]> Git Repo - linux.git/blob - drivers/infiniband/hw/bnxt_re/qplib_res.c
Linux 6.14-rc3
[linux.git] / drivers / infiniband / hw / bnxt_re / qplib_res.c
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38
39 #define dev_fmt(fmt) "QPLIB: " fmt
40
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57                                       struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59                                       struct bnxt_qplib_chip_ctx *cctx,
60                                       struct bnxt_qplib_stats *stats);
61
62 /* PBL */
63 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
64                        bool is_umem)
65 {
66         struct pci_dev *pdev = res->pdev;
67         int i;
68
69         if (!is_umem) {
70                 for (i = 0; i < pbl->pg_count; i++) {
71                         if (pbl->pg_arr[i])
72                                 dma_free_coherent(&pdev->dev, pbl->pg_size,
73                                                   (void *)((unsigned long)
74                                                    pbl->pg_arr[i] &
75                                                   PAGE_MASK),
76                                                   pbl->pg_map_arr[i]);
77                         else
78                                 dev_warn(&pdev->dev,
79                                          "PBL free pg_arr[%d] empty?!\n", i);
80                         pbl->pg_arr[i] = NULL;
81                 }
82         }
83         vfree(pbl->pg_arr);
84         pbl->pg_arr = NULL;
85         vfree(pbl->pg_map_arr);
86         pbl->pg_map_arr = NULL;
87         pbl->pg_count = 0;
88         pbl->pg_size = 0;
89 }
90
91 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
92                                            struct bnxt_qplib_sg_info *sginfo)
93 {
94         struct ib_block_iter biter;
95         int i = 0;
96
97         rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
98                 pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
99                 pbl->pg_arr[i] = NULL;
100                 pbl->pg_count++;
101                 i++;
102         }
103 }
104
105 static int __alloc_pbl(struct bnxt_qplib_res *res,
106                        struct bnxt_qplib_pbl *pbl,
107                        struct bnxt_qplib_sg_info *sginfo)
108 {
109         struct pci_dev *pdev = res->pdev;
110         bool is_umem = false;
111         u32 pages;
112         int i;
113
114         if (sginfo->nopte)
115                 return 0;
116         if (sginfo->umem)
117                 pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
118         else
119                 pages = sginfo->npages;
120         /* page ptr arrays */
121         pbl->pg_arr = vmalloc_array(pages, sizeof(void *));
122         if (!pbl->pg_arr)
123                 return -ENOMEM;
124
125         pbl->pg_map_arr = vmalloc_array(pages, sizeof(dma_addr_t));
126         if (!pbl->pg_map_arr) {
127                 vfree(pbl->pg_arr);
128                 pbl->pg_arr = NULL;
129                 return -ENOMEM;
130         }
131         pbl->pg_count = 0;
132         pbl->pg_size = sginfo->pgsize;
133
134         if (!sginfo->umem) {
135                 for (i = 0; i < pages; i++) {
136                         pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
137                                                             pbl->pg_size,
138                                                             &pbl->pg_map_arr[i],
139                                                             GFP_KERNEL);
140                         if (!pbl->pg_arr[i])
141                                 goto fail;
142                         pbl->pg_count++;
143                 }
144         } else {
145                 is_umem = true;
146                 bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
147         }
148
149         return 0;
150 fail:
151         __free_pbl(res, pbl, is_umem);
152         return -ENOMEM;
153 }
154
155 /* HWQ */
156 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
157                          struct bnxt_qplib_hwq *hwq)
158 {
159         int i;
160
161         if (!hwq->max_elements)
162                 return;
163         if (hwq->level >= PBL_LVL_MAX)
164                 return;
165
166         for (i = 0; i < hwq->level + 1; i++) {
167                 if (i == hwq->level)
168                         __free_pbl(res, &hwq->pbl[i], hwq->is_user);
169                 else
170                         __free_pbl(res, &hwq->pbl[i], false);
171         }
172
173         hwq->level = PBL_LVL_MAX;
174         hwq->max_elements = 0;
175         hwq->element_size = 0;
176         hwq->prod = 0;
177         hwq->cons = 0;
178         hwq->cp_bit = 0;
179 }
180
181 /* All HWQs are power of 2 in size */
182
183 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
184                               struct bnxt_qplib_hwq_attr *hwq_attr)
185 {
186         u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
187         struct bnxt_qplib_sg_info sginfo = {};
188         u32 depth, stride, npbl, npde;
189         dma_addr_t *src_phys_ptr, **dst_virt_ptr;
190         struct bnxt_qplib_res *res;
191         struct pci_dev *pdev;
192         int i, rc, lvl;
193
194         res = hwq_attr->res;
195         pdev = res->pdev;
196         pg_size = hwq_attr->sginfo->pgsize;
197         hwq->level = PBL_LVL_MAX;
198
199         depth = roundup_pow_of_two(hwq_attr->depth);
200         stride = roundup_pow_of_two(hwq_attr->stride);
201         if (hwq_attr->aux_depth) {
202                 aux_slots = hwq_attr->aux_depth;
203                 aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
204                 aux_pages = (aux_slots * aux_size) / pg_size;
205                 if ((aux_slots * aux_size) % pg_size)
206                         aux_pages++;
207         }
208
209         if (!hwq_attr->sginfo->umem) {
210                 hwq->is_user = false;
