]> Git Repo - linux.git/blob - drivers/memory/samsung/exynos5422-dmc.c
Linux 6.14-rc3
[linux.git] / drivers / memory / samsung / exynos5422-dmc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <[email protected]>
5  */
6
7 #include <linux/cleanup.h>
8 #include <linux/clk.h>
9 #include <linux/devfreq.h>
10 #include <linux/devfreq-event.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/of.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23 #include "../jedec_ddr.h"
24 #include "../of_memory.h"
25
26 static int irqmode;
27 module_param(irqmode, int, 0644);
28 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
29
30 #define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
31 #define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
32 #define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
33 #define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
34 #define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
35 #define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
36 #define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
37 #define CDREX_PAUSE                             (0x2091c)
38 #define CDREX_LPDDR3PHY_CON3                    (0x20a20)
39 #define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
40 #define EXYNOS5_TIMING_SET_SWI                  BIT(28)
41 #define USE_MX_MSPLL_TIMINGS                    (1)
42 #define USE_BPLL_TIMINGS                        (0)
43 #define EXYNOS5_AREF_NORMAL                     (0x2e)
44
45 #define DREX_PPCCLKCON          (0x0130)
46 #define DREX_PEREV2CONFIG       (0x013c)
47 #define DREX_PMNC_PPC           (0xE000)
48 #define DREX_CNTENS_PPC         (0xE010)
49 #define DREX_CNTENC_PPC         (0xE020)
50 #define DREX_INTENS_PPC         (0xE030)
51 #define DREX_INTENC_PPC         (0xE040)
52 #define DREX_FLAG_PPC           (0xE050)
53 #define DREX_PMCNT2_PPC         (0xE130)
54
55 /*
56  * A value for register DREX_PMNC_PPC which should be written to reset
57  * the cycle counter CCNT (a reference wall clock). It sets zero to the
58  * CCNT counter.
59  */
60 #define CC_RESET                BIT(2)
61
62 /*
63  * A value for register DREX_PMNC_PPC which does the reset of all performance
64  * counters to zero.
65  */
66 #define PPC_COUNTER_RESET       BIT(1)
67
68 /*
69  * Enables all configured counters (including cycle counter). The value should
70  * be written to the register DREX_PMNC_PPC.
71  */
72 #define PPC_ENABLE              BIT(0)
73
74 /* A value for register DREX_PPCCLKCON which enables performance events clock.
75  * Must be written before first access to the performance counters register
76  * set, otherwise it could crash.
77  */
78 #define PEREV_CLK_EN            BIT(0)
79
80 /*
81  * Values which are used to enable counters, interrupts or configure flags of
82  * the performance counters. They configure counter 2 and cycle counter.
83  */
84 #define PERF_CNT2               BIT(2)
85 #define PERF_CCNT               BIT(31)
86
87 /*
88  * Performance event types which are used for setting the preferred event
89  * to track in the counters.
90  * There is a set of different types, the values are from range 0 to 0x6f.
91  * These settings should be written to the configuration register which manages
92  * the type of the event (register DREX_PEREV2CONFIG).
93  */
94 #define READ_TRANSFER_CH0       (0x6d)
95 #define READ_TRANSFER_CH1       (0x6f)
96
97 #define PERF_COUNTER_START_VALUE 0xff000000
98 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
99
100 /**
101  * struct dmc_opp_table - Operating level desciption
102  * @freq_hz:            target frequency in Hz
103  * @volt_uv:            target voltage in uV
104  *
105  * Covers frequency and voltage settings of the DMC operating mode.
106  */
107 struct dmc_opp_table {
108         u32 freq_hz;
109         u32 volt_uv;
110 };
111
112 /**
113  * struct exynos5_dmc - main structure describing DMC device
114  * @dev:                DMC device
115  * @df:                 devfreq device structure returned by devfreq framework
116  * @gov_data:           configuration of devfreq governor
117  * @base_drexi0:        DREX0 registers mapping
118  * @base_drexi1:        DREX1 registers mapping
119  * @clk_regmap:         regmap for clock controller registers
120  * @lock:               protects curr_rate and frequency/voltage setting section
121  * @curr_rate:          current frequency
122  * @curr_volt:          current voltage
123  * @opp:                OPP table
124  * @opp_count:          number of 'opp' elements
125  * @timings_arr_size:   number of 'timings' elements
126  * @timing_row:         values for timing row register, for each OPP
127  * @timing_data:        values for timing data register, for each OPP
128  * @timing_power:       balues for timing power register, for each OPP
129  * @timings:            DDR memory timings, from device tree
130  * @min_tck:            DDR memory minimum timing values, from device tree
131  * @bypass_timing_row:  value for timing row register for bypass timings
132  * @bypass_timing_data: value for timing data register for bypass timings
133  * @bypass_timing_power:        value for timing power register for bypass
134  *                              timings
135  * @vdd_mif:            Memory interface regulator
136  * @fout_spll:          clock: SPLL
137  * @fout_bpll:          clock: BPLL
138  * @mout_spll:          clock: mux SPLL
139  * @mout_bpll:          clock: mux BPLL
140  * @mout_mclk_cdrex:    clock: mux mclk_cdrex
141  * @mout_mx_mspll_ccore:        clock: mux mx_mspll_ccore
142  * @counter:            devfreq events
143  * @num_counters:       number of 'counter' elements
144  * @last_overflow_ts:   time (in ns) of last overflow of each DREX
145  * @load:               utilization in percents
146  * @total:              total time between devfreq events
147  * @in_irq_mode:        whether running in interrupt mode (true)
148  *                      or polling (false)
149  *
150  * The main structure for the Dynamic Memory Controller which covers clocks,
151  * memory regions, HW information, parameters and current operating mode.
