]> Git Repo - linux.git/blob - drivers/infiniband/hw/hfi1/init.c
Linux 6.14-rc3
[linux.git] / drivers / infiniband / hw / hfi1 / init.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2020 Intel Corporation.
4  * Copyright(c) 2021 Cornelis Networks.
5  */
6
7 #include <linux/pci.h>
8 #include <linux/netdevice.h>
9 #include <linux/vmalloc.h>
10 #include <linux/delay.h>
11 #include <linux/xarray.h>
12 #include <linux/module.h>
13 #include <linux/printk.h>
14 #include <linux/hrtimer.h>
15 #include <linux/bitmap.h>
16 #include <linux/numa.h>
17 #include <rdma/rdma_vt.h>
18
19 #include "hfi.h"
20 #include "device.h"
21 #include "common.h"
22 #include "trace.h"
23 #include "mad.h"
24 #include "sdma.h"
25 #include "debugfs.h"
26 #include "verbs.h"
27 #include "aspm.h"
28 #include "affinity.h"
29 #include "vnic.h"
30 #include "exp_rcv.h"
31 #include "netdev.h"
32
33 #undef pr_fmt
34 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
35
36 /*
37  * min buffers we want to have per context, after driver
38  */
39 #define HFI1_MIN_USER_CTXT_BUFCNT 7
40
41 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43
44 #define NUM_IB_PORTS 1
45
46 /*
47  * Number of user receive contexts we are configured to use (to allow for more
48  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49  */
50 int num_user_contexts = -1;
51 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52 MODULE_PARM_DESC(
53         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54
55 uint krcvqs[RXE_NUM_DATA_VL];
56 int krcvqsset;
57 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59
60 /* computed based on above array */
61 unsigned long n_krcvqs;
62
63 static unsigned hfi1_rcvarr_split = 25;
64 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66
67 static uint eager_buffer_size = (8 << 20); /* 8MB */
68 module_param(eager_buffer_size, uint, S_IRUGO);
69 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70
71 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74
75 static uint hfi1_hdrq_entsize = 32;
76 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78
79 unsigned int user_credit_return_threshold = 33; /* default is 33% */
80 module_param(user_credit_return_threshold, uint, S_IRUGO);
81 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82
83 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84
85 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86                              struct hfi1_pportdata *ppd)
87 {
88         struct hfi1_ctxtdata *rcd;
89         int ret;
90
91         /* Control context has to be always 0 */
92         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93
94         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95         if (ret < 0) {
96                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
97                 return ret;
98         }
99
100         /*
101          * Set up the kernel context flags here and now because they use
102          * default values for all receive side memories.  User contexts will
103          * be handled as they are created.
104          */
105         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
108                 HFI1_CAP_KGET(DMA_RTAIL);
109
110         /* Control context must use DMA_RTAIL */
111         if (rcd->ctxt == HFI1_CTRL_CTXT)
112                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
113         rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114                                 handle_receive_interrupt_dma_rtail :
115                                 handle_receive_interrupt_nodma_rtail;
116
117         hfi1_set_seq_cnt(rcd, 1);
118
119         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120         if (!rcd->sc) {
121                 dd_dev_err(dd, "Kernel send context allocation failed\n");
122                 return -ENOMEM;
123         }
124         hfi1_init_ctxt(rcd->sc);
125
126         return 0;
127 }
128
129 /*
130  * Create the receive context array and one or more kernel contexts
131  */
132 int hfi1_create_kctxts(struct hfi1_devdata *dd)
133 {
134         u16 i;
135         int ret;
136
137         dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138                                GFP_KERNEL, dd->node);
139         if (!dd->rcd)
140                 return -ENOMEM;
141
142         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143                 ret = hfi1_create_kctxt(dd, dd->pport);
144                 if (ret)
145                         goto bail;
146         }
147
148         return 0;
149 bail:
150         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151                 hfi1_free_ctxt(dd->rcd[i]);
152
153         /* All the contexts should be freed, free the array */
154         kfree(dd->rcd);
155         dd->rcd = NULL;
156         return ret;
157 }
158
159 /*
160  * Helper routines for the receive context reference count (rcd and uctxt).
161  */
162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163 {
164         kref_init(&rcd->kref);
165 }
166
167 /**
168  * hfi1_rcd_free - When reference is zero clean up.
169  * @kref: pointer to an initialized rcd data structure
170  *
171  */
172 static void hfi1_rcd_free(struct kref *kref)
173 {
174         unsigned long flags;
175         struct hfi1_ctxtdata *rcd =
176                 container_of(kref, struct hfi1_ctxtdata, kref);
177
178         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179         rcd->dd->rcd[rcd->ctxt] = NULL;
180         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181
182         hfi1_free_ctxtdata(rcd->dd, rcd);
183
184         kfree(rcd);
185 }
186
187 /**
188  * hfi1_rcd_put - decrement reference for rcd
189  * @rcd: pointer to an initialized rcd data structure
190  *
191  * Use this to put a reference after the init.
192  */
193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194 {
195         if (rcd)
196                 return kref_put(&rcd->kref, hfi1_rcd_free);
197
198         return 0;
199 }
200
201 /**
202  * hfi1_rcd_get - increment reference for rcd
203  * @rcd: pointer to an initialized rcd data structure
204  *
205  * Use this to get a reference after the init.
206  *
207  * Return : reflect kref_get_unless_zero(), which returns non-zero on
208  * increment, otherwise 0.
209  */
210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211 {
212         return kref_get_unless_zero(&rcd->kref);
213 }
214
215 /**
216  * allocate_rcd_index - allocate an rcd index from the rcd array
217  * @dd: pointer to a valid devdata structure
218  * @rcd: rcd data structure to assign
219  * @index: pointer to index that is allocated
220  *
221  * Find an empty index in the rcd array, and assign the given rcd to it.
222  * If the array is full, we are EBUSY.
223  *
224  */
225 static int allocate_rcd_index(struct hfi1_devdata *dd,
226                               struct hfi1_ctxtdata *rcd, u16 *index)
227 {
228         unsigned long flags;
229         u16 ctxt;
230
231         spin_lock_irqsave(&dd->uctxt_lock, flags);
232         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233                 if (!dd->rcd[ctxt])
234                         break;
235
236         if (ctxt < dd->num_rcv_contexts) {
237                 rcd->ctxt = ctxt;
238                 dd->rcd[ctxt] = rcd;
239                 hfi1_rcd_init(rcd);
240         }
241         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242
243         if (ctxt >= dd->num_rcv_contexts)
244                 return -EBUSY;
245
246         *index = ctxt;
247
248         return 0;
249 }
250
251 /**
252  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253  * array
254  * @dd: pointer to a valid devdata structure
255  * @ctxt: the index of an possilbe rcd
256  *
257  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258  * ctxt index is valid.
259  *
260  * The caller is responsible for making the _put().
261  *
262  */
263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264                                                  u16 ctxt)
265 {
266         if (ctxt < dd->num_rcv_contexts)
267                 return hfi1_rcd_get_by_index(dd, ctxt);
268
269         return NULL;
270 }
271
272 /**
273  * hfi1_rcd_get_by_index - get by index
274  * @dd: pointer to a valid devdata structure
275  * @ctxt: the index of an possilbe rcd
276  *
277  * We need to protect access to the rcd array.  If access is needed to
278  * one or more index, get the protecting spinlock and then increment the
279  * kref.
280  *
281  * The caller is responsible for making the _put().
