]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c
Linux 6.14-rc3
[linux.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138         struct intel_engine_cs base;
139         struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144                    unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148                     unsigned int num_siblings,
149                     unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)    \
162         ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER     BIT(0)
169 #define SCHED_STATE_DESTROYED                           BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE                     BIT(2)
171 #define SCHED_STATE_BANNED                              BIT(3)
172 #define SCHED_STATE_ENABLED                             BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE                      BIT(5)
174 #define SCHED_STATE_REGISTERED                          BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED                     BIT(7)
176 #define SCHED_STATE_CLOSED                              BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT                       9
178 #define SCHED_STATE_BLOCKED             BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK        (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183         lockdep_assert_held(&ce->guc_state.lock);
184         ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193         (SCHED_STATE_BLOCKED_MASK | \
194          SCHED_STATE_CLOSED | \
195          SCHED_STATE_REGISTERED)
196
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200         return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206         return ce->guc_state.sched_state &
207                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213         lockdep_assert_held(&ce->guc_state.lock);
214         ce->guc_state.sched_state |=
215                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221         lockdep_assert_held(&ce->guc_state.lock);
222         ce->guc_state.sched_state &=
223                 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229         return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235         lockdep_assert_held(&ce->guc_state.lock);
236         ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline void
240 clr_context_destroyed(struct intel_context *ce)
241 {
242         lockdep_assert_held(&ce->guc_state.lock);
243         ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED;
244 }
245
246 static inline bool context_pending_disable(struct intel_context *ce)
247 {
248         return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
249 }
250
251 static inline void set_context_pending_disable(struct intel_context *ce)
252 {
253         lockdep_assert_held(&ce->guc_state.lock);
254         ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
255 }
256
257 static inline void clr_context_pending_disable(struct intel_context *ce)
258 {
259         lockdep_assert_held(&ce->guc_state.lock);
260         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
261 }
262
263 static inline bool context_banned(struct intel_context *ce)
264 {
265         return ce->guc_state.sched_state & SCHED_STATE_BANNED;
266 }
267
268 static inline void set_context_banned(struct intel_context *ce)
269 {
270         lockdep_assert_held(&ce->guc_state.lock);
271         ce->guc_state.sched_state |= SCHED_STATE_BANNED;
272 }
273
274 static inline void clr_context_banned(struct intel_context *ce)
275 {
276         lockdep_assert_held(&ce->guc_state.lock);
277         ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
278 }
279
280 static inline bool context_enabled(struct intel_context *ce)
281 {
282         return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
283 }
284
285 static inline void set_context_enabled(struct intel_context *ce)
286 {
287         lockdep_assert_held(&ce->guc_state.lock);
288         ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
289 }
290
291 static inline void clr_context_enabled(struct intel_context *ce)
292 {
293         lockdep_assert_held(&ce->guc_state.lock);
294         ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
295 }
296
297 static inline bool context_pending_enable(struct intel_context *ce)
298 {
299         return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
300 }
301
302 static inline void set_context_pending_enable(struct intel_context *ce)
303 {
304         lockdep_assert_held(&ce->guc_state.lock);
305         ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
306 }
307
308 static inline void clr_context_pending_enable(struct intel_context *ce)
309 {
310         lockdep_assert_held(&ce->guc_state.lock);
311         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
312 }
313
314 static inline bool context_registered(struct intel_context *ce)
315 {
316         return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
317 }
318
319 static inline void set_context_registered(struct intel_context *ce)
320 {
321         lockdep_assert_held(&ce->guc_state.lock);
322         ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
323 }
324
325 static inline void clr_context_registered(struct intel_context *ce)
326 {
327         lockdep_assert_held(&ce->guc_state.lock);
328         ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
329 }
330
331 static inline bool context_policy_required(struct intel_context *ce)
332 {
333         return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
334 }
335
336 static inline void set_context_policy_required(struct intel_context *ce)
337 {
338         lockdep_assert_held(&ce->guc_state.lock);
339         ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
340 }
341
342 static inline void clr_context_policy_required(struct intel_context *ce)
343 {
344         lockdep_assert_held(&ce->guc_state.lock);
345         ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
346 }
347
348 static inline bool context_close_done(struct intel_context *ce)
349 {
350         return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
351 }
352
353 static inline void set_context_close_done(struct intel_context *ce)
354 {
355         lockdep_assert_held(&ce->guc_state.lock);
356         ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
357 }
358
359 static inline u32 context_blocked(struct intel_context *ce)
360 {
361         return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
362                 SCHED_STATE_BLOCKED_SHIFT;
363 }
364
365 static inline void incr_context_blocked(struct intel_context *ce)
366 {
367         lockdep_assert_held(&ce->guc_state.lock);
368
369         ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
370
371         GEM_BUG_ON(!context_blocked(ce));       /* Overflow check */
372 }
373
374 static inline void decr_context_blocked(struct intel_context *ce)
375 {
376         lockdep_assert_held(&ce->guc_state.lock);
377
378         GEM_BUG_ON(!context_blocked(ce));       /* Underflow check */
379
380         ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
381 }
382
383 static struct intel_context *
384 request_to_scheduling_context(struct i915_request *rq)
385 {
386         return intel_context_to_parent(rq->context);
387 }
388
389 static inline bool context_guc_id_invalid(struct intel_context *ce)
390 {
391         return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
392 }
393
394 static inline void set_context_guc_id_invalid(struct intel_context *ce)
395 {
396         ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
397 }
398
399 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
400 {
401         return gt_to_guc(ce->engine->gt);
402 }
403
404 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
405 {
406         return rb_entry(rb, struct i915_priolist, node);
407 }
408
409 /*
410  * When using multi-lrc submission a scratch memory area is reserved in the
411  * parent's context state for the process descriptor, work queue, and handshake
412  * between the parent + children contexts to insert safe preemption points
413  * between each of the BBs. Currently the scratch area is sized to a page.