211                 npages = (depth * stride) / pg_size + aux_pages;
212                 if ((depth * stride) % pg_size)
213                         npages++;
214                 if (!npages)
215                         return -EINVAL;
216                 hwq_attr->sginfo->npages = npages;
217         } else {
218                 npages = ib_umem_num_dma_blocks(hwq_attr->sginfo->umem,
219                                                 hwq_attr->sginfo->pgsize);
220                 hwq->is_user = true;
221         }
222
223         if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) {
224                 /* This request is Level 0, map PTE */
225                 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
226                 if (rc)
227                         goto fail;
228                 hwq->level = PBL_LVL_0;
229                 goto done;
230         }
231
232         if (npages >= MAX_PBL_LVL_0_PGS) {
233                 if (npages > MAX_PBL_LVL_1_PGS) {
234                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
235                                     0 : PTU_PTE_VALID;
236                         /* 2 levels of indirection */
237                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
238                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
239                                 npbl++;
240                         npde = npbl >> MAX_PDL_LVL_SHIFT;
241                         if (npbl % BIT(MAX_PDL_LVL_SHIFT))
242                                 npde++;
243                         /* Alloc PDE pages */
244                         sginfo.pgsize = npde * pg_size;
245                         sginfo.npages = 1;
246                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
247                         if (rc)
248                                 goto fail;
249
250                         /* Alloc PBL pages */
251                         sginfo.npages = npbl;
252                         sginfo.pgsize = PAGE_SIZE;
253                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
254                         if (rc)
255                                 goto fail;
256                         /* Fill PDL with PBL page pointers */
257                         dst_virt_ptr =
258                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
259                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
260                         for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
261                                 dst_virt_ptr[0][i] = src_phys_ptr[i] | flag;
262
263                         /* Alloc or init PTEs */
264                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
265                                          hwq_attr->sginfo);
266                         if (rc)
267                                 goto fail;
268                         hwq->level = PBL_LVL_2;
269                         if (hwq_attr->sginfo->nopte)
270                                 goto done;
271                         /* Fill PBLs with PTE pointers */
272                         dst_virt_ptr =
273                                 (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
274                         src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
275                         for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
276                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
277                                         src_phys_ptr[i] | PTU_PTE_VALID;
278                         }
279                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
280                                 /* Find the last pg of the size */
281                                 i = hwq->pbl[PBL_LVL_2].pg_count;
282                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
283                                                                   PTU_PTE_LAST;
284                                 if (i > 1)
285                                         dst_virt_ptr[PTR_PG(i - 2)]
286                                                     [PTR_IDX(i - 2)] |=
287                                                     PTU_PTE_NEXT_TO_LAST;
288                         }
289                 } else { /* pages < 512 npbl = 1, npde = 0 */
290                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
291                                     0 : PTU_PTE_VALID;
292
293                         /* 1 level of indirection */
294                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
295                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
296                                 npbl++;
297                         sginfo.npages = npbl;
298                         sginfo.pgsize = PAGE_SIZE;
299                         /* Alloc PBL page */
300                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
301                         if (rc)
302                                 goto fail;
303                         /* Alloc or init  PTEs */
304                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
305                                          hwq_attr->sginfo);
306                         if (rc)
307                                 goto fail;
308                         hwq->level = PBL_LVL_1;
309                         if (hwq_attr->sginfo->nopte)
310                                 goto done;
311                         /* Fill PBL with PTE pointers */
312                         dst_virt_ptr =
313                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
314                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
315                         for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
316                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
317                                         src_phys_ptr[i] | flag;
318                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
319                                 /* Find the last pg of the size */
