]> Git Repo - linux.git/blob - drivers/media/v4l2-core/v4l2-dv-timings.c
Linux 6.14-rc3
[linux.git] / drivers / media / v4l2-core / v4l2-dv-timings.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25         V4L2_DV_BT_CEA_640X480P59_94,
26         V4L2_DV_BT_CEA_720X480I59_94,
27         V4L2_DV_BT_CEA_720X480P59_94,
28         V4L2_DV_BT_CEA_720X576I50,
29         V4L2_DV_BT_CEA_720X576P50,
30         V4L2_DV_BT_CEA_1280X720P24,
31         V4L2_DV_BT_CEA_1280X720P25,
32         V4L2_DV_BT_CEA_1280X720P30,
33         V4L2_DV_BT_CEA_1280X720P50,
34         V4L2_DV_BT_CEA_1280X720P60,
35         V4L2_DV_BT_CEA_1920X1080P24,
36         V4L2_DV_BT_CEA_1920X1080P25,
37         V4L2_DV_BT_CEA_1920X1080P30,
38         V4L2_DV_BT_CEA_1920X1080I50,
39         V4L2_DV_BT_CEA_1920X1080P50,
40         V4L2_DV_BT_CEA_1920X1080I60,
41         V4L2_DV_BT_CEA_1920X1080P60,
42         V4L2_DV_BT_DMT_640X350P85,
43         V4L2_DV_BT_DMT_640X400P85,
44         V4L2_DV_BT_DMT_720X400P85,
45         V4L2_DV_BT_DMT_640X480P72,
46         V4L2_DV_BT_DMT_640X480P75,
47         V4L2_DV_BT_DMT_640X480P85,
48         V4L2_DV_BT_DMT_800X600P56,
49         V4L2_DV_BT_DMT_800X600P60,
50         V4L2_DV_BT_DMT_800X600P72,
51         V4L2_DV_BT_DMT_800X600P75,
52         V4L2_DV_BT_DMT_800X600P85,
53         V4L2_DV_BT_DMT_800X600P120_RB,
54         V4L2_DV_BT_DMT_848X480P60,
55         V4L2_DV_BT_DMT_1024X768I43,
56         V4L2_DV_BT_DMT_1024X768P60,
57         V4L2_DV_BT_DMT_1024X768P70,
58         V4L2_DV_BT_DMT_1024X768P75,
59         V4L2_DV_BT_DMT_1024X768P85,
60         V4L2_DV_BT_DMT_1024X768P120_RB,
61         V4L2_DV_BT_DMT_1152X864P75,
62         V4L2_DV_BT_DMT_1280X768P60_RB,
63         V4L2_DV_BT_DMT_1280X768P60,
64         V4L2_DV_BT_DMT_1280X768P75,
65         V4L2_DV_BT_DMT_1280X768P85,
66         V4L2_DV_BT_DMT_1280X768P120_RB,
67         V4L2_DV_BT_DMT_1280X800P60_RB,
68         V4L2_DV_BT_DMT_1280X800P60,
69         V4L2_DV_BT_DMT_1280X800P75,
70         V4L2_DV_BT_DMT_1280X800P85,
71         V4L2_DV_BT_DMT_1280X800P120_RB,
72         V4L2_DV_BT_DMT_1280X960P60,
73         V4L2_DV_BT_DMT_1280X960P85,
74         V4L2_DV_BT_DMT_1280X960P120_RB,
75         V4L2_DV_BT_DMT_1280X1024P60,
76         V4L2_DV_BT_DMT_1280X1024P75,
77         V4L2_DV_BT_DMT_1280X1024P85,
78         V4L2_DV_BT_DMT_1280X1024P120_RB,
79         V4L2_DV_BT_DMT_1360X768P60,
80         V4L2_DV_BT_DMT_1360X768P120_RB,
81         V4L2_DV_BT_DMT_1366X768P60,
82         V4L2_DV_BT_DMT_1366X768P60_RB,
83         V4L2_DV_BT_DMT_1400X1050P60_RB,
84         V4L2_DV_BT_DMT_1400X1050P60,
85         V4L2_DV_BT_DMT_1400X1050P75,
86         V4L2_DV_BT_DMT_1400X1050P85,
87         V4L2_DV_BT_DMT_1400X1050P120_RB,
88         V4L2_DV_BT_DMT_1440X900P60_RB,
89         V4L2_DV_BT_DMT_1440X900P60,
90         V4L2_DV_BT_DMT_1440X900P75,
91         V4L2_DV_BT_DMT_1440X900P85,
92         V4L2_DV_BT_DMT_1440X900P120_RB,
93         V4L2_DV_BT_DMT_1600X900P60_RB,
94         V4L2_DV_BT_DMT_1600X1200P60,
95         V4L2_DV_BT_DMT_1600X1200P65,
96         V4L2_DV_BT_DMT_1600X1200P70,
97         V4L2_DV_BT_DMT_1600X1200P75,
98         V4L2_DV_BT_DMT_1600X1200P85,
99         V4L2_DV_BT_DMT_1600X1200P120_RB,
100         V4L2_DV_BT_DMT_1680X1050P60_RB,
101         V4L2_DV_BT_DMT_1680X1050P60,
102         V4L2_DV_BT_DMT_1680X1050P75,
103         V4L2_DV_BT_DMT_1680X1050P85,
104         V4L2_DV_BT_DMT_1680X1050P120_RB,
105         V4L2_DV_BT_DMT_1792X1344P60,
106         V4L2_DV_BT_DMT_1792X1344P75,
107         V4L2_DV_BT_DMT_1792X1344P120_RB,
108         V4L2_DV_BT_DMT_1856X1392P60,
109         V4L2_DV_BT_DMT_1856X1392P75,
110         V4L2_DV_BT_DMT_1856X1392P120_RB,
111         V4L2_DV_BT_DMT_1920X1200P60_RB,
112         V4L2_DV_BT_DMT_1920X1200P60,
113         V4L2_DV_BT_DMT_1920X1200P75,
114         V4L2_DV_BT_DMT_1920X1200P85,
115         V4L2_DV_BT_DMT_1920X1200P120_RB,
116         V4L2_DV_BT_DMT_1920X1440P60,
117         V4L2_DV_BT_DMT_1920X1440P75,
118         V4L2_DV_BT_DMT_1920X1440P120_RB,
119         V4L2_DV_BT_DMT_2048X1152P60_RB,
120         V4L2_DV_BT_DMT_2560X1600P60_RB,
121         V4L2_DV_BT_DMT_2560X1600P60,
122         V4L2_DV_BT_DMT_2560X1600P75,
123         V4L2_DV_BT_DMT_2560X1600P85,
124         V4L2_DV_BT_DMT_2560X1600P120_RB,
125         V4L2_DV_BT_CEA_3840X2160P24,
126         V4L2_DV_BT_CEA_3840X2160P25,
127         V4L2_DV_BT_CEA_3840X2160P30,
128         V4L2_DV_BT_CEA_3840X2160P50,
129         V4L2_DV_BT_CEA_3840X2160P60,
130         V4L2_DV_BT_CEA_4096X2160P24,
131         V4L2_DV_BT_CEA_4096X2160P25,
132         V4L2_DV_BT_CEA_4096X2160P30,
133         V4L2_DV_BT_CEA_4096X2160P50,
134         V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135         V4L2_DV_BT_CEA_4096X2160P60,
136         { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141                            const struct v4l2_dv_timings_cap *dvcap,
142                            v4l2_check_dv_timings_fnc fnc,
143                            void *fnc_handle)
144 {
145         const struct v4l2_bt_timings *bt = &t->bt;
