1 // SPDX-License-Identifier: GPL-2.0-only
3 * drivers/i2c/chips/lm8323.c
5 * Copyright (C) 2007-2009 Nokia Corporation
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/sched.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/platform_data/lm8323.h>
23 #include <linux/slab.h>
24 #include <linux/string_choices.h>
26 /* Commands to send to the chip. */
27 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
28 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
29 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
30 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
31 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
32 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
33 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
34 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
35 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
36 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
37 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
38 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
39 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
40 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
41 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
42 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
43 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
44 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
45 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
46 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
47 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
48 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
50 /* Interrupt status. */
51 #define INT_KEYPAD 0x01 /* Key event. */
52 #define INT_ROTATOR 0x02 /* Rotator event. */
53 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
54 #define INT_NOINIT 0x10 /* Lost configuration. */
55 #define INT_PWM1 0x20 /* PWM1 stopped. */
56 #define INT_PWM2 0x40 /* PWM2 stopped. */
57 #define INT_PWM3 0x80 /* PWM3 stopped. */
59 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
60 #define ERR_BADPAR 0x01 /* Bad parameter. */
61 #define ERR_CMDUNK 0x02 /* Unknown command. */
62 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
63 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
65 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
66 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
67 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
68 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
69 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
70 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
71 #define CFG_ROTEN 0x40 /* Enable rotator. */
73 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
74 #define CLK_RCPWM_INTERNAL 0x00
75 #define CLK_RCPWM_EXTERNAL 0x03
76 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
77 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
79 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
80 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
81 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
82 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
83 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
85 /* Key event fifo length */
86 #define LM8323_FIFO_LEN 15
88 /* Commands for PWM engine; feed in with PWM_WRITE. */
89 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
90 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
91 /* Go to start of script. */
92 #define PWM_GOTOSTART 0x0000
94 * Stop engine (generates interrupt). If reset is 1, clear the program
95 * counter, else leave it.
97 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
99 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
100 * Take t clock scales (up to 63) per step, for n steps (up to 126).
101 * If u is set, ramp up, else ramp down.
103 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
104 ((n) & 0x7f) | ((u) ? 0 : 0x80))
106 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
107 * If cnt is zero, execute until PWM_END is encountered.
109 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
112 * Wait for trigger. Argument is a mask of channels, shifted by the channel
113 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
116 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
117 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
118 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
124 int desired_brightness;
129 struct work_struct work;
130 struct led_classdev cdev;
131 struct lm8323_chip *chip;
137 struct i2c_client *client;
138 struct input_dev *idev;
143 unsigned short keymap[LM8323_KEYMAP_SIZE];
148 struct lm8323_pwm pwm[LM8323_NUM_PWMS];
151 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
152 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
153 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
154 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
156 #define LM8323_MAX_DATA 8
159 * To write, we just access the chip's address in write mode, and dump the
160 * command and data out on the bus. The command byte and data are taken as
161 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
163 static int lm8323_write(struct lm8323_chip *lm, int len, ...)
167 u8 data[LM8323_MAX_DATA];
171 if (unlikely(len > LM8323_MAX_DATA)) {
172 dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
177 for (i = 0; i < len; i++)
178 data[i] = va_arg(ap, int);
183 * If the host is asleep while we send the data, we can get a NACK
184 * back while it wakes up, so try again, once.
186 ret = i2c_master_send(lm->client, data, len);
187 if (unlikely(ret == -EREMOTEIO))
188 ret = i2c_master_send(lm->client, data, len);
189 if (unlikely(ret != len))
190 dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
197 * To read, we first send the command byte to the chip and end the transaction,
198 * then access the chip in read mode, at which point it will send the data.
200 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
205 * If the host is asleep while we send the byte, we can get a NACK
206 * back while it wakes up, so try again, once.
208 ret = i2c_master_send(lm->client, &cmd, 1);
209 if (unlikely(ret == -EREMOTEIO))
210 ret = i2c_master_send(lm->client, &cmd, 1);
211 if (unlikely(ret != 1)) {
212 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
217 ret = i2c_master_recv(lm->client, buf, len);
218 if (unlikely(ret != len))
219 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
226 * Set the chip active time (idle time before it enters halt).
