         /*
451          * ACCON: access timing control register
452          * -------------------------------------
453          * 31:18: reserved
454          * 17:12: csrw, clock cycles from the falling edge of CSn to the
455          *   falling edge of RDn or WRn
456          * 11:11: reserved
457          * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
458          * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
459          *   rising edge of CSn
460          */
461
462         /* Save chip timing */
463         rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
464
465         return 0;
466 }
467
468 static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
469                               dma_addr_t dma_data, dma_addr_t dma_oob)
470 {
471         u32 dma_reg, fl_reg, bch_reg;
472
473         dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
474               (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
475
476         fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
477                  (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
478
479         if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
480                 bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
481                 bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
482                           (nfc->selected_bank << BCHCTL_BANK);
483                 writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
484         }
485
486         writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
487         writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
488         writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
489         writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
490         fl_reg |= FLCTL_XFER_ST;
491         writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
492 }
493
494 static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
495 {
496         void __iomem *ptr;
497         u32 reg;
498
499         ptr = nfc->regs + nfc->cfg->flctl_off;
500
501         return readl_relaxed_poll_timeout(ptr, reg,
502                                          reg & FLCTL_XFER_READY,
503                                          10, NFC_TIMEOUT);
504 }
505
506 static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
507                                  int oob_on, int page)
508 {
509         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
510         struct rk_nfc *nfc = nand_get_controller_data(chip);
511         struct mtd_info *mtd = nand_to_mtd(chip);
512         struct nand_ecc_ctrl *ecc = &chip->ecc;
513         int i, pages_per_blk;
514
515         pages_per_blk = mtd->erasesize / mtd->writesize;
516         if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
517             (page < (pages_per_blk * rknand->boot_blks)) &&
518             rknand->boot_ecc != ecc->strength) {
519                 /*
520                  * There's currently no method to notify the MTD framework that
521                  * a different ECC strength is in use for the boot blocks.
522                  */
523                 return -EIO;
524         }
525
526         if (!buf)
527                 memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
528
529         for (i = 0; i < ecc->steps; i++) {
530                 /* Copy data to the NFC buffer. */
531                 if (buf)
532                         memcpy(rk_nfc_data_ptr(chip, i),
533                                rk_nfc_buf_to_data_ptr(chip, buf, i),
534                                ecc->size);
535                 /*
536                  * The first four bytes of OOB are reserved for the
537                  * boot ROM. In some debugging cases, such as with a
538                  * read, erase and write back test these 4 bytes stored
539                  * in OOB also need to be written back.
540                  *
541                  * The function nand_block_bad detects bad blocks like:
542                  *
543                  * bad = chip->oob_poi[chip->badblockpos];
544                  *
545                  * chip->badblockpos == 0 for a large page NAND Flash,
546                  * so chip->oob_poi[0] is the bad block mask (BBM).
547                  *
548                  * The OOB data layout on the NFC is:
549                  *
550                  *    PA0  PA1  PA2  PA3  | BBM OOB1 OOB2 OOB3 | ...
551                  *
552                  * or
553                  *
554                  *    0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
555                  *
556                  * The code here just swaps the first 4 bytes with the last
557                  * 4 bytes without losing any data.
558                  *
559                  * The chip->oob_poi data layout:
560                  *
561                  *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
562                  *
563                  * The rk_nfc_ooblayout_free() function already has reserved
564                  * these 4 bytes together with 2 bytes for BBM
565                  * by reducing it's length:
566                  *
567                  * oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
568                  */
569                 if (!i)
570                         memcpy(rk_nfc_oob_ptr(chip, i),
571                                rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
572                                NFC_SYS_DATA_SIZE);
573                 else
574                         memcpy(rk_nfc_oob_ptr(chip, i),
575                                rk_nfc_buf_to_oob_ptr(chip, i - 1),
576                                NFC_SYS_DATA_SIZE);
577                 /* Copy ECC data to the NFC buffer. */
578                 memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
579                        rk_nfc_buf_to_oob_ecc_ptr(chip, i),
580                        ecc->bytes);
581         }
582
583         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
584         rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
585         return nand_prog_page_end_op(chip);
586 }
587
588 static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
589                                    int oob_on, int page)
590 {
591         struct mtd_info *mtd = nand_to_mtd(chip);
592         struct rk_nfc *nfc = nand_get_controller_data(chip);
593         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
594         struct nand_ecc_ctrl *ecc = &chip->ecc;
595         int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
596                         NFC_MIN_OOB_PER_STEP;
597         int pages_per_blk = mtd->erasesize / mtd->writesize;
598         int ret = 0, i, boot_rom_mode = 0;
599         dma_addr_t dma_data, dma_oob;
600         u32 tmp;
601         u8 *oob;
602
603         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
604
605         if (buf)
606                 memcpy(nfc->page_buf, buf, mtd->writesize);
607         else
608                 memset(nfc->page_buf, 0xFF, mtd->writesize);
609
610         /*
611          * The first blocks (4, 8 or 16 depending on the device) are used
612          * by the boot ROM and the first 32 bits of OOB need to link to
613          * the next page address in the same block. We can't directly copy
614          * OOB data from the MTD framework, because this page address
615          * conflicts for example with the bad block marker (BBM),
616          * so we shift all OOB data including the BBM with 4 byte positions.