146         const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147         u32 caps = cap->capabilities;
148         const u32 max_vert = 10240;
149         u32 max_hor = 3 * bt->width;
150
151         if (t->type != V4L2_DV_BT_656_1120)
152                 return false;
153         if (t->type != dvcap->type ||
154             bt->height < cap->min_height ||
155             bt->height > cap->max_height ||
156             bt->width < cap->min_width ||
157             bt->width > cap->max_width ||
158             bt->pixelclock < cap->min_pixelclock ||
159             bt->pixelclock > cap->max_pixelclock ||
160             (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161              cap->standards && bt->standards &&
162              !(bt->standards & cap->standards)) ||
163             (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164             (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165                 return false;
166
167         /* sanity checks for the blanking timings */
168         if (!bt->interlaced &&
169             (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170                 return false;
171         /*
172          * Some video receivers cannot properly separate the frontporch,
173          * backporch and sync values, and instead they only have the total
174          * blanking. That can be assigned to any of these three fields.
175          * So just check that none of these are way out of range.
176          */
177         if (bt->hfrontporch > max_hor ||
178             bt->hsync > max_hor || bt->hbackporch > max_hor)
179                 return false;
180         if (bt->vfrontporch > max_vert ||
181             bt->vsync > max_vert || bt->vbackporch > max_vert)
182                 return false;
183         if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184             bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185                 return false;
186         return fnc == NULL || fnc(t, fnc_handle);
187 }
188 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189
190 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191                              const struct v4l2_dv_timings_cap *cap,
192                              v4l2_check_dv_timings_fnc fnc,
193                              void *fnc_handle)
194 {
195         u32 i, idx;
196
197         memset(t->reserved, 0, sizeof(t->reserved));
198         for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200                                           fnc, fnc_handle) &&
201                     idx++ == t->index) {
202                         t->timings = v4l2_dv_timings_presets[i];
203                         return 0;
204                 }
205         }
206         return -EINVAL;
207 }
208 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209
210 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211                               const struct v4l2_dv_timings_cap *cap,
212                               unsigned pclock_delta,
213                               v4l2_check_dv_timings_fnc fnc,
214                               void *fnc_handle)
215 {
216         int i;
217
218         if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219                 return false;
220
221         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222                 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223                                           fnc, fnc_handle) &&
224                     v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225                                           pclock_delta, false)) {
226                         u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227
228                         *t = v4l2_dv_timings_presets[i];
229                         if (can_reduce_fps(&t->bt))
230                                 t->bt.flags |= flags;
231
232                         return true;
233                 }
234         }
235         return false;
236 }
237 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238
239 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240 {
241         unsigned int i;
242
243         for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244                 const struct v4l2_bt_timings *bt =
245                         &v4l2_dv_timings_presets[i].bt;
246
247                 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248                     bt->cea861_vic == vic) {
249                         *t = v4l2_dv_timings_presets[i];
250                         return true;
251                 }
252         }
253         return false;
254 }
255 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256
257 /**
258  * v4l2_match_dv_timings - check if two timings match
259  * @t1: compare this v4l2_dv_timings struct...
260  * @t2: with this struct.
261  * @pclock_delta: the allowed pixelclock deviation.
262  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263  *      match.
264  *
265  * Compare t1 with t2 with a given margin of error for the pixelclock.