152  */
153 struct exynos5_dmc {
154         struct device *dev;
155         struct devfreq *df;
156         struct devfreq_simple_ondemand_data gov_data;
157         void __iomem *base_drexi0;
158         void __iomem *base_drexi1;
159         struct regmap *clk_regmap;
160         /* Protects curr_rate and frequency/voltage setting section */
161         struct mutex lock;
162         unsigned long curr_rate;
163         unsigned long curr_volt;
164         struct dmc_opp_table *opp;
165         int opp_count;
166         u32 timings_arr_size;
167         u32 *timing_row;
168         u32 *timing_data;
169         u32 *timing_power;
170         const struct lpddr3_timings *timings;
171         const struct lpddr3_min_tck *min_tck;
172         u32 bypass_timing_row;
173         u32 bypass_timing_data;
174         u32 bypass_timing_power;
175         struct regulator *vdd_mif;
176         struct clk *fout_spll;
177         struct clk *fout_bpll;
178         struct clk *mout_spll;
179         struct clk *mout_bpll;
180         struct clk *mout_mclk_cdrex;
181         struct clk *mout_mx_mspll_ccore;
182         struct devfreq_event_dev **counter;
183         int num_counters;
184         u64 last_overflow_ts[2];
185         unsigned long load;
186         unsigned long total;
187         bool in_irq_mode;
188 };
189
190 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
191         { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
192
193 #define TIMING_VAL2REG(timing, t_val)                   \
194 ({                                                      \
195                 u32 __val;                              \
196                 __val = (t_val) << (timing)->bit_beg;   \
197                 __val;                                  \
198 })
199
200 struct timing_reg {
201         char *name;
202         int bit_beg;
203         int bit_end;
204         unsigned int val;
205 };
206
207 static const struct timing_reg timing_row_reg_fields[] = {
208         TIMING_FIELD("tRFC", 24, 31),
209         TIMING_FIELD("tRRD", 20, 23),
210         TIMING_FIELD("tRP", 16, 19),
211         TIMING_FIELD("tRCD", 12, 15),
212         TIMING_FIELD("tRC", 6, 11),
213         TIMING_FIELD("tRAS", 0, 5),
214 };
215
216 static const struct timing_reg timing_data_reg_fields[] = {
217         TIMING_FIELD("tWTR", 28, 31),
218         TIMING_FIELD("tWR", 24, 27),
219         TIMING_FIELD("tRTP", 20, 23),
220         TIMING_FIELD("tW2W-C2C", 14, 14),
221         TIMING_FIELD("tR2R-C2C", 12, 12),
222         TIMING_FIELD("WL", 8, 11),
223         TIMING_FIELD("tDQSCK", 4, 7),
224         TIMING_FIELD("RL", 0, 3),
225 };
226
227 static const struct timing_reg timing_power_reg_fields[] = {
228         TIMING_FIELD("tFAW", 26, 31),
229         TIMING_FIELD("tXSR", 16, 25),
230         TIMING_FIELD("tXP", 8, 15),
231         TIMING_FIELD("tCKE", 4, 7),
232         TIMING_FIELD("tMRD", 0, 3),
233 };
234
235 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
236                       ARRAY_SIZE(timing_data_reg_fields) + \
237                       ARRAY_SIZE(timing_power_reg_fields))
238
239 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
240 {
241         int i, ret;
242
243         for (i = 0; i < dmc->num_counters; i++) {
244                 if (!dmc->counter[i])
245                         continue;
246                 ret = devfreq_event_set_event(dmc->counter[i]);
247                 if (ret < 0)
248                         return ret;
249         }
250         return 0;
251 }
252
253 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
254 {
255         int i, ret;
256
257         for (i = 0; i < dmc->num_counters; i++) {
258                 if (!dmc->counter[i])
259                         continue;
260                 ret = devfreq_event_enable_edev(dmc->counter[i]);
261                 if (ret < 0)
262                         return ret;
263         }
264         return 0;
265 }
266
267 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
268 {
269         int i, ret;
270
271         for (i = 0; i < dmc->num_counters; i++) {
272                 if (!dmc->counter[i])
273                         continue;
274                 ret = devfreq_event_disable_edev(dmc->counter[i]);
275                 if (ret < 0)
276                         return ret;
277         }
278         return 0;
279 }
280
281 /**
282  * find_target_freq_idx() - Finds requested frequency in local DMC configuration
283  * @dmc:        device for which the information is checked
284  * @target_rate:        requested frequency in KHz
285  *
286  * Seeks in the local DMC driver structure for the requested frequency value
287  * and returns index or error value.
288  */
289 static int find_target_freq_idx(struct exynos5_dmc *dmc,
290                                 unsigned long target_rate)
291 {
292         int i;
293
294         for (i = dmc->opp_count - 1; i >= 0; i--)
295                 if (dmc->opp[i].freq_hz <= target_rate)
296                         return i;
297
298         return -EINVAL;
299 }
300
301 /**
302  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
303  * @dmc:        device for which the new settings is going to be applied
304  * @set:        boolean variable passing set value
305  *
306  * Changes the register set, which holds timing parameters.
307  * There is two register sets: 0 and 1. The register set 0
308  * is used in normal operation when the clock is provided from main PLL.
309  * The bank register set 1 is used when the main PLL frequency is going to be
310  * changed and the clock is taken from alternative, stable source.
311  * This function switches between these banks according to the
312  * currently used clock source.
313  */
314 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
315 {
316         unsigned int reg;
317         int ret;
318
319         ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
320         if (ret)
321                 return ret;
322
323         if (set)
324                 reg |= EXYNOS5_TIMING_SET_SWI;
325         else
326                 reg &= ~EXYNOS5_TIMING_SET_SWI;
327
328         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
329
330         return 0;
331 }
332
333 /**
334  * exynos5_init_freq_table() - Initialized PM OPP framework
335  * @dmc:        DMC device for which the frequencies are used for OPP init
336  * @profile:    devfreq device's profile
337  *
338  * Populate the devfreq device's OPP table based on current frequency, voltage.
339  */
340 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
341                                    struct devfreq_dev_profile *profile)
342 {
343         struct device *dev = dmc->dev;
344         int i, ret;
345         int idx;
346         unsigned long freq;
347
348         ret = devm_pm_opp_of_add_table(dev);
349         if (ret < 0) {
350                 dev_err(dev, "Failed to get OPP table\n");
351                 return ret;
352         }
353
354         dmc->opp_count = dev_pm_opp_get_opp_count(dev);
355
356         dmc->opp = devm_kmalloc_array(dev, dmc->opp_count,
357                                       sizeof(struct dmc_opp_table), GFP_KERNEL);
358         if (!dmc->opp)
359                 return -ENOMEM;
360
361         idx = dmc->opp_count - 1;
362         for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
363                 struct dev_pm_opp *opp;
364
365                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
366                 if (IS_ERR(opp))
367                         return PTR_ERR(opp);
368
369                 dmc->opp[idx - i].freq_hz = freq;
370                 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
371
372                 dev_pm_opp_put(opp);
373         }
374
375         return 0;
376 }
377
378 /**
379  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
380  * @dmc:        device for which the new settings is going to be applied
381  *
382  * Low-level function for changing timings for DRAM memory clocking from
383  * 'bypass' clock source (fixed frequency @400MHz).