617          * As a consequence the OOB size available to the MTD framework is
618          * also reduced with 4 bytes.
619          *
620          *    PA0  PA1  PA2  PA3 | BBM OOB1 OOB2 OOB3 | ...
621          *
622          * If a NAND is not a boot medium or the page is not a boot block,
623          * the first 4 bytes are left untouched by writing 0xFF to them.
624          *
625          *   0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
626          *
627          * The code here just swaps the first 4 bytes with the last
628          * 4 bytes without losing any data.
629          *
630          * The chip->oob_poi data layout:
631          *
632          *    BBM  OOB1 OOB2 OOB3 |......|  PA0  PA1  PA2  PA3
633          *
634          * Configure the ECC algorithm supported by the boot ROM.
635          */
636         if ((page < (pages_per_blk * rknand->boot_blks)) &&
637             (chip->options & NAND_IS_BOOT_MEDIUM)) {
638                 boot_rom_mode = 1;
639                 if (rknand->boot_ecc != ecc->strength)
640                         rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
641         }
642
643         for (i = 0; i < ecc->steps; i++) {
644                 if (!i)
645                         oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
646                 else
647                         oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
648
649                 tmp = oob[0] | oob[1] << 8 | oob[2] << 16 | oob[3] << 24;
650
651                 if (nfc->cfg->type == NFC_V9)
652                         nfc->oob_buf[i] = tmp;
653                 else
654                         nfc->oob_buf[i * (oob_step / 4)] = tmp;
655         }
656
657         dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
658                                   mtd->writesize, DMA_TO_DEVICE);
659         dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
660                                  ecc->steps * oob_step,
661                                  DMA_TO_DEVICE);
662
663         reinit_completion(&nfc->done);
664         writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
665
666         rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
667                           dma_oob);
668         ret = wait_for_completion_timeout(&nfc->done,
669                                           msecs_to_jiffies(100));
670         if (!ret)
671                 dev_warn(nfc->dev, "write: wait dma done timeout.\n");
672         /*
673          * Whether the DMA transfer is completed or not. The driver
674          * needs to check the NFC`s status register to see if the data
675          * transfer was completed.
676          */
677         ret = rk_nfc_wait_for_xfer_done(nfc);
678
679         dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
680                          DMA_TO_DEVICE);
681         dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
682                          DMA_TO_DEVICE);
683
684         if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
685                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
686
687         if (ret) {
688                 dev_err(nfc->dev, "write: wait transfer done timeout.\n");
689                 return -ETIMEDOUT;
690         }
691
692         return nand_prog_page_end_op(chip);
693 }
694
695 static int rk_nfc_write_oob(struct nand_chip *chip, int page)
696 {
697         return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
698 }
699
700 static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
701                                 int page)
702 {
703         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
704         struct rk_nfc *nfc = nand_get_controller_data(chip);
705         struct mtd_info *mtd = nand_to_mtd(chip);
706         struct nand_ecc_ctrl *ecc = &chip->ecc;
707         int i, pages_per_blk;
708
709         pages_per_blk = mtd->erasesize / mtd->writesize;
710         if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
711             (page < (pages_per_blk * rknand->boot_blks)) &&
712             rknand->boot_ecc != ecc->strength) {
713                 /*
714                  * There's currently no method to notify the MTD framework that
715                  * a different ECC strength is in use for the boot blocks.