266  */
267 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268                            const struct v4l2_dv_timings *t2,
269                            unsigned pclock_delta, bool match_reduced_fps)
270 {
271         if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272                 return false;
273         if (t1->bt.width == t2->bt.width &&
274             t1->bt.height == t2->bt.height &&
275             t1->bt.interlaced == t2->bt.interlaced &&
276             t1->bt.polarities == t2->bt.polarities &&
277             t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278             t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279             t1->bt.hfrontporch == t2->bt.hfrontporch &&
280             t1->bt.hsync == t2->bt.hsync &&
281             t1->bt.hbackporch == t2->bt.hbackporch &&
282             t1->bt.vfrontporch == t2->bt.vfrontporch &&
283             t1->bt.vsync == t2->bt.vsync &&
284             t1->bt.vbackporch == t2->bt.vbackporch &&
285             (!match_reduced_fps ||
286              (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287                 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288             (!t1->bt.interlaced ||
289                 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290                  t1->bt.il_vsync == t2->bt.il_vsync &&
291                  t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292                 return true;
293         return false;
294 }
295 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296
297 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298                            const struct v4l2_dv_timings *t, bool detailed)
299 {
300         const struct v4l2_bt_timings *bt = &t->bt;
301         u32 htot, vtot;
302         u32 fps;
303
304         if (t->type != V4L2_DV_BT_656_1120)
305                 return;
306
307         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309         if (bt->interlaced)
310                 vtot /= 2;
311
312         fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313                                   (htot * vtot)) : 0;
314
315         if (prefix == NULL)
316                 prefix = "";
317
318         pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
319                 bt->width, bt->height, bt->interlaced ? "i" : "p",
320                 fps / 100, fps % 100, htot, vtot);
321
322         if (!detailed)
323                 return;
324
325         pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326                         dev_prefix, bt->hfrontporch,
327                         (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328                         bt->hsync, bt->hbackporch);
329         pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330                         dev_prefix, bt->vfrontporch,
331                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332                         bt->vsync, bt->vbackporch);
333         if (bt->interlaced)
334                 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335                         dev_prefix, bt->il_vfrontporch,
336                         (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337                         bt->il_vsync, bt->il_vbackporch);
338         pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339         pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340                         dev_prefix, bt->flags,
341                         (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342                         " REDUCED_BLANKING" : "",
343                         ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344                          bt->vsync == 8) ? " (V2)" : "",
345                         (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346                         " CAN_REDUCE_FPS" : "",
347                         (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348                         " REDUCED_FPS" : "",
349                         (bt->flags & V4L2_DV_FL_HALF_LINE) ?
350                         " HALF_LINE" : "",
351                         (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352                         " CE_VIDEO" : "",
353                         (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354                         " FIRST_FIELD_EXTRA_LINE" : "",
355                         (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356                         " HAS_PICTURE_ASPECT" : "",
357                         (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358                         " HAS_CEA861_VIC" : "",
359                         (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360                         " HAS_HDMI_VIC" : "");
361         pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362                         (bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
363                         (bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
364                         (bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
365                         (bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
366                         (bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
367         if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368                 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369                         bt->picture_aspect.numerator,
370                         bt->picture_aspect.denominator);
371         if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372                 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373         if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374                 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375 }
376 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377
378 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379 {
380         struct v4l2_fract ratio = { 1, 1 };
381         unsigned long n, d;
382
383         if (t->type != V4L2_DV_BT_656_1120)
384                 return ratio;
385         if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386                 return ratio;
387
388         ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389         ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390
391         rational_best_approximation(ratio.numerator, ratio.denominator,
392                                     ratio.numerator, ratio.denominator, &n, &d);
393         ratio.numerator = n;
394         ratio.denominator = d;
395         return ratio;
396 }
397 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398
399 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
400  *      v4l2_dv_timings fields.
401  * @t - Timings for the video mode.
402  *
403  * Calculates the expected timeperframe using the pixel clock value and
404  * horizontal/vertical measures. This means that v4l2_dv_timings structure
405  * must be correctly and fully filled.
406  */
407 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
408 {
409         const struct v4l2_bt_timings *bt = &t->bt;
410         struct v4l2_fract fps_fract = { 1, 1 };
411         unsigned long n, d;
412         u32 htot, vtot, fps;
413         u64 pclk;
414
415         if (t->type != V4L2_DV_BT_656_1120)
416                 return fps_fract;
417
418         htot = V4L2_DV_BT_FRAME_WIDTH(bt);
419         vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
420         pclk = bt->pixelclock;
421
422         if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
423             (bt->flags & V4L2_DV_FL_REDUCED_FPS))
424                 pclk = div_u64(pclk * 1000ULL, 1001);
425
426         fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
427         if (!fps)
428                 return fps_fract;
429
430         rational_best_approximation(fps, 100, fps, 100, &n, &d);
431
432         fps_fract.numerator = d;
433         fps_fract.denominator = n;
434         return fps_fract;
435 }
436 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
437
438 /*
439  * CVT defines
440  * Based on Coordinated Video Timings Standard
441  * version 1.1 September 10, 2003
442  */
443
444 #define CVT_PXL_CLK_GRAN        250000  /* pixel clock granularity */
445 #define CVT_PXL_CLK_GRAN_RB_V2 1000     /* granularity for reduced blanking v2*/
446
447 /* Normal blanking */
448 #define CVT_MIN_V_BPORCH        7       /* lines */
449 #define CVT_MIN_V_PORCH_RND     3       /* lines */
450 #define CVT_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
451 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
452
453 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
454 #define CVT_CELL_GRAN           8       /* character cell granularity */
455 #define CVT_M                   600     /* blanking formula gradient */
456 #define CVT_C                   40      /* blanking formula offset */
457 #define CVT_K                   128     /* blanking formula scaling factor */
458 #define CVT_J                   20      /* blanking formula scaling factor */
459 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
460 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
461
462 /* Reduced Blanking */
463 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
464 #define CVT_RB_V_FPORCH        3       /* lines  */
465 #define CVT_RB_MIN_V_BLANK   460       /* us     */
466 #define CVT_RB_H_SYNC         32       /* pixels */
467 #define CVT_RB_H_BLANK       160       /* pixels */
468 /* Reduce blanking Version 2 */
469 #define CVT_RB_V2_H_BLANK     80       /* pixels */
470 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
471 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
472 #define CVT_RB_V_BPORCH        6       /* lines  */
473
474 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
475  * @frame_height - the total height of the frame (including blanking) in lines.