384  * It uses timing bank registers set 1.
385  */
386 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
387 {
388         writel(EXYNOS5_AREF_NORMAL,
389                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390
391         writel(dmc->bypass_timing_row,
392                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
393         writel(dmc->bypass_timing_row,
394                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
395         writel(dmc->bypass_timing_data,
396                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
397         writel(dmc->bypass_timing_data,
398                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
399         writel(dmc->bypass_timing_power,
400                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
401         writel(dmc->bypass_timing_power,
402                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
403 }
404
405 /**
406  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
407  * @dmc:        device for which the new settings is going to be applied
408  * @target_rate:        target frequency of the DMC
409  *
410  * Low-level function for changing timings for DRAM memory operating from main
411  * clock source (BPLL), which can have different frequencies. Thus, each
412  * frequency must have corresponding timings register values in order to keep
413  * the needed delays.
414  * It uses timing bank registers set 0.
415  */
416 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
417                                        unsigned long target_rate)
418 {
419         int idx;
420
421         for (idx = dmc->opp_count - 1; idx >= 0; idx--)
422                 if (dmc->opp[idx].freq_hz <= target_rate)
423                         break;
424
425         if (idx < 0)
426                 return -EINVAL;
427
428         writel(EXYNOS5_AREF_NORMAL,
429                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
430
431         writel(dmc->timing_row[idx],
432                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
433         writel(dmc->timing_row[idx],
434                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
435         writel(dmc->timing_data[idx],
436                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
437         writel(dmc->timing_data[idx],
438                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
439         writel(dmc->timing_power[idx],
440                dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
441         writel(dmc->timing_power[idx],
442                dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
443
444         return 0;
445 }
446
447 /**
448  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
449  * @dmc:        device for which it is going to be set
450  * @target_volt:        new voltage which is chosen to be final
451  *
452  * Function tries to align voltage to the safe level for 'normal' mode.
453  * It checks the need of higher voltage and changes the value. The target
454  * voltage might be lower that currently set and still the system will be
455  * stable.
456  */
457 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
458                                             unsigned long target_volt)
459 {
460         int ret = 0;
461
462         if (dmc->curr_volt <= target_volt)
463                 return 0;
464
465         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
466                                     target_volt);
467         if (!ret)
468                 dmc->curr_volt = target_volt;
469
470         return ret;
471 }
472
473 /**
474  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
475  * @dmc:        device for which it is going to be set
476  * @target_volt:        new voltage which is chosen to be final
477  *
478  * Function tries to align voltage to the safe level for the 'bypass' mode.
479  * It checks the need of higher voltage and changes the value.
480  * The target voltage must not be less than currently needed, because
481  * for current frequency the device might become unstable.
482  */
483 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
484                                             unsigned long target_volt)
485 {
486         int ret = 0;
487
488         if (dmc->curr_volt >= target_volt)
489                 return 0;
490
491         ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
492                                     target_volt);
493         if (!ret)
494                 dmc->curr_volt = target_volt;
495
496         return ret;
497 }
498
499 /**
500  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
501  * @dmc:        device for which it is going to be set
502  * @target_rate:        new frequency which is chosen to be final
503  *
504  * Function changes the DRAM timings for the temporary 'bypass' mode.
505  */
506 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
507                                                  unsigned long target_rate)
508 {
509         int idx = find_target_freq_idx(dmc, target_rate);
510
511         if (idx < 0)
512                 return -EINVAL;
513
514         exynos5_set_bypass_dram_timings(dmc);
515
516         return 0;
517 }
518
519 /**
520  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
521  * @dmc:        DMC device for which the switching is going to happen
522  * @target_rate:        new frequency which is going to be set as a final
523  * @target_volt:        new voltage which is going to be set as a final
524  *
525  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
526  * This mode is used only temporary but if required, changes voltage and timings
527  * for DRAM chips. It switches the main clock to stable clock source for the
528  * period of the main PLL reconfiguration.
529  */
530 static int
531 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
532                                            unsigned long target_rate,
533                                            unsigned long target_volt)
534 {
535         int ret;
536
537         /*
538          * Having higher voltage for a particular frequency does not harm
539          * the chip. Use it for the temporary frequency change when one
540          * voltage manipulation might be avoided.
541          */
542         ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
543         if (ret)
544                 return ret;
545
546         /*
547          * Longer delays for DRAM does not cause crash, the opposite does.
548          */
549         ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
550         if (ret)
551                 return ret;
552
553         /*
554          * Delays are long enough, so use them for the new coming clock.
555          */
556         ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
557
558         return ret;
559 }
560
561 /**
562  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
563  * using safe procedure
564  * @dmc:        device for which the frequency is going to be changed
565  * @target_rate:        requested new frequency
566  * @target_volt:        requested voltage which corresponds to the new frequency
567  *
568  * The DMC frequency change procedure requires a few steps.
569  * The main requirement is to change the clock source in the clk mux
570  * for the time of main clock PLL locking. The assumption is that the
571  * alternative clock source set as parent is stable.
572  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
573  * clock. This requires alignment in DRAM timing parameters for the new
574  * T-period. There is two bank sets for keeping DRAM
575  * timings: set 0 and set 1. The set 0 is used when main clock source is
576  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
577  * the two bank sets is part of the process.
578  * The voltage must also be aligned to the minimum required level. There is
579  * this intermediate step with switching to 'bypass' parent clock source.
580  * if the old voltage is lower, it requires an increase of the voltage level.
581  * The complexity of the voltage manipulation is hidden in low level function.
582  * In this function there is last alignment of the voltage level at the end.
583  */
584 static int
585 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
586                                  unsigned long target_rate,
587                                  unsigned long target_volt)
588 {
589         int ret;
590
591         ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
592                                                          target_volt);
593         if (ret)
594                 return ret;
595
596         /*
597          * Voltage is set at least to a level needed for this frequency,
598          * so switching clock source is safe now.
