]> Git Repo - linux.git/blob - drivers/iio/humidity/hdc3020.c
Linux 6.14-rc3
[linux.git] / drivers / iio / humidity / hdc3020.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * hdc3020.c - Support for the TI HDC3020,HDC3021 and HDC3022
4  * temperature + relative humidity sensors
5  *
6  * Copyright (C) 2023
7  *
8  * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
9  *
10  * Datasheet: https://www.ti.com/lit/ds/symlink/hdc3020.pdf
11  */
12
13 #include <linux/bitfield.h>
14 #include <linux/bitops.h>
15 #include <linux/cleanup.h>
16 #include <linux/crc8.h>
17 #include <linux/delay.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/i2c.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/math64.h>
23 #include <linux/module.h>
24 #include <linux/mutex.h>
25 #include <linux/pm.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/units.h>
28
29 #include <linux/unaligned.h>
30
31 #include <linux/iio/events.h>
32 #include <linux/iio/iio.h>
33
34 #define HDC3020_S_AUTO_10HZ_MOD0        0x2737
35 #define HDC3020_S_STATUS                0x3041
36 #define HDC3020_HEATER_DISABLE          0x3066
37 #define HDC3020_HEATER_ENABLE           0x306D
38 #define HDC3020_HEATER_CONFIG           0x306E
39 #define HDC3020_EXIT_AUTO               0x3093
40 #define HDC3020_S_T_RH_THRESH_LOW       0x6100
41 #define HDC3020_S_T_RH_THRESH_LOW_CLR   0x610B
42 #define HDC3020_S_T_RH_THRESH_HIGH_CLR  0x6116
43 #define HDC3020_S_T_RH_THRESH_HIGH      0x611D
44 #define HDC3020_R_T_RH_AUTO             0xE000
45 #define HDC3020_R_T_LOW_AUTO            0xE002
46 #define HDC3020_R_T_HIGH_AUTO           0xE003
47 #define HDC3020_R_RH_LOW_AUTO           0xE004
48 #define HDC3020_R_RH_HIGH_AUTO          0xE005
49 #define HDC3020_R_T_RH_THRESH_LOW       0xE102
50 #define HDC3020_R_T_RH_THRESH_LOW_CLR   0xE109
51 #define HDC3020_R_T_RH_THRESH_HIGH_CLR  0xE114
52 #define HDC3020_R_T_RH_THRESH_HIGH      0xE11F
53 #define HDC3020_R_STATUS                0xF32D
54
55 #define HDC3020_THRESH_TEMP_MASK        GENMASK(8, 0)
56 #define HDC3020_THRESH_TEMP_TRUNC_SHIFT 7
57 #define HDC3020_THRESH_HUM_MASK         GENMASK(15, 9)
58 #define HDC3020_THRESH_HUM_TRUNC_SHIFT  9
59
60 #define HDC3020_STATUS_T_LOW_ALERT      BIT(6)
61 #define HDC3020_STATUS_T_HIGH_ALERT     BIT(7)
62 #define HDC3020_STATUS_RH_LOW_ALERT     BIT(8)
63 #define HDC3020_STATUS_RH_HIGH_ALERT    BIT(9)
64
65 #define HDC3020_READ_RETRY_TIMES        10
66 #define HDC3020_BUSY_DELAY_MS           10
67
68 #define HDC3020_CRC8_POLYNOMIAL         0x31
69
70 #define HDC3020_MIN_TEMP_MICRO          -39872968
71 #define HDC3020_MAX_TEMP_MICRO          124875639
72 #define HDC3020_MAX_TEMP_HYST_MICRO     164748607
73 #define HDC3020_MAX_HUM_MICRO           99220264
74
75 struct hdc3020_data {
76         struct i2c_client *client;
77         struct gpio_desc *reset_gpio;
78         struct regulator *vdd_supply;
79         /*
80          * Ensure that the sensor configuration (currently only heater is
81          * supported) will not be changed during the process of reading
82          * sensor data (this driver will try HDC3020_READ_RETRY_TIMES times
83          * if the device does not respond).