476  * @hfreq - the horizontal frequency in Hz.
477  * @vsync - the height of the vertical sync in lines.
478  * @active_width - active width of image (does not include blanking). This
479  * information is needed only in case of version 2 of reduced blanking.
480  * In other cases, this parameter does not have any effect on timings.
481  * @polarities - the horizontal and vertical polarities (same as struct
482  *              v4l2_bt_timings polarities).
483  * @interlaced - if this flag is true, it indicates interlaced format
484  * @cap - the v4l2_dv_timings_cap capabilities.
485  * @timings - the resulting timings.
486  *
487  * This function will attempt to detect if the given values correspond to a
488  * valid CVT format. If so, then it will return true, and fmt will be filled
489  * in with the found CVT timings.
490  */
491 bool v4l2_detect_cvt(unsigned int frame_height,
492                      unsigned int hfreq,
493                      unsigned int vsync,
494                      unsigned int active_width,
495                      u32 polarities,
496                      bool interlaced,
497                      const struct v4l2_dv_timings_cap *cap,
498                      struct v4l2_dv_timings *timings)
499 {
500         struct v4l2_dv_timings t = {};
501         int v_fp, v_bp, h_fp, h_bp, hsync;
502         int frame_width, image_height, image_width;
503         bool reduced_blanking;
504         bool rb_v2 = false;
505         unsigned int pix_clk;
506
507         if (vsync < 4 || vsync > 8)
508                 return false;
509
510         if (polarities == V4L2_DV_VSYNC_POS_POL)
511                 reduced_blanking = false;
512         else if (polarities == V4L2_DV_HSYNC_POS_POL)
513                 reduced_blanking = true;
514         else
515                 return false;
516
517         if (reduced_blanking && vsync == 8)
518                 rb_v2 = true;
519
520         if (rb_v2 && active_width == 0)
521                 return false;
522
523         if (!rb_v2 && vsync > 7)
524                 return false;
525
526         if (hfreq == 0)
527                 return false;
528
529         /* Vertical */
530         if (reduced_blanking) {
531                 if (rb_v2) {
532                         v_bp = CVT_RB_V_BPORCH;
533                         v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
534                         v_fp -= vsync + v_bp;
535
536                         if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
537                                 v_fp = CVT_RB_V2_MIN_V_FPORCH;
538                 } else {
539                         v_fp = CVT_RB_V_FPORCH;
540                         v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
541                         v_bp -= vsync + v_fp;
542
543                         if (v_bp < CVT_RB_MIN_V_BPORCH)
544                                 v_bp = CVT_RB_MIN_V_BPORCH;
545                 }
546         } else {
547                 v_fp = CVT_MIN_V_PORCH_RND;
548                 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
549
550                 if (v_bp < CVT_MIN_V_BPORCH)
551                         v_bp = CVT_MIN_V_BPORCH;
552         }
553
554         if (interlaced)
555                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
556         else
557                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
558
559         if (image_height < 0)
560                 return false;
561
562         /* Aspect ratio based on vsync */
563         switch (vsync) {
564         case 4:
565                 image_width = (image_height * 4) / 3;
566                 break;
567         case 5:
568                 image_width = (image_height * 16) / 9;
569                 break;
570         case 6:
571                 image_width = (image_height * 16) / 10;
572                 break;
573         case 7:
574                 /* special case */
575                 if (image_height == 1024)
576                         image_width = (image_height * 5) / 4;
577                 else if (image_height == 768)
578                         image_width = (image_height * 15) / 9;
579                 else
580                         return false;
581                 break;
582         case 8:
583                 image_width = active_width;
584                 break;
585         default:
586                 return false;
587         }
588
589         if (!rb_v2)
590                 image_width = image_width & ~7;
591
592         /* Horizontal */
593         if (reduced_blanking) {
594                 int h_blank;
595                 int clk_gran;
596
597                 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
598                 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
599
600                 pix_clk = (image_width + h_blank) * hfreq;
601                 pix_clk = (pix_clk / clk_gran) * clk_gran;
602
603                 h_bp  = h_blank / 2;
604                 hsync = CVT_RB_H_SYNC;
605                 h_fp  = h_blank - h_bp - hsync;
606
607                 frame_width = image_width + h_blank;
608         } else {
609                 unsigned ideal_duty_cycle_per_myriad =
610                         100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
611                 int h_blank;
612
613                 if (ideal_duty_cycle_per_myriad < 2000)
614                         ideal_duty_cycle_per_myriad = 2000;
615
616                 h_blank = image_width * ideal_duty_cycle_per_myriad /
617                                         (10000 - ideal_duty_cycle_per_myriad);
618                 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
619
620                 pix_clk = (image_width + h_blank) * hfreq;