414  *
415  * The layout of this scratch area is below:
416  * 0                                            guc_process_desc
417  * + sizeof(struct guc_process_desc)            child go
418  * + CACHELINE_BYTES                            child join[0]
419  * ...
420  * + CACHELINE_BYTES                            child join[n - 1]
421  * ...                                          unused
422  * PARENT_SCRATCH_SIZE / 2                      work queue start
423  * ...                                          work queue
424  * PARENT_SCRATCH_SIZE - 1                      work queue end
425  */
426 #define WQ_SIZE                 (PARENT_SCRATCH_SIZE / 2)
427 #define WQ_OFFSET               (PARENT_SCRATCH_SIZE - WQ_SIZE)
428
429 struct sync_semaphore {
430         u32 semaphore;
431         u8 unused[CACHELINE_BYTES - sizeof(u32)];
432 };
433
434 struct parent_scratch {
435         union guc_descs {
436                 struct guc_sched_wq_desc wq_desc;
437                 struct guc_process_desc_v69 pdesc;
438         } descs;
439
440         struct sync_semaphore go;
441         struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
442
443         u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
444                 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
445
446         u32 wq[WQ_SIZE / sizeof(u32)];
447 };
448
449 static u32 __get_parent_scratch_offset(struct intel_context *ce)
450 {
451         GEM_BUG_ON(!ce->parallel.guc.parent_page);
452
453         return ce->parallel.guc.parent_page * PAGE_SIZE;
454 }
455
456 static u32 __get_wq_offset(struct intel_context *ce)
457 {
458         BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
459
460         return __get_parent_scratch_offset(ce) + WQ_OFFSET;
461 }
462
463 static struct parent_scratch *
464 __get_parent_scratch(struct intel_context *ce)
465 {
466         BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
467         BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
468
469         /*
470          * Need to subtract LRC_STATE_OFFSET here as the
471          * parallel.guc.parent_page is the offset into ce->state while
472          * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
473          */
474         return (struct parent_scratch *)
475                 (ce->lrc_reg_state +
476                  ((__get_parent_scratch_offset(ce) -
477                    LRC_STATE_OFFSET) / sizeof(u32)));
478 }
479
480 static struct guc_process_desc_v69 *
481 __get_process_desc_v69(struct intel_context *ce)
482 {
483         struct parent_scratch *ps = __get_parent_scratch(ce);
484
485         return &ps->descs.pdesc;
486 }
487
488 static struct guc_sched_wq_desc *
489 __get_wq_desc_v70(struct intel_context *ce)
490 {
491         struct parent_scratch *ps = __get_parent_scratch(ce);
492
493         return &ps->descs.wq_desc;
494 }
495
496 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
497 {
498         /*
499          * Check for space in work queue. Caching a value of head pointer in
500          * intel_context structure in order reduce the number accesses to shared
501          * GPU memory which may be across a PCIe bus.
502          */
503 #define AVAILABLE_SPACE \
504         CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
505         if (wqi_size > AVAILABLE_SPACE) {
506                 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
507
508                 if (wqi_size > AVAILABLE_SPACE)
509                         return NULL;
510         }
511 #undef AVAILABLE_SPACE
512
513         return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
514 }
515
516 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
517 {
518         struct intel_context *ce = xa_load(&guc->context_lookup, id);
519
520         GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
521
522         return ce;
523 }
524
525 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
526 {
527         struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
528
529         if (!base)
530                 return NULL;
531
532         GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
533
534         return &base[index];
535 }
536
537 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
538 {
539         u32 size;
540         int ret;
541
542         size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
543                           GUC_MAX_CONTEXT_ID);
544         ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
545                                              (void **)&guc->lrc_desc_pool_vaddr_v69);
546         if (ret)
547                 return ret;
548
549         return 0;
550 }
551
552 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
553 {
554         if (!guc->lrc_desc_pool_vaddr_v69)
555                 return;
556
557         guc->lrc_desc_pool_vaddr_v69 = NULL;
558         i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
559 }
560
561 static inline bool guc_submission_initialized(struct intel_guc *guc)
562 {
563         return guc->submission_initialized;
564 }
565
566 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
567 {
568         struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
569
570         if (desc)
571                 memset(desc, 0, sizeof(*desc));
572 }
573
574 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
575 {
576         return __get_context(guc, id);
577 }
578
579 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
580                                       struct intel_context *ce)
581 {
582         unsigned long flags;
583
584         /*
585          * xarray API doesn't have xa_save_irqsave wrapper, so calling the
586          * lower level functions directly.