228 static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
230 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
234 * The signals are AT-style: the low 7 bits are the keycode, and the top
235 * bit indicates the state (1 for down, 0 for up).
237 static inline u8 lm8323_whichkey(u8 event)
242 static inline int lm8323_ispress(u8 event)
244 return (event & 0x80) ? 1 : 0;
247 static void process_keys(struct lm8323_chip *lm)
250 u8 key_fifo[LM8323_FIFO_LEN + 1];
251 int old_keys_down = lm->keys_down;
256 * Read all key events from the FIFO at once. Next READ_FIFO clears the
257 * FIFO even if we didn't read all events previously.
259 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
262 dev_err(&lm->client->dev, "Failed reading fifo \n");
267 while ((event = key_fifo[i++])) {
268 u8 key = lm8323_whichkey(event);
269 int isdown = lm8323_ispress(event);
270 unsigned short keycode = lm->keymap[key];
272 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
273 key, str_down_up(isdown));
275 if (lm->kp_enabled) {
276 input_event(lm->idev, EV_MSC, MSC_SCAN, key);
277 input_report_key(lm->idev, keycode, isdown);
278 input_sync(lm->idev);
288 * Errata: We need to ensure that the chip never enters halt mode
289 * during a keypress, so set active time to 0. When it's released,
290 * we can enter halt again, so set the active time back to normal.
292 if (!old_keys_down && lm->keys_down)
293 lm8323_set_active_time(lm, 0);
294 if (old_keys_down && !lm->keys_down)
295 lm8323_set_active_time(lm, lm->active_time);
298 static void lm8323_process_error(struct lm8323_chip *lm)
302 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
303 if (error & ERR_FIFOOVER)
304 dev_vdbg(&lm->client->dev, "fifo overflow!\n");
305 if (error & ERR_KEYOVR)
306 dev_vdbg(&lm->client->dev,
307 "more than two keys pressed\n");
308 if (error & ERR_CMDUNK)
309 dev_vdbg(&lm->client->dev,
310 "unknown command submitted\n");
311 if (error & ERR_BADPAR)
312 dev_vdbg(&lm->client->dev, "bad command parameter\n");
316 static void lm8323_reset(struct lm8323_chip *lm)
318 /* The docs say we must pass 0xAA as the data byte. */
319 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
322 static int lm8323_configure(struct lm8323_chip *lm)
324 int keysize = (lm->size_x << 4) | lm->size_y;
325 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
326 int debounce = lm->debounce_time >> 2;
327 int active = lm->active_time >> 2;
330 * Active time must be greater than the debounce time: if it's
331 * a close-run thing, give ourselves a 12ms buffer.
333 if (debounce >= active)
334 active = debounce + 3;
336 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
337 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
338 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
339 lm8323_set_active_time(lm, lm->active_time);
340 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
341 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
342 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
345 * Not much we can do about errors at this point, so just hope
352 static void pwm_done(struct lm8323_pwm *pwm)
354 guard(mutex)(&pwm->lock);
356 pwm->running = false;
357 if (pwm->desired_brightness != pwm->brightness)
358 schedule_work(&pwm->work);
362 * Bottom half: handle the interrupt by posting key events, or dealing with
363 * errors appropriately.
365 static irqreturn_t lm8323_irq(int irq, void *_lm)
367 struct lm8323_chip *lm = _lm;
371 guard(mutex)(&lm->lock);
373 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
374 if (likely(ints & INT_KEYPAD))
376 if (ints & INT_ROTATOR) {
377 /* We don't currently support the rotator. */
378 dev_vdbg(&lm->client->dev, "rotator fired\n");
380 if (ints & INT_ERROR) {
381 dev_vdbg(&lm->client->dev, "error!\n");
382 lm8323_process_error(lm);
384 if (ints & INT_NOINIT) {
385 dev_err(&lm->client->dev, "chip lost config; "
387 lm8323_configure(lm);
389 for (i = 0; i < LM8323_NUM_PWMS; i++) {
390 if (ints & (INT_PWM1 << i)) {
391 dev_vdbg(&lm->client->dev,
392 "pwm%d engine completed\n", i);
393 pwm_done(&lm->pwm[i]);
404 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
408 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
409 if (unlikely(bytes != 2))
415 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
417 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
418 (cmd & 0xff00) >> 8, cmd & 0x00ff);
422 * Write a script into a given PWM engine, concluding with PWM_END.