621                 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
622
623                 h_bp = h_blank / 2;
624                 frame_width = image_width + h_blank;
625
626                 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
627                 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
628                 h_fp = h_blank - hsync - h_bp;
629         }
630
631         t.type = V4L2_DV_BT_656_1120;
632         t.bt.polarities = polarities;
633         t.bt.width = image_width;
634         t.bt.height = image_height;
635         t.bt.hfrontporch = h_fp;
636         t.bt.vfrontporch = v_fp;
637         t.bt.hsync = hsync;
638         t.bt.vsync = vsync;
639         t.bt.hbackporch = frame_width - image_width - h_fp - hsync;
640
641         if (!interlaced) {
642                 t.bt.vbackporch = frame_height - image_height - v_fp - vsync;
643                 t.bt.interlaced = V4L2_DV_PROGRESSIVE;
644         } else {
645                 t.bt.vbackporch = (frame_height - image_height - 2 * v_fp -
646                                       2 * vsync) / 2;
647                 t.bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
648                                         2 * vsync - t.bt.vbackporch;
649                 t.bt.il_vfrontporch = v_fp;
650                 t.bt.il_vsync = vsync;
651                 t.bt.flags |= V4L2_DV_FL_HALF_LINE;
652                 t.bt.interlaced = V4L2_DV_INTERLACED;
653         }
654
655         t.bt.pixelclock = pix_clk;
656         t.bt.standards = V4L2_DV_BT_STD_CVT;
657
658         if (reduced_blanking)
659                 t.bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
660
661         if (!v4l2_valid_dv_timings(&t, cap, NULL, NULL))
662                 return false;
663         *timings = t;
664         return true;
665 }
666 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
667
668 /*
669  * GTF defines
670  * Based on Generalized Timing Formula Standard
671  * Version 1.1 September 2, 1999
672  */
673
674 #define GTF_PXL_CLK_GRAN        250000  /* pixel clock granularity */
675
676 #define GTF_MIN_VSYNC_BP        550     /* min time of vsync + back porch (us) */
677 #define GTF_V_FP                1       /* vertical front porch (lines) */
678 #define GTF_CELL_GRAN           8       /* character cell granularity */
679
680 /* Default */
681 #define GTF_D_M                 600     /* blanking formula gradient */
682 #define GTF_D_C                 40      /* blanking formula offset */
683 #define GTF_D_K                 128     /* blanking formula scaling factor */
684 #define GTF_D_J                 20      /* blanking formula scaling factor */
685 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
686 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
687
688 /* Secondary */
689 #define GTF_S_M                 3600    /* blanking formula gradient */
690 #define GTF_S_C                 40      /* blanking formula offset */
691 #define GTF_S_K                 128     /* blanking formula scaling factor */
692 #define GTF_S_J                 35      /* blanking formula scaling factor */
693 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
694 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
695
696 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
697  * @frame_height - the total height of the frame (including blanking) in lines.
698  * @hfreq - the horizontal frequency in Hz.
699  * @vsync - the height of the vertical sync in lines.
700  * @polarities - the horizontal and vertical polarities (same as struct
701  *              v4l2_bt_timings polarities).
702  * @interlaced - if this flag is true, it indicates interlaced format
703  * @aspect - preferred aspect ratio. GTF has no method of determining the
704  *              aspect ratio in order to derive the image width from the
705  *              image height, so it has to be passed explicitly. Usually
706  *              the native screen aspect ratio is used for this. If it
707  *              is not filled in correctly, then 16:9 will be assumed.
708  * @cap - the v4l2_dv_timings_cap capabilities.
709  * @timings - the resulting timings.
710  *
711  * This function will attempt to detect if the given values correspond to a
712  * valid GTF format. If so, then it will return true, and fmt will be filled
713  * in with the found GTF timings.
714  */
715 bool v4l2_detect_gtf(unsigned int frame_height,
716                      unsigned int hfreq,
717                      unsigned int vsync,
718                      u32 polarities,
719                      bool interlaced,
720                      struct v4l2_fract aspect,
721                      const struct v4l2_dv_timings_cap *cap,
722                      struct v4l2_dv_timings *timings)
723 {
724         struct v4l2_dv_timings t = {};
725         int pix_clk;
726         int v_fp, v_bp, h_fp, hsync;
727         int frame_width, image_height, image_width;
728         bool default_gtf;
729         int h_blank;
730
731         if (vsync != 3)
732                 return false;
733
734         if (polarities == V4L2_DV_VSYNC_POS_POL)
735                 default_gtf = true;
736         else if (polarities == V4L2_DV_HSYNC_POS_POL)
737                 default_gtf = false;
738         else
739                 return false;
740
741         if (hfreq == 0)
742                 return false;
743
744         /* Vertical */
745         v_fp = GTF_V_FP;
746         v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
747         if (interlaced)
748                 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
749         else
750                 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
751