587          */
588         xa_lock_irqsave(&guc->context_lookup, flags);
589         __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
590         xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592
593 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
594 {
595         unsigned long flags;
596
597         if (unlikely(!guc_submission_initialized(guc)))
598                 return;
599
600         _reset_lrc_desc_v69(guc, id);
601
602         /*
603          * xarray API doesn't have xa_erase_irqsave wrapper, so calling
604          * the lower level functions directly.
605          */
606         xa_lock_irqsave(&guc->context_lookup, flags);
607         __xa_erase(&guc->context_lookup, id);
608         xa_unlock_irqrestore(&guc->context_lookup, flags);
609 }
610
611 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
612 {
613         if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
614                 wake_up_all(&guc->ct.wq);
615 }
616
617 static int guc_submission_send_busy_loop(struct intel_guc *guc,
618                                          const u32 *action,
619                                          u32 len,
620                                          u32 g2h_len_dw,
621                                          bool loop)
622 {
623         int ret;
624
625         /*
626          * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
627          * so we don't handle the case where we don't get a reply because we
628          * aborted the send due to the channel being busy.
629          */
630         GEM_BUG_ON(g2h_len_dw && !loop);
631
632         if (g2h_len_dw)
633                 atomic_inc(&guc->outstanding_submission_g2h);
634
635         ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
636         if (ret)
637                 atomic_dec(&guc->outstanding_submission_g2h);
638
639         return ret;
640 }
641
642 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
643                                    atomic_t *wait_var,
644                                    bool interruptible,
645                                    long timeout)
646 {
647         const int state = interruptible ?
648                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
649         DEFINE_WAIT(wait);
650
651         might_sleep();
652         GEM_BUG_ON(timeout < 0);
653
654         if (!atomic_read(wait_var))
655                 return 0;
656
657         if (!timeout)
658                 return -ETIME;
659
660         for (;;) {
661                 prepare_to_wait(&guc->ct.wq, &wait, state);
662
663                 if (!atomic_read(wait_var))
664                         break;
665
666                 if (signal_pending_state(state, current)) {
667                         timeout = -EINTR;
668                         break;
669                 }
670
671                 if (!timeout) {
672                         timeout = -ETIME;
673                         break;
674                 }
675
676                 timeout = io_schedule_timeout(timeout);
677         }
678         finish_wait(&guc->ct.wq, &wait);
679
680         return (timeout < 0) ? timeout : 0;
681 }
682
683 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
684 {
685         if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
686                 return 0;
687
688         return intel_guc_wait_for_pending_msg(guc,
689                                               &guc->outstanding_submission_g2h,
690                                               true, timeout);
691 }
692
693 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
694 static int try_context_registration(struct intel_context *ce, bool loop);
695
696 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
697 {
698         int err = 0;
699         struct intel_context *ce = request_to_scheduling_context(rq);
700         u32 action[3];
701         int len = 0;
702         u32 g2h_len_dw = 0;
703         bool enabled;
704
705         lockdep_assert_held(&rq->engine->sched_engine->lock);
706
707         /*
708          * Corner case where requests were sitting in the priority list or a
709          * request resubmitted after the context was banned.
710          */
711         if (unlikely(!intel_context_is_schedulable(ce))) {
712                 i915_request_put(i915_request_mark_eio(rq));
713                 intel_engine_signal_breadcrumbs(ce->engine);
714                 return 0;
715         }
716
717         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
718         GEM_BUG_ON(context_guc_id_invalid(ce));
719
720         if (context_policy_required(ce)) {
721                 err = guc_context_policy_init_v70(ce, false);
722                 if (err)
723                         return err;
724         }
725
726         spin_lock(&ce->guc_state.lock);
727
728         /*
729          * The request / context will be run on the hardware when scheduling
730          * gets enabled in the unblock. For multi-lrc we still submit the
731          * context to move the LRC tails.
732          */
733         if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
734                 goto out;
735
736         enabled = context_enabled(ce) || context_blocked(ce);
737
738         if (!enabled) {
739                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
740                 action[len++] = ce->guc_id.id;
741                 action[len++] = GUC_CONTEXT_ENABLE;
742                 set_context_pending_enable(ce);
743                 intel_context_get(ce);
744                 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
745         } else {
746                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
747                 action[len++] = ce->guc_id.id;
748         }
749
750         err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
751         if (!enabled && !err) {
752                 trace_intel_context_sched_enable(ce);
753                 atomic_inc(&guc->outstanding_submission_g2h);
754                 set_context_enabled(ce);
755
756                 /*
757                  * Without multi-lrc KMD does the submission step (moving the
758                  * lrc tail) so enabling scheduling is sufficient to submit the
759                  * context. This isn't the case in multi-lrc submission as the
760                  * GuC needs to move the tails, hence the need for another H2G
761                  * to submit a multi-lrc context after enabling scheduling.