84          */
85         struct mutex lock;
86 };
87
88 static const int hdc3020_heater_vals[] = {0, 1, 0x3FFF};
89
90 static const struct iio_event_spec hdc3020_t_rh_event[] = {
91         {
92                 .type = IIO_EV_TYPE_THRESH,
93                 .dir = IIO_EV_DIR_RISING,
94                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
95                 BIT(IIO_EV_INFO_HYSTERESIS),
96         },
97         {
98                 .type = IIO_EV_TYPE_THRESH,
99                 .dir = IIO_EV_DIR_FALLING,
100                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
101                 BIT(IIO_EV_INFO_HYSTERESIS),
102         },
103 };
104
105 static const struct iio_chan_spec hdc3020_channels[] = {
106         {
107                 .type = IIO_TEMP,
108                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
109                 BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
110                 BIT(IIO_CHAN_INFO_TROUGH) | BIT(IIO_CHAN_INFO_OFFSET),
111                 .event_spec = hdc3020_t_rh_event,
112                 .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
113         },
114         {
115                 .type = IIO_HUMIDITYRELATIVE,
116                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
117                 BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
118                 BIT(IIO_CHAN_INFO_TROUGH),
119                 .event_spec = hdc3020_t_rh_event,
120                 .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
121         },
122         {
123                 /*
124                  * For setting the internal heater, which can be switched on to
125                  * prevent or remove any condensation that may develop when the
126                  * ambient environment approaches its dew point temperature.
127                  */
128                 .type = IIO_CURRENT,
129                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
130                 .info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
131                 .output = 1,
132         },
133 };
134
135 DECLARE_CRC8_TABLE(hdc3020_crc8_table);
136
137 static int hdc3020_write_bytes(struct hdc3020_data *data, u8 *buf, u8 len)
138 {
139         struct i2c_client *client = data->client;
140         struct i2c_msg msg;
141         int ret, cnt;
142
143         msg.addr = client->addr;
144         msg.flags = 0;
145         msg.buf = buf;
146         msg.len = len;
147
148         /*
149          * During the measurement process, HDC3020 will not return data.
150          * So wait for a while and try again
151          */
152         for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
153                 ret = i2c_transfer(client->adapter, &msg, 1);
154                 if (ret == 1)
155                         return 0;
156
157                 mdelay(HDC3020_BUSY_DELAY_MS);
158         }
159         dev_err(&client->dev, "Could not write sensor command\n");
160
161         return -ETIMEDOUT;
162 }
163
164 static
165 int hdc3020_read_bytes(struct hdc3020_data *data, u16 reg, u8 *buf, int len)
166 {
167         u8 reg_buf[2];
168         int ret, cnt;
169         struct i2c_client *client = data->client;
170         struct i2c_msg msg[2] = {
171                 [0] = {
172                         .addr = client->addr,
173                         .flags = 0,
174                         .buf = reg_buf,
175                         .len = 2,
176                 },
177                 [1] = {
178                         .addr = client->addr,
179                         .flags = I2C_M_RD,
180                         .buf = buf,
181                         .len = len,
182                 },
183         };
184
185         put_unaligned_be16(reg, reg_buf);
186         /*
187          * During the measurement process, HDC3020 will not return data.