320                                 i = hwq->pbl[PBL_LVL_1].pg_count;
321                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
322                                                                   PTU_PTE_LAST;
323                                 if (i > 1)
324                                         dst_virt_ptr[PTR_PG(i - 2)]
325                                                     [PTR_IDX(i - 2)] |=
326                                                     PTU_PTE_NEXT_TO_LAST;
327                         }
328                 }
329         }
330 done:
331         hwq->prod = 0;
332         hwq->cons = 0;
333         hwq->pdev = pdev;
334         hwq->depth = hwq_attr->depth;
335         hwq->max_elements = hwq->depth;
336         hwq->element_size = stride;
337         hwq->qe_ppg = pg_size / stride;
338         /* For direct access to the elements */
339         lvl = hwq->level;
340         if (hwq_attr->sginfo->nopte && hwq->level)
341                 lvl = hwq->level - 1;
342         hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
343         hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
344         spin_lock_init(&hwq->lock);
345
346         return 0;
347 fail:
348         bnxt_qplib_free_hwq(res, hwq);
349         return -ENOMEM;
350 }
351
352 /* Context Tables */
353 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
354                          struct bnxt_qplib_ctx *ctx)
355 {
356         int i;
357
358         bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
359         bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
360         bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
361         bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
362         bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
363         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
364                 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
365         /* restore original pde level before destroy */
366         ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
367         bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
368         bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
369 }
370
371 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
372                                       struct bnxt_qplib_ctx *ctx)
373 {
374         struct bnxt_qplib_hwq_attr hwq_attr = {};
375         struct bnxt_qplib_sg_info sginfo = {};
376         struct bnxt_qplib_tqm_ctx *tqmctx;
377         int rc;
378         int i;
379
380         tqmctx = &ctx->tqm_ctx;
381
382         sginfo.pgsize = PAGE_SIZE;
383         sginfo.pgshft = PAGE_SHIFT;
384         hwq_attr.sginfo = &sginfo;
385         hwq_attr.res = res;
386         hwq_attr.type = HWQ_TYPE_CTX;
387         hwq_attr.depth = 512;
388         hwq_attr.stride = sizeof(u64);
389         /* Alloc pdl buffer */
390         rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
391         if (rc)
392                 goto out;
393         /* Save original pdl level */
394         tqmctx->pde_level = tqmctx->pde.level;
395
396         hwq_attr.stride = 1;
397         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
398                 if (!tqmctx->qcount[i])
399                         continue;
400                 hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
401                 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
402                 if (rc)
403                         goto out;
404         }
405 out:
406         return rc;
407 }
408
409 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
410 {
411         struct bnxt_qplib_hwq *tbl;
412         dma_addr_t *dma_ptr;
413         __le64 **pbl_ptr, *ptr;
414         int i, j, k;
415         int fnz_idx = -1;
416         int pg_count;
417
418         pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
419
420         for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
421              i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
422                 tbl = &ctx->qtbl[i];
423                 if (!tbl->max_elements)
424                         continue;
425                 if (fnz_idx == -1)
426                         fnz_idx = i; /* first non-zero index */
427                 switch (tbl->level) {
428                 case PBL_LVL_2:
429                         pg_count = tbl->pbl[PBL_LVL_1].pg_count;
430                         for (k = 0; k < pg_count; k++) {
431                                 ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
432                                 dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
433                                 *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
434                         }
435                         break;
436                 case PBL_LVL_1:
437                 case PBL_LVL_0:
438                 default:
439                         ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
440                         *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
441                                            PTU_PTE_VALID);
442                         break;
443                 }
444         }
445         if (fnz_idx == -1)
446                 fnz_idx = 0;
447         /* update pde level as per page table programming */
448         ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
449                           ctx->qtbl[fnz_idx].level + 1;
450 }
451
452 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
453                                       struct bnxt_qplib_ctx *ctx)
454 {
455         int rc;
456
457         rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
458         if (rc)
459                 goto fail;
460
461         bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
462 fail:
463         return rc;
464 }
465
466 /*
467  * Routine: bnxt_qplib_alloc_ctx
468  * Description:
469  *     Context tables are memories which are used by the chip fw.