282  *
283  */
284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285 {
286         unsigned long flags;
287         struct hfi1_ctxtdata *rcd = NULL;
288
289         spin_lock_irqsave(&dd->uctxt_lock, flags);
290         if (dd->rcd[ctxt]) {
291                 rcd = dd->rcd[ctxt];
292                 if (!hfi1_rcd_get(rcd))
293                         rcd = NULL;
294         }
295         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296
297         return rcd;
298 }
299
300 /*
301  * Common code for user and kernel context create and setup.
302  * NOTE: the initial kref is done here (hf1_rcd_init()).
303  */
304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305                          struct hfi1_ctxtdata **context)
306 {
307         struct hfi1_devdata *dd = ppd->dd;
308         struct hfi1_ctxtdata *rcd;
309         unsigned kctxt_ngroups = 0;
310         u32 base;
311
312         if (dd->rcv_entries.nctxt_extra >
313             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317         if (rcd) {
318                 u32 rcvtids, max_entries;
319                 u16 ctxt;
320                 int ret;
321
322                 ret = allocate_rcd_index(dd, rcd, &ctxt);
323                 if (ret) {
324                         *context = NULL;
325                         kfree(rcd);
326                         return ret;
327                 }
328
329                 INIT_LIST_HEAD(&rcd->qp_wait_list);
330                 hfi1_exp_tid_group_init(rcd);
331                 rcd->ppd = ppd;
332                 rcd->dd = dd;
333                 rcd->numa_id = numa;
334                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335                 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336                 rcd->slow_handler = handle_receive_interrupt;
337                 rcd->do_interrupt = rcd->slow_handler;
338                 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339
340                 mutex_init(&rcd->exp_mutex);
341                 spin_lock_init(&rcd->exp_lock);
342                 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343                 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344
345                 hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt);
346
347                 /*
348                  * Calculate the context's RcvArray entry starting point.
349                  * We do this here because we have to take into account all
350                  * the RcvArray entries that previous context would have
351                  * taken and we have to account for any extra groups assigned
352                  * to the static (kernel) or dynamic (vnic/user) contexts.
353                  */
354                 if (ctxt < dd->first_dyn_alloc_ctxt) {
355                         if (ctxt < kctxt_ngroups) {
356                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
357                                 rcd->rcv_array_groups++;
358                         } else {
359                                 base = kctxt_ngroups +
360                                         (ctxt * dd->rcv_entries.ngroups);
361                         }
362                 } else {
363                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364
365                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366                                 kctxt_ngroups);
367                         if (ct < dd->rcv_entries.nctxt_extra) {
368                                 base += ct * (dd->rcv_entries.ngroups + 1);
369                                 rcd->rcv_array_groups++;
370                         } else {
371                                 base += dd->rcv_entries.nctxt_extra +
372                                         (ct * dd->rcv_entries.ngroups);
373                         }
374                 }
375                 rcd->eager_base = base * dd->rcv_entries.group_size;
376
377                 rcd->rcvhdrq_cnt = rcvhdrcnt;
378                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379                 rcd->rhf_offset =
380                         rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381                 /*
382                  * Simple Eager buffer allocation: we have already pre-allocated
383                  * the number of RcvArray entry groups. Each ctxtdata structure
384                  * holds the number of groups for that context.
385                  *
386                  * To follow CSR requirements and maintain cacheline alignment,
387                  * make sure all sizes and bases are multiples of group_size.
388                  *
389                  * The expected entry count is what is left after assigning
390                  * eager.
391                  */
392                 max_entries = rcd->rcv_array_groups *
393                         dd->rcv_entries.group_size;
394                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395                 rcd->egrbufs.count = round_down(rcvtids,
396                                                 dd->rcv_entries.group_size);
397                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399                                    rcd->ctxt);
400                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401                 }
402                 hfi1_cdbg(PROC,
403                           "ctxt%u: max Eager buffer RcvArray entries: %u",
404                           rcd->ctxt, rcd->egrbufs.count);
405
406                 /*
407                  * Allocate array that will hold the eager buffer accounting
408                  * data.
409                  * This will allocate the maximum possible buffer count based
410                  * on the value of the RcvArray split parameter.
411                  * The resulting value will be rounded down to the closest
412                  * multiple of dd->rcv_entries.group_size.
413                  */
414                 rcd->egrbufs.buffers =
415                         kcalloc_node(rcd->egrbufs.count,
416                                      sizeof(*rcd->egrbufs.buffers),
417                                      GFP_KERNEL, numa);
418                 if (!rcd->egrbufs.buffers)
419                         goto bail;
420                 rcd->egrbufs.rcvtids =
421                         kcalloc_node(rcd->egrbufs.count,
422                                      sizeof(*rcd->egrbufs.rcvtids),
423                                      GFP_KERNEL, numa);
424                 if (!rcd->egrbufs.rcvtids)
425                         goto bail;
426                 rcd->egrbufs.size = eager_buffer_size;
427                 /*
428                  * The size of the buffers programmed into the RcvArray
429                  * entries needs to be big enough to handle the highest
430                  * MTU supported.
431                  */
432                 if (rcd->egrbufs.size < hfi1_max_mtu) {
433                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434                         hfi1_cdbg(PROC,
435                                   "ctxt%u: eager bufs size too small. Adjusting to %u",
436                                     rcd->ctxt, rcd->egrbufs.size);
437                 }
438                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439
440                 /* Applicable only for statically created kernel contexts */
441                 if (ctxt < dd->first_dyn_alloc_ctxt) {
442                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443                                                     GFP_KERNEL, numa);
444                         if (!rcd->opstats)
445                                 goto bail;
446
447                         /* Initialize TID flow generations for the context */
448                         hfi1_kern_init_ctxt_generations(rcd);
449                 }
450
451                 *context = rcd;
452                 return 0;
453         }
454
455 bail:
456         *context = NULL;
457         hfi1_free_ctxt(rcd);
458         return -ENOMEM;
459 }
460
461 /**
462  * hfi1_free_ctxt - free context
463  * @rcd: pointer to an initialized rcd data structure
464  *
465  * This wrapper is the free function that matches hfi1_create_ctxtdata().
466  * When a context is done being used (kernel or user), this function is called
467  * for the "final" put to match the kref init from hfi1_create_ctxtdata().
468  * Other users of the context do a get/put sequence to make sure that the
469  * structure isn't removed while in use.
470  */
471 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472 {
473         hfi1_rcd_put(rcd);
474 }
475
476 /*
477  * Select the largest ccti value over all SLs to determine the intra-
478  * packet gap for the link.
479  *
480  * called with cca_timer_lock held (to protect access to cca_timer
481  * array), and rcu_read_lock() (to protect access to cc_state).
482  */
483 void set_link_ipg(struct hfi1_pportdata *ppd)
484 {
485         struct hfi1_devdata *dd = ppd->dd;
486         struct cc_state *cc_state;
487         int i;
488         u16 cce, ccti_limit, max_ccti = 0;
489         u16 shift, mult;
490         u64 src;
491         u32 current_egress_rate; /* Mbits /sec */
492         u64 max_pkt_time;
493         /*
494          * max_pkt_time is the maximum packet egress time in units
495          * of the fabric clock period 1/(805 MHz).
496          */
497
498         cc_state = get_cc_state(ppd);
499
500         if (!cc_state)
501                 /*
502                  * This should _never_ happen - rcu_read_lock() is held,
503                  * and set_link_ipg() should not be called if cc_state
504                  * is NULL.