599          */
600         clk_prepare_enable(dmc->fout_spll);
601         clk_prepare_enable(dmc->mout_spll);
602         clk_prepare_enable(dmc->mout_mx_mspll_ccore);
603
604         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
605         if (ret)
606                 goto disable_clocks;
607
608         /*
609          * We are safe to increase the timings for current bypass frequency.
610          * Thanks to this the settings will be ready for the upcoming clock
611          * source change.
612          */
613         exynos5_dram_change_timings(dmc, target_rate);
614
615         clk_set_rate(dmc->fout_bpll, target_rate);
616
617         ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
618         if (ret)
619                 goto disable_clocks;
620
621         ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
622         if (ret)
623                 goto disable_clocks;
624
625         /*
626          * Make sure if the voltage is not from 'bypass' settings and align to
627          * the right level for power efficiency.
628          */
629         ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
630
631 disable_clocks:
632         clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
633         clk_disable_unprepare(dmc->mout_spll);
634         clk_disable_unprepare(dmc->fout_spll);
635
636         return ret;
637 }
638
639 /**
640  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
641  * table.
642  * @dmc:        device for which the frequency is going to be changed
643  * @freq:       requested frequency in KHz
644  * @target_rate:        returned frequency which is the same or lower than
645  *                      requested
646  * @target_volt:        returned voltage which corresponds to the returned
647  *                      frequency
648  * @flags:      devfreq flags provided for this frequency change request
649  *
650  * Function gets requested frequency and checks OPP framework for needed
651  * frequency and voltage. It populates the values 'target_rate' and
652  * 'target_volt' or returns error value when OPP framework fails.
653  */
654 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
655                                      unsigned long *freq,
656                                      unsigned long *target_rate,
657                                      unsigned long *target_volt, u32 flags)
658 {
659         struct dev_pm_opp *opp;
660
661         opp = devfreq_recommended_opp(dmc->dev, freq, flags);
662         if (IS_ERR(opp))
663                 return PTR_ERR(opp);
664
665         *target_rate = dev_pm_opp_get_freq(opp);
666         *target_volt = dev_pm_opp_get_voltage(opp);
667         dev_pm_opp_put(opp);
668
669         return 0;
670 }
671
672 /**
673  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
674  * @dev:        device for which the frequency is going to be changed
675  * @freq:       requested frequency in KHz
676  * @flags:      flags provided for this frequency change request
677  *
678  * An entry function provided to the devfreq framework which provides frequency
679  * change of the DMC. The function gets the possible rate from OPP table based
680  * on requested frequency. It calls the next function responsible for the
681  * frequency and voltage change. In case of failure, does not set 'curr_rate'
682  * and returns error value to the framework.
683  */
684 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
685                               u32 flags)
686 {
687         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
688         unsigned long target_rate = 0;
689         unsigned long target_volt = 0;
690         int ret;
691
692         ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
693                                         flags);
694
695         if (ret)
696                 return ret;
697
698         if (target_rate == dmc->curr_rate)
699                 return 0;
700
701         mutex_lock(&dmc->lock);
702
703         ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
704
705         if (ret) {
706                 mutex_unlock(&dmc->lock);
707                 return ret;
708         }
709
710         dmc->curr_rate = target_rate;
711
712         mutex_unlock(&dmc->lock);
713         return 0;
714 }
715
716 /**
717  * exynos5_counters_get() - Gets the performance counters values.
718  * @dmc:        device for which the counters are going to be checked
719  * @load_count: variable which is populated with counter value
720  * @total_count:        variable which is used as 'wall clock' reference
721  *
722  * Function which provides performance counters values. It sums up counters for
723  * two DMC channels. The 'total_count' is used as a reference and max value.
724  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
725  */
726 static int exynos5_counters_get(struct exynos5_dmc *dmc,
727                                 unsigned long *load_count,
728                                 unsigned long *total_count)
729 {
730         unsigned long total = 0;
731         struct devfreq_event_data event;
732         int ret, i;
733
734         *load_count = 0;
735
736         /* Take into account only read+write counters, but stop all */
737         for (i = 0; i < dmc->num_counters; i++) {
738                 if (!dmc->counter[i])
739                         continue;
740
741                 ret = devfreq_event_get_event(dmc->counter[i], &event);
742                 if (ret < 0)
743                         return ret;
744
745                 *load_count += event.load_count;
746
747                 if (total < event.total_count)
748                         total = event.total_count;
749         }
750
751         *total_count = total;
752
753         return 0;
754 }
755
756 /**
757  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
758  * @dmc:        device for which the counters are going to be checked
759  * @beg_value:  initial value for the counter
760  *
761  * Function which enables needed counters, interrupts and sets initial values
762  * then starts the counters.
763  */
764 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
765                                           u32 beg_value)
766 {
767         /* Enable interrupts for counter 2 */
768         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
769         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
770
771         /* Enable counter 2 and CCNT  */
772         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
773         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
774
775         /* Clear overflow flag for all counters */
776         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
777         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
778
779         /* Reset all counters */
780         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
781         writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
782
783         /*
784          * Set start value for the counters, the number of samples that
785          * will be gathered is calculated as: 0xffffffff - beg_value
786          */
787         writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
788         writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
789
790         /* Start all counters */
791         writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
792         writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
793 }
794
795 /**
796  * exynos5_dmc_perf_events_calc() - Calculate utilization
797  * @dmc:        device for which the counters are going to be checked
798  * @diff_ts:    time between last interrupt and current one
799  *
800  * Function which calculates needed utilization for the devfreq governor.
801  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
802  * between interrupts, which approximates utilization.
803  */
804 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
805 {
806         /*
807          * This is a simple algorithm for managing traffic on DMC.
808          * When there is almost no load the counters overflow every 4s,
809          * no mater the DMC frequency.
810          * The high load might be approximated using linear function.
811          * Knowing that, simple calculation can provide 'busy_time' and
812          * 'total_time' to the devfreq governor which picks up target
813          * frequency.
814          * We want a fast ramp up and slow decay in frequency change function.
815          */
816         if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
817                 /*
818                  * Set higher utilization for the simple_ondemand governor.
819                  * The governor should increase the frequency of the DMC.