762                  */
763                 if (intel_context_is_parent(ce)) {
764                         action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
765                         err = intel_guc_send_nb(guc, action, len - 1, 0);
766                 }
767         } else if (!enabled) {
768                 clr_context_pending_enable(ce);
769                 intel_context_put(ce);
770         }
771         if (likely(!err))
772                 trace_i915_request_guc_submit(rq);
773
774 out:
775         spin_unlock(&ce->guc_state.lock);
776         return err;
777 }
778
779 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
780 {
781         int ret = __guc_add_request(guc, rq);
782
783         if (unlikely(ret == -EBUSY)) {
784                 guc->stalled_request = rq;
785                 guc->submission_stall_reason = STALL_ADD_REQUEST;
786         }
787
788         return ret;
789 }
790
791 static inline void guc_set_lrc_tail(struct i915_request *rq)
792 {
793         rq->context->lrc_reg_state[CTX_RING_TAIL] =
794                 intel_ring_set_tail(rq->ring, rq->tail);
795 }
796
797 static inline int rq_prio(const struct i915_request *rq)
798 {
799         return rq->sched.attr.priority;
800 }
801
802 static bool is_multi_lrc_rq(struct i915_request *rq)
803 {
804         return intel_context_is_parallel(rq->context);
805 }
806
807 static bool can_merge_rq(struct i915_request *rq,
808                          struct i915_request *last)
809 {
810         return request_to_scheduling_context(rq) ==
811                 request_to_scheduling_context(last);
812 }
813
814 static u32 wq_space_until_wrap(struct intel_context *ce)
815 {
816         return (WQ_SIZE - ce->parallel.guc.wqi_tail);
817 }
818
819 static void write_wqi(struct intel_context *ce, u32 wqi_size)
820 {
821         BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
822
823         /*
824          * Ensure WQI are visible before updating tail
825          */
826         intel_guc_write_barrier(ce_to_guc(ce));
827
828         ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
829                 (WQ_SIZE - 1);
830         WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
831 }
832
833 static int guc_wq_noop_append(struct intel_context *ce)
834 {
835         u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
836         u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
837
838         if (!wqi)
839                 return -EBUSY;
840
841         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
842
843         *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
844                 FIELD_PREP(WQ_LEN_MASK, len_dw);
845         ce->parallel.guc.wqi_tail = 0;
846
847         return 0;
848 }
849
850 static int __guc_wq_item_append(struct i915_request *rq)
851 {
852         struct intel_context *ce = request_to_scheduling_context(rq);
853         struct intel_context *child;
854         unsigned int wqi_size = (ce->parallel.number_children + 4) *
855                 sizeof(u32);
856         u32 *wqi;
857         u32 len_dw = (wqi_size / sizeof(u32)) - 1;
858         int ret;
859
860         /* Ensure context is in correct state updating work queue */
861         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
862         GEM_BUG_ON(context_guc_id_invalid(ce));
863         GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
864         GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
865
866         /* Insert NOOP if this work queue item will wrap the tail pointer. */
867         if (wqi_size > wq_space_until_wrap(ce)) {
868                 ret = guc_wq_noop_append(ce);
869                 if (ret)
870                         return ret;
871         }
872
873         wqi = get_wq_pointer(ce, wqi_size);
874         if (!wqi)
875                 return -EBUSY;
876
877         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
878
879         *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
880                 FIELD_PREP(WQ_LEN_MASK, len_dw);
881         *wqi++ = ce->lrc.lrca;
882         *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
883                FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
884         *wqi++ = 0;     /* fence_id */
885         for_each_child(ce, child)
886                 *wqi++ = child->ring->tail / sizeof(u64);
887
888         write_wqi(ce, wqi_size);
889
890         return 0;
891 }
892
893 static int guc_wq_item_append(struct intel_guc *guc,
894                               struct i915_request *rq)
895 {
896         struct intel_context *ce = request_to_scheduling_context(rq);
897         int ret;
898
899         if (unlikely(!intel_context_is_schedulable(ce)))
900                 return 0;
901
902         ret = __guc_wq_item_append(rq);
903         if (unlikely(ret == -EBUSY)) {
904                 guc->stalled_request = rq;
905                 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
906         }
907
908         return ret;
909 }
910
911 static bool multi_lrc_submit(struct i915_request *rq)
912 {
913         struct intel_context *ce = request_to_scheduling_context(rq);
914
915         intel_ring_set_tail(rq->ring, rq->tail);
916
917         /*
918          * We expect the front end (execbuf IOCTL) to set this flag on the last
919          * request generated from a multi-BB submission. This indicates to the
920          * backend (GuC interface) that we should submit this context thus
921          * submitting all the requests generated in parallel.
922          */
923         return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
924                !intel_context_is_schedulable(ce);
925 }
926
927 static int guc_dequeue_one_context(struct intel_guc *guc)
928 {
929         struct i915_sched_engine * const sched_engine = guc->sched_engine;
930         struct i915_request *last = NULL;
931         bool submit = false;
932         struct rb_node *rb;
933         int ret;
934
935         lockdep_assert_held(&sched_engine->lock);
936
937         if (guc->stalled_request) {
938                 submit = true;
939                 last = guc->stalled_request;
940
941                 switch (guc->submission_stall_reason) {
942                 case STALL_REGISTER_CONTEXT:
943                         goto register_context;
944                 case STALL_MOVE_LRC_TAIL:
945                         goto move_lrc_tail;
946                 case STALL_ADD_REQUEST:
947                         goto add_request;
948                 default:
949                         MISSING_CASE(guc->submission_stall_reason);
950                 }
951         }
952
953         while ((rb = rb_first_cached(&sched_engine->queue))) {
954                 struct i915_priolist *p = to_priolist(rb);
955                 struct i915_request *rq, *rn;
956
957                 priolist_for_each_request_consume(rq, rn, p) {
958                         if (last && !can_merge_rq(rq, last))
959                                 goto register_context;
960
961                         list_del_init(&rq->sched.link);
962
963                         __i915_request_submit(rq);
964
965                         trace_i915_request_in(rq, 0);
966                         last = rq;
967
968                         if (is_multi_lrc_rq(rq)) {
969                                 /*
970                                  * We need to coalesce all multi-lrc requests in
971                                  * a relationship into a single H2G. We are
972                                  * guaranteed that all of these requests will be
973                                  * submitted sequentially.