505                  */
506                 return;
507
508         for (i = 0; i < OPA_MAX_SLS; i++) {
509                 u16 ccti = ppd->cca_timer[i].ccti;
510
511                 if (ccti > max_ccti)
512                         max_ccti = ccti;
513         }
514
515         ccti_limit = cc_state->cct.ccti_limit;
516         if (max_ccti > ccti_limit)
517                 max_ccti = ccti_limit;
518
519         cce = cc_state->cct.entries[max_ccti].entry;
520         shift = (cce & 0xc000) >> 14;
521         mult = (cce & 0x3fff);
522
523         current_egress_rate = active_egress_rate(ppd);
524
525         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526
527         src = (max_pkt_time >> shift) * mult;
528
529         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531
532         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533 }
534
535 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536 {
537         struct cca_timer *cca_timer;
538         struct hfi1_pportdata *ppd;
539         int sl;
540         u16 ccti_timer, ccti_min;
541         struct cc_state *cc_state;
542         unsigned long flags;
543         enum hrtimer_restart ret = HRTIMER_NORESTART;
544
545         cca_timer = container_of(t, struct cca_timer, hrtimer);
546         ppd = cca_timer->ppd;
547         sl = cca_timer->sl;
548
549         rcu_read_lock();
550
551         cc_state = get_cc_state(ppd);
552
553         if (!cc_state) {
554                 rcu_read_unlock();
555                 return HRTIMER_NORESTART;
556         }
557
558         /*
559          * 1) decrement ccti for SL
560          * 2) calculate IPG for link (set_link_ipg())
561          * 3) restart timer, unless ccti is at min value
562          */
563
564         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566
567         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568
569         if (cca_timer->ccti > ccti_min) {
570                 cca_timer->ccti--;
571                 set_link_ipg(ppd);
572         }
573
574         if (cca_timer->ccti > ccti_min) {
575                 unsigned long nsec = 1024 * ccti_timer;
576                 /* ccti_timer is in units of 1.024 usec */
577                 hrtimer_forward_now(t, ns_to_ktime(nsec));
578                 ret = HRTIMER_RESTART;
579         }
580
581         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582         rcu_read_unlock();
583         return ret;
584 }
585
586 /*
587  * Common code for initializing the physical port structure.
588  */
589 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590                          struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591 {
592         int i;
593         uint default_pkey_idx;
594         struct cc_state *cc_state;
595
596         ppd->dd = dd;
597         ppd->hw_pidx = hw_pidx;
598         ppd->port = port; /* IB port number, not index */
599         ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600         /*
601          * There are C_VL_COUNT number of PortVLXmitWait counters.
602          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603          */
604         for (i = 0; i < C_VL_COUNT + 1; i++) {
605                 ppd->port_vl_xmit_wait_last[i] = 0;
606                 ppd->vl_xmit_flit_cnt[i] = 0;
607         }
608
609         default_pkey_idx = 1;
610
611         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613         ppd->pkeys[0] = 0x8001;
614
615         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616         INIT_WORK(&ppd->link_up_work, handle_link_up);
617         INIT_WORK(&ppd->link_down_work, handle_link_down);
618         INIT_WORK(&ppd->freeze_work, handle_freeze);
619         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625
626         mutex_init(&ppd->hls_lock);
627         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628
629         ppd->qsfp_info.ppd = ppd;
630         ppd->sm_trap_qp = 0x0;
631         ppd->sa_qp = 0x1;
632
633         ppd->hfi1_wq = NULL;
634
635         spin_lock_init(&ppd->cca_timer_lock);
636
637         for (i = 0; i < OPA_MAX_SLS; i++) {
638                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639                              HRTIMER_MODE_REL);
640                 ppd->cca_timer[i].ppd = ppd;
641                 ppd->cca_timer[i].sl = i;
642                 ppd->cca_timer[i].ccti = 0;
643                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644         }
645
646         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647
648         spin_lock_init(&ppd->cc_state_lock);
649         spin_lock_init(&ppd->cc_log_lock);
650         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651         RCU_INIT_POINTER(ppd->cc_state, cc_state);
652         if (!cc_state)
653                 goto bail;
654         return;
655
656 bail:
657         dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658 }
659
660 /*
661  * Do initialization for device that is only needed on
662  * first detect, not on resets.
663  */
664 static int loadtime_init(struct hfi1_devdata *dd)
665 {
666         return 0;
667 }
668
669 /**
670  * init_after_reset - re-initialize after a reset
671  * @dd: the hfi1_ib device
672  *
673  * sanity check at least some of the values after reset, and
674  * ensure no receive or transmit (explicitly, in case reset
675  * failed
676  */
677 static int init_after_reset(struct hfi1_devdata *dd)
678 {
679         int i;
680         struct hfi1_ctxtdata *rcd;
681         /*
682          * Ensure chip does no sends or receives, tail updates, or
683          * pioavail updates while we re-initialize.  This is mostly
684          * for the driver data structures, not chip registers.
685          */
686         for (i = 0; i < dd->num_rcv_contexts; i++) {
687                 rcd = hfi1_rcd_get_by_index(dd, i);
688                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689                              HFI1_RCVCTRL_INTRAVAIL_DIS |
690                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691                 hfi1_rcd_put(rcd);
692         }
693         pio_send_control(dd, PSC_GLOBAL_DISABLE);
694         for (i = 0; i < dd->num_send_contexts; i++)
695                 sc_disable(dd->send_contexts[i].sc);
696
697         return 0;
698 }
699
700 static void enable_chip(struct hfi1_devdata *dd)
701 {
702         struct hfi1_ctxtdata *rcd;
703         u32 rcvmask;
704         u16 i;
705
706         /* enable PIO send */
707         pio_send_control(dd, PSC_GLOBAL_ENABLE);
708
709         /*
710          * Enable kernel ctxts' receive and receive interrupt.
711          * Other ctxts done as user opens and initializes them.
712          */
713         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714                 rcd = hfi1_rcd_get_by_index(dd, i);
715                 if (!rcd)
716                         continue;
717                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726                 if (HFI1_CAP_IS_KSET(TID_RDMA))
727                         rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728                 hfi1_rcvctrl(dd, rcvmask, rcd);
729                 sc_enable(rcd->sc);
730                 hfi1_rcd_put(rcd);
731         }
732 }
733
734 /**
735  * create_workqueues - create per port workqueues
736  * @dd: the hfi1_ib device
737  */
738 static int create_workqueues(struct hfi1_devdata *dd)
739 {
740         int pidx;
741         struct hfi1_pportdata *ppd;
742
743         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744                 ppd = dd->pport + pidx;
745                 if (!ppd->hfi1_wq) {
746                         ppd->hfi1_wq =
747                                 alloc_workqueue(
748                                     "hfi%d_%d",
749                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750                                     WQ_MEM_RECLAIM,
751                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752                                     dd->unit, pidx);
753                         if (!ppd->hfi1_wq)
754                                 goto wq_error;
755                 }
756                 if (!ppd->link_wq) {
757                         /*
758                          * Make the link workqueue single-threaded to enforce
759                          * serialization.
760                          */
761                         ppd->link_wq =
762                                 alloc_workqueue(
763                                     "hfi_link_%d_%d",
764                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765                                     1, /* max_active */
766                                     dd->unit, pidx);
767                         if (!ppd->link_wq)
768                                 goto wq_error;
769                 }
770         }
771         return 0;
772 wq_error:
773         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775                 ppd = dd->pport + pidx;
776                 if (ppd->hfi1_wq) {
777                         destroy_workqueue(ppd->hfi1_wq);
778                         ppd->hfi1_wq = NULL;
779                 }
780                 if (ppd->link_wq) {
781                         destroy_workqueue(ppd->link_wq);
782                         ppd->link_wq = NULL;
783                 }
784         }
785         return -ENOMEM;
786 }
787
788 /**
789  * destroy_workqueues - destroy per port workqueues
790  * @dd: the hfi1_ib device
791  */
792 static void destroy_workqueues(struct hfi1_devdata *dd)
793 {
794         int pidx;
795         struct hfi1_pportdata *ppd;
796
797         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798                 ppd = dd->pport + pidx;
799
800                 if (ppd->hfi1_wq) {
801                         destroy_workqueue(ppd->hfi1_wq);
802                         ppd->hfi1_wq = NULL;
803                 }
804                 if (ppd->link_wq) {
805                         destroy_workqueue(ppd->link_wq);
806                         ppd->link_wq = NULL;
807                 }
808         }
809 }
810
811 /**
812  * enable_general_intr() - Enable the IRQs that will be handled by the
813  * general interrupt handler.