470  *     The 6 tables defined are:
471  *             QPC ctx - holds QP states
472  *             MRW ctx - holds memory region and window
473  *             SRQ ctx - holds shared RQ states
474  *             CQ ctx - holds completion queue states
475  *             TQM ctx - holds Tx Queue Manager context
476  *             TIM ctx - holds timer context
477  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
478  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
479  *     instead.
480  *     Table might be employed as follows:
481  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
482  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
483  *             For 512    < ctx size <= MAX, 2 levels of ind is used
484  * Returns:
485  *     0 if success, else -ERRORS
486  */
487 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
488                          struct bnxt_qplib_ctx *ctx,
489                          bool virt_fn, bool is_p5)
490 {
491         struct bnxt_qplib_hwq_attr hwq_attr = {};
492         struct bnxt_qplib_sg_info sginfo = {};
493         int rc;
494
495         if (virt_fn || is_p5)
496                 goto stats_alloc;
497
498         /* QPC Tables */
499         sginfo.pgsize = PAGE_SIZE;
500         sginfo.pgshft = PAGE_SHIFT;
501         hwq_attr.sginfo = &sginfo;
502
503         hwq_attr.res = res;
504         hwq_attr.depth = ctx->qpc_count;
505         hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
506         hwq_attr.type = HWQ_TYPE_CTX;
507         rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
508         if (rc)
509                 goto fail;
510
511         /* MRW Tables */
512         hwq_attr.depth = ctx->mrw_count;
513         hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
514         rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
515         if (rc)
516                 goto fail;
517
518         /* SRQ Tables */
519         hwq_attr.depth = ctx->srqc_count;
520         hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
521         rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
522         if (rc)
523                 goto fail;
524
525         /* CQ Tables */
526         hwq_attr.depth = ctx->cq_count;
527         hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
528         rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
529         if (rc)
530                 goto fail;
531
532         /* TQM Buffer */
533         rc = bnxt_qplib_setup_tqm_rings(res, ctx);
534         if (rc)
535                 goto fail;
536         /* TIM Buffer */
537         ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
538         hwq_attr.depth = ctx->qpc_count * 16;
539         hwq_attr.stride = 1;
540         rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
541         if (rc)
542                 goto fail;
543 stats_alloc:
544         /* Stats */
545         rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats);
546         if (rc)
547                 goto fail;
548
549         return 0;
550
551 fail:
552         bnxt_qplib_free_ctx(res, ctx);
553         return rc;
554 }
555
556 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
557                                      struct bnxt_qplib_sgid_tbl *sgid_tbl)
558 {
559         kfree(sgid_tbl->tbl);
560         kfree(sgid_tbl->hw_id);
561         kfree(sgid_tbl->ctx);
562         kfree(sgid_tbl->vlan);
563         sgid_tbl->tbl = NULL;
564         sgid_tbl->hw_id = NULL;
565         sgid_tbl->ctx = NULL;
566         sgid_tbl->vlan = NULL;
567         sgid_tbl->max = 0;
568         sgid_tbl->active = 0;
569 }
570
571 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
572                                      struct bnxt_qplib_sgid_tbl *sgid_tbl,
573                                      u16 max)
574 {
575         sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
576         if (!sgid_tbl->tbl)
577                 return -ENOMEM;
578
579         sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
580         if (!sgid_tbl->hw_id)
581                 goto out_free1;
582
583         sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
584         if (!sgid_tbl->ctx)
585                 goto out_free2;