188          * So wait for a while and try again
189          */
190         for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
191                 ret = i2c_transfer(client->adapter, msg, 2);
192                 if (ret == 2)
193                         return 0;
194
195                 mdelay(HDC3020_BUSY_DELAY_MS);
196         }
197         dev_err(&client->dev, "Could not read sensor data\n");
198
199         return -ETIMEDOUT;
200 }
201
202 static int hdc3020_read_be16(struct hdc3020_data *data, u16 reg)
203 {
204         u8 crc, buf[3];
205         int ret;
206
207         ret = hdc3020_read_bytes(data, reg, buf, 3);
208         if (ret < 0)
209                 return ret;
210
211         crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
212         if (crc != buf[2])
213                 return -EINVAL;
214
215         return get_unaligned_be16(buf);
216 }
217
218 static int hdc3020_exec_cmd(struct hdc3020_data *data, u16 reg)
219 {
220         u8 reg_buf[2];
221
222         put_unaligned_be16(reg, reg_buf);
223         return hdc3020_write_bytes(data, reg_buf, 2);
224 }
225
226 static int hdc3020_read_measurement(struct hdc3020_data *data,
227                                     enum iio_chan_type type, int *val)
228 {
229         u8 crc, buf[6];
230         int ret;
231
232         ret = hdc3020_read_bytes(data, HDC3020_R_T_RH_AUTO, buf, 6);
233         if (ret < 0)
234                 return ret;
235
236         /* CRC check of the temperature measurement */
237         crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
238         if (crc != buf[2])
239                 return -EINVAL;
240
241         /* CRC check of the relative humidity measurement */
242         crc = crc8(hdc3020_crc8_table, buf + 3, 2, CRC8_INIT_VALUE);
243         if (crc != buf[5])
244                 return -EINVAL;
245
246         if (type == IIO_TEMP)
247                 *val = get_unaligned_be16(buf);
248         else if (type == IIO_HUMIDITYRELATIVE)
249                 *val = get_unaligned_be16(&buf[3]);
250         else
251                 return -EINVAL;
252
253         return 0;
254 }
255
256 static int hdc3020_read_raw(struct iio_dev *indio_dev,
257                             struct iio_chan_spec const *chan, int *val,
258                             int *val2, long mask)
259 {
260         struct hdc3020_data *data = iio_priv(indio_dev);
261         int ret;
262
263         if (chan->type != IIO_TEMP && chan->type != IIO_HUMIDITYRELATIVE)
264                 return -EINVAL;
265
266         switch (mask) {
267         case IIO_CHAN_INFO_RAW: {
268                 guard(mutex)(&data->lock);
269                 ret = hdc3020_read_measurement(data, chan->type, val);
270                 if (ret < 0)
271                         return ret;
272
273                 return IIO_VAL_INT;
274         }
275         case IIO_CHAN_INFO_PEAK: {
276                 guard(mutex)(&data->lock);
277                 if (chan->type == IIO_TEMP)
278                         ret = hdc3020_read_be16(data, HDC3020_R_T_HIGH_AUTO);
279                 else
280                         ret = hdc3020_read_be16(data, HDC3020_R_RH_HIGH_AUTO);
281
282                 if (ret < 0)
283                         return ret;
284
285                 *val = ret;
286                 return IIO_VAL_INT;
287         }
288         case IIO_CHAN_INFO_TROUGH: {
289                 guard(mutex)(&data->lock);
290                 if (chan->type == IIO_TEMP)
291                         ret = hdc3020_read_be16(data, HDC3020_R_T_LOW_AUTO);
292                 else
293                         ret = hdc3020_read_be16(data, HDC3020_R_RH_LOW_AUTO);
294
295                 if (ret < 0)
296                         return ret;
297
298                 *val = ret;
299                 return IIO_VAL_INT;
300         }
301         case IIO_CHAN_INFO_SCALE:
302                 *val2 = 65536;
303                 if (chan->type == IIO_TEMP)
304                         *val = 175;
305                 else
306                         *val = 100;
307                 return IIO_VAL_FRACTIONAL;
308
309         case IIO_CHAN_INFO_OFFSET:
310                 if (chan->type != IIO_TEMP)
311                         return -EINVAL;
312
313                 *val = -16852;
314                 return IIO_VAL_INT;
315
316         default:
317                 return -EINVAL;
318         }
319 }
320
321 static int hdc3020_read_available(struct iio_dev *indio_dev,
322                                   struct iio_chan_spec const *chan,