814  * @dd: valid devdata
815  *
816  */
817 static void enable_general_intr(struct hfi1_devdata *dd)
818 {
819         set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820         set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821         set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822         set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823         set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824         set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825         set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826 }
827
828 /**
829  * hfi1_init - do the actual initialization sequence on the chip
830  * @dd: the hfi1_ib device
831  * @reinit: re-initializing, so don't allocate new memory
832  *
833  * Do the actual initialization sequence on the chip.  This is done
834  * both from the init routine called from the PCI infrastructure, and
835  * when we reset the chip, or detect that it was reset internally,
836  * or it's administratively re-enabled.
837  *
838  * Memory allocation here and in called routines is only done in
839  * the first case (reinit == 0).  We have to be careful, because even
840  * without memory allocation, we need to re-write all the chip registers
841  * TIDs, etc. after the reset or enable has completed.
842  */
843 int hfi1_init(struct hfi1_devdata *dd, int reinit)
844 {
845         int ret = 0, pidx, lastfail = 0;
846         unsigned long len;
847         u16 i;
848         struct hfi1_ctxtdata *rcd;
849         struct hfi1_pportdata *ppd;
850
851         /* Set up send low level handlers */
852         dd->process_pio_send = hfi1_verbs_send_pio;
853         dd->process_dma_send = hfi1_verbs_send_dma;
854         dd->pio_inline_send = pio_copy;
855         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856
857         if (is_ax(dd)) {
858                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859                 dd->do_drop = true;
860         } else {
861                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862                 dd->do_drop = false;
863         }
864
865         /* make sure the link is not "up" */
866         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867                 ppd = dd->pport + pidx;
868                 ppd->linkup = 0;
869         }
870
871         if (reinit)
872                 ret = init_after_reset(dd);
873         else
874                 ret = loadtime_init(dd);
875         if (ret)
876                 goto done;
877
878         /* dd->rcd can be NULL if early initialization failed */
879         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880                 /*
881                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
882                  * re-init, the simplest way to handle this is to free
883                  * existing, and re-allocate.
884                  * Need to re-create rest of ctxt 0 ctxtdata as well.
885                  */
886                 rcd = hfi1_rcd_get_by_index(dd, i);
887                 if (!rcd)
888                         continue;
889
890                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
891                 if (!lastfail)
892                         lastfail = hfi1_setup_eagerbufs(rcd);
893                 if (!lastfail)
894                         lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895                 if (lastfail) {
896                         dd_dev_err(dd,
897                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898                         ret = lastfail;
899                 }
900                 /* enable IRQ */
901                 hfi1_rcd_put(rcd);
902         }
903
904         /* Allocate enough memory for user event notification. */
905         len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906                          sizeof(*dd->events));
907         dd->events = vmalloc_user(len);
908         if (!dd->events)
909                 dd_dev_err(dd, "Failed to allocate user events page\n");
910         /*
911          * Allocate a page for device and port status.
912          * Page will be shared amongst all user processes.
913          */
914         dd->status = vmalloc_user(PAGE_SIZE);
915         if (!dd->status)
916                 dd_dev_err(dd, "Failed to allocate dev status page\n");
917         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918                 ppd = dd->pport + pidx;
919                 if (dd->status)
920                         /* Currently, we only have one port */
921                         ppd->statusp = &dd->status->port;
922
923                 set_mtu(ppd);
924         }
925
926         /* enable chip even if we have an error, so we can debug cause */
927         enable_chip(dd);
928
929 done:
930         /*
931          * Set status even if port serdes is not initialized
932          * so that diags will work.
933          */
934         if (dd->status)
935                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936                         HFI1_STATUS_INITTED;
937         if (!ret) {
938                 /* enable all interrupts from the chip */
939                 enable_general_intr(dd);
940                 init_qsfp_int(dd);
941
942                 /* chip is OK for user apps; mark it as initialized */
943                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944                         ppd = dd->pport + pidx;
945
946                         /*
947                          * start the serdes - must be after interrupts are
948                          * enabled so we are notified when the link goes up
949                          */
950                         lastfail = bringup_serdes(ppd);
951                         if (lastfail)
952                                 dd_dev_info(dd,
953                                             "Failed to bring up port %u\n",
954                                             ppd->port);
955
956                         /*
957                          * Set status even if port serdes is not initialized
958                          * so that diags will work.
959                          */
960                         if (ppd->statusp)
961                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962                                                         HFI1_STATUS_INITTED;
963                         if (!ppd->link_speed_enabled)
964                                 continue;
965                 }
966         }
967
968         /* if ret is non-zero, we probably should do some cleanup here... */
969         return ret;
970 }
971
972 struct hfi1_devdata *hfi1_lookup(int unit)
973 {
974         return xa_load(&hfi1_dev_table, unit);
975 }
976
977 /*
978  * Stop the timers during unit shutdown, or after an error late
979  * in initialization.
980  */
981 static void stop_timers(struct hfi1_devdata *dd)
982 {
983         struct hfi1_pportdata *ppd;
984         int pidx;
985
986         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987                 ppd = dd->pport + pidx;
988                 if (ppd->led_override_timer.function) {
989                         del_timer_sync(&ppd->led_override_timer);
990                         atomic_set(&ppd->led_override_timer_active, 0);
991                 }
992         }
993 }
994
995 /**
996  * shutdown_device - shut down a device
997  * @dd: the hfi1_ib device
998  *
999  * This is called to make the device quiet when we are about to
1000  * unload the driver, and also when the device is administratively
1001  * disabled.   It does not free any data structures.
1002  * Everything it does has to be setup again by hfi1_init(dd, 1)
1003  */
1004 static void shutdown_device(struct hfi1_devdata *dd)
1005 {
1006         struct hfi1_pportdata *ppd;
1007         struct hfi1_ctxtdata *rcd;
1008         unsigned pidx;
1009         int i;
1010
1011         if (dd->flags & HFI1_SHUTDOWN)
1012                 return;
1013         dd->flags |= HFI1_SHUTDOWN;
1014
1015         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016                 ppd = dd->pport + pidx;
1017
1018                 ppd->linkup = 0;
1019                 if (ppd->statusp)
1020                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021                                            HFI1_STATUS_IB_READY);
1022         }
1023         dd->flags &= ~HFI1_INITTED;
1024
1025         /* mask and clean up interrupts */
1026         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027         msix_clean_up_interrupts(dd);
1028
1029         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1031                         rcd = hfi1_rcd_get_by_index(dd, i);
1032                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1033                                      HFI1_RCVCTRL_CTXT_DIS |
1034                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1035                                      HFI1_RCVCTRL_PKEY_DIS |
1036                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1037                         hfi1_rcd_put(rcd);
1038                 }
1039                 /*
1040                  * Gracefully stop all sends allowing any in progress to
1041                  * trickle out first.