820                  */
821                 dmc->load = 70;
822                 dmc->total = 100;
823         } else {
824                 /*
825                  * Set low utilization for the simple_ondemand governor.
826                  * The governor should decrease the frequency of the DMC.
827                  */
828                 dmc->load = 35;
829                 dmc->total = 100;
830         }
831
832         dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
833 }
834
835 /**
836  * exynos5_dmc_perf_events_check() - Checks the status of the counters
837  * @dmc:        device for which the counters are going to be checked
838  *
839  * Function which is called from threaded IRQ to check the counters state
840  * and to call approximation for the needed utilization.
841  */
842 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
843 {
844         u32 val;
845         u64 diff_ts, ts;
846
847         ts = ktime_get_ns();
848
849         /* Stop all counters */
850         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
851         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
852
853         /* Check the source in interrupt flag registers (which channel) */
854         val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
855         if (val) {
856                 diff_ts = ts - dmc->last_overflow_ts[0];
857                 dmc->last_overflow_ts[0] = ts;
858                 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
859         } else {
860                 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
861                 diff_ts = ts - dmc->last_overflow_ts[1];
862                 dmc->last_overflow_ts[1] = ts;
863                 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
864         }
865
866         exynos5_dmc_perf_events_calc(dmc, diff_ts);
867
868         exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
869 }
870
871 /**
872  * exynos5_dmc_enable_perf_events() - Enable performance events
873  * @dmc:        device for which the counters are going to be checked
874  *
875  * Function which is setup needed environment and enables counters.
876  */
877 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
878 {
879         u64 ts;
880
881         /* Enable Performance Event Clock */
882         writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
883         writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
884
885         /* Select read transfers as performance event2 */
886         writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
887         writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
888
889         ts = ktime_get_ns();
890         dmc->last_overflow_ts[0] = ts;
891         dmc->last_overflow_ts[1] = ts;
892
893         /* Devfreq shouldn't be faster than initialization, play safe though. */
894         dmc->load = 99;
895         dmc->total = 100;
896 }
897
898 /**
899  * exynos5_dmc_disable_perf_events() - Disable performance events
900  * @dmc:        device for which the counters are going to be checked
901  *
902  * Function which stops, disables performance event counters and interrupts.
903  */
904 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
905 {
906         /* Stop all counters */
907         writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
908         writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
909
910         /* Disable interrupts for counter 2 */
911         writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
912         writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
913
914         /* Disable counter 2 and CCNT  */
915         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
916         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
917
918         /* Clear overflow flag for all counters */
919         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
920         writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
921 }
922
923 /**
924  * exynos5_dmc_get_status() - Read current DMC performance statistics.
925  * @dev:        device for which the statistics are requested
926  * @stat:       structure which has statistic fields
927  *
928  * Function reads the DMC performance counters and calculates 'busy_time'
929  * and 'total_time'. To protect from overflow, the values are shifted right
930  * by 10. After read out the counters are setup to count again.
931  */
932 static int exynos5_dmc_get_status(struct device *dev,
933                                   struct devfreq_dev_status *stat)
934 {
935         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
936         unsigned long load, total;
937         int ret;
938
939         if (dmc->in_irq_mode) {
940                 mutex_lock(&dmc->lock);
941                 stat->current_frequency = dmc->curr_rate;
942                 mutex_unlock(&dmc->lock);
943
944                 stat->busy_time = dmc->load;
945                 stat->total_time = dmc->total;
946         } else {
947                 ret = exynos5_counters_get(dmc, &load, &total);
948                 if (ret < 0)
949                         return -EINVAL;
950
951                 /* To protect from overflow, divide by 1024 */
952                 stat->busy_time = load >> 10;
953                 stat->total_time = total >> 10;
954
955                 ret = exynos5_counters_set_event(dmc);
956                 if (ret < 0) {
957                         dev_err(dev, "could not set event counter\n");
958                         return ret;
959                 }
960         }
961
962         return 0;
963 }
964
965 /**
966  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
967  * @dev:        device for which the framework checks operating frequency
968  * @freq:       returned frequency value
969  *
970  * It returns the currently used frequency of the DMC. The real operating
971  * frequency might be lower when the clock source value could not be divided
972  * to the requested value.
973  */
974 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
975 {
976         struct exynos5_dmc *dmc = dev_get_drvdata(dev);
977
978         mutex_lock(&dmc->lock);
979         *freq = dmc->curr_rate;
980         mutex_unlock(&dmc->lock);
981
982         return 0;
983 }
984
985 /*
986  * exynos5_dmc_df_profile - Devfreq governor's profile structure
987  *
988  * It provides to the devfreq framework needed functions and polling period.
989  */
990 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
991         .timer = DEVFREQ_TIMER_DELAYED,
992         .target = exynos5_dmc_target,
993         .get_dev_status = exynos5_dmc_get_status,
994         .get_cur_freq = exynos5_dmc_get_cur_freq,
995 };
996
997 /**
998  * exynos5_dmc_align_init_freq() - Align initial frequency value
999  * @dmc:        device for which the frequency is going to be set
1000  * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
1001  *
1002  * The initial bootloader frequency, which is present during boot, might be
1003  * different that supported frequency values in the driver. It is possible
1004  * due to different PLL settings or used PLL as a source.
1005  * This function provides the 'initial_freq' for the devfreq framework
1006  * statistics engine which supports only registered values. Thus, some alignment
1007  * must be made.
1008  */
1009 static unsigned long
1010 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1011                             unsigned long bootloader_init_freq)
1012 {
1013         unsigned long aligned_freq;
1014         int idx;
1015
1016         idx = find_target_freq_idx(dmc, bootloader_init_freq);
1017         if (idx >= 0)
1018                 aligned_freq = dmc->opp[idx].freq_hz;
1019         else
1020                 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1021
1022         return aligned_freq;
1023 }
1024
1025 /**
1026  * create_timings_aligned() - Create register values and align with standard
1027  * @dmc:        device for which the frequency is going to be set
1028  * @reg_timing_row:     array to fill with values for timing row register
1029  * @reg_timing_data:    array to fill with values for timing data register
1030  * @reg_timing_power:   array to fill with values for timing power register
1031  * @clk_period_ps:      the period of the clock, known as tCK
1032  *
1033  * The function calculates timings and creates a register value ready for
1034  * a frequency transition. The register contains a few timings. They are
1035  * shifted by a known offset. The timing value is calculated based on memory
1036  * specyfication: minimal time required and minimal cycles required.