716                  */
717                 return -EIO;
718         }
719
720         nand_read_page_op(chip, page, 0, NULL, 0);
721         rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
722         for (i = 0; i < ecc->steps; i++) {
723                 /*
724                  * The first four bytes of OOB are reserved for the
725                  * boot ROM. In some debugging cases, such as with a read,
726                  * erase and write back test, these 4 bytes also must be
727                  * saved somewhere, otherwise this information will be
728                  * lost during a write back.
729                  */
730                 if (!i)
731                         memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
732                                rk_nfc_oob_ptr(chip, i),
733                                NFC_SYS_DATA_SIZE);
734                 else
735                         memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
736                                rk_nfc_oob_ptr(chip, i),
737                                NFC_SYS_DATA_SIZE);
738
739                 /* Copy ECC data from the NFC buffer. */
740                 memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
741                        rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
742                        ecc->bytes);
743
744                 /* Copy data from the NFC buffer. */
745                 if (buf)
746                         memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
747                                rk_nfc_data_ptr(chip, i),
748                                ecc->size);
749         }
750
751         return 0;
752 }
753
754 static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
755                                   int page)
756 {
757         struct mtd_info *mtd = nand_to_mtd(chip);
758         struct rk_nfc *nfc = nand_get_controller_data(chip);
759         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
760         struct nand_ecc_ctrl *ecc = &chip->ecc;
761         int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
762                         NFC_MIN_OOB_PER_STEP;
763         int pages_per_blk = mtd->erasesize / mtd->writesize;
764         dma_addr_t dma_data, dma_oob;
765         int ret = 0, i, cnt, boot_rom_mode = 0;
766         int max_bitflips = 0, bch_st, ecc_fail = 0;
767         u8 *oob;
768         u32 tmp;
769
770         nand_read_page_op(chip, page, 0, NULL, 0);
771
772         dma_data = dma_map_single(nfc->dev, nfc->page_buf,
773                                   mtd->writesize,
774                                   DMA_FROM_DEVICE);
775         dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
776                                  ecc->steps * oob_step,
777                                  DMA_FROM_DEVICE);
778
779         /*
780          * The first blocks (4, 8 or 16 depending on the device)
781          * are used by the boot ROM.
782          * Configure the ECC algorithm supported by the boot ROM.
783          */
784         if ((page < (pages_per_blk * rknand->boot_blks)) &&
785             (chip->options & NAND_IS_BOOT_MEDIUM)) {
786                 boot_rom_mode = 1;
787                 if (rknand->boot_ecc != ecc->strength)
788                         rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
789         }
790
791         reinit_completion(&nfc->done);
792         writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
793         rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
794                           dma_oob);
795         ret = wait_for_completion_timeout(&nfc->done,
796                                           msecs_to_jiffies(100));
797         if (!ret)
798                 dev_warn(nfc->dev, "read: wait dma done timeout.\n");
799         /*
800          * Whether the DMA transfer is completed or not. The driver
801          * needs to check the NFC`s status register to see if the data
802          * transfer was completed.
803          */
804         ret = rk_nfc_wait_for_xfer_done(nfc);
805
806         dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
807                          DMA_FROM_DEVICE);
808         dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
809                          DMA_FROM_DEVICE);
810
811         if (ret) {
812                 ret = -ETIMEDOUT;
813                 dev_err(nfc->dev, "read: wait transfer done timeout.\n");
814                 goto timeout_err;
815         }
816
817         for (i = 0; i < ecc->steps; i++) {
818                 if (!i)
819                         oob = chip->oob_poi + (ecc->steps - 1) * NFC_SYS_DATA_SIZE;
820                 else
821                         oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
822
823                 if (nfc->cfg->type == NFC_V9)
824                         tmp = nfc->oob_buf[i];
825                 else
826                         tmp = nfc->oob_buf[i * (oob_step / 4)];
827
828                 *oob++ = (u8)tmp;
829                 *oob++ = (u8)(tmp >> 8);
830                 *oob++ = (u8)(tmp >> 16);
831                 *oob++ = (u8)(tmp >> 24);
832         }
833
834         for (i = 0; i < (ecc->steps / 2); i++) {
835                 bch_st = readl_relaxed(nfc->regs +
836                                        nfc->cfg->bch_st_off + i * 4);