1042                  */
1043                 for (i = 0; i < dd->num_send_contexts; i++)
1044                         sc_flush(dd->send_contexts[i].sc);
1045         }
1046
1047         /*
1048          * Enough for anything that's going to trickle out to have actually
1049          * done so.
1050          */
1051         udelay(20);
1052
1053         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1054                 ppd = dd->pport + pidx;
1055
1056                 /* disable all contexts */
1057                 for (i = 0; i < dd->num_send_contexts; i++)
1058                         sc_disable(dd->send_contexts[i].sc);
1059                 /* disable the send device */
1060                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1061
1062                 shutdown_led_override(ppd);
1063
1064                 /*
1065                  * Clear SerdesEnable.
1066                  * We can't count on interrupts since we are stopping.
1067                  */
1068                 hfi1_quiet_serdes(ppd);
1069                 if (ppd->hfi1_wq)
1070                         flush_workqueue(ppd->hfi1_wq);
1071                 if (ppd->link_wq)
1072                         flush_workqueue(ppd->link_wq);
1073         }
1074         sdma_exit(dd);
1075 }
1076
1077 /**
1078  * hfi1_free_ctxtdata - free a context's allocated data
1079  * @dd: the hfi1_ib device
1080  * @rcd: the ctxtdata structure
1081  *
1082  * free up any allocated data for a context
1083  * It should never change any chip state, or global driver state.
1084  */
1085 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1086 {
1087         u32 e;
1088
1089         if (!rcd)
1090                 return;
1091
1092         if (rcd->rcvhdrq) {
1093                 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1094                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1095                 rcd->rcvhdrq = NULL;
1096                 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1097                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1098                                           (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1099                                           rcd->rcvhdrqtailaddr_dma);
1100                         rcd->rcvhdrtail_kvaddr = NULL;
1101                 }
1102         }
1103
1104         /* all the RcvArray entries should have been cleared by now */
1105         kfree(rcd->egrbufs.rcvtids);
1106         rcd->egrbufs.rcvtids = NULL;
1107
1108         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1109                 if (rcd->egrbufs.buffers[e].addr)
1110                         dma_free_coherent(&dd->pcidev->dev,
1111                                           rcd->egrbufs.buffers[e].len,
1112                                           rcd->egrbufs.buffers[e].addr,
1113                                           rcd->egrbufs.buffers[e].dma);
1114         }
1115         kfree(rcd->egrbufs.buffers);
1116         rcd->egrbufs.alloced = 0;
1117         rcd->egrbufs.buffers = NULL;
1118
1119         sc_free(rcd->sc);
1120         rcd->sc = NULL;
1121
1122         vfree(rcd->subctxt_uregbase);
1123         vfree(rcd->subctxt_rcvegrbuf);
1124         vfree(rcd->subctxt_rcvhdr_base);
1125         kfree(rcd->opstats);
1126
1127         rcd->subctxt_uregbase = NULL;
1128         rcd->subctxt_rcvegrbuf = NULL;
1129         rcd->subctxt_rcvhdr_base = NULL;
1130         rcd->opstats = NULL;
1131 }
1132
1133 /*
1134  * Release our hold on the shared asic data.  If we are the last one,
1135  * return the structure to be finalized outside the lock.  Must be
1136  * holding hfi1_dev_table lock.
1137  */
1138 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1139 {
1140         struct hfi1_asic_data *ad;
1141         int other;
1142
1143         if (!dd->asic_data)
1144                 return NULL;
1145         dd->asic_data->dds[dd->hfi1_id] = NULL;
1146         other = dd->hfi1_id ? 0 : 1;
1147         ad = dd->asic_data;
1148         dd->asic_data = NULL;
1149         /* return NULL if the other dd still has a link */
1150         return ad->dds[other] ? NULL : ad;
1151 }
1152
1153 static void finalize_asic_data(struct hfi1_devdata *dd,
1154                                struct hfi1_asic_data *ad)
1155 {
1156         clean_up_i2c(dd, ad);
1157         kfree(ad);
1158 }
1159
1160 /**
1161  * hfi1_free_devdata - cleans up and frees per-unit data structure
1162  * @dd: pointer to a valid devdata structure
1163  *
1164  * It cleans up and frees all data structures set up by
1165  * by hfi1_alloc_devdata().
1166  */
1167 void hfi1_free_devdata(struct hfi1_devdata *dd)
1168 {
1169         struct hfi1_asic_data *ad;
1170         unsigned long flags;
1171
1172         xa_lock_irqsave(&hfi1_dev_table, flags);
1173         __xa_erase(&hfi1_dev_table, dd->unit);
1174         ad = release_asic_data(dd);
1175         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1176
1177         finalize_asic_data(dd, ad);
1178         free_platform_config(dd);
1179         rcu_barrier(); /* wait for rcu callbacks to complete */
1180         free_percpu(dd->int_counter);
1181         free_percpu(dd->rcv_limit);
1182         free_percpu(dd->send_schedule);
1183         free_percpu(dd->tx_opstats);
1184         dd->int_counter   = NULL;
1185         dd->rcv_limit     = NULL;
1186         dd->send_schedule = NULL;
1187         dd->tx_opstats    = NULL;
1188         kfree(dd->comp_vect);
1189         dd->comp_vect = NULL;
1190         if (dd->rcvhdrtail_dummy_kvaddr)
1191                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1192                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1193                                   dd->rcvhdrtail_dummy_dma);
1194         dd->rcvhdrtail_dummy_kvaddr = NULL;
1195         sdma_clean(dd, dd->num_sdma);
1196         rvt_dealloc_device(&dd->verbs_dev.rdi);
1197 }
1198
1199 /**
1200  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1201  * @pdev: Valid PCI device
1202  * @extra: How many bytes to alloc past the default
1203  *
1204  * Must be done via verbs allocator, because the verbs cleanup process
1205  * both does cleanup and free of the data structure.
1206  * "extra" is for chip-specific data.
1207  */
1208 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1209                                                size_t extra)
1210 {
1211         struct hfi1_devdata *dd;
1212         int ret, nports;
1213
1214         /* extra is * number of ports */
1215         nports = extra / sizeof(struct hfi1_pportdata);
1216
1217         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1218                                                      nports);
1219         if (!dd)
1220                 return ERR_PTR(-ENOMEM);
1221         dd->num_pports = nports;
1222         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1223         dd->pcidev = pdev;
1224         pci_set_drvdata(pdev, dd);
1225
1226         ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1227                         GFP_KERNEL);
1228         if (ret < 0) {
1229                 dev_err(&pdev->dev,
1230                         "Could not allocate unit ID: error %d\n", -ret);
1231                 goto bail;
1232         }
1233         rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1234         /*
1235          * If the BIOS does not have the NUMA node information set, select
1236          * NUMA 0 so we get consistent performance.
1237          */
1238         dd->node = pcibus_to_node(pdev->bus);
1239         if (dd->node == NUMA_NO_NODE) {
1240                 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1241                 dd->node = 0;
1242         }
1243
1244         /*
1245          * Initialize all locks for the device. This needs to be as early as
1246          * possible so locks are usable.