752         if (image_height < 0)
753                 return false;
754
755         if (aspect.numerator == 0 || aspect.denominator == 0) {
756                 aspect.numerator = 16;
757                 aspect.denominator = 9;
758         }
759         image_width = ((image_height * aspect.numerator) / aspect.denominator);
760         image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
761
762         /* Horizontal */
763         if (default_gtf) {
764                 u64 num;
765                 u32 den;
766
767                 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
768                       ((u64)image_width * GTF_D_M_PRIME * 1000));
769                 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
770                       (2 * GTF_CELL_GRAN);
771                 h_blank = div_u64((num + (den >> 1)), den);
772                 h_blank *= (2 * GTF_CELL_GRAN);
773         } else {
774                 u64 num;
775                 u32 den;
776
777                 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
778                       ((u64)image_width * GTF_S_M_PRIME * 1000));
779                 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
780                       (2 * GTF_CELL_GRAN);
781                 h_blank = div_u64((num + (den >> 1)), den);
782                 h_blank *= (2 * GTF_CELL_GRAN);
783         }
784
785         frame_width = image_width + h_blank;
786
787         pix_clk = (image_width + h_blank) * hfreq;
788         pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
789
790         hsync = (frame_width * 8 + 50) / 100;
791         hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
792
793         h_fp = h_blank / 2 - hsync;
794
795         t.type = V4L2_DV_BT_656_1120;
796         t.bt.polarities = polarities;
797         t.bt.width = image_width;
798         t.bt.height = image_height;
799         t.bt.hfrontporch = h_fp;
800         t.bt.vfrontporch = v_fp;
801         t.bt.hsync = hsync;
802         t.bt.vsync = vsync;
803         t.bt.hbackporch = frame_width - image_width - h_fp - hsync;
804
805         if (!interlaced) {
806                 t.bt.vbackporch = frame_height - image_height - v_fp - vsync;
807                 t.bt.interlaced = V4L2_DV_PROGRESSIVE;
808         } else {
809                 t.bt.vbackporch = (frame_height - image_height - 2 * v_fp -
810                                       2 * vsync) / 2;
811                 t.bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
812                                         2 * vsync - t.bt.vbackporch;
813                 t.bt.il_vfrontporch = v_fp;
814                 t.bt.il_vsync = vsync;
815                 t.bt.flags |= V4L2_DV_FL_HALF_LINE;
816                 t.bt.interlaced = V4L2_DV_INTERLACED;
817         }
818
819         t.bt.pixelclock = pix_clk;
820         t.bt.standards = V4L2_DV_BT_STD_GTF;
821
822         if (!default_gtf)
823                 t.bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
824
825         if (!v4l2_valid_dv_timings(&t, cap, NULL, NULL))
826                 return false;
827         *timings = t;
828         return true;
829 }
830 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
831
832 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
833  *      0x15 and 0x16 from the EDID.
834  * @hor_landscape - byte 0x15 from the EDID.
835  * @vert_portrait - byte 0x16 from the EDID.
836  *
837  * Determines the aspect ratio from the EDID.
838  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
839  * "Horizontal and Vertical Screen Size or Aspect Ratio"
840  */
841 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
842 {
843         struct v4l2_fract aspect = { 16, 9 };
844         u8 ratio;
845
846         /* Nothing filled in, fallback to 16:9 */
847         if (!hor_landscape && !vert_portrait)
848                 return aspect;
849         /* Both filled in, so they are interpreted as the screen size in cm */
850         if (hor_landscape && vert_portrait) {
851                 aspect.numerator = hor_landscape;
852                 aspect.denominator = vert_portrait;
853                 return aspect;
854         }
855         /* Only one is filled in, so interpret them as a ratio:
856            (val + 99) / 100 */
857         ratio = hor_landscape | vert_portrait;
858         /* Change some rounded values into the exact aspect ratio */
859         if (ratio == 79) {
860                 aspect.numerator = 16;
861                 aspect.denominator = 9;
862         } else if (ratio == 34) {
863                 aspect.numerator = 4;
864                 aspect.denominator = 3;
865         } else if (ratio == 68) {
866                 aspect.numerator = 15;
867                 aspect.denominator = 9;
868         } else {
869                 aspect.numerator = hor_landscape + 99;
870                 aspect.denominator = 100;
871         }
872         if (hor_landscape)
873                 return aspect;
874         /* The aspect ratio is for portrait, so swap numerator and denominator */
875         swap(aspect.denominator, aspect.numerator);
876         return aspect;
877 }
878 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
879
880 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
881  *      based on various InfoFrames.
882  * @avi: the AVI InfoFrame
883  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
884  * @height: the frame height
885  *
886  * Determines the HDMI colorimetry information, i.e. how the HDMI
887  * pixel color data should be interpreted.
888  *
889  * Note that some of the newer features (DCI-P3, HDR) are not yet
890  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
891  * and CTA-861-G standards.
