]> Git Repo - linux.git/blob - drivers/i2c/busses/i2c-keba.c
Linux 6.14-rc3
[linux.git] / drivers / i2c / busses / i2c-keba.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) KEBA Industrial Automation Gmbh 2024
4  *
5  * Driver for KEBA I2C controller FPGA IP core
6  */
7
8 #include <linux/i2c.h>
9 #include <linux/io.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/misc/keba.h>
13
14 #define KI2C "i2c-keba"
15
16 #define KI2C_CAPABILITY_REG             0x02
17 #define   KI2C_CAPABILITY_CRYPTO        0x01
18 #define   KI2C_CAPABILITY_DC            0x02
19
20 #define KI2C_CONTROL_REG        0x04
21 #define   KI2C_CONTROL_MEN      0x01
22 #define   KI2C_CONTROL_MSTA     0x02
23 #define   KI2C_CONTROL_RSTA     0x04
24 #define   KI2C_CONTROL_MTX      0x08
25 #define   KI2C_CONTROL_TXAK     0x10
26 #define   KI2C_CONTROL_DISABLE  0x00
27
28 #define KI2C_CONTROL_DC_REG     0x05
29 #define   KI2C_CONTROL_DC_SDA   0x01
30 #define   KI2C_CONTROL_DC_SCL   0x02
31
32 #define KI2C_STATUS_REG         0x08
33 #define   KI2C_STATUS_IN_USE    0x01
34 #define   KI2C_STATUS_ACK_CYC   0x02
35 #define   KI2C_STATUS_RXAK      0x04
36 #define   KI2C_STATUS_MCF       0x08
37
38 #define KI2C_STATUS_DC_REG      0x09
39 #define   KI2C_STATUS_DC_SDA    0x01
40 #define   KI2C_STATUS_DC_SCL    0x02
41
42 #define KI2C_DATA_REG           0x0c
43
44 #define KI2C_INUSE_SLEEP_US     (2 * USEC_PER_MSEC)
45 #define KI2C_INUSE_TIMEOUT_US   (10 * USEC_PER_SEC)
46
47 #define KI2C_POLL_DELAY_US      5
48
49 struct ki2c {
50         struct keba_i2c_auxdev *auxdev;
51         void __iomem *base;
52         struct i2c_adapter adapter;
53
54         struct i2c_client **client;
55         int client_size;
56 };
57
58 static int ki2c_inuse_lock(struct ki2c *ki2c)
59 {
60         u8 sts;
61         int ret;
62
63         /*
64          * The I2C controller has an IN_USE bit for locking access to the
65          * controller. This enables the use of I2C controller by other none
66          * Linux processors.
67          *
68          * If the I2C controller is free, then the first read returns
69          * IN_USE == 0. After that the I2C controller is locked and further
70          * reads of IN_USE return 1.
71          *
72          * The I2C controller is unlocked by writing 1 into IN_USE.
73          *
74          * The IN_USE bit acts as a hardware semaphore for the I2C controller.
75          * Poll for semaphore, but sleep while polling to free the CPU.
76          */
77         ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG,
78                                  sts, (sts & KI2C_STATUS_IN_USE) == 0,
79                                  KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US);
80         if (ret)
81                 dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__);
82
83         return ret;
84 }
85
86 static void ki2c_inuse_unlock(struct ki2c *ki2c)
87 {
88         /* unlock the controller by writing 1 into IN_USE */
89         iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG);
90 }
91
92 static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout)
93 {
94         u8 val;
95
96         return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US,
97                                   jiffies_to_usecs(timeout));
98 }
99
100 static int ki2c_wait_for_mcf(struct ki2c *ki2c)
101 {
102         return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF,
103                                  ki2c->adapter.timeout);
104 }
105
106 static int ki2c_wait_for_data(struct ki2c *ki2c)
107 {
108         int ret;
109
110         ret = ki2c_wait_for_mcf(ki2c);
111         if (ret < 0)
112                 return ret;
113
114         return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG,
115                                  KI2C_STATUS_ACK_CYC,
116                                  ki2c->adapter.timeout);
117 }
118
119 static int ki2c_wait_for_data_ack(struct ki2c *ki2c)
120 {
121         unsigned int reg;
122         int ret;
123
124         ret = ki2c_wait_for_data(ki2c);
125         if (ret < 0)
126                 return ret;
127
128         /* RXAK == 0 means ACK reveived */
129         reg = ioread8(ki2c->base + KI2C_STATUS_REG);
130         if (reg & KI2C_STATUS_RXAK)
131                 return -EIO;
132
133         return 0;
134 }
135
136 static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap)
137 {
138         unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG);
139
140         return (reg & cap) != 0;
141 }
142
143 static int ki2c_get_scl(struct ki2c *ki2c)
144 {
145         unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
146
147         /* capability KI2C_CAPABILITY_DC required */
148         return (reg & KI2C_STATUS_DC_SCL) != 0;
149 }
150
151 static int ki2c_get_sda(struct ki2c *ki2c)
152 {
153         unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
154
155         /* capability KI2C_CAPABILITY_DC required */
156         return (reg & KI2C_STATUS_DC_SDA) != 0;
157 }
158
159 static void ki2c_set_scl(struct ki2c *ki2c, int val)
160 {
161         u8 control_dc;
162
163         /* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */
164         control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG);
165         if (val)
166                 control_dc |= KI2C_CONTROL_DC_SCL;
167         else
168                 control_dc &= ~KI2C_CONTROL_DC_SCL;
169         iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG);
170 }
171
172 /*
173  * Resetting bus bitwise is done by checking SDA and applying clock cycles as
174  * long as SDA is low. 9 clock cycles are applied at most.