1037  */
1038 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1039                                   u32 *reg_timing_data, u32 *reg_timing_power,
1040                                   u32 clk_period_ps)
1041 {
1042         u32 val;
1043         const struct timing_reg *reg;
1044
1045         if (clk_period_ps == 0)
1046                 return -EINVAL;
1047
1048         *reg_timing_row = 0;
1049         *reg_timing_data = 0;
1050         *reg_timing_power = 0;
1051
1052         val = dmc->timings->tRFC / clk_period_ps;
1053         val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1054         val = max(val, dmc->min_tck->tRFC);
1055         reg = &timing_row_reg_fields[0];
1056         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1057
1058         val = dmc->timings->tRRD / clk_period_ps;
1059         val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1060         val = max(val, dmc->min_tck->tRRD);
1061         reg = &timing_row_reg_fields[1];
1062         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1063
1064         val = dmc->timings->tRPab / clk_period_ps;
1065         val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1066         val = max(val, dmc->min_tck->tRPab);
1067         reg = &timing_row_reg_fields[2];
1068         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1069
1070         val = dmc->timings->tRCD / clk_period_ps;
1071         val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1072         val = max(val, dmc->min_tck->tRCD);
1073         reg = &timing_row_reg_fields[3];
1074         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1075
1076         val = dmc->timings->tRC / clk_period_ps;
1077         val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1078         val = max(val, dmc->min_tck->tRC);
1079         reg = &timing_row_reg_fields[4];
1080         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1081
1082         val = dmc->timings->tRAS / clk_period_ps;
1083         val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1084         val = max(val, dmc->min_tck->tRAS);
1085         reg = &timing_row_reg_fields[5];
1086         *reg_timing_row |= TIMING_VAL2REG(reg, val);
1087
1088         /* data related timings */
1089         val = dmc->timings->tWTR / clk_period_ps;
1090         val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1091         val = max(val, dmc->min_tck->tWTR);
1092         reg = &timing_data_reg_fields[0];
1093         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1094
1095         val = dmc->timings->tWR / clk_period_ps;
1096         val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1097         val = max(val, dmc->min_tck->tWR);
1098         reg = &timing_data_reg_fields[1];
1099         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1100
1101         val = dmc->timings->tRTP / clk_period_ps;
1102         val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1103         val = max(val, dmc->min_tck->tRTP);
1104         reg = &timing_data_reg_fields[2];
1105         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1106
1107         val = dmc->timings->tW2W_C2C / clk_period_ps;
1108         val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1109         val = max(val, dmc->min_tck->tW2W_C2C);
1110         reg = &timing_data_reg_fields[3];
1111         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1112
1113         val = dmc->timings->tR2R_C2C / clk_period_ps;
1114         val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1115         val = max(val, dmc->min_tck->tR2R_C2C);
1116         reg = &timing_data_reg_fields[4];
1117         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1118
1119         val = dmc->timings->tWL / clk_period_ps;
1120         val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1121         val = max(val, dmc->min_tck->tWL);
1122         reg = &timing_data_reg_fields[5];
1123         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1124
1125         val = dmc->timings->tDQSCK / clk_period_ps;
1126         val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1127         val = max(val, dmc->min_tck->tDQSCK);
1128         reg = &timing_data_reg_fields[6];
1129         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1130
1131         val = dmc->timings->tRL / clk_period_ps;
1132         val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1133         val = max(val, dmc->min_tck->tRL);
1134         reg = &timing_data_reg_fields[7];
1135         *reg_timing_data |= TIMING_VAL2REG(reg, val);
1136
1137         /* power related timings */
1138         val = dmc->timings->tFAW / clk_period_ps;
1139         val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1140         val = max(val, dmc->min_tck->tFAW);
1141         reg = &timing_power_reg_fields[0];
1142         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1143
1144         val = dmc->timings->tXSR / clk_period_ps;
1145         val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1146         val = max(val, dmc->min_tck->tXSR);
1147         reg = &timing_power_reg_fields[1];
1148         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1149
1150         val = dmc->timings->tXP / clk_period_ps;
1151         val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1152         val = max(val, dmc->min_tck->tXP);
1153         reg = &timing_power_reg_fields[2];
1154         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1155
1156         val = dmc->timings->tCKE / clk_period_ps;
1157         val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1158         val = max(val, dmc->min_tck->tCKE);
1159         reg = &timing_power_reg_fields[3];
1160         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1161
1162         val = dmc->timings->tMRD / clk_period_ps;
1163         val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1164         val = max(val, dmc->min_tck->tMRD);
1165         reg = &timing_power_reg_fields[4];
1166         *reg_timing_power |= TIMING_VAL2REG(reg, val);
1167
1168         return 0;
1169 }
1170
1171 /**
1172  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1173  * @dmc:        device for which the frequency is going to be set
1174  *
1175  * The function parses DT entries with DRAM information.
1176  */
1177 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1178 {
1179         int ret = 0;
1180         struct device *dev = dmc->dev;
1181         int idx;
1182         u32 freq_mhz, clk_period_ps;
1183
1184         struct device_node *np_ddr __free(device_node) =
1185                 of_parse_phandle(dev->of_node, "device-handle", 0);
1186         if (!np_ddr) {
1187                 dev_warn(dev, "could not find 'device-handle' in DT\n");
1188                 return -EINVAL;
1189         }
1190
1191         dmc->timing_row = devm_kmalloc_array(dev, TIMING_COUNT,
1192                                              sizeof(u32), GFP_KERNEL);
1193         if (!dmc->timing_row)
1194                 return -ENOMEM;
1195
1196         dmc->timing_data = devm_kmalloc_array(dev, TIMING_COUNT,
1197                                               sizeof(u32), GFP_KERNEL);
1198         if (!dmc->timing_data)
1199                 return -ENOMEM;
1200
1201         dmc->timing_power = devm_kmalloc_array(dev, TIMING_COUNT,
1202                                                sizeof(u32), GFP_KERNEL);
1203         if (!dmc->timing_power)
1204                 return -ENOMEM;
1205
1206         dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dev,
1207                                                  DDR_TYPE_LPDDR3,
1208                                                  &dmc->timings_arr_size);
1209         if (!dmc->timings) {
1210                 dev_warn(dev, "could not get timings from DT\n");
1211                 return -EINVAL;
1212         }
1213
1214         dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dev);
1215         if (!dmc->min_tck) {
1216                 dev_warn(dev, "could not get tck from DT\n");
1217                 return -EINVAL;
1218         }
1219
1220         /* Sorted array of OPPs with frequency ascending */
1221         for (idx = 0; idx < dmc->opp_count; idx++) {
1222                 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1223                 clk_period_ps = 1000000 / freq_mhz;
1224
1225                 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1226                                              &dmc->timing_data[idx],
1227                                              &dmc->timing_power[idx],
1228                                              clk_period_ps);
1229         }
1230
1231
1232         /* Take the highest frequency's timings as 'bypass' */
1233         dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1234         dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1235         dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1236
1237         return ret;
1238 }
1239
1240 /**
1241  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242  * @dmc:        DMC structure containing needed fields
1243  *
1244  * Get the needed clocks defined in DT device, enable and set the right parents.