423 * If 'kill' is nonzero, the engine will be shut down at the end
424 * of the script, producing a zero output. Otherwise the engine
425 * will be kept running at the final PWM level indefinitely.
427 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
428 int len, const u16 *cmds)
432 for (i = 0; i < len; i++)
433 lm8323_write_pwm_one(pwm, i, cmds[i]);
435 lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
436 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
440 static void lm8323_pwm_work(struct work_struct *work)
442 struct lm8323_pwm *pwm = work_to_pwm(work);
443 int div512, perstep, steps, hz, up, kill;
447 guard(mutex)(&pwm->lock);
450 * Do nothing if we're already at the requested level,
451 * or previous setting is not yet complete. In the latter
452 * case we will be called again when the previous PWM script
455 if (pwm->running || pwm->desired_brightness == pwm->brightness)
458 kill = (pwm->desired_brightness == 0);
459 up = (pwm->desired_brightness > pwm->brightness);
460 steps = abs(pwm->desired_brightness - pwm->brightness);
463 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
464 * 32768Hz), and number of ticks per step.
466 if ((pwm->fade_time / steps) > (32768 / 512)) {
474 perstep = (hz * pwm->fade_time) / (steps * 1000);
478 else if (perstep > 63)
485 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
489 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
490 pwm->brightness = pwm->desired_brightness;
493 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
494 enum led_brightness brightness)
496 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
497 struct lm8323_chip *lm = pwm->chip;
499 scoped_guard(mutex, &pwm->lock) {
500 pwm->desired_brightness = brightness;
503 if (in_interrupt()) {
504 schedule_work(&pwm->work);
507 * Schedule PWM work as usual unless we are going into suspend
509 scoped_guard(mutex, &lm->lock) {
510 if (likely(!lm->pm_suspend))
511 schedule_work(&pwm->work);
513 lm8323_pwm_work(&pwm->work);
518 static ssize_t lm8323_pwm_show_time(struct device *dev,
519 struct device_attribute *attr, char *buf)
521 struct led_classdev *led_cdev = dev_get_drvdata(dev);
522 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
524 return sprintf(buf, "%d\n", pwm->fade_time);
527 static ssize_t lm8323_pwm_store_time(struct device *dev,
528 struct device_attribute *attr, const char *buf, size_t len)
530 struct led_classdev *led_cdev = dev_get_drvdata(dev);
531 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
534 ret = kstrtoint(buf, 10, &time);
535 /* Numbers only, please. */
539 pwm->fade_time = time;
543 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
545 static struct attribute *lm8323_pwm_attrs[] = {
549 ATTRIBUTE_GROUPS(lm8323_pwm);
551 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
554 struct lm8323_pwm *pwm;
559 pwm = &lm->pwm[id - 1];
564 pwm->desired_brightness = 0;
565 pwm->running = false;
566 pwm->enabled = false;
567 INIT_WORK(&pwm->work, lm8323_pwm_work);
568 mutex_init(&pwm->lock);
572 pwm->cdev.name = name;
573 pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
574 pwm->cdev.groups = lm8323_pwm_groups;
576 err = devm_led_classdev_register(dev, &pwm->cdev);
578 dev_err(dev, "couldn't register PWM %d: %d\n", id, err);
587 static ssize_t lm8323_show_disable(struct device *dev,
588 struct device_attribute *attr, char *buf)
590 struct lm8323_chip *lm = dev_get_drvdata(dev);
592 return sprintf(buf, "%u\n", !lm->kp_enabled);
595 static ssize_t lm8323_set_disable(struct device *dev,
596 struct device_attribute *attr,
597 const char *buf, size_t count)
599 struct lm8323_chip *lm = dev_get_drvdata(dev);
603 ret = kstrtouint(buf, 10, &i);
607 guard(mutex)(&lm->lock);
613 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
615 static struct attribute *lm8323_attrs[] = {
616 &dev_attr_disable_kp.attr,
619 ATTRIBUTE_GROUPS(lm8323);
621 static int lm8323_probe(struct i2c_client *client)
623 struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
624 struct input_dev *idev;
625 struct lm8323_chip *lm;
631 if (!pdata || !pdata->size_x || !pdata->size_y) {
632 dev_err(&client->dev, "missing platform_data\n");
636 if (pdata->size_x > 8) {
637 dev_err(&client->dev, "invalid x size %d specified\n",
642 if (pdata->size_y > 12) {
643 dev_err(&client->dev, "invalid y size %d specified\n",
648 lm = devm_kzalloc(&client->dev, sizeof(*lm), GFP_KERNEL);
652 idev = devm_input_allocate_device(&client->dev);
658 mutex_init(&lm->lock);
660 lm->size_x = pdata->size_x;
661 lm->size_y = pdata->size_y;
662 dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
663 lm->size_x, lm->size_y);
665 lm->debounce_time = pdata->debounce_time;
666 lm->active_time = pdata->active_time;
671 * Nothing's set up to service the IRQ yet, so just spin for max.