837                 if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
838                     bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
839                         mtd->ecc_stats.failed++;
840                         ecc_fail = 1;
841                 } else {
842                         cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
843                         mtd->ecc_stats.corrected += cnt;
844                         max_bitflips = max_t(u32, max_bitflips, cnt);
845
846                         cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
847                         mtd->ecc_stats.corrected += cnt;
848                         max_bitflips = max_t(u32, max_bitflips, cnt);
849                 }
850         }
851
852         if (buf)
853                 memcpy(buf, nfc->page_buf, mtd->writesize);
854
855 timeout_err:
856         if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
857                 rk_nfc_hw_ecc_setup(chip, ecc->strength);
858
859         if (ret)
860                 return ret;
861
862         if (ecc_fail) {
863                 dev_err(nfc->dev, "read page: %x ecc error!\n", page);
864                 return 0;
865         }
866
867         return max_bitflips;
868 }
869
870 static int rk_nfc_read_oob(struct nand_chip *chip, int page)
871 {
872         return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
873 }
874
875 static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
876 {
877         /* Disable flash wp. */
878         writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
879         /* Config default timing 40ns at 150 Mhz NFC clock. */
880         writel(0x1081, nfc->regs + NFC_FMWAIT);
881         nfc->cur_timing = 0x1081;
882         /* Disable randomizer and DMA. */
883         writel(0, nfc->regs + nfc->cfg->randmz_off);
884         writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
885         writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
886 }
887
888 static irqreturn_t rk_nfc_irq(int irq, void *id)
889 {
890         struct rk_nfc *nfc = id;
891         u32 sta, ien;
892
893         sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
894         ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
895
896         if (!(sta & ien))
897                 return IRQ_NONE;
898
899         writel(sta, nfc->regs + nfc->cfg->int_clr_off);
900         writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
901
902         complete(&nfc->done);
903
904         return IRQ_HANDLED;
905 }
906
907 static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
908 {
909         int ret;
910
911         if (!IS_ERR(nfc->nfc_clk)) {
912                 ret = clk_prepare_enable(nfc->nfc_clk);
913                 if (ret) {
914                         dev_err(dev, "failed to enable NFC clk\n");
915                         return ret;
916                 }
917         }
918
919         ret = clk_prepare_enable(nfc->ahb_clk);
920         if (ret) {
921                 dev_err(dev, "failed to enable ahb clk\n");
922                 clk_disable_unprepare(nfc->nfc_clk);
923                 return ret;
924         }
925
926         return 0;
927 }
928
929 static void rk_nfc_disable_clks(struct rk_nfc *nfc)
930 {
931         clk_disable_unprepare(nfc->nfc_clk);
932         clk_disable_unprepare(nfc->ahb_clk);
933 }
934
935 static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
936                                  struct mtd_oob_region *oob_region)
937 {
938         struct nand_chip *chip = mtd_to_nand(mtd);
939         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
940
941         if (section)
942                 return -ERANGE;
943
944         oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
945         oob_region->offset = 2;
946
947         return 0;
948 }
949
950 static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
951                                 struct mtd_oob_region *oob_region)
952 {
953         struct nand_chip *chip = mtd_to_nand(mtd);
954         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
955
956         if (section)
957                 return -ERANGE;
958
959         oob_region->length = mtd->oobsize - rknand->metadata_size;
960         oob_region->offset = rknand->metadata_size;
961
962         return 0;
963 }
964
965 static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
966         .free = rk_nfc_ooblayout_free,
967         .ecc = rk_nfc_ooblayout_ecc,
968 };
969
970 static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
971 {
972         struct nand_chip *chip = mtd_to_nand(mtd);
973         struct rk_nfc *nfc = nand_get_controller_data(chip);
974         struct nand_ecc_ctrl *ecc = &chip->ecc;
975         const u8 *strengths = nfc->cfg->ecc_strengths;
976         u8 max_strength, nfc_max_strength;
977         int i;
978
979         nfc_max_strength = nfc->cfg->ecc_strengths[0];
980         /* If optional dt settings not present. */
981         if (!ecc->size || !ecc->strength ||
982             ecc->strength > nfc_max_strength) {
983                 chip->ecc.size = 1024;
984                 ecc->steps = mtd->writesize / ecc->size;
985
986                 /*
987                  * HW ECC always requests the number of ECC bytes per 1024 byte
988                  * blocks. The first 4 OOB bytes are reserved for sys data.