323                                   const int **vals,
324                                   int *type, int *length, long mask)
325 {
326         if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_CURRENT)
327                 return -EINVAL;
328
329         *vals = hdc3020_heater_vals;
330         *type = IIO_VAL_INT;
331
332         return IIO_AVAIL_RANGE;
333 }
334
335 static int hdc3020_update_heater(struct hdc3020_data *data, int val)
336 {
337         u8 buf[5];
338         int ret;
339
340         if (val < hdc3020_heater_vals[0] || val > hdc3020_heater_vals[2])
341                 return -EINVAL;
342
343         if (!val)
344                 hdc3020_exec_cmd(data, HDC3020_HEATER_DISABLE);
345
346         put_unaligned_be16(HDC3020_HEATER_CONFIG, buf);
347         put_unaligned_be16(val & GENMASK(13, 0), &buf[2]);
348         buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
349         ret = hdc3020_write_bytes(data, buf, 5);
350         if (ret < 0)
351                 return ret;
352
353         return hdc3020_exec_cmd(data, HDC3020_HEATER_ENABLE);
354 }
355
356 static int hdc3020_write_raw(struct iio_dev *indio_dev,
357                              struct iio_chan_spec const *chan,
358                              int val, int val2, long mask)
359 {
360         struct hdc3020_data *data = iio_priv(indio_dev);
361
362         switch (mask) {
363         case IIO_CHAN_INFO_RAW:
364                 if (chan->type != IIO_CURRENT)
365                         return -EINVAL;
366
367                 guard(mutex)(&data->lock);
368                 return hdc3020_update_heater(data, val);
369         }
370
371         return -EINVAL;
372 }
373
374 static int hdc3020_thresh_get_temp(u16 thresh)
375 {
376         int temp;
377
378         /*
379          * Get the temperature threshold from 9 LSBs, shift them to get
380          * the truncated temperature threshold representation and
381          * calculate the threshold according to the formula in the
382          * datasheet. Result is degree celsius scaled by 65535.
383          */
384         temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) <<
385                HDC3020_THRESH_TEMP_TRUNC_SHIFT;
386
387         return -2949075 + (175 * temp);
388 }
389
390 static int hdc3020_thresh_get_hum(u16 thresh)
391 {
392         int hum;
393
394         /*
395          * Get the humidity threshold from 7 MSBs, shift them to get the
396          * truncated humidity threshold representation and calculate the
397          * threshold according to the formula in the datasheet. Result is
398          * percent scaled by 65535.
399          */
400         hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) <<
401               HDC3020_THRESH_HUM_TRUNC_SHIFT;
402
403         return hum * 100;
404 }
405
406 static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh)
407 {
408         u64 temp;
409         u16 thresh;
410
411         /*
412          * Calculate temperature threshold, shift it down to get the
413          * truncated threshold representation in the 9LSBs while keeping
414          * the current humidity threshold in the 7 MSBs.
415          */
416         temp = (u64)(s_temp + 45000000) * 65535ULL;
417         temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT;
418         thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp);
419         thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) <<
420                   HDC3020_THRESH_HUM_TRUNC_SHIFT);
421
422         return thresh;
423 }
424
425 static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh)
426 {
427         u64 hum;
428         u16 thresh;
429
430         /*
431          * Calculate humidity threshold, shift it down and up to get the
432          * truncated threshold representation in the 7MSBs while keeping
433          * the current temperature threshold in the 9 LSBs.
434          */
435         hum = (u64)(s_hum) * 65535ULL;
436         hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT;
437         thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum);
438         thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh);
439
440         return thresh;
441 }
442
443 static
444 int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir)
445 {
446         s64 s_clr;
447
448         /*
449          * Include directions when calculation the clear value,
450          * since hysteresis is unsigned by definition and the
451          * clear value is an absolute value which is signed.