175  *
176  * Clock cycles are generated and udelay() determines the duration of clock
177  * cycles. Generated clock rate is 100 KHz and so duration of both clock levels
178  * is: delay in ns = (10^6 / 100) / 2
179  */
180 #define KI2C_RECOVERY_CLK_CNT   (9 * 2)
181 #define KI2C_RECOVERY_UDELAY    5
182 static int ki2c_reset_bus_bitwise(struct ki2c *ki2c)
183 {
184         int val = 1;
185         int ret = 0;
186         int i;
187
188         /* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */
189         iowrite8(0, ki2c->base + KI2C_CONTROL_REG);
190
191         /* generate clock cycles */
192         ki2c_set_scl(ki2c, val);
193         udelay(KI2C_RECOVERY_UDELAY);
194         for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) {
195                 if (val) {
196                         /* SCL shouldn't be low here */
197                         if (!ki2c_get_scl(ki2c)) {
198                                 dev_err(&ki2c->auxdev->auxdev.dev,
199                                         "SCL is stuck low!\n");
200                                 ret = -EBUSY;
201                                 break;
202                         }
203
204                         /* break if SDA is high */
205                         if (ki2c_get_sda(ki2c))
206                                 break;
207                 }
208
209                 val = !val;
210                 ki2c_set_scl(ki2c, val);
211                 udelay(KI2C_RECOVERY_UDELAY);
212         }
213
214         if (!ki2c_get_sda(ki2c)) {
215                 dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n");
216                 ret = -EBUSY;
217         }
218
219         /* reenable controller */
220         iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
221
222         return ret;
223 }
224
225 /*
226  * Resetting bus bytewise is done by writing start bit, 9 data bits and stop
227  * bit.
228  *
229  * This is not 100% safe. If target is an EEPROM and a write access was
230  * interrupted during the ACK cycle, this approach might not be able to recover
231  * the bus. The reason is, that after the 9 clock cycles the EEPROM will be in
232  * ACK cycle again and will hold SDA low like it did before the start of the
233  * routine. Furthermore the EEPROM might get written one additional byte with
234  * 0xff into it. Thus, use bitwise approach whenever possible, especially when
235  * EEPROMs are on the bus.
236  */
237 static int ki2c_reset_bus_bytewise(struct ki2c *ki2c)
238 {
239         int ret;
240
241         /* hold data line high for 9 clock cycles */
242         iowrite8(0xFF, ki2c->base + KI2C_DATA_REG);
243
244         /* create start condition */
245         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
246                  ki2c->base + KI2C_CONTROL_REG);
247         ret = ki2c_wait_for_mcf(ki2c);
248         if (ret < 0) {
249                 dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n");
250
251                 return ret;
252         }
253
254         /* create stop condition */
255         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK,
256                  ki2c->base + KI2C_CONTROL_REG);
257         ret = ki2c_wait_for_mcf(ki2c);
258         if (ret < 0)
259                 dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n");
260
261         return ret;
262 }
263
264 static int ki2c_reset_bus(struct ki2c *ki2c)
265 {
266         int ret;
267
268         ret = ki2c_inuse_lock(ki2c);
269         if (ret < 0)
270                 return ret;
271
272         /*
273          * If the I2C controller is capable of direct control of SCL/SDA, then a
274          * bitwise reset is used. Otherwise fall back to bytewise reset.