989                  */
990                 max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
991                                  fls(8 * 1024);
992                 if (max_strength > nfc_max_strength)
993                         max_strength = nfc_max_strength;
994
995                 for (i = 0; i < 4; i++) {
996                         if (max_strength >= strengths[i])
997                                 break;
998                 }
999
1000                 if (i >= 4) {
1001                         dev_err(nfc->dev, "unsupported ECC strength\n");
1002                         return -EOPNOTSUPP;
1003                 }
1004
1005                 ecc->strength = strengths[i];
1006         }
1007         ecc->steps = mtd->writesize / ecc->size;
1008         ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
1009
1010         return 0;
1011 }
1012
1013 static int rk_nfc_attach_chip(struct nand_chip *chip)
1014 {
1015         struct mtd_info *mtd = nand_to_mtd(chip);
1016         struct device *dev = mtd->dev.parent;
1017         struct rk_nfc *nfc = nand_get_controller_data(chip);
1018         struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
1019         struct nand_ecc_ctrl *ecc = &chip->ecc;
1020         int new_page_len, new_oob_len;
1021         void *buf;
1022         int ret;
1023
1024         if (chip->options & NAND_BUSWIDTH_16) {
1025                 dev_err(dev, "16 bits bus width not supported");
1026                 return -EINVAL;
1027         }
1028
1029         if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1030                 return 0;
1031
1032         ret = rk_nfc_ecc_init(dev, mtd);
1033         if (ret)
1034                 return ret;
1035
1036         rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
1037
1038         if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
1039                 dev_err(dev,
1040                         "driver needs at least %d bytes of meta data\n",
1041                         NFC_SYS_DATA_SIZE + 2);
1042                 return -EIO;
1043         }
1044
1045         /* Check buffer first, avoid duplicate alloc buffer. */
1046         new_page_len = mtd->writesize + mtd->oobsize;
1047         if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
1048                 buf = krealloc(nfc->page_buf, new_page_len,
1049                                GFP_KERNEL | GFP_DMA);
1050                 if (!buf)
1051                         return -ENOMEM;
1052                 nfc->page_buf = buf;
1053                 nfc->page_buf_size = new_page_len;
1054         }
1055
1056         new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
1057         if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
1058                 buf = krealloc(nfc->oob_buf, new_oob_len,
1059                                GFP_KERNEL | GFP_DMA);
1060                 if (!buf) {
1061                         kfree(nfc->page_buf);
1062                         nfc->page_buf = NULL;
1063                         return -ENOMEM;
1064                 }
1065                 nfc->oob_buf = buf;
1066                 nfc->oob_buf_size = new_oob_len;
1067         }
1068
1069         if (!nfc->page_buf) {
1070                 nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
1071                 if (!nfc->page_buf)
1072                         return -ENOMEM;
1073                 nfc->page_buf_size = new_page_len;
1074         }
1075
1076         if (!nfc->oob_buf) {
1077                 nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
1078                 if (!nfc->oob_buf) {
1079                         kfree(nfc->page_buf);
1080                         nfc->page_buf = NULL;
1081                         return -ENOMEM;
1082                 }
1083                 nfc->oob_buf_size = new_oob_len;
1084         }
1085
1086         chip->ecc.write_page_raw = rk_nfc_write_page_raw;
1087         chip->ecc.write_page = rk_nfc_write_page_hwecc;
1088         chip->ecc.write_oob = rk_nfc_write_oob;
1089
1090         chip->ecc.read_page_raw = rk_nfc_read_page_raw;
1091         chip->ecc.read_page = rk_nfc_read_page_hwecc;
1092         chip->ecc.read_oob = rk_nfc_read_oob;
1093
1094         return 0;
1095 }
1096
1097 static const struct nand_controller_ops rk_nfc_controller_ops = {
1098         .attach_chip = rk_nfc_attach_chip,
1099         .exec_op = rk_nfc_exec_op,
1100         .setup_interface = rk_nfc_setup_interface,
1101 };
1102
1103 static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
1104                                  struct device_node *np)
1105 {
1106         struct rk_nfc_nand_chip *rknand;
1107         struct nand_chip *chip;
1108         struct mtd_info *mtd;
1109         int nsels;
1110         u32 tmp;
1111         int ret;
1112         int i;
1113