452          */
453         if (dir == IIO_EV_DIR_RISING)
454                 s_clr = s_thresh - s_hyst;
455         else
456                 s_clr = s_thresh + s_hyst;
457
458         /* Divide by 65535 to get units of micro */
459         return div_s64(s_clr, 65535);
460 }
461
462 static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val)
463 {
464         u8 buf[5];
465
466         put_unaligned_be16(reg, buf);
467         put_unaligned_be16(val, buf + 2);
468         buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
469
470         return hdc3020_write_bytes(data, buf, 5);
471 }
472
473 static int hdc3020_write_thresh(struct iio_dev *indio_dev,
474                                 const struct iio_chan_spec *chan,
475                                 enum iio_event_type type,
476                                 enum iio_event_direction dir,
477                                 enum iio_event_info info,
478                                 int val, int val2)
479 {
480         struct hdc3020_data *data = iio_priv(indio_dev);
481         u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr;
482         s64 s_thresh, s_hyst, s_clr;
483         int s_val, thresh, clr, ret;
484
485         /* Select threshold registers */
486         if (dir == IIO_EV_DIR_RISING) {
487                 reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH;
488                 reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH;
489                 reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR;
490                 reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR;
491         } else {
492                 reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW;
493                 reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW;
494                 reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR;
495                 reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR;
496         }
497
498         guard(mutex)(&data->lock);
499         ret = hdc3020_read_be16(data, reg_thresh_rd);
500         if (ret < 0)
501                 return ret;
502
503         thresh = ret;
504         ret = hdc3020_read_be16(data, reg_clr_rd);
505         if (ret < 0)
506                 return ret;
507
508         clr = ret;
509         /* Scale value to include decimal part into calculations */
510         s_val = (val < 0) ? (val * 1000000 - val2) : (val * 1000000 + val2);
511         switch (chan->type) {
512         case IIO_TEMP:
513                 switch (info) {
514                 case IIO_EV_INFO_VALUE:
515                         s_val = max(s_val, HDC3020_MIN_TEMP_MICRO);
516                         s_val = min(s_val, HDC3020_MAX_TEMP_MICRO);
517                         reg = reg_thresh_wr;
518                         reg_val = hdc3020_thresh_set_temp(s_val, thresh);
519                         ret = _hdc3020_write_thresh(data, reg, reg_val);
520                         if (ret < 0)
521                                 return ret;
522
523                         /* Calculate old hysteresis */
524                         s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
525                         s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000;
526                         s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
527                         /* Set new threshold */
528                         thresh = reg_val;
529                         /* Set old hysteresis */
530                         s_val = s_hyst;
531                         fallthrough;
532                 case IIO_EV_INFO_HYSTERESIS:
533                         /*
534                          * Function hdc3020_thresh_get_temp returns temperature
535                          * in degree celsius scaled by 65535. Scale by 1000000
536                          * to be able to subtract scaled hysteresis value.
537                          */
538                         s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
539                         /*
540                          * Units of s_val are in micro degree celsius, scale by
541                          * 65535 to get same units as s_thresh.
542                          */
543                         s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO);
544                         s_hyst = (s64)s_val * 65535;
545                         s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
546                         s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO);
547                         s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO);
548                         reg = reg_clr_wr;
549                         reg_val = hdc3020_thresh_set_temp(s_clr, clr);
550                         break;
551                 default:
552                         return -EOPNOTSUPP;
553                 }
554                 break;
555         case IIO_HUMIDITYRELATIVE:
556                 s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO);
557                 switch (info) {
558                 case IIO_EV_INFO_VALUE:
559                         reg = reg_thresh_wr;
560                         reg_val = hdc3020_thresh_set_hum(s_val, thresh);
561                         ret = _hdc3020_write_thresh(data, reg, reg_val);
562                         if (ret < 0)
563                                 return ret;
564
565                         /* Calculate old hysteresis */
566                         s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
567                         s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000;
568                         s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
569                         /* Set new threshold */
570                         thresh = reg_val;
571                         /* Try to set old hysteresis */
572                         s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO);
573                         fallthrough;
574                 case IIO_EV_INFO_HYSTERESIS:
575                         /*
576                          * Function hdc3020_thresh_get_hum returns relative
577                          * humidity in percent scaled by 65535. Scale by 1000000
578                          * to be able to subtract scaled hysteresis value.