586
587         sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
588         if (!sgid_tbl->vlan)
589                 goto out_free3;
590
591         sgid_tbl->max = max;
592         return 0;
593 out_free3:
594         kfree(sgid_tbl->ctx);
595         sgid_tbl->ctx = NULL;
596 out_free2:
597         kfree(sgid_tbl->hw_id);
598         sgid_tbl->hw_id = NULL;
599 out_free1:
600         kfree(sgid_tbl->tbl);
601         sgid_tbl->tbl = NULL;
602         return -ENOMEM;
603 };
604
605 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
606                                         struct bnxt_qplib_sgid_tbl *sgid_tbl)
607 {
608         int i;
609
610         for (i = 0; i < sgid_tbl->max; i++) {
611                 if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
612                            sizeof(bnxt_qplib_gid_zero)))
613                         bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
614                                             sgid_tbl->tbl[i].vlan_id, true);
615         }
616         memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
617         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
618         memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
619         sgid_tbl->active = 0;
620 }
621
622 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
623                                      struct net_device *netdev)
624 {
625         u32 i;
626
627         for (i = 0; i < sgid_tbl->max; i++)
628                 sgid_tbl->tbl[i].vlan_id = 0xffff;
629
630         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
631 }
632
633 /* PDs */
634 int bnxt_qplib_alloc_pd(struct bnxt_qplib_res  *res, struct bnxt_qplib_pd *pd)
635 {
636         struct bnxt_qplib_pd_tbl *pdt = &res->pd_tbl;
637         u32 bit_num;
638         int rc = 0;
639
640         mutex_lock(&res->pd_tbl_lock);
641         bit_num = find_first_bit(pdt->tbl, pdt->max);
642         if (bit_num == pdt->max) {
643                 rc = -ENOMEM;
644                 goto exit;
645         }
646
647         /* Found unused PD */
648         clear_bit(bit_num, pdt->tbl);
649         pd->id = bit_num;
650 exit:
651         mutex_unlock(&res->pd_tbl_lock);
652         return rc;
653 }
654
655 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
656                           struct bnxt_qplib_pd_tbl *pdt,
657                           struct bnxt_qplib_pd *pd)
658 {
659         int rc = 0;
660
661         mutex_lock(&res->pd_tbl_lock);
662         if (test_and_set_bit(pd->id, pdt->tbl)) {
663                 dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
664                          pd->id);
665                 rc = -EINVAL;
666                 goto exit;
667         }
668         pd->id = 0;
669 exit:
670         mutex_unlock(&res->pd_tbl_lock);
671         return rc;
672 }
673
674 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
675 {
676         kfree(pdt->tbl);
677         pdt->tbl = NULL;
678         pdt->max = 0;
679 }
680
681 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
682                                    struct bnxt_qplib_pd_tbl *pdt,
683                                    u32 max)
684 {
685         u32 bytes;
686
687         bytes = max >> 3;
688         if (!bytes)
689                 bytes = 1;
690         pdt->tbl = kmalloc(bytes, GFP_KERNEL);
691         if (!pdt->tbl)
692                 return -ENOMEM;
693
694         pdt->max = max;
695         memset((u8 *)pdt->tbl, 0xFF, bytes);
696         mutex_init(&res->pd_tbl_lock);
697
698         return 0;
699 }
700
701 /* DPIs */
702 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_res *res,
703                          struct bnxt_qplib_dpi *dpi,
704                          void *app, u8 type)
705 {
706         struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl;
707         struct bnxt_qplib_reg_desc *reg;
708         u32 bit_num;
709         u64 umaddr;
710
711         reg = &dpit->wcreg;
712         mutex_lock(&res->dpi_tbl_lock);
713
714         bit_num = find_first_bit(dpit->tbl, dpit->max);
715         if (bit_num == dpit->max) {
716                 mutex_unlock(&res->dpi_tbl_lock);
717                 return -ENOMEM;