1114         if (!of_get_property(np, "reg", &nsels))
1115                 return -ENODEV;
1116         nsels /= sizeof(u32);
1117         if (!nsels || nsels > NFC_MAX_NSELS) {
1118                 dev_err(dev, "invalid reg property size %d\n", nsels);
1119                 return -EINVAL;
1120         }
1121
1122         rknand = devm_kzalloc(dev, struct_size(rknand, sels, nsels),
1123                               GFP_KERNEL);
1124         if (!rknand)
1125                 return -ENOMEM;
1126
1127         rknand->nsels = nsels;
1128         for (i = 0; i < nsels; i++) {
1129                 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1130                 if (ret) {
1131                         dev_err(dev, "reg property failure : %d\n", ret);
1132                         return ret;
1133                 }
1134
1135                 if (tmp >= NFC_MAX_NSELS) {
1136                         dev_err(dev, "invalid CS: %u\n", tmp);
1137                         return -EINVAL;
1138                 }
1139
1140                 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1141                         dev_err(dev, "CS %u already assigned\n", tmp);
1142                         return -EINVAL;
1143                 }
1144
1145                 rknand->sels[i] = tmp;
1146         }
1147
1148         chip = &rknand->chip;
1149         chip->controller = &nfc->controller;
1150
1151         nand_set_flash_node(chip, np);
1152
1153         nand_set_controller_data(chip, nfc);
1154
1155         chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1156         chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1157
1158         /* Set default mode in case dt entry is missing. */
1159         chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1160
1161         mtd = nand_to_mtd(chip);
1162         mtd->owner = THIS_MODULE;
1163         mtd->dev.parent = dev;
1164
1165         if (!mtd->name) {
1166                 dev_err(nfc->dev, "NAND label property is mandatory\n");
1167                 return -EINVAL;
1168         }
1169
1170         mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
1171         rk_nfc_hw_init(nfc);
1172         ret = nand_scan(chip, nsels);
1173         if (ret)
1174                 return ret;
1175
1176         if (chip->options & NAND_IS_BOOT_MEDIUM) {
1177                 ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
1178                 rknand->boot_blks = ret ? 0 : tmp;
1179
1180                 ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
1181                                            &tmp);
1182                 rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
1183         }
1184
1185         ret = mtd_device_register(mtd, NULL, 0);
1186         if (ret) {
1187                 dev_err(dev, "MTD parse partition error\n");
1188                 nand_cleanup(chip);
1189                 return ret;
1190         }
1191
1192         list_add_tail(&rknand->node, &nfc->chips);
1193
1194         return 0;
1195 }
1196
1197 static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
1198 {
1199         struct rk_nfc_nand_chip *rknand, *tmp;
1200         struct nand_chip *chip;
1201         int ret;
1202
1203         list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
1204                 chip = &rknand->chip;
1205                 ret = mtd_device_unregister(nand_to_mtd(chip));
1206                 WARN_ON(ret);
1207                 nand_cleanup(chip);
1208                 list_del(&rknand->node);
1209         }
1210 }
1211
1212 static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
1213 {
1214         struct device_node *np = dev->of_node;
1215         int nchips = of_get_child_count(np);
1216         int ret;
1217
1218         if (!nchips || nchips > NFC_MAX_NSELS) {
1219                 dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
1220                         nchips);
1221                 return -EINVAL;
1222         }
1223
1224         for_each_child_of_node_scoped(np, nand_np) {
1225                 ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
1226                 if (ret) {
1227                         rk_nfc_chips_cleanup(nfc);
1228                         return ret;
1229                 }
1230         }
1231
1232         return 0;
1233 }
1234
1235 static struct nfc_cfg nfc_v6_cfg = {
1236                 .type                   = NFC_V6,
1237                 .ecc_strengths          = {60, 40, 24, 16},
1238                 .ecc_cfgs               = {
1239                         0x00040011, 0x00040001, 0x00000011, 0x00000001,
1240                 },
1241                 .flctl_off              = 0x08,
1242                 .bchctl_off             = 0x0C,
1243                 .dma_cfg_off            = 0x10,
1244                 .dma_data_buf_off       = 0x14,