579                          */
580                         s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
581                         /*
582                          * Units of s_val are in micro percent, scale by 65535
583                          * to get same units as s_thresh.
584                          */
585                         s_hyst = (s64)s_val * 65535;
586                         s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
587                         s_clr = max(s_clr, 0);
588                         s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO);
589                         reg = reg_clr_wr;
590                         reg_val = hdc3020_thresh_set_hum(s_clr, clr);
591                         break;
592                 default:
593                         return -EOPNOTSUPP;
594                 }
595                 break;
596         default:
597                 return -EOPNOTSUPP;
598         }
599
600         return _hdc3020_write_thresh(data, reg, reg_val);
601 }
602
603 static int hdc3020_read_thresh(struct iio_dev *indio_dev,
604                                const struct iio_chan_spec *chan,
605                                enum iio_event_type type,
606                                enum iio_event_direction dir,
607                                enum iio_event_info info,
608                                int *val, int *val2)
609 {
610         struct hdc3020_data *data = iio_priv(indio_dev);
611         u16 reg_thresh, reg_clr;
612         int thresh, clr, ret;
613
614         /* Select threshold registers */
615         if (dir == IIO_EV_DIR_RISING) {
616                 reg_thresh = HDC3020_R_T_RH_THRESH_HIGH;
617                 reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR;
618         } else {
619                 reg_thresh = HDC3020_R_T_RH_THRESH_LOW;
620                 reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR;
621         }
622
623         guard(mutex)(&data->lock);
624         ret = hdc3020_read_be16(data, reg_thresh);
625         if (ret < 0)
626                 return ret;
627
628         switch (chan->type) {
629         case IIO_TEMP:
630                 thresh = hdc3020_thresh_get_temp(ret);
631                 switch (info) {
632                 case IIO_EV_INFO_VALUE:
633                         *val = thresh;
634                         break;
635                 case IIO_EV_INFO_HYSTERESIS:
636                         ret = hdc3020_read_be16(data, reg_clr);
637                         if (ret < 0)
638                                 return ret;
639
640                         clr = hdc3020_thresh_get_temp(ret);
641                         *val = abs(thresh - clr);
642                         break;
643                 default:
644                         return -EOPNOTSUPP;
645                 }
646                 *val2 = 65535;
647                 return IIO_VAL_FRACTIONAL;
648         case IIO_HUMIDITYRELATIVE:
649                 thresh = hdc3020_thresh_get_hum(ret);
650                 switch (info) {
651                 case IIO_EV_INFO_VALUE:
652                         *val = thresh;
653                         break;
654                 case IIO_EV_INFO_HYSTERESIS:
655                         ret = hdc3020_read_be16(data, reg_clr);
656                         if (ret < 0)
657                                 return ret;
658
659                         clr = hdc3020_thresh_get_hum(ret);
660                         *val = abs(thresh - clr);
661                         break;
662                 default:
663                         return -EOPNOTSUPP;
664                 }
665                 *val2 = 65535;
666                 return IIO_VAL_FRACTIONAL;
667         default:
668                 return -EOPNOTSUPP;