974                                  */
975                                 if (multi_lrc_submit(rq)) {
976                                         submit = true;
977                                         goto register_context;
978                                 }
979                         } else {
980                                 submit = true;
981                         }
982                 }
983
984                 rb_erase_cached(&p->node, &sched_engine->queue);
985                 i915_priolist_free(p);
986         }
987
988 register_context:
989         if (submit) {
990                 struct intel_context *ce = request_to_scheduling_context(last);
991
992                 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
993                              intel_context_is_schedulable(ce))) {
994                         ret = try_context_registration(ce, false);
995                         if (unlikely(ret == -EPIPE)) {
996                                 goto deadlk;
997                         } else if (ret == -EBUSY) {
998                                 guc->stalled_request = last;
999                                 guc->submission_stall_reason =
1000                                         STALL_REGISTER_CONTEXT;
1001                                 goto schedule_tasklet;
1002                         } else if (ret != 0) {
1003                                 GEM_WARN_ON(ret);       /* Unexpected */
1004                                 goto deadlk;
1005                         }
1006                 }
1007
1008 move_lrc_tail:
1009                 if (is_multi_lrc_rq(last)) {
1010                         ret = guc_wq_item_append(guc, last);
1011                         if (ret == -EBUSY) {
1012                                 goto schedule_tasklet;
1013                         } else if (ret != 0) {
1014                                 GEM_WARN_ON(ret);       /* Unexpected */
1015                                 goto deadlk;
1016                         }
1017                 } else {
1018                         guc_set_lrc_tail(last);
1019                 }
1020
1021 add_request:
1022                 ret = guc_add_request(guc, last);
1023                 if (unlikely(ret == -EPIPE)) {
1024                         goto deadlk;
1025                 } else if (ret == -EBUSY) {
1026                         goto schedule_tasklet;
1027                 } else if (ret != 0) {
1028                         GEM_WARN_ON(ret);       /* Unexpected */
1029                         goto deadlk;
1030                 }
1031         }
1032
1033         guc->stalled_request = NULL;
1034         guc->submission_stall_reason = STALL_NONE;
1035         return submit;
1036
1037 deadlk:
1038         sched_engine->tasklet.callback = NULL;
1039         tasklet_disable_nosync(&sched_engine->tasklet);
1040         return false;
1041
1042 schedule_tasklet:
1043         tasklet_schedule(&sched_engine->tasklet);
1044         return false;
1045 }
1046
1047 static void guc_submission_tasklet(struct tasklet_struct *t)
1048 {
1049         struct i915_sched_engine *sched_engine =
1050                 from_tasklet(sched_engine, t, tasklet);
1051         unsigned long flags;
1052         bool loop;
1053
1054         spin_lock_irqsave(&sched_engine->lock, flags);
1055
1056         do {
1057                 loop = guc_dequeue_one_context(sched_engine->private_data);
1058         } while (loop);
1059
1060         i915_sched_engine_reset_on_empty(sched_engine);
1061
1062         spin_unlock_irqrestore(&sched_engine->lock, flags);
1063 }
1064
1065 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1066 {
1067         if (iir & GT_RENDER_USER_INTERRUPT)
1068                 intel_engine_signal_breadcrumbs(engine);
1069 }
1070
1071 static void __guc_context_destroy(struct intel_context *ce);
1072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1073 static void guc_signal_context_fence(struct intel_context *ce);
1074 static void guc_cancel_context_requests(struct intel_context *ce);
1075 static void guc_blocked_fence_complete(struct intel_context *ce);
1076
1077 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1078 {
1079         struct intel_context *ce;
1080         unsigned long index, flags;
1081         bool pending_disable, pending_enable, deregister, destroyed, banned;
1082
1083         xa_lock_irqsave(&guc->context_lookup, flags);
1084         xa_for_each(&guc->context_lookup, index, ce) {
1085                 /*
1086                  * Corner case where the ref count on the object is zero but and
1087                  * deregister G2H was lost. In this case we don't touch the ref
1088                  * count and finish the destroy of the context.
1089                  */
1090                 bool do_put = kref_get_unless_zero(&ce->ref);
1091
1092                 xa_unlock(&guc->context_lookup);
1093
1094                 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1095                     (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1096                         /* successful cancel so jump straight to close it */
1097                         intel_context_sched_disable_unpin(ce);
1098                 }
1099
1100                 spin_lock(&ce->guc_state.lock);
1101
1102                 /*
1103                  * Once we are at this point submission_disabled() is guaranteed
1104                  * to be visible to all callers who set the below flags (see above
1105                  * flush and flushes in reset_prepare). If submission_disabled()
1106                  * is set, the caller shouldn't set these flags.