892  */
893 struct v4l2_hdmi_colorimetry
894 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
895                          const struct hdmi_vendor_infoframe *hdmi,
896                          unsigned int height)
897 {
898         struct v4l2_hdmi_colorimetry c = {
899                 V4L2_COLORSPACE_SRGB,
900                 V4L2_YCBCR_ENC_DEFAULT,
901                 V4L2_QUANTIZATION_FULL_RANGE,
902                 V4L2_XFER_FUNC_SRGB
903         };
904         bool is_ce = avi->video_code || (hdmi && hdmi->vic);
905         bool is_sdtv = height <= 576;
906         bool default_is_lim_range_rgb = avi->video_code > 1;
907
908         switch (avi->colorspace) {
909         case HDMI_COLORSPACE_RGB:
910                 /* RGB pixel encoding */
911                 switch (avi->colorimetry) {
912                 case HDMI_COLORIMETRY_EXTENDED:
913                         switch (avi->extended_colorimetry) {
914                         case HDMI_EXTENDED_COLORIMETRY_OPRGB:
915                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
916                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
917                                 break;
918                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
919                                 c.colorspace = V4L2_COLORSPACE_BT2020;
920                                 c.xfer_func = V4L2_XFER_FUNC_709;
921                                 break;
922                         default:
923                                 break;
924                         }
925                         break;
926                 default:
927                         break;
928                 }
929                 switch (avi->quantization_range) {
930                 case HDMI_QUANTIZATION_RANGE_LIMITED:
931                         c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
932                         break;
933                 case HDMI_QUANTIZATION_RANGE_FULL:
934                         break;
935                 default:
936                         if (default_is_lim_range_rgb)
937                                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
938                         break;
939                 }
940                 break;
941
942         default:
943                 /* YCbCr pixel encoding */
944                 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
945                 switch (avi->colorimetry) {
946                 case HDMI_COLORIMETRY_NONE:
947                         if (!is_ce)
948                                 break;
949                         if (is_sdtv) {
950                                 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
951                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
952                         } else {
953                                 c.colorspace = V4L2_COLORSPACE_REC709;
954                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
955                         }
956                         c.xfer_func = V4L2_XFER_FUNC_709;
957                         break;
958                 case HDMI_COLORIMETRY_ITU_601:
959                         c.colorspace = V4L2_COLORSPACE_SMPTE170M;
960                         c.ycbcr_enc = V4L2_YCBCR_ENC_601;
961                         c.xfer_func = V4L2_XFER_FUNC_709;
962                         break;
963                 case HDMI_COLORIMETRY_ITU_709:
964                         c.colorspace = V4L2_COLORSPACE_REC709;
965                         c.ycbcr_enc = V4L2_YCBCR_ENC_709;
966                         c.xfer_func = V4L2_XFER_FUNC_709;
967                         break;
968                 case HDMI_COLORIMETRY_EXTENDED:
969                         switch (avi->extended_colorimetry) {
970                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
971                                 c.colorspace = V4L2_COLORSPACE_REC709;
972                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
973                                 c.xfer_func = V4L2_XFER_FUNC_709;
974                                 break;
975                         case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
976                                 c.colorspace = V4L2_COLORSPACE_REC709;
977                                 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
978                                 c.xfer_func = V4L2_XFER_FUNC_709;
979                                 break;
980                         case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
981                                 c.colorspace = V4L2_COLORSPACE_SRGB;
982                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
983                                 c.xfer_func = V4L2_XFER_FUNC_SRGB;
984                                 break;
985                         case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
986                                 c.colorspace = V4L2_COLORSPACE_OPRGB;
987                                 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
988                                 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
989                                 break;
990                         case HDMI_EXTENDED_COLORIMETRY_BT2020:
991                                 c.colorspace = V4L2_COLORSPACE_BT2020;
992                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
993                                 c.xfer_func = V4L2_XFER_FUNC_709;
994                                 break;
995                         case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
996                                 c.colorspace = V4L2_COLORSPACE_BT2020;
997                                 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
998                                 c.xfer_func = V4L2_XFER_FUNC_709;
999                                 break;
1000                         default: /* fall back to ITU_709 */
1001                                 c.colorspace = V4L2_COLORSPACE_REC709;
1002                                 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
1003                                 c.xfer_func = V4L2_XFER_FUNC_709;
1004                                 break;
1005                         }
1006                         break;
1007                 default:
1008                         break;
1009                 }
1010                 /*
1011                  * YCC Quantization Range signaling is more-or-less broken,
1012                  * let's just ignore this.
1013                  */
1014                 break;
1015         }
1016         return c;
1017 }
1018 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
1019
1020 /**
1021  * v4l2_get_edid_phys_addr() - find and return the physical address
1022  *
1023  * @edid:       pointer to the EDID data
1024  * @size:       size in bytes of the EDID data
1025  * @offset:     If not %NULL then the location of the physical address
1026  *              bytes in the EDID will be returned here. This is set to 0
1027  *              if there is no physical address found.
1028  *
1029  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1030  */
1031 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1032                             unsigned int *offset)
1033 {
1034         unsigned int loc = cec_get_edid_spa_location(edid, size);
1035
1036         if (offset)
1037                 *offset = loc;
1038         if (loc == 0)
1039                 return CEC_PHYS_ADDR_INVALID;
1040         return (edid[loc] << 8) | edid[loc + 1];
1041 }
1042 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1043
1044 /**
1045  * v4l2_set_edid_phys_addr() - find and set the physical address
1046  *
1047  * @edid:       pointer to the EDID data
1048  * @size:       size in bytes of the EDID data
1049  * @phys_addr:  the new physical address
1050  *
1051  * This function finds the location of the physical address in the EDID
1052  * and fills in the given physical address and updates the checksum
1053  * at the end of the EDID block. It does nothing if the EDID doesn't
1054  * contain a physical address.
1055  */
1056 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1057 {
1058         unsigned int loc = cec_get_edid_spa_location(edid, size);
1059         u8 sum = 0;
1060         unsigned int i;
1061
1062         if (loc == 0)
1063                 return;
1064         edid[loc] = phys_addr >> 8;
1065         edid[loc + 1] = phys_addr & 0xff;
1066         loc &= ~0x7f;
1067
1068         /* update the checksum */
1069         for (i = loc; i < loc + 127; i++)
1070                 sum += edid[i];
1071         edid[i] = 256 - sum;
1072 }
1073 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1074
1075 /**
1076  * v4l2_phys_addr_for_input() - calculate the PA for an input
1077  *
1078  * @phys_addr:  the physical address of the parent
1079  * @input:      the number of the input port, must be between 1 and 15
1080  *
1081  * This function calculates a new physical address based on the input
1082  * port number. For example:
1083  *
1084  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1085  *
1086  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1087  *
1088  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1089  *
1090  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1091  *
1092  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1093  */
1094 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1095 {
1096         /* Check if input is sane */
1097         if (WARN_ON(input == 0 || input > 0xf))
1098                 return CEC_PHYS_ADDR_INVALID;
1099
1100         if (phys_addr == 0)
1101                 return input << 12;
1102
1103         if ((phys_addr & 0x0fff) == 0)
1104                 return phys_addr | (input << 8);
1105
1106         if ((phys_addr & 0x00ff) == 0)
1107                 return phys_addr | (input << 4);
1108
1109         if ((phys_addr & 0x000f) == 0)
1110                 return phys_addr | input;
1111
1112         /*
1113          * All nibbles are used so no valid physical addresses can be assigned
1114          * to the input.