669         }
670 }
671
672 static irqreturn_t hdc3020_interrupt_handler(int irq, void *private)
673 {
674         struct iio_dev *indio_dev = private;
675         struct hdc3020_data *data;
676         s64 time;
677         int ret;
678
679         data = iio_priv(indio_dev);
680         ret = hdc3020_read_be16(data, HDC3020_R_STATUS);
681         if (ret < 0)
682                 return IRQ_HANDLED;
683
684         if (!(ret & (HDC3020_STATUS_T_HIGH_ALERT | HDC3020_STATUS_T_LOW_ALERT |
685                 HDC3020_STATUS_RH_HIGH_ALERT | HDC3020_STATUS_RH_LOW_ALERT)))
686                 return IRQ_NONE;
687
688         time = iio_get_time_ns(indio_dev);
689         if (ret & HDC3020_STATUS_T_HIGH_ALERT)
690                 iio_push_event(indio_dev,
691                                IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
692                                                   IIO_NO_MOD,
693                                                   IIO_EV_TYPE_THRESH,
694                                                   IIO_EV_DIR_RISING),
695                                                   time);
696
697         if (ret & HDC3020_STATUS_T_LOW_ALERT)
698                 iio_push_event(indio_dev,
699                                IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
700                                                   IIO_NO_MOD,
701                                                   IIO_EV_TYPE_THRESH,
702                                                   IIO_EV_DIR_FALLING),
703                                                   time);
704
705         if (ret & HDC3020_STATUS_RH_HIGH_ALERT)
706                 iio_push_event(indio_dev,
707                                IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
708                                                   IIO_NO_MOD,
709                                                   IIO_EV_TYPE_THRESH,
710                                                   IIO_EV_DIR_RISING),
711                                                   time);
712
713         if (ret & HDC3020_STATUS_RH_LOW_ALERT)
714                 iio_push_event(indio_dev,
715                                IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
716                                                   IIO_NO_MOD,
717                                                   IIO_EV_TYPE_THRESH,
718                                                   IIO_EV_DIR_FALLING),
719                                                   time);
720
721         return IRQ_HANDLED;
722 }
723
724 static const struct iio_info hdc3020_info = {
725         .read_raw = hdc3020_read_raw,
726         .write_raw = hdc3020_write_raw,
727         .read_avail = hdc3020_read_available,
728         .read_event_value = hdc3020_read_thresh,
729         .write_event_value = hdc3020_write_thresh,
730 };
731
732 static int hdc3020_power_off(struct hdc3020_data *data)
733 {
734         hdc3020_exec_cmd(data, HDC3020_EXIT_AUTO);
735
736         if (data->reset_gpio)
737                 gpiod_set_value_cansleep(data->reset_gpio, 1);
738
739         return regulator_disable(data->vdd_supply);
740 }
741
742 static int hdc3020_power_on(struct hdc3020_data *data)
743 {
744         int ret;
745
746         ret = regulator_enable(data->vdd_supply);
747         if (ret)
748                 return ret;
749
750         fsleep(5000);
751
752         if (data->reset_gpio) {
753                 gpiod_set_value_cansleep(data->reset_gpio, 0);
754                 fsleep(3000);
755         }
756
757         if (data->client->irq) {
758                 /*
759                  * The alert output is activated by default upon power up,
760                  * hardware reset, and soft reset. Clear the status register.