1247          */
1248         spin_lock_init(&dd->sc_lock);
1249         spin_lock_init(&dd->sendctrl_lock);
1250         spin_lock_init(&dd->rcvctrl_lock);
1251         spin_lock_init(&dd->uctxt_lock);
1252         spin_lock_init(&dd->hfi1_diag_trans_lock);
1253         spin_lock_init(&dd->sc_init_lock);
1254         spin_lock_init(&dd->dc8051_memlock);
1255         seqlock_init(&dd->sc2vl_lock);
1256         spin_lock_init(&dd->sde_map_lock);
1257         spin_lock_init(&dd->pio_map_lock);
1258         mutex_init(&dd->dc8051_lock);
1259         init_waitqueue_head(&dd->event_queue);
1260         spin_lock_init(&dd->irq_src_lock);
1261
1262         dd->int_counter = alloc_percpu(u64);
1263         if (!dd->int_counter) {
1264                 ret = -ENOMEM;
1265                 goto bail;
1266         }
1267
1268         dd->rcv_limit = alloc_percpu(u64);
1269         if (!dd->rcv_limit) {
1270                 ret = -ENOMEM;
1271                 goto bail;
1272         }
1273
1274         dd->send_schedule = alloc_percpu(u64);
1275         if (!dd->send_schedule) {
1276                 ret = -ENOMEM;
1277                 goto bail;
1278         }
1279
1280         dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1281         if (!dd->tx_opstats) {
1282                 ret = -ENOMEM;
1283                 goto bail;
1284         }
1285
1286         dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1287         if (!dd->comp_vect) {
1288                 ret = -ENOMEM;
1289                 goto bail;
1290         }
1291
1292         /* allocate dummy tail memory for all receive contexts */
1293         dd->rcvhdrtail_dummy_kvaddr =
1294                 dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1295                                    &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1296         if (!dd->rcvhdrtail_dummy_kvaddr) {
1297                 ret = -ENOMEM;
1298                 goto bail;
1299         }
1300
1301         atomic_set(&dd->ipoib_rsm_usr_num, 0);
1302         return dd;
1303
1304 bail:
1305         hfi1_free_devdata(dd);
1306         return ERR_PTR(ret);
1307 }
1308
1309 /*
1310  * Called from freeze mode handlers, and from PCI error
1311  * reporting code.  Should be paranoid about state of
1312  * system and data structures.
1313  */
1314 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1315 {
1316         if (dd->flags & HFI1_INITTED) {
1317                 u32 pidx;
1318
1319                 dd->flags &= ~HFI1_INITTED;
1320                 if (dd->pport)
1321                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1322                                 struct hfi1_pportdata *ppd;
1323
1324                                 ppd = dd->pport + pidx;
1325                                 if (dd->flags & HFI1_PRESENT)
1326                                         set_link_state(ppd, HLS_DN_DISABLE);
1327
1328                                 if (ppd->statusp)
1329                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1330                         }
1331         }
1332
1333         /*
1334          * Mark as having had an error for driver, and also
1335          * for /sys and status word mapped to user programs.
1336          * This marks unit as not usable, until reset.
1337          */
1338         if (dd->status)
1339                 dd->status->dev |= HFI1_STATUS_HWERROR;
1340 }
1341
1342 static void remove_one(struct pci_dev *);
1343 static int init_one(struct pci_dev *, const struct pci_device_id *);
1344 static void shutdown_one(struct pci_dev *);
1345
1346 #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1347 #define PFX DRIVER_NAME ": "
1348
1349 const struct pci_device_id hfi1_pci_tbl[] = {
1350         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1351         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1352         { 0, }
1353 };
1354
1355 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1356
1357 static struct pci_driver hfi1_pci_driver = {
1358         .name = DRIVER_NAME,
1359         .probe = init_one,
1360         .remove = remove_one,
1361         .shutdown = shutdown_one,
1362         .id_table = hfi1_pci_tbl,
1363         .err_handler = &hfi1_pci_err_handler,
1364 };
1365
1366 static void __init compute_krcvqs(void)
1367 {
1368         int i;
1369
1370         for (i = 0; i < krcvqsset; i++)
1371                 n_krcvqs += krcvqs[i];
1372 }
1373
1374 /*
1375  * Do all the generic driver unit- and chip-independent memory
1376  * allocation and initialization.
1377  */
1378 static int __init hfi1_mod_init(void)
1379 {
1380         int ret;
1381
1382         ret = dev_init();
1383         if (ret)
1384                 goto bail;
1385
1386         ret = node_affinity_init();
1387         if (ret)
1388                 goto bail;
1389
1390         /* validate max MTU before any devices start */
1391         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1392                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1393                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1394                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1395         }
1396         /* valid CUs run from 1-128 in powers of 2 */
1397         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1398                 hfi1_cu = 1;
1399         /* valid credit return threshold is 0-100, variable is unsigned */
1400         if (user_credit_return_threshold > 100)
1401                 user_credit_return_threshold = 100;
1402
1403         compute_krcvqs();
1404         /*
1405          * sanitize receive interrupt count, time must wait until after
1406          * the hardware type is known
1407          */
1408         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1409                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1410         /* reject invalid combinations */
1411         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1412                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1413                 rcv_intr_count = 1;
1414         }
1415         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1416                 /*
1417                  * Avoid indefinite packet delivery by requiring a timeout
1418                  * if count is > 1.
1419                  */
1420                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1421                 rcv_intr_timeout = 1;
1422         }
1423         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1424                 /*
1425                  * The dynamic algorithm expects a non-zero timeout
1426                  * and a count > 1.
1427                  */
1428                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1429                 rcv_intr_dynamic = 0;
1430         }
1431
1432         /* sanitize link CRC options */
1433         link_crc_mask &= SUPPORTED_CRCS;
1434
1435         ret = opfn_init();
1436         if (ret < 0) {
1437                 pr_err("Failed to allocate opfn_wq");
1438                 goto bail_dev;
1439         }
1440
1441         /*
1442          * These must be called before the driver is registered with
1443          * the PCI subsystem.
1444          */
1445         hfi1_dbg_init();
1446         ret = pci_register_driver(&hfi1_pci_driver);
1447         if (ret < 0) {
1448                 pr_err("Unable to register driver: error %d\n", -ret);
1449                 goto bail_dev;
1450         }
1451         goto bail; /* all OK */
1452
1453 bail_dev:
1454         hfi1_dbg_exit();
1455         dev_cleanup();
1456 bail:
1457         return ret;
1458 }
1459
1460 module_init(hfi1_mod_init);
1461
1462 /*
1463  * Do the non-unit driver cleanup, memory free, etc. at unload.
1464  */
1465 static void __exit hfi1_mod_cleanup(void)
1466 {
1467         pci_unregister_driver(&hfi1_pci_driver);
1468         opfn_exit();
1469         node_affinity_destroy_all();
1470         hfi1_dbg_exit();
1471
1472         WARN_ON(!xa_empty(&hfi1_dev_table));
1473         dispose_firmware();     /* asymmetric with obtain_firmware() */
1474         dev_cleanup();
1475 }
1476
1477 module_exit(hfi1_mod_cleanup);
1478
1479 /* this can only be called after a successful initialization */
1480 static void cleanup_device_data(struct hfi1_devdata *dd)
1481 {
1482         int ctxt;
1483         int pidx;
1484
1485         /* users can't do anything more with chip */
1486         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1487                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1488                 struct cc_state *cc_state;
1489                 int i;
1490
1491                 if (ppd->statusp)
1492                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1493
1494                 for (i = 0; i < OPA_MAX_SLS; i++)
1495                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1496
1497                 spin_lock(&ppd->cc_state_lock);
1498                 cc_state = get_cc_state_protected(ppd);
1499                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1500                 spin_unlock(&ppd->cc_state_lock);
1501
1502                 if (cc_state)
1503                         kfree_rcu(cc_state, rcu);
1504         }
1505
1506         free_credit_return(dd);
1507
1508         /*
1509          * Free any resources still in use (usually just kernel contexts)
1510          * at unload; we do for ctxtcnt, because that's what we allocate.