275          */
276         if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC))
277                 ret = ki2c_reset_bus_bitwise(ki2c);
278         else
279                 ret = ki2c_reset_bus_bytewise(ki2c);
280
281         ki2c_inuse_unlock(ki2c);
282
283         return ret;
284 }
285
286 static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m)
287 {
288         u8 addr;
289
290         addr = m->addr << 1;
291         /* Bit 0 signals RD/WR */
292         if (m->flags & I2C_M_RD)
293                 addr |= 0x01;
294
295         iowrite8(addr, ki2c->base + KI2C_DATA_REG);
296 }
297
298 static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m)
299 {
300         int ret;
301
302         /*
303          * Store target address byte in the controller. This has to be done
304          * before sending START condition.
305          */
306         ki2c_write_target_addr(ki2c, m);
307
308         /* enable controller for TX */
309         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX,
310                  ki2c->base + KI2C_CONTROL_REG);
311
312         /* send START condition and target address byte */
313         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA,
314                  ki2c->base + KI2C_CONTROL_REG);
315
316         ret = ki2c_wait_for_data_ack(ki2c);
317         if (ret < 0)
318                 /*
319                  * For EEPROMs this is normal behavior during internal write
320                  * operation.
321                  */
322                 dev_dbg(&ki2c->auxdev->auxdev.dev,
323                         "%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
324
325         return ret;
326 }
327
328 static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m)
329 {
330         int ret;
331
332         /* repeated start and write is not supported */
333         if ((m->flags & I2C_M_RD) == 0) {
334                 dev_err(&ki2c->auxdev->auxdev.dev,
335                         "Repeated start not supported for writes\n");
336                 return -EINVAL;
337         }
338
339         /* send repeated start */
340         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA,
341                  ki2c->base + KI2C_CONTROL_REG);
342
343         ret = ki2c_wait_for_mcf(ki2c);
344         if (ret < 0) {
345                 dev_err(&ki2c->auxdev->auxdev.dev,
346                         "%s wait for MCF err at 0x%02x!\n", __func__, m->addr);
347                 return ret;
348         }
349
350         /* write target-address byte */
351         ki2c_write_target_addr(ki2c, m);
352
353         ret = ki2c_wait_for_data_ack(ki2c);
354         if (ret < 0)
355                 dev_err(&ki2c->auxdev->auxdev.dev,
356                         "%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
357
358         return ret;
359 }
360
361 static void ki2c_stop(struct ki2c *ki2c)
362 {
363         iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
364         ki2c_wait_for_mcf(ki2c);
365 }
366
367 static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len)
368 {
369         int ret;
370         int i;
371
372         for (i = 0; i < len; i++) {
373                 /* write data byte */
374                 iowrite8(data[i], ki2c->base + KI2C_DATA_REG);
375
376                 ret = ki2c_wait_for_data_ack(ki2c);
377                 if (ret < 0)
378                         return ret;
379         }
380
381         return 0;
382 }
383
384 static int ki2c_read(struct ki2c *ki2c, u8 *data, int len)
385 {
386         u8 control;
387         int ret;
388         int i;
389
390         if (len == 0)
391                 return 0;       /* nothing to do */
392
393         control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA;
394
395         /* if just one byte => send tx-nack after transfer */
396         if (len == 1)
397                 control |= KI2C_CONTROL_TXAK;
398
399         iowrite8(control, ki2c->base + KI2C_CONTROL_REG);
400
401         /* dummy read to start transfer on bus */
402         ioread8(ki2c->base + KI2C_DATA_REG);
403
404         for (i = 0; i < len; i++) {
405                 ret = ki2c_wait_for_data(ki2c);
406                 if (ret < 0)
407                         return ret;
408
409                 if (i == len - 2)
410                         /* send tx-nack after transfer of last byte */
411                         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
412                                  ki2c->base + KI2C_CONTROL_REG);
413                 else if (i == len - 1)
414                         /*
415                          * switch to TX on last byte, so that reading DATA
416                          * register does not trigger another read transfer
417                          */
418                         iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX,
419                                  ki2c->base + KI2C_CONTROL_REG);
420
421                 /* read byte and start next transfer (if not last byte) */
422                 data[i] = ioread8(ki2c->base + KI2C_DATA_REG);
423         }
424
425         return len;
426 }
427
428 static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
429 {
430         struct ki2c *ki2c = i2c_get_adapdata(adap);
431         int ret;
432         int i;
433
434         ret = ki2c_inuse_lock(ki2c);