1245  * Read current frequency and initialize the initial rate for governor.
1246  */
1247 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1248 {
1249         int ret;
1250         struct device *dev = dmc->dev;
1251         unsigned long target_volt = 0;
1252         unsigned long target_rate = 0;
1253         unsigned int tmp;
1254
1255         dmc->fout_spll = devm_clk_get(dev, "fout_spll");
1256         if (IS_ERR(dmc->fout_spll))
1257                 return PTR_ERR(dmc->fout_spll);
1258
1259         dmc->fout_bpll = devm_clk_get(dev, "fout_bpll");
1260         if (IS_ERR(dmc->fout_bpll))
1261                 return PTR_ERR(dmc->fout_bpll);
1262
1263         dmc->mout_mclk_cdrex = devm_clk_get(dev, "mout_mclk_cdrex");
1264         if (IS_ERR(dmc->mout_mclk_cdrex))
1265                 return PTR_ERR(dmc->mout_mclk_cdrex);
1266
1267         dmc->mout_bpll = devm_clk_get(dev, "mout_bpll");
1268         if (IS_ERR(dmc->mout_bpll))
1269                 return PTR_ERR(dmc->mout_bpll);
1270
1271         dmc->mout_mx_mspll_ccore = devm_clk_get(dev, "mout_mx_mspll_ccore");
1272         if (IS_ERR(dmc->mout_mx_mspll_ccore))
1273                 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1274
1275         dmc->mout_spll = devm_clk_get(dev, "ff_dout_spll2");
1276         if (IS_ERR(dmc->mout_spll)) {
1277                 dmc->mout_spll = devm_clk_get(dev, "mout_sclk_spll");
1278                 if (IS_ERR(dmc->mout_spll))
1279                         return PTR_ERR(dmc->mout_spll);
1280         }
1281
1282         /*
1283          * Convert frequency to KHz values and set it for the governor.
1284          */
1285         dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1286         dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1287         exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1288
1289         ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1290                                         &target_volt, 0);
1291         if (ret)
1292                 return ret;
1293
1294         dmc->curr_volt = target_volt;
1295
1296         ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1297         if (ret)
1298                 return ret;
1299
1300         clk_prepare_enable(dmc->fout_bpll);
1301         clk_prepare_enable(dmc->mout_bpll);
1302
1303         /*
1304          * Some bootloaders do not set clock routes correctly.
1305          * Stop one path in clocks to PHY.
1306          */
1307         regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1308         tmp &= ~(BIT(1) | BIT(0));
1309         regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1310
1311         return 0;
1312 }
1313
1314 /**
1315  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316  * @dmc:        DMC for which it does the setup
1317  *
1318  * Initialization of performance counters in DMC for estimating usage.
1319  * The counter's values are used for calculation of a memory bandwidth and based
1320  * on that the governor changes the frequency.
1321  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1322  */
1323 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1324 {
1325         struct device *dev = dmc->dev;
1326         int ret, i;
1327
1328         dmc->num_counters = devfreq_event_get_edev_count(dev, "devfreq-events");
1329         if (dmc->num_counters < 0) {
1330                 dev_err(dev, "could not get devfreq-event counters\n");
1331                 return dmc->num_counters;
1332         }
1333
1334         dmc->counter = devm_kcalloc(dev, dmc->num_counters,
1335                                     sizeof(*dmc->counter), GFP_KERNEL);
1336         if (!dmc->counter)
1337                 return -ENOMEM;
1338
1339         for (i = 0; i < dmc->num_counters; i++) {
1340                 dmc->counter[i] =
1341                         devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
1342                 if (IS_ERR_OR_NULL(dmc->counter[i]))
1343                         return -EPROBE_DEFER;
1344         }
1345
1346         ret = exynos5_counters_enable_edev(dmc);
1347         if (ret < 0) {
1348                 dev_err(dev, "could not enable event counter\n");
1349                 return ret;
1350         }
1351
1352         ret = exynos5_counters_set_event(dmc);
1353         if (ret < 0) {
1354                 exynos5_counters_disable_edev(dmc);
1355                 dev_err(dev, "could not set event counter\n");
1356                 return ret;
1357         }
1358
1359         return 0;
1360 }
1361
1362 /**
1363  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1364  * @dmc:        device which is used for changing this feature
1365  *
1366  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1367  * changes its configuration. In such situation access to the memory is blocked
1368  * in DMC automatically. This feature is used when clock frequency change
1369  * request appears and touches clock tree.
1370  */
1371 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1372 {
1373         unsigned int val;
1374         int ret;
1375
1376         ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1377         if (ret)
1378                 return ret;
1379
1380         val |= 1UL;
1381         regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1382
1383         return 0;
1384 }
1385
1386 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1387 {
1388         int res;
1389         struct exynos5_dmc *dmc = priv;
1390
1391         mutex_lock(&dmc->df->lock);
1392         exynos5_dmc_perf_events_check(dmc);
1393         res = update_devfreq(dmc->df);
1394         mutex_unlock(&dmc->df->lock);
1395
1396         if (res)
1397                 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1398
1399         return IRQ_HANDLED;
1400 }
1401
1402 /**
1403  * exynos5_dmc_probe() - Probe function for the DMC driver
1404  * @pdev:       platform device for which the driver is going to be initialized
1405  *
1406  * Initialize basic components: clocks, regulators, performance counters, etc.