1511          */
1512         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1513                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1514
1515                 if (rcd) {
1516                         hfi1_free_ctxt_rcv_groups(rcd);
1517                         hfi1_free_ctxt(rcd);
1518                 }
1519         }
1520
1521         kfree(dd->rcd);
1522         dd->rcd = NULL;
1523
1524         free_pio_map(dd);
1525         /* must follow rcv context free - need to remove rcv's hooks */
1526         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1527                 sc_free(dd->send_contexts[ctxt].sc);
1528         dd->num_send_contexts = 0;
1529         kfree(dd->send_contexts);
1530         dd->send_contexts = NULL;
1531         kfree(dd->hw_to_sw);
1532         dd->hw_to_sw = NULL;
1533         kfree(dd->boardname);
1534         vfree(dd->events);
1535         vfree(dd->status);
1536 }
1537
1538 /*
1539  * Clean up on unit shutdown, or error during unit load after
1540  * successful initialization.
1541  */
1542 static void postinit_cleanup(struct hfi1_devdata *dd)
1543 {
1544         hfi1_start_cleanup(dd);
1545         hfi1_comp_vectors_clean_up(dd);
1546         hfi1_dev_affinity_clean_up(dd);
1547
1548         hfi1_pcie_ddcleanup(dd);
1549         hfi1_pcie_cleanup(dd->pcidev);
1550
1551         cleanup_device_data(dd);
1552
1553         hfi1_free_devdata(dd);
1554 }
1555
1556 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1557 {
1558         int ret = 0, j, pidx, initfail;
1559         struct hfi1_devdata *dd;
1560         struct hfi1_pportdata *ppd;
1561
1562         /* First, lock the non-writable module parameters */
1563         HFI1_CAP_LOCK();
1564
1565         /* Validate dev ids */
1566         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1567               ent->device == PCI_DEVICE_ID_INTEL1)) {
1568                 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1569                         ent->device);
1570                 ret = -ENODEV;
1571                 goto bail;
1572         }
1573
1574         /* Allocate the dd so we can get to work */
1575         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1576                                 sizeof(struct hfi1_pportdata));
1577         if (IS_ERR(dd)) {
1578                 ret = PTR_ERR(dd);
1579                 goto bail;
1580         }
1581
1582         /* Validate some global module parameters */
1583         ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1584         if (ret)
1585                 goto bail;
1586
1587         /* use the encoding function as a sanitization check */
1588         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1589                 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1590                            hfi1_hdrq_entsize);
1591                 ret = -EINVAL;
1592                 goto bail;
1593         }
1594
1595         /* The receive eager buffer size must be set before the receive
1596          * contexts are created.
1597          *
1598          * Set the eager buffer size.  Validate that it falls in a range
1599          * allowed by the hardware - all powers of 2 between the min and
1600          * max.  The maximum valid MTU is within the eager buffer range
1601          * so we do not need to cap the max_mtu by an eager buffer size
1602          * setting.
1603          */
1604         if (eager_buffer_size) {
1605                 if (!is_power_of_2(eager_buffer_size))
1606                         eager_buffer_size =
1607                                 roundup_pow_of_two(eager_buffer_size);
1608                 eager_buffer_size =
1609                         clamp_val(eager_buffer_size,
1610                                   MIN_EAGER_BUFFER * 8,
1611                                   MAX_EAGER_BUFFER_TOTAL);
1612                 dd_dev_info(dd, "Eager buffer size %u\n",
1613                             eager_buffer_size);
1614         } else {
1615                 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1616                 ret = -EINVAL;
1617                 goto bail;
1618         }
1619
1620         /* restrict value of hfi1_rcvarr_split */
1621         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1622
1623         ret = hfi1_pcie_init(dd);
1624         if (ret)
1625                 goto bail;
1626
1627         /*
1628          * Do device-specific initialization, function table setup, dd
1629          * allocation, etc.
1630          */
1631         ret = hfi1_init_dd(dd);
1632         if (ret)
1633                 goto clean_bail; /* error already printed */
1634
1635         ret = create_workqueues(dd);
1636         if (ret)
1637                 goto clean_bail;
1638
1639         /* do the generic initialization */
1640         initfail = hfi1_init(dd, 0);
1641
1642         ret = hfi1_register_ib_device(dd);
1643
1644         /*
1645          * Now ready for use.  this should be cleared whenever we
1646          * detect a reset, or initiate one.  If earlier failure,
1647          * we still create devices, so diags, etc. can be used
1648          * to determine cause of problem.
1649          */
1650         if (!initfail && !ret) {
1651                 dd->flags |= HFI1_INITTED;
1652                 /* create debufs files after init and ib register */
1653                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1654         }
1655
1656         j = hfi1_device_create(dd);
1657         if (j)
1658                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1659
1660         if (initfail || ret) {
1661                 msix_clean_up_interrupts(dd);
1662                 stop_timers(dd);
1663                 flush_workqueue(ib_wq);
1664                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1665                         hfi1_quiet_serdes(dd->pport + pidx);
1666                         ppd = dd->pport + pidx;
1667                         if (ppd->hfi1_wq) {
1668                                 destroy_workqueue(ppd->hfi1_wq);
1669                                 ppd->hfi1_wq = NULL;
1670                         }
1671                         if (ppd->link_wq) {
1672                                 destroy_workqueue(ppd->link_wq);
1673                                 ppd->link_wq = NULL;
1674                         }
1675                 }
1676                 if (!j)
1677                         hfi1_device_remove(dd);
1678                 if (!ret)
1679                         hfi1_unregister_ib_device(dd);
1680                 postinit_cleanup(dd);
1681                 if (initfail)
1682                         ret = initfail;
1683                 goto bail;      /* everything already cleaned */
1684         }
1685
1686         sdma_start(dd);
1687
1688         return 0;
1689
1690 clean_bail:
1691         hfi1_pcie_cleanup(pdev);
1692 bail:
1693         return ret;
1694 }
1695
1696 static void wait_for_clients(struct hfi1_devdata *dd)
1697 {
1698         /*
1699          * Remove the device init value and complete the device if there is
1700          * no clients or wait for active clients to finish.
1701          */
1702         if (refcount_dec_and_test(&dd->user_refcount))
1703                 complete(&dd->user_comp);
1704
1705         wait_for_completion(&dd->user_comp);
1706 }
1707
1708 static void remove_one(struct pci_dev *pdev)
1709 {
1710         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1711
1712         /* close debugfs files before ib unregister */
1713         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1714
1715         /* remove the /dev hfi1 interface */
1716         hfi1_device_remove(dd);
1717
1718         /* wait for existing user space clients to finish */
1719         wait_for_clients(dd);
1720
1721         /* unregister from IB core */
1722         hfi1_unregister_ib_device(dd);
1723
1724         /* free netdev data */
1725         hfi1_free_rx(dd);
1726
1727         /*
1728          * Disable the IB link, disable interrupts on the device,
1729          * clear dma engines, etc.
1730          */
1731         shutdown_device(dd);
1732         destroy_workqueues(dd);
1733
1734         stop_timers(dd);
1735
1736         /* wait until all of our (qsfp) queue_work() calls complete */
1737         flush_workqueue(ib_wq);
1738
1739         postinit_cleanup(dd);
1740 }
1741
1742 static void shutdown_one(struct pci_dev *pdev)
1743 {
1744         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1745
1746         shutdown_device(dd);
1747 }
1748
1749 /**
1750  * hfi1_create_rcvhdrq - create a receive header queue
1751  * @dd: the hfi1_ib device
1752  * @rcd: the context data
1753  *
1754  * This must be contiguous memory (from an i/o perspective), and must be
1755  * DMA'able (which means for some systems, it will go through an IOMMU,
1756  * or be forced into a low address range).