1245                 .dma_oob_buf_off        = 0x18,
1246                 .dma_st_off             = 0x1C,
1247                 .bch_st_off             = 0x20,
1248                 .randmz_off             = 0x150,
1249                 .int_en_off             = 0x16C,
1250                 .int_clr_off            = 0x170,
1251                 .int_st_off             = 0x174,
1252                 .oob0_off               = 0x200,
1253                 .oob1_off               = 0x230,
1254                 .ecc0                   = {
1255                         .err_flag_bit   = 2,
1256                         .low            = 3,
1257                         .low_mask       = 0x1F,
1258                         .low_bn         = 5,
1259                         .high           = 27,
1260                         .high_mask      = 0x1,
1261                 },
1262                 .ecc1                   = {
1263                         .err_flag_bit   = 15,
1264                         .low            = 16,
1265                         .low_mask       = 0x1F,
1266                         .low_bn         = 5,
1267                         .high           = 29,
1268                         .high_mask      = 0x1,
1269                 },
1270 };
1271
1272 static struct nfc_cfg nfc_v8_cfg = {
1273                 .type                   = NFC_V8,
1274                 .ecc_strengths          = {16, 16, 16, 16},
1275                 .ecc_cfgs               = {
1276                         0x00000001, 0x00000001, 0x00000001, 0x00000001,
1277                 },
1278                 .flctl_off              = 0x08,
1279                 .bchctl_off             = 0x0C,
1280                 .dma_cfg_off            = 0x10,
1281                 .dma_data_buf_off       = 0x14,
1282                 .dma_oob_buf_off        = 0x18,
1283                 .dma_st_off             = 0x1C,
1284                 .bch_st_off             = 0x20,
1285                 .randmz_off             = 0x150,
1286                 .int_en_off             = 0x16C,
1287                 .int_clr_off            = 0x170,
1288                 .int_st_off             = 0x174,
1289                 .oob0_off               = 0x200,
1290                 .oob1_off               = 0x230,
1291                 .ecc0                   = {
1292                         .err_flag_bit   = 2,
1293                         .low            = 3,
1294                         .low_mask       = 0x1F,
1295                         .low_bn         = 5,
1296                         .high           = 27,
1297                         .high_mask      = 0x1,
1298                 },
1299                 .ecc1                   = {
1300                         .err_flag_bit   = 15,
1301                         .low            = 16,
1302                         .low_mask       = 0x1F,
1303                         .low_bn         = 5,
1304                         .high           = 29,
1305                         .high_mask      = 0x1,
1306                 },
1307 };
1308
1309 static struct nfc_cfg nfc_v9_cfg = {
1310                 .type                   = NFC_V9,
1311                 .ecc_strengths          = {70, 60, 40, 16},
1312                 .ecc_cfgs               = {
1313                         0x00000001, 0x06000001, 0x04000001, 0x02000001,
1314                 },
1315                 .flctl_off              = 0x10,
1316                 .bchctl_off             = 0x20,
1317                 .dma_cfg_off            = 0x30,
1318                 .dma_data_buf_off       = 0x34,
1319                 .dma_oob_buf_off        = 0x38,
1320                 .dma_st_off             = 0x3C,
1321                 .bch_st_off             = 0x150,
1322                 .randmz_off             = 0x208,
1323                 .int_en_off             = 0x120,
1324                 .int_clr_off            = 0x124,
1325                 .int_st_off             = 0x128,
1326                 .oob0_off               = 0x200,
1327                 .oob1_off               = 0x204,
1328                 .ecc0                   = {
1329                         .err_flag_bit   = 2,
1330                         .low            = 3,
1331                         .low_mask       = 0x7F,
1332                         .low_bn         = 7,
1333                         .high           = 0,
1334                         .high_mask      = 0x0,
1335                 },
1336                 .ecc1                   = {
1337                         .err_flag_bit   = 18,
1338                         .low            = 19,
1339                         .low_mask       = 0x7F,
1340                         .low_bn         = 7,
1341                         .high           = 0,
1342                         .high_mask      = 0x0,
1343                 },