1107                  */
1108
1109                 destroyed = context_destroyed(ce);
1110                 pending_enable = context_pending_enable(ce);
1111                 pending_disable = context_pending_disable(ce);
1112                 deregister = context_wait_for_deregister_to_register(ce);
1113                 banned = context_banned(ce);
1114                 init_sched_state(ce);
1115
1116                 spin_unlock(&ce->guc_state.lock);
1117
1118                 if (pending_enable || destroyed || deregister) {
1119                         decr_outstanding_submission_g2h(guc);
1120                         if (deregister)
1121                                 guc_signal_context_fence(ce);
1122                         if (destroyed) {
1123                                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1124                                 release_guc_id(guc, ce);
1125                                 __guc_context_destroy(ce);
1126                         }
1127                         if (pending_enable || deregister)
1128                                 intel_context_put(ce);
1129                 }
1130
1131                 /* Not mutualy exclusive with above if statement. */
1132                 if (pending_disable) {
1133                         guc_signal_context_fence(ce);
1134                         if (banned) {
1135                                 guc_cancel_context_requests(ce);
1136                                 intel_engine_signal_breadcrumbs(ce->engine);
1137                         }
1138                         intel_context_sched_disable_unpin(ce);
1139                         decr_outstanding_submission_g2h(guc);
1140
1141                         spin_lock(&ce->guc_state.lock);
1142                         guc_blocked_fence_complete(ce);
1143                         spin_unlock(&ce->guc_state.lock);
1144
1145                         intel_context_put(ce);
1146                 }
1147
1148                 if (do_put)
1149                         intel_context_put(ce);
1150                 xa_lock(&guc->context_lookup);
1151         }
1152         xa_unlock_irqrestore(&guc->context_lookup, flags);
1153 }
1154
1155 /*
1156  * GuC stores busyness stats for each engine at context in/out boundaries. A
1157  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1158  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1159  * GuC.
1160  *
1161  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1162  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1163  * active. For an active engine total busyness = total + (now - start), where
1164  * 'now' is the time at which the busyness is sampled. For inactive engine,
1165  * total busyness = total.
1166  *
1167  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1168  *
1169  * The start and total values provided by GuC are 32 bits and wrap around in a
1170  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1171  * increasing ns values, there is a need for this implementation to account for
1172  * overflows and extend the GuC provided values to 64 bits before returning
1173  * busyness to the user. In order to do that, a worker runs periodically at
1174  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1175  * 27 seconds for a gt clock frequency of 19.2 MHz).
1176  */
1177
1178 #define WRAP_TIME_CLKS U32_MAX
1179 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1180
1181 static void
1182 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1183 {
1184         u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1185         u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1186
1187         if (new_start == lower_32_bits(*prev_start))
1188                 return;
1189
1190         /*
1191          * When gt is unparked, we update the gt timestamp and start the ping
1192          * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1193          * is unparked, all switched in contexts will have a start time that is
1194          * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1195          *
1196          * If neither gt_stamp nor new_start has rolled over, then the
1197          * gt_stamp_hi does not need to be adjusted, however if one of them has
1198          * rolled over, we need to adjust gt_stamp_hi accordingly.
1199          *
1200          * The below conditions address the cases of new_start rollover and
1201          * gt_stamp_last rollover respectively.
1202          */
1203         if (new_start < gt_stamp_last &&
1204             (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1205                 gt_stamp_hi++;
1206
1207         if (new_start > gt_stamp_last &&
1208             (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1209                 gt_stamp_hi--;
1210
1211         *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1212 }
1213
1214 #define record_read(map_, field_) \
1215         iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1216
1217 /*
1218  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1219  * we run into a race where the value read is inconsistent. Sometimes the
1220  * inconsistency is in reading the upper MSB bytes of the last_in value when
1221  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1222  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1223  * determine validity of these values. Instead we read the values multiple times
1224  * until they are consistent. In test runs, 3 attempts results in consistent
1225  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1226  * any new occurences.
1227  */
1228 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1229                                       u32 *last_in, u32 *id, u32 *total)
1230 {
1231         struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1232         int i = 0;
1233
1234         do {
1235                 *last_in = record_read(&rec_map, last_switch_in_stamp);
1236                 *id = record_read(&rec_map, current_context_index);
1237                 *total = record_read(&rec_map, total_runtime);
1238
1239                 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1240                     record_read(&rec_map, current_context_index) == *id &&
1241                     record_read(&rec_map, total_runtime) == *total)
1242                         break;
1243         } while (++i < 6);
1244 }
1245
1246 static void __set_engine_usage_record(struct intel_engine_cs *engine,
1247                                       u32 last_in, u32 id, u32 total)
1248 {
1249         struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1250
1251 #define record_write(map_, field_, val_) \
1252         iosys_map_wr_field(map_, 0, struct guc_engine_usage_record, field_, val_)
1253
1254         record_write(&rec_map, last_switch_in_stamp, last_in);
1255         record_write(&rec_map, current_context_index, id);
1256         record_write(&rec_map, total_runtime, total);
1257
1258 #undef record_write
1259 }
1260
1261 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1262 {
1263         struct intel_engine_guc_stats *stats = &engine->stats.guc;
1264         struct intel_guc *guc = gt_to_guc(engine->gt);
1265         u32 last_switch, ctx_id, total;
1266
1267         lockdep_assert_held(&guc->timestamp.lock);
1268
1269         __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1270
1271         stats->running = ctx_id != ~0U && last_switch;
1272         if (stats->running)
1273                 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1274
1275         /*
1276          * Instead of adjusting the total for overflow, just add the
1277          * difference from previous sample stats->total_gt_clks
1278          */
1279         if (total && total != ~0U) {
1280                 stats->total_gt_clks += (u32)(total - stats->prev_total);
1281                 stats->prev_total = total;
1282         }
1283 }
1284
1285 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1286 {
1287         intel_wakeref_t wakeref;
1288         u32 reg, shift;
1289
1290         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1291                 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1292
1293         shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1294                 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1295
1296         return 3 - shift;
1297 }
1298
1299 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1300 {
1301         struct intel_gt *gt = guc_to_gt(guc);
1302         u32 gt_stamp_lo, gt_stamp_hi;
1303         u64 gpm_ts;
1304
1305         lockdep_assert_held(&guc->timestamp.lock);
1306
1307         gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1308         gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1309                                           MISC_STATUS1) >> guc->timestamp.shift;
1310         gt_stamp_lo = lower_32_bits(gpm_ts);
1311         *now = ktime_get();
1312
1313         if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1314                 gt_stamp_hi++;
1315
1316         guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1317 }
1318
1319 /*
1320  * Unlike the execlist mode of submission total and active times are in terms of
1321  * gt clocks. The *now parameter is retained to return the cpu time at which the
1322  * busyness was sampled.