718         }
719
720         /* Found unused DPI */
721         clear_bit(bit_num, dpit->tbl);
722         dpit->app_tbl[bit_num] = app;
723
724         dpi->bit = bit_num;
725         dpi->dpi = bit_num + (reg->offset - dpit->ucreg.offset) / PAGE_SIZE;
726
727         umaddr = reg->bar_base + reg->offset + bit_num * PAGE_SIZE;
728         dpi->umdbr = umaddr;
729
730         switch (type) {
731         case BNXT_QPLIB_DPI_TYPE_KERNEL:
732                 /* privileged dbr was already mapped just initialize it. */
733                 dpi->umdbr = dpit->ucreg.bar_base +
734                              dpit->ucreg.offset + bit_num * PAGE_SIZE;
735                 dpi->dbr = dpit->priv_db;
736                 dpi->dpi = dpi->bit;
737                 break;
738         case BNXT_QPLIB_DPI_TYPE_WC:
739                 dpi->dbr = ioremap_wc(umaddr, PAGE_SIZE);
740                 break;
741         default:
742                 dpi->dbr = ioremap(umaddr, PAGE_SIZE);
743                 break;
744         }
745
746         dpi->type = type;
747         mutex_unlock(&res->dpi_tbl_lock);
748         return 0;
749
750 }
751
752 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
753                            struct bnxt_qplib_dpi *dpi)
754 {
755         struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl;
756
757         mutex_lock(&res->dpi_tbl_lock);
758         if (dpi->dpi && dpi->type != BNXT_QPLIB_DPI_TYPE_KERNEL)
759                 pci_iounmap(res->pdev, dpi->dbr);
760
761         if (test_and_set_bit(dpi->bit, dpit->tbl)) {
762                 dev_warn(&res->pdev->dev,
763                          "Freeing an unused DPI? dpi = %d, bit = %d\n",
764                                 dpi->dpi, dpi->bit);
765                 mutex_unlock(&res->dpi_tbl_lock);
766                 return -EINVAL;
767         }
768         if (dpit->app_tbl)
769                 dpit->app_tbl[dpi->bit] = NULL;
770         memset(dpi, 0, sizeof(*dpi));
771         mutex_unlock(&res->dpi_tbl_lock);
772         return 0;
773 }
774
775 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
776                                     struct bnxt_qplib_dpi_tbl *dpit)
777 {
778         kfree(dpit->tbl);
779         kfree(dpit->app_tbl);
780         dpit->tbl = NULL;
781         dpit->app_tbl = NULL;
782         dpit->max = 0;
783 }
784
785 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res,
786                                     struct bnxt_qplib_dev_attr *dev_attr)
787 {
788         struct bnxt_qplib_dpi_tbl *dpit;
789         struct bnxt_qplib_reg_desc *reg;
790         unsigned long bar_len;
791         u32 dbr_offset;
792         u32 bytes;
793
794         dpit = &res->dpi_tbl;
795         reg = &dpit->wcreg;
796
797         if (!bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
798                 /* Offest should come from L2 driver */
799                 dbr_offset = dev_attr->l2_db_size;
800                 dpit->ucreg.offset = dbr_offset;
801                 dpit->wcreg.offset = dbr_offset;
802         }
803
804         bar_len = pci_resource_len(res->pdev, reg->bar_id);
805         dpit->max = (bar_len - reg->offset) / PAGE_SIZE;
806         if (dev_attr->max_dpi)
807                 dpit->max = min_t(u32, dpit->max, dev_attr->max_dpi);
808
809         dpit->app_tbl = kcalloc(dpit->max,  sizeof(void *), GFP_KERNEL);
810         if (!dpit->app_tbl)
811                 return -ENOMEM;
812
813         bytes = dpit->max >> 3;
814         if (!bytes)
815                 bytes = 1;
816
817         dpit->tbl = kmalloc(bytes, GFP_KERNEL);
818         if (!dpit->tbl) {
819                 kfree(dpit->app_tbl);
820                 dpit->app_tbl = NULL;
821                 return -ENOMEM;
822         }
823
824         memset((u8 *)dpit->tbl, 0xFF, bytes);
825         mutex_init(&res->dpi_tbl_lock);
826         dpit->priv_db = dpit->ucreg.bar_reg + dpit->ucreg.offset;
827
828         return 0;
829
830 }
831
832 /* Stats */
833 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
834                                       struct bnxt_qplib_stats *stats)
835 {
836         if (stats->dma) {
837                 dma_free_coherent(&pdev->dev, stats->size,