761                  */
762                 ret = hdc3020_exec_cmd(data, HDC3020_S_STATUS);
763                 if (ret) {
764                         hdc3020_power_off(data);
765                         return ret;
766                 }
767         }
768
769         ret = hdc3020_exec_cmd(data, HDC3020_S_AUTO_10HZ_MOD0);
770         if (ret)
771                 hdc3020_power_off(data);
772
773         return ret;
774 }
775
776 static void hdc3020_exit(void *data)
777 {
778         hdc3020_power_off(data);
779 }
780
781 static int hdc3020_probe(struct i2c_client *client)
782 {
783         struct iio_dev *indio_dev;
784         struct hdc3020_data *data;
785         int ret;
786
787         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
788                 return -EOPNOTSUPP;
789
790         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
791         if (!indio_dev)
792                 return -ENOMEM;
793
794         dev_set_drvdata(&client->dev, indio_dev);
795
796         data = iio_priv(indio_dev);
797         data->client = client;
798         mutex_init(&data->lock);
799
800         crc8_populate_msb(hdc3020_crc8_table, HDC3020_CRC8_POLYNOMIAL);
801
802         indio_dev->name = "hdc3020";
803         indio_dev->modes = INDIO_DIRECT_MODE;
804         indio_dev->info = &hdc3020_info;
805         indio_dev->channels = hdc3020_channels;
806         indio_dev->num_channels = ARRAY_SIZE(hdc3020_channels);
807
808         data->vdd_supply = devm_regulator_get(&client->dev, "vdd");
809         if (IS_ERR(data->vdd_supply))
810                 return dev_err_probe(&client->dev, PTR_ERR(data->vdd_supply),
811                                      "Unable to get VDD regulator\n");
812
813         data->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
814                                                    GPIOD_OUT_HIGH);
815         if (IS_ERR(data->reset_gpio))
816                 return dev_err_probe(&client->dev, PTR_ERR(data->reset_gpio),
817                                      "Cannot get reset GPIO\n");
818
819         ret = hdc3020_power_on(data);
820         if (ret)
821                 return dev_err_probe(&client->dev, ret, "Power on failed\n");
822
823         ret = devm_add_action_or_reset(&data->client->dev, hdc3020_exit, data);
824         if (ret)
825                 return ret;
826
827         if (client->irq) {
828                 ret = devm_request_threaded_irq(&client->dev, client->irq,
829                                                 NULL, hdc3020_interrupt_handler,
830                                                 IRQF_ONESHOT, "hdc3020",
831                                                 indio_dev);
832                 if (ret)
833                         return dev_err_probe(&client->dev, ret,
834                                              "Failed to request IRQ\n");
835         }
836
837         ret = devm_iio_device_register(&data->client->dev, indio_dev);
838         if (ret)
839                 return dev_err_probe(&client->dev, ret, "Failed to add device");
840
841         return 0;
842 }
843
844 static int hdc3020_suspend(struct device *dev)
845 {
846         struct iio_dev *iio_dev = dev_get_drvdata(dev);
847         struct hdc3020_data *data = iio_priv(iio_dev);
848
849         return hdc3020_power_off(data);
850 }
851
852 static int hdc3020_resume(struct device *dev)
853 {
854         struct iio_dev *iio_dev = dev_get_drvdata(dev);
855         struct hdc3020_data *data = iio_priv(iio_dev);
856
857         return hdc3020_power_on(data);
858 }
859
860 static DEFINE_SIMPLE_DEV_PM_OPS(hdc3020_pm_ops, hdc3020_suspend, hdc3020_resume);
861
862 static const struct i2c_device_id hdc3020_id[] = {
863         { "hdc3020" },
864         { "hdc3021" },
865         { "hdc3022" },
866         { }
867 };
868 MODULE_DEVICE_TABLE(i2c, hdc3020_id);
869
870 static const struct of_device_id hdc3020_dt_ids[] = {
871         { .compatible = "ti,hdc3020" },
872         { .compatible = "ti,hdc3021" },
873         { .compatible = "ti,hdc3022" },
874         { }
875 };
876 MODULE_DEVICE_TABLE(of, hdc3020_dt_ids);
877
878 static struct i2c_driver hdc3020_driver = {
879         .driver = {
880                 .name = "hdc3020",
881                 .pm = pm_sleep_ptr(&hdc3020_pm_ops),
882                 .of_match_table = hdc3020_dt_ids,
883         },
884         .probe = hdc3020_probe,
885         .id_table = hdc3020_id,
886 };
887 module_i2c_driver(hdc3020_driver);
888
889 MODULE_AUTHOR("Javier Carrasco <[email protected]>");
890 MODULE_AUTHOR("Li peiyu <[email protected]>");
891 MODULE_DESCRIPTION("TI HDC3020 humidity and temperature sensor driver");
892 MODULE_LICENSE("GPL");
This page took 0.076885 seconds and 4 git commands to generate.