1323  */
1324 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1325 {
1326         struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1327         struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1328         struct intel_gt *gt = engine->gt;
1329         struct intel_guc *guc = gt_to_guc(gt);
1330         u64 total, gt_stamp_saved;
1331         unsigned long flags;
1332         u32 reset_count;
1333         bool in_reset;
1334         intel_wakeref_t wakeref;
1335
1336         spin_lock_irqsave(&guc->timestamp.lock, flags);
1337
1338         /*
1339          * If a reset happened, we risk reading partially updated engine
1340          * busyness from GuC, so we just use the driver stored copy of busyness.
1341          * Synchronize with gt reset using reset_count and the
1342          * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1343          * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1344          * usable by checking the flag afterwards.
1345          */
1346         reset_count = i915_reset_count(gpu_error);
1347         in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1348
1349         *now = ktime_get();
1350
1351         /*
1352          * The active busyness depends on start_gt_clk and gt_stamp.
1353          * gt_stamp is updated by i915 only when gt is awake and the
1354          * start_gt_clk is derived from GuC state. To get a consistent
1355          * view of activity, we query the GuC state only if gt is awake.
1356          */
1357         wakeref = in_reset ? NULL : intel_gt_pm_get_if_awake(gt);
1358         if (wakeref) {
1359                 stats_saved = *stats;
1360                 gt_stamp_saved = guc->timestamp.gt_stamp;
1361                 /*
1362                  * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1363                  * start_gt_clk' calculation below for active engines.
1364                  */
1365                 guc_update_engine_gt_clks(engine);
1366                 guc_update_pm_timestamp(guc, now);
1367                 intel_gt_pm_put_async(gt, wakeref);
1368                 if (i915_reset_count(gpu_error) != reset_count) {
1369                         *stats = stats_saved;
1370                         guc->timestamp.gt_stamp = gt_stamp_saved;
1371                 }
1372         }
1373
1374         total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1375         if (stats->running) {
1376                 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1377
1378                 total += intel_gt_clock_interval_to_ns(gt, clk);
1379         }
1380
1381         if (total > stats->total)
1382                 stats->total = total;
1383
1384         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1385
1386         return ns_to_ktime(stats->total);
1387 }
1388
1389 static void guc_enable_busyness_worker(struct intel_guc *guc)
1390 {
1391         mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1392 }
1393
1394 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1395 {
1396         /*
1397          * There are many different call stacks that can get here. Some of them
1398          * hold the reset mutex. The busyness worker also attempts to acquire the
1399          * reset mutex. Synchronously flushing a worker thread requires acquiring
1400          * the worker mutex. Lockdep sees this as a conflict. It thinks that the
1401          * flush can deadlock because it holds the worker mutex while waiting for
1402          * the reset mutex, but another thread is holding the reset mutex and might
1403          * attempt to use other worker functions.
1404          *
1405          * In practice, this scenario does not exist because the busyness worker
1406          * does not block waiting for the reset mutex. It does a try-lock on it and
1407          * immediately exits if the lock is already held. Unfortunately, the mutex
1408          * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep
1409          * annotation but not to the extent of explaining the 'might lock' is also a
1410          * 'does not need to lock'. So one option would be to add more complex lockdep
1411          * annotations to ignore the issue (if at all possible). A simpler option is to
1412          * just not flush synchronously when a rest in progress. Given that the worker
1413          * will just early exit and re-schedule itself anyway, there is no advantage
1414          * to running it immediately.
1415          *
1416          * If a reset is not in progress, then the synchronous flush may be required.
1417          * As noted many call stacks lead here, some during suspend and driver unload
1418          * which do require a synchronous flush to make sure the worker is stopped
1419          * before memory is freed.
1420          *
1421          * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through
1422          * every possible call stack is unfeasible. It would be too intrusive to many
1423          * areas that really don't care about the GuC backend. However, there is the
1424          * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked.