838                                   stats->dma, stats->dma_map);
839         }
840         memset(stats, 0, sizeof(*stats));
841         stats->fw_id = -1;
842 }
843
844 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
845                                       struct bnxt_qplib_chip_ctx *cctx,
846                                       struct bnxt_qplib_stats *stats)
847 {
848         memset(stats, 0, sizeof(*stats));
849         stats->fw_id = -1;
850         stats->size = cctx->hw_stats_size;
851         stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
852                                         &stats->dma_map, GFP_KERNEL);
853         if (!stats->dma) {
854                 dev_err(&pdev->dev, "Stats DMA allocation failed\n");
855                 return -ENOMEM;
856         }
857         return 0;
858 }
859
860 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
861 {
862         bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
863 }
864
865 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
866 {
867         bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
868
869         return 0;
870 }
871
872 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
873 {
874         bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
875         bnxt_qplib_free_pd_tbl(&res->pd_tbl);
876         bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
877 }
878
879 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct net_device *netdev)
880 {
881         struct bnxt_qplib_dev_attr *dev_attr;
882         int rc;
883
884         res->netdev = netdev;
885         dev_attr = res->dattr;
886
887         rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
888         if (rc)
889                 goto fail;
890
891         rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
892         if (rc)
893                 goto fail;
894
895         rc = bnxt_qplib_alloc_dpi_tbl(res, dev_attr);
896         if (rc)
897                 goto fail;
898
899         return 0;
900 fail:
901         bnxt_qplib_free_res(res);
902         return rc;
903 }
904
905 void bnxt_qplib_unmap_db_bar(struct bnxt_qplib_res *res)
906 {
907         struct bnxt_qplib_reg_desc *reg;
908
909         reg = &res->dpi_tbl.ucreg;
910         if (reg->bar_reg)
911                 pci_iounmap(res->pdev, reg->bar_reg);
912         reg->bar_reg = NULL;
913         reg->bar_base = 0;
914         reg->len = 0;
915         reg->bar_id = 0;
916 }
917
918 int bnxt_qplib_map_db_bar(struct bnxt_qplib_res *res)
919 {
920         struct bnxt_qplib_reg_desc *ucreg;
921         struct bnxt_qplib_reg_desc *wcreg;
922
923         wcreg = &res->dpi_tbl.wcreg;
924         wcreg->bar_id = RCFW_DBR_PCI_BAR_REGION;
925         wcreg->bar_base = pci_resource_start(res->pdev, wcreg->bar_id);
926
927         ucreg = &res->dpi_tbl.ucreg;
928         ucreg->bar_id = RCFW_DBR_PCI_BAR_REGION;
929         ucreg->bar_base = pci_resource_start(res->pdev, ucreg->bar_id);
930         ucreg->len = ucreg->offset + PAGE_SIZE;
931         if (!ucreg->len || ((ucreg->len & (PAGE_SIZE - 1)) != 0)) {
932                 dev_err(&res->pdev->dev, "QPLIB: invalid dbr length %d",
933                         (int)ucreg->len);
934                 return -EINVAL;
935         }
936         ucreg->bar_reg = ioremap(ucreg->bar_base, ucreg->len);
937         if (!ucreg->bar_reg) {
938                 dev_err(&res->pdev->dev, "privileged dpi map failed!");
939                 return -ENOMEM;
940         }
941
942         return 0;
943 }
944
945 int bnxt_qplib_determine_atomics(struct pci_dev *dev)
946 {
947         int comp;
948         u16 ctl2;
949
950         comp = pci_enable_atomic_ops_to_root(dev,
951                                              PCI_EXP_DEVCAP2_ATOMIC_COMP32);
952         if (comp)
953                 return -EOPNOTSUPP;
954         comp = pci_enable_atomic_ops_to_root(dev,
955                                              PCI_EXP_DEVCAP2_ATOMIC_COMP64);
956         if (comp)
957                 return -EOPNOTSUPP;
958         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
959         return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
960 }
This page took 0.091566 seconds and 4 git commands to generate.