1407  * Read out product version and based on the information setup
1408  * internal structures for the controller (frequency and voltage) and for DRAM
1409  * memory parameters: timings for each operating frequency.
1410  * Register new devfreq device for controlling DVFS of the DMC.
1411  */
1412 static int exynos5_dmc_probe(struct platform_device *pdev)
1413 {
1414         int ret = 0;
1415         struct device *dev = &pdev->dev;
1416         struct device_node *np = dev->of_node;
1417         struct exynos5_dmc *dmc;
1418         int irq[2];
1419
1420         dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1421         if (!dmc)
1422                 return -ENOMEM;
1423
1424         mutex_init(&dmc->lock);
1425
1426         dmc->dev = dev;
1427         platform_set_drvdata(pdev, dmc);
1428
1429         dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1430         if (IS_ERR(dmc->base_drexi0))
1431                 return PTR_ERR(dmc->base_drexi0);
1432
1433         dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1434         if (IS_ERR(dmc->base_drexi1))
1435                 return PTR_ERR(dmc->base_drexi1);
1436
1437         dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1438                                                           "samsung,syscon-clk");
1439         if (IS_ERR(dmc->clk_regmap))
1440                 return PTR_ERR(dmc->clk_regmap);
1441
1442         ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1443         if (ret) {
1444                 dev_warn(dev, "couldn't initialize frequency settings\n");
1445                 return ret;
1446         }
1447
1448         dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1449         if (IS_ERR(dmc->vdd_mif)) {
1450                 ret = PTR_ERR(dmc->vdd_mif);
1451                 return ret;
1452         }
1453
1454         ret = exynos5_dmc_init_clks(dmc);
1455         if (ret)
1456                 return ret;
1457
1458         ret = of_get_dram_timings(dmc);
1459         if (ret) {
1460                 dev_warn(dev, "couldn't initialize timings settings\n");
1461                 goto remove_clocks;
1462         }
1463
1464         ret = exynos5_dmc_set_pause_on_switching(dmc);
1465         if (ret) {
1466                 dev_warn(dev, "couldn't get access to PAUSE register\n");
1467                 goto remove_clocks;
1468         }
1469
1470         /* There is two modes in which the driver works: polling or IRQ */
1471         irq[0] = platform_get_irq_byname(pdev, "drex_0");
1472         irq[1] = platform_get_irq_byname(pdev, "drex_1");
1473         if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1474                 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1475                                                 dmc_irq_thread, IRQF_ONESHOT,
1476                                                 dev_name(dev), dmc);
1477                 if (ret) {
1478                         dev_err(dev, "couldn't grab IRQ\n");
1479                         goto remove_clocks;
1480                 }
1481
1482                 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1483                                                 dmc_irq_thread, IRQF_ONESHOT,
1484                                                 dev_name(dev), dmc);
1485                 if (ret) {
1486                         dev_err(dev, "couldn't grab IRQ\n");
1487                         goto remove_clocks;
1488                 }
1489
1490                 /*
1491                  * Setup default thresholds for the devfreq governor.
1492                  * The values are chosen based on experiments.
1493                  */
1494                 dmc->gov_data.upthreshold = 55;
1495                 dmc->gov_data.downdifferential = 5;
1496
1497                 exynos5_dmc_enable_perf_events(dmc);
1498
1499                 dmc->in_irq_mode = 1;
1500         } else {
1501                 ret = exynos5_performance_counters_init(dmc);
1502                 if (ret) {
1503                         dev_warn(dev, "couldn't probe performance counters\n");
1504                         goto remove_clocks;
1505                 }
1506
1507                 /*
1508                  * Setup default thresholds for the devfreq governor.
1509                  * The values are chosen based on experiments.
1510                  */
1511                 dmc->gov_data.upthreshold = 10;
1512                 dmc->gov_data.downdifferential = 5;
1513
1514                 exynos5_dmc_df_profile.polling_ms = 100;
1515         }
1516
1517         dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1518                                           DEVFREQ_GOV_SIMPLE_ONDEMAND,
1519                                           &dmc->gov_data);
1520
1521         if (IS_ERR(dmc->df)) {
1522                 ret = PTR_ERR(dmc->df);
1523                 goto err_devfreq_add;
1524         }
1525
1526         if (dmc->in_irq_mode)
1527                 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1528
1529         dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1530
1531         return 0;
1532
1533 err_devfreq_add:
1534         if (dmc->in_irq_mode)
1535                 exynos5_dmc_disable_perf_events(dmc);
1536         else
1537                 exynos5_counters_disable_edev(dmc);
1538 remove_clocks:
1539         clk_disable_unprepare(dmc->mout_bpll);
1540         clk_disable_unprepare(dmc->fout_bpll);
1541
1542         return ret;
1543 }
1544
1545 /**
1546  * exynos5_dmc_remove() - Remove function for the platform device
1547  * @pdev:       platform device which is going to be removed
1548  *
1549  * The function relies on 'devm' framework function which automatically
1550  * clean the device's resources. It just calls explicitly disable function for
1551  * the performance counters.
1552  */
1553 static void exynos5_dmc_remove(struct platform_device *pdev)
1554 {
1555         struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1556
1557         if (dmc->in_irq_mode)
1558                 exynos5_dmc_disable_perf_events(dmc);
1559         else
1560                 exynos5_counters_disable_edev(dmc);
1561
1562         clk_disable_unprepare(dmc->mout_bpll);
1563         clk_disable_unprepare(dmc->fout_bpll);
1564 }
1565
1566 static const struct of_device_id exynos5_dmc_of_match[] = {
1567         { .compatible = "samsung,exynos5422-dmc", },
1568         { },
1569 };
1570 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1571
1572 static struct platform_driver exynos5_dmc_platdrv = {
1573         .probe  = exynos5_dmc_probe,
1574         .remove = exynos5_dmc_remove,
1575         .driver = {
1576                 .name   = "exynos5-dmc",
1577                 .of_match_table = exynos5_dmc_of_match,
1578         },
1579 };
1580 module_platform_driver(exynos5_dmc_platdrv);
1581 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Lukasz Luba");
This page took 0.122296 seconds and 4 git commands to generate.