435         if (ret < 0)
436                 return ret;
437
438         for (i = 0; i < num; i++) {
439                 struct i2c_msg *m = &msgs[i];
440
441                 if (i == 0)
442                         ret = ki2c_start_addr(ki2c, m);
443                 else
444                         ret = ki2c_repstart_addr(ki2c, m);
445                 if (ret < 0)
446                         break;
447
448                 if (m->flags & I2C_M_RD)
449                         ret = ki2c_read(ki2c, m->buf, m->len);
450                 else
451                         ret = ki2c_write(ki2c, m->buf, m->len);
452                 if (ret < 0)
453                         break;
454         }
455
456         ki2c_stop(ki2c);
457
458         ki2c_inuse_unlock(ki2c);
459
460         return ret < 0 ? ret : num;
461 }
462
463 static void ki2c_unregister_devices(struct ki2c *ki2c)
464 {
465         int i;
466
467         for (i = 0; i < ki2c->client_size; i++)
468                 i2c_unregister_device(ki2c->client[i]);
469 }
470
471 static int ki2c_register_devices(struct ki2c *ki2c)
472 {
473         struct i2c_board_info *info = ki2c->auxdev->info;
474         int i;
475
476         /* register all known I2C devices */
477         for (i = 0; i < ki2c->client_size; i++) {
478                 struct i2c_client *client;
479                 unsigned short const addr_list[2] = { info[i].addr,
480                                                       I2C_CLIENT_END };
481
482                 client = i2c_new_scanned_device(&ki2c->adapter, &info[i],
483                                                 addr_list, NULL);
484                 if (!IS_ERR(client)) {
485                         ki2c->client[i] = client;
486                 } else if (PTR_ERR(client) != -ENODEV) {
487                         ki2c->client_size = i;
488                         ki2c_unregister_devices(ki2c);
489
490                         return PTR_ERR(client);
491                 }
492         }
493
494         return 0;
495 }
496
497 static u32 ki2c_func(struct i2c_adapter *adap)
498 {
499         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
500 }
501
502 static const struct i2c_algorithm ki2c_algo = {
503         .master_xfer   = ki2c_xfer,
504         .functionality = ki2c_func,
505 };
506
507 static int ki2c_probe(struct auxiliary_device *auxdev,
508                       const struct auxiliary_device_id *id)
509 {
510         struct device *dev = &auxdev->dev;
511         struct i2c_adapter *adap;
512         struct ki2c *ki2c;
513         int ret;
514
515         ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL);
516         if (!ki2c)
517                 return -ENOMEM;
518         ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev);
519         ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size,
520                                     sizeof(*ki2c->client), GFP_KERNEL);
521         if (!ki2c->client)
522                 return -ENOMEM;
523         ki2c->client_size = ki2c->auxdev->info_size;
524         auxiliary_set_drvdata(auxdev, ki2c);
525
526         ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io);
527         if (IS_ERR(ki2c->base))
528                 return PTR_ERR(ki2c->base);
529
530         adap = &ki2c->adapter;
531         strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name));
532         adap->owner = THIS_MODULE;
533         adap->class = I2C_CLASS_HWMON;
534         adap->algo = &ki2c_algo;
535         adap->dev.parent = dev;
536
537         i2c_set_adapdata(adap, ki2c);
538
539         /* enable controller */
540         iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
541
542         /* reset bus before probing I2C devices */
543         ret = ki2c_reset_bus(ki2c);
544         if (ret)
545                 goto out;
546
547         ret = devm_i2c_add_adapter(dev, adap);
548         if (ret) {
549                 dev_err(dev, "Failed to add adapter (%d)!\n", ret);
550                 goto out;
551         }
552
553         ret = ki2c_register_devices(ki2c);
554         if (ret) {
555                 dev_err(dev, "Failed to register devices (%d)!\n", ret);
556                 goto out;
557         }
558
559         return 0;
560
561 out:
562         iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
563         return ret;
564 }
565
566 static void ki2c_remove(struct auxiliary_device *auxdev)
567 {
568         struct ki2c *ki2c = auxiliary_get_drvdata(auxdev);
569
570         ki2c_unregister_devices(ki2c);
571
572         /* disable controller */
573         iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
574
575         auxiliary_set_drvdata(auxdev, NULL);
576 }
577
578 static const struct auxiliary_device_id ki2c_devtype_aux[] = {
579         { .name = "keba.i2c" },
580         { }
581 };
582 MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux);
583
584 static struct auxiliary_driver ki2c_driver_aux = {
585         .name = KI2C,
586         .id_table = ki2c_devtype_aux,
587         .probe = ki2c_probe,
588         .remove = ki2c_remove,
589 };
590 module_auxiliary_driver(ki2c_driver_aux);
591
592 MODULE_AUTHOR("Gerhard Engleder <[email protected]>");
593 MODULE_DESCRIPTION("KEBA I2C bus controller driver");
594 MODULE_LICENSE("GPL");
This page took 0.063876 seconds and 4 git commands to generate.