672 * 100ms until we can configure.
674 tmo = jiffies + msecs_to_jiffies(100);
675 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
676 if (data[0] & INT_NOINIT)
679 if (time_after(jiffies, tmo)) {
680 dev_err(&client->dev,
681 "timeout waiting for initialisation\n");
688 lm8323_configure(lm);
690 /* If a true probe check the device */
691 if (lm8323_read_id(lm, data) != 0) {
692 dev_err(&client->dev, "device not found\n");
696 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
697 err = init_pwm(lm, pwm + 1, &client->dev,
698 pdata->pwm_names[pwm]);
703 lm->kp_enabled = true;
705 idev->name = pdata->name ? : "LM8323 keypad";
706 snprintf(lm->phys, sizeof(lm->phys),
707 "%s/input-kp", dev_name(&client->dev));
708 idev->phys = lm->phys;
710 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
711 __set_bit(MSC_SCAN, idev->mscbit);
712 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
713 __set_bit(pdata->keymap[i], idev->keybit);
714 lm->keymap[i] = pdata->keymap[i];
716 __clear_bit(KEY_RESERVED, idev->keybit);
719 __set_bit(EV_REP, idev->evbit);
721 err = input_register_device(idev);
723 dev_dbg(&client->dev, "error registering input device\n");
727 err = devm_request_threaded_irq(&client->dev, client->irq,
729 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
732 dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
736 i2c_set_clientdata(client, lm);
738 device_init_wakeup(&client->dev, 1);
739 enable_irq_wake(client->irq);
745 * We don't need to explicitly suspend the chip, as it already switches off
746 * when there's no activity.
748 static int lm8323_suspend(struct device *dev)
750 struct i2c_client *client = to_i2c_client(dev);
751 struct lm8323_chip *lm = i2c_get_clientdata(client);
754 irq_set_irq_wake(client->irq, 0);
755 disable_irq(client->irq);
757 scoped_guard(mutex, &lm->lock) {
758 lm->pm_suspend = true;
761 for (i = 0; i < 3; i++)
762 if (lm->pwm[i].enabled)
763 led_classdev_suspend(&lm->pwm[i].cdev);
768 static int lm8323_resume(struct device *dev)
770 struct i2c_client *client = to_i2c_client(dev);
771 struct lm8323_chip *lm = i2c_get_clientdata(client);
774 scoped_guard(mutex, &lm->lock) {
775 lm->pm_suspend = false;
778 for (i = 0; i < 3; i++)
779 if (lm->pwm[i].enabled)
780 led_classdev_resume(&lm->pwm[i].cdev);
782 enable_irq(client->irq);
783 irq_set_irq_wake(client->irq, 1);
788 static DEFINE_SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
790 static const struct i2c_device_id lm8323_id[] = {
795 static struct i2c_driver lm8323_i2c_driver = {
798 .pm = pm_sleep_ptr(&lm8323_pm_ops),
799 .dev_groups = lm8323_groups,
801 .probe = lm8323_probe,
802 .id_table = lm8323_id,
804 MODULE_DEVICE_TABLE(i2c, lm8323_id);
806 module_i2c_driver(lm8323_i2c_driver);
809 MODULE_AUTHOR("Daniel Stone");
811 MODULE_DESCRIPTION("LM8323 keypad driver");
812 MODULE_LICENSE("GPL");