1425          * So just use those. Note that testing both is required due to the hideously
1426          * complex nature of the i915 driver's reset code paths.
1427          *
1428          * And note that in the case of a reset occurring during driver unload
1429          * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the
1430          * reset flag/mutex are set) is fine because there is another explicit cancel in
1431          * intel_guc_submission_fini (when the reset flag/mutex are not).
1432          */
1433         if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) ||
1434             test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags))
1435                 cancel_delayed_work(&guc->timestamp.work);
1436         else
1437                 cancel_delayed_work_sync(&guc->timestamp.work);
1438 }
1439
1440 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1441 {
1442         struct intel_gt *gt = guc_to_gt(guc);
1443         struct intel_engine_cs *engine;
1444         enum intel_engine_id id;
1445         unsigned long flags;
1446         ktime_t unused;
1447
1448         spin_lock_irqsave(&guc->timestamp.lock, flags);
1449
1450         guc_update_pm_timestamp(guc, &unused);
1451         for_each_engine(engine, gt, id) {
1452                 struct intel_engine_guc_stats *stats = &engine->stats.guc;
1453
1454                 guc_update_engine_gt_clks(engine);
1455
1456                 /*
1457                  * If resetting a running context, accumulate the active
1458                  * time as well since there will be no context switch.
1459                  */
1460                 if (stats->running) {
1461                         u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1462
1463                         stats->total_gt_clks += clk;
1464                 }
1465                 stats->prev_total = 0;
1466                 stats->running = 0;
1467         }
1468
1469         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1470 }
1471
1472 static void __update_guc_busyness_running_state(struct intel_guc *guc)
1473 {
1474         struct intel_gt *gt = guc_to_gt(guc);
1475         struct intel_engine_cs *engine;
1476         enum intel_engine_id id;
1477         unsigned long flags;
1478
1479         spin_lock_irqsave(&guc->timestamp.lock, flags);
1480         for_each_engine(engine, gt, id)
1481                 engine->stats.guc.running = false;
1482         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1483 }
1484
1485 static void __update_guc_busyness_stats(struct intel_guc *guc)
1486 {
1487         struct intel_gt *gt = guc_to_gt(guc);
1488         struct intel_engine_cs *engine;
1489         enum intel_engine_id id;
1490         unsigned long flags;
1491         ktime_t unused;
1492
1493         guc->timestamp.last_stat_jiffies = jiffies;
1494
1495         spin_lock_irqsave(&guc->timestamp.lock, flags);
1496
1497         guc_update_pm_timestamp(guc, &unused);
1498         for_each_engine(engine, gt, id)
1499                 guc_update_engine_gt_clks(engine);
1500
1501         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1502 }
1503
1504 static void __guc_context_update_stats(struct intel_context *ce)
1505 {
1506         struct intel_guc *guc = ce_to_guc(ce);
1507         unsigned long flags;
1508
1509         spin_lock_irqsave(&guc->timestamp.lock, flags);
1510         lrc_update_runtime(ce);
1511         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1512 }
1513
1514 static void guc_context_update_stats(struct intel_context *ce)
1515 {
1516         if (!intel_context_pin_if_active(ce))
1517                 return;
1518
1519         __guc_context_update_stats(ce);
1520         intel_context_unpin(ce);
1521 }
1522
1523 static void guc_timestamp_ping(struct work_struct *wrk)
1524 {
1525         struct intel_guc *guc = container_of(wrk, typeof(*guc),
1526                                              timestamp.work.work);
1527         struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1528         struct intel_gt *gt = guc_to_gt(guc);
1529         struct intel_context *ce;
1530         intel_wakeref_t wakeref;
1531         unsigned long index;
1532         int srcu, ret;
1533
1534         /*
1535          * Ideally the busyness worker should take a gt pm wakeref because the
1536          * worker only needs to be active while gt is awake. However, the
1537          * gt_park path cancels the worker synchronously and this complicates
1538          * the flow if the worker is also running at the same time. The cancel
1539          * waits for the worker and when the worker releases the wakeref, that
1540          * would call gt_park and would lead to a deadlock.
1541          *
1542          * The resolution is to take the global pm wakeref if runtime pm is
1543          * already active. If not, we don't need to update the busyness stats as
1544          * the stats would already be updated when the gt was parked.
1545          *
1546          * Note:
1547          * - We do not requeue the worker if we cannot take a reference to runtime
1548          *   pm since intel_guc_busyness_unpark would requeue the worker in the
1549          *   resume path.
1550          *
1551          * - If the gt was parked longer than time taken for GT timestamp to roll
1552          *   over, we ignore those rollovers since we don't care about tracking
1553          *   the exact GT time. We only care about roll overs when the gt is
1554          *   active and running workloads.
1555          *
1556          * - There is a window of time between gt_park and runtime suspend,
1557          *   where the worker may run. This is acceptable since the worker will
1558          *   not find any new data to update busyness.
1559          */
1560         wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1561         if (!wakeref)
1562                 return;
1563
1564         /*
1565          * Synchronize with gt reset to make sure the worker does not
1566          * corrupt the engine/guc stats. NB: can't actually block waiting
1567          * for a reset to complete as the reset requires flushing out
1568          * this worker thread if started. So waiting would deadlock.
1569          */