1115          */
1116         return CEC_PHYS_ADDR_INVALID;
1117 }
1118 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1119
1120 /**
1121  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1122  *
1123  * @phys_addr:  the physical address to validate
1124  * @parent:     if not %NULL, then this is filled with the parents PA.
1125  * @port:       if not %NULL, then this is filled with the input port.
1126  *
1127  * This validates a physical address as read from an EDID. If the
1128  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1129  * then it will return -EINVAL.
1130  *
1131  * The parent PA is passed into %parent and the input port is passed into
1132  * %port. For example:
1133  *
1134  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1135  *
1136  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1137  *
1138  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1139  *
1140  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1141  *
1142  * Return: 0 if the PA is valid, -EINVAL if not.
1143  */
1144 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1145 {
1146         int i;
1147
1148         if (parent)
1149                 *parent = phys_addr;
1150         if (port)
1151                 *port = 0;
1152         if (phys_addr == CEC_PHYS_ADDR_INVALID)
1153                 return 0;
1154         for (i = 0; i < 16; i += 4)
1155                 if (phys_addr & (0xf << i))
1156                         break;
1157         if (i == 16)
1158                 return 0;
1159         if (parent)
1160                 *parent = phys_addr & (0xfff0 << i);
1161         if (port)
1162                 *port = (phys_addr >> i) & 0xf;
1163         for (i += 4; i < 16; i += 4)
1164                 if ((phys_addr & (0xf << i)) == 0)
1165                         return -EINVAL;
1166         return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1169
1170 #ifdef CONFIG_DEBUG_FS
1171
1172 #define DEBUGFS_FOPS(type, flag)                                        \
1173 static ssize_t                                                          \
1174 infoframe_read_##type(struct file *filp,                                \
1175                       char __user *ubuf, size_t count, loff_t *ppos)    \
1176 {                                                                       \
1177         struct v4l2_debugfs_if *infoframes = filp->private_data;        \
1178                                                                         \
1179         return infoframes->if_read((flag), infoframes->priv, filp,      \
1180                                    ubuf, count, ppos);                  \
1181 }                                                                       \
1182                                                                         \
1183 static const struct file_operations infoframe_##type##_fops = {         \
1184         .owner   = THIS_MODULE,                                         \
1185         .open    = simple_open,                                         \
1186         .read    = infoframe_read_##type,                               \
1187 }
1188
1189 DEBUGFS_FOPS(avi, V4L2_DEBUGFS_IF_AVI);
1190 DEBUGFS_FOPS(audio, V4L2_DEBUGFS_IF_AUDIO);
1191 DEBUGFS_FOPS(spd, V4L2_DEBUGFS_IF_SPD);
1192 DEBUGFS_FOPS(hdmi, V4L2_DEBUGFS_IF_HDMI);
1193
1194 struct v4l2_debugfs_if *v4l2_debugfs_if_alloc(struct dentry *root, u32 if_types,
1195                                               void *priv,
1196                                               v4l2_debugfs_if_read_t if_read)
1197 {
1198         struct v4l2_debugfs_if *infoframes;
1199
1200         if (IS_ERR_OR_NULL(root) || !if_types || !if_read)
1201                 return NULL;
1202
1203         infoframes = kzalloc(sizeof(*infoframes), GFP_KERNEL);
1204         if (!infoframes)
1205                 return NULL;
1206
1207         infoframes->if_dir = debugfs_create_dir("infoframes", root);
1208         infoframes->priv = priv;
1209         infoframes->if_read = if_read;
1210         if (if_types & V4L2_DEBUGFS_IF_AVI)
1211                 debugfs_create_file("avi", 0400, infoframes->if_dir,
1212                                     infoframes, &infoframe_avi_fops);
1213         if (if_types & V4L2_DEBUGFS_IF_AUDIO)
1214                 debugfs_create_file("audio", 0400, infoframes->if_dir,
1215                                     infoframes, &infoframe_audio_fops);
1216         if (if_types & V4L2_DEBUGFS_IF_SPD)
1217                 debugfs_create_file("spd", 0400, infoframes->if_dir,
1218                                     infoframes, &infoframe_spd_fops);
1219         if (if_types & V4L2_DEBUGFS_IF_HDMI)
1220                 debugfs_create_file("hdmi", 0400, infoframes->if_dir,
1221                                     infoframes, &infoframe_hdmi_fops);
1222         return infoframes;
1223 }
1224 EXPORT_SYMBOL_GPL(v4l2_debugfs_if_alloc);
1225
1226 void v4l2_debugfs_if_free(struct v4l2_debugfs_if *infoframes)
1227 {
1228         if (infoframes) {
1229                 debugfs_remove_recursive(infoframes->if_dir);
1230                 kfree(infoframes);
1231         }
1232 }
1233 EXPORT_SYMBOL_GPL(v4l2_debugfs_if_free);
1234
1235 #endif
This page took 0.103175 seconds and 4 git commands to generate.