1344 };
1345
1346 static const struct of_device_id rk_nfc_id_table[] = {
1347         {
1348                 .compatible = "rockchip,px30-nfc",
1349                 .data = &nfc_v9_cfg
1350         },
1351         {
1352                 .compatible = "rockchip,rk2928-nfc",
1353                 .data = &nfc_v6_cfg
1354         },
1355         {
1356                 .compatible = "rockchip,rv1108-nfc",
1357                 .data = &nfc_v8_cfg
1358         },
1359         { /* sentinel */ }
1360 };
1361 MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
1362
1363 static int rk_nfc_probe(struct platform_device *pdev)
1364 {
1365         struct device *dev = &pdev->dev;
1366         struct rk_nfc *nfc;
1367         int ret, irq;
1368
1369         nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1370         if (!nfc)
1371                 return -ENOMEM;
1372
1373         nand_controller_init(&nfc->controller);
1374         INIT_LIST_HEAD(&nfc->chips);
1375         nfc->controller.ops = &rk_nfc_controller_ops;
1376
1377         nfc->cfg = of_device_get_match_data(dev);
1378         nfc->dev = dev;
1379
1380         init_completion(&nfc->done);
1381
1382         nfc->regs = devm_platform_ioremap_resource(pdev, 0);
1383         if (IS_ERR(nfc->regs)) {
1384                 ret = PTR_ERR(nfc->regs);
1385                 goto release_nfc;
1386         }
1387
1388         nfc->nfc_clk = devm_clk_get(dev, "nfc");
1389         if (IS_ERR(nfc->nfc_clk)) {
1390                 dev_dbg(dev, "no NFC clk\n");
1391                 /* Some earlier models, such as rk3066, have no NFC clk. */
1392         }
1393
1394         nfc->ahb_clk = devm_clk_get(dev, "ahb");
1395         if (IS_ERR(nfc->ahb_clk)) {
1396                 dev_err(dev, "no ahb clk\n");
1397                 ret = PTR_ERR(nfc->ahb_clk);
1398                 goto release_nfc;
1399         }
1400
1401         ret = rk_nfc_enable_clks(dev, nfc);
1402         if (ret)
1403                 goto release_nfc;
1404
1405         irq = platform_get_irq(pdev, 0);
1406         if (irq < 0) {
1407                 ret = -EINVAL;
1408                 goto clk_disable;
1409         }
1410
1411         writel(0, nfc->regs + nfc->cfg->int_en_off);
1412         ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
1413         if (ret) {
1414                 dev_err(dev, "failed to request NFC irq\n");
1415                 goto clk_disable;
1416         }
1417
1418         platform_set_drvdata(pdev, nfc);
1419
1420         ret = rk_nfc_nand_chips_init(dev, nfc);
1421         if (ret) {
1422                 dev_err(dev, "failed to init NAND chips\n");
1423                 goto clk_disable;
1424         }
1425         return 0;
1426
1427 clk_disable:
1428         rk_nfc_disable_clks(nfc);
1429 release_nfc:
1430         return ret;
1431 }
1432
1433 static void rk_nfc_remove(struct platform_device *pdev)
1434 {
1435         struct rk_nfc *nfc = platform_get_drvdata(pdev);
1436
1437         kfree(nfc->page_buf);
1438         kfree(nfc->oob_buf);
1439         rk_nfc_chips_cleanup(nfc);
1440         rk_nfc_disable_clks(nfc);
1441 }
1442
1443 static int __maybe_unused rk_nfc_suspend(struct device *dev)
1444 {
1445         struct rk_nfc *nfc = dev_get_drvdata(dev);
1446
1447         rk_nfc_disable_clks(nfc);
1448
1449         return 0;
1450 }
1451
1452 static int __maybe_unused rk_nfc_resume(struct device *dev)
1453 {
1454         struct rk_nfc *nfc = dev_get_drvdata(dev);
1455         struct rk_nfc_nand_chip *rknand;
1456         struct nand_chip *chip;
1457         int ret;
1458         u32 i;
1459
1460         ret = rk_nfc_enable_clks(dev, nfc);
1461         if (ret)
1462                 return ret;
1463
1464         /* Reset NAND chip if VCC was powered off. */
1465         list_for_each_entry(rknand, &nfc->chips, node) {
1466                 chip = &rknand->chip;
1467                 for (i = 0; i < rknand->nsels; i++)
1468                         nand_reset(chip, i);
1469         }
1470
1471         return 0;
1472 }
1473
1474 static const struct dev_pm_ops rk_nfc_pm_ops = {
1475         SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
1476 };
1477
1478 static struct platform_driver rk_nfc_driver = {
1479         .probe = rk_nfc_probe,
1480         .remove = rk_nfc_remove,
1481         .driver = {
1482                 .name = "rockchip-nfc",
1483                 .of_match_table = rk_nfc_id_table,
1484                 .pm = &rk_nfc_pm_ops,
1485         },
1486 };
1487
1488 module_platform_driver(rk_nfc_driver);
1489
1490 MODULE_LICENSE("Dual MIT/GPL");
1491 MODULE_AUTHOR("Yifeng Zhao <[email protected]>");
1492 MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
1493 MODULE_ALIAS("platform:rockchip-nand-controller");
This page took 0.119952 seconds and 4 git commands to generate.