1757  */
1758 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1759 {
1760         unsigned amt;
1761
1762         if (!rcd->rcvhdrq) {
1763                 amt = rcvhdrq_size(rcd);
1764
1765                 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1766                                                   &rcd->rcvhdrq_dma,
1767                                                   GFP_KERNEL);
1768
1769                 if (!rcd->rcvhdrq) {
1770                         dd_dev_err(dd,
1771                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1772                                    amt, rcd->ctxt);
1773                         goto bail;
1774                 }
1775
1776                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1777                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1778                         rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1779                                                                     PAGE_SIZE,
1780                                                                     &rcd->rcvhdrqtailaddr_dma,
1781                                                                     GFP_KERNEL);
1782                         if (!rcd->rcvhdrtail_kvaddr)
1783                                 goto bail_free;
1784                 }
1785         }
1786
1787         set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1788                       rcd->rcvhdrq_cnt);
1789
1790         return 0;
1791
1792 bail_free:
1793         dd_dev_err(dd,
1794                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1795                    rcd->ctxt);
1796         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1797                           rcd->rcvhdrq_dma);
1798         rcd->rcvhdrq = NULL;
1799 bail:
1800         return -ENOMEM;
1801 }
1802
1803 /**
1804  * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1805  * contexts.
1806  * @rcd: the context we are setting up.
1807  *
1808  * Allocate the eager TID buffers and program them into hip.
1809  * They are no longer completely contiguous, we do multiple allocation
1810  * calls.  Otherwise we get the OOM code involved, by asking for too
1811  * much per call, with disastrous results on some kernels.
1812  */
1813 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1814 {
1815         struct hfi1_devdata *dd = rcd->dd;
1816         u32 max_entries, egrtop, alloced_bytes = 0;
1817         u16 order, idx = 0;
1818         int ret = 0;
1819         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1820
1821         /*
1822          * The minimum size of the eager buffers is a groups of MTU-sized
1823          * buffers.
1824          * The global eager_buffer_size parameter is checked against the
1825          * theoretical lower limit of the value. Here, we check against the
1826          * MTU.
1827          */
1828         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1829                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1830         /*
1831          * If using one-pkt-per-egr-buffer, lower the eager buffer
1832          * size to the max MTU (page-aligned).
1833          */
1834         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1835                 rcd->egrbufs.rcvtid_size = round_mtu;
1836
1837         /*
1838          * Eager buffers sizes of 1MB or less require smaller TID sizes
1839          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1840          */
1841         if (rcd->egrbufs.size <= (1 << 20))
1842                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1843                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1844
1845         while (alloced_bytes < rcd->egrbufs.size &&
1846                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1847                 rcd->egrbufs.buffers[idx].addr =
1848                         dma_alloc_coherent(&dd->pcidev->dev,
1849                                            rcd->egrbufs.rcvtid_size,
1850                                            &rcd->egrbufs.buffers[idx].dma,
1851                                            GFP_KERNEL);
1852                 if (rcd->egrbufs.buffers[idx].addr) {
1853                         rcd->egrbufs.buffers[idx].len =
1854                                 rcd->egrbufs.rcvtid_size;
1855                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1856                                 rcd->egrbufs.buffers[idx].addr;
1857                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1858                                 rcd->egrbufs.buffers[idx].dma;
1859                         rcd->egrbufs.alloced++;
1860                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1861                         idx++;
1862                 } else {
1863                         u32 new_size, i, j;
1864                         u64 offset = 0;
1865
1866                         /*
1867                          * Fail the eager buffer allocation if:
1868                          *   - we are already using the lowest acceptable size
1869                          *   - we are using one-pkt-per-egr-buffer (this implies
1870                          *     that we are accepting only one size)
1871                          */
1872                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1873                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1874                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1875                                            rcd->ctxt);
1876                                 ret = -ENOMEM;
1877                                 goto bail_rcvegrbuf_phys;
1878                         }
1879
1880                         new_size = rcd->egrbufs.rcvtid_size / 2;
1881
1882                         /*
1883                          * If the first attempt to allocate memory failed, don't
1884                          * fail everything but continue with the next lower
1885                          * size.
1886                          */
1887                         if (idx == 0) {
1888                                 rcd->egrbufs.rcvtid_size = new_size;
1889                                 continue;
1890                         }
1891
1892                         /*
1893                          * Re-partition already allocated buffers to a smaller
1894                          * size.
1895                          */
1896                         rcd->egrbufs.alloced = 0;
1897                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1898                                 if (i >= rcd->egrbufs.count)
1899                                         break;
1900                                 rcd->egrbufs.rcvtids[i].dma =
1901                                         rcd->egrbufs.buffers[j].dma + offset;
1902                                 rcd->egrbufs.rcvtids[i].addr =
1903                                         rcd->egrbufs.buffers[j].addr + offset;
1904                                 rcd->egrbufs.alloced++;
1905                                 if ((rcd->egrbufs.buffers[j].dma + offset +
1906                                      new_size) ==
1907                                     (rcd->egrbufs.buffers[j].dma +
1908                                      rcd->egrbufs.buffers[j].len)) {
1909                                         j++;
1910                                         offset = 0;
1911                                 } else {
1912                                         offset += new_size;
1913                                 }
1914                         }
1915                         rcd->egrbufs.rcvtid_size = new_size;
1916                 }
1917         }
1918         rcd->egrbufs.numbufs = idx;
1919         rcd->egrbufs.size = alloced_bytes;
1920
1921         hfi1_cdbg(PROC,
1922                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB",
1923                   rcd->ctxt, rcd->egrbufs.alloced,
1924                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1925
1926         /*
1927          * Set the contexts rcv array head update threshold to the closest
1928          * power of 2 (so we can use a mask instead of modulo) below half
1929          * the allocated entries.
1930          */
1931         rcd->egrbufs.threshold =
1932                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1933         /*
1934          * Compute the expected RcvArray entry base. This is done after
1935          * allocating the eager buffers in order to maximize the
1936          * expected RcvArray entries for the context.
1937          */
1938         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1939         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1940         rcd->expected_count = max_entries - egrtop;
1941         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1942                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1943
1944         rcd->expected_base = rcd->eager_base + egrtop;
1945         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u",
1946                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1947                   rcd->eager_base, rcd->expected_base);
1948
1949         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1950                 hfi1_cdbg(PROC,
1951                           "ctxt%u: current Eager buffer size is invalid %u",
1952                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
1953                 ret = -EINVAL;
1954                 goto bail_rcvegrbuf_phys;
1955         }
1956
1957         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1958                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1959                              rcd->egrbufs.rcvtids[idx].dma, order);
1960                 cond_resched();
1961         }
1962
1963         return 0;
1964
1965 bail_rcvegrbuf_phys:
1966         for (idx = 0; idx < rcd->egrbufs.alloced &&
1967              rcd->egrbufs.buffers[idx].addr;
1968              idx++) {
1969                 dma_free_coherent(&dd->pcidev->dev,
1970                                   rcd->egrbufs.buffers[idx].len,
1971                                   rcd->egrbufs.buffers[idx].addr,
1972                                   rcd->egrbufs.buffers[idx].dma);
1973                 rcd->egrbufs.buffers[idx].addr = NULL;
1974                 rcd->egrbufs.buffers[idx].dma = 0;
1975                 rcd->egrbufs.buffers[idx].len = 0;
1976         }
1977
1978         return ret;
1979 }
This page took 0.143472 seconds and 4 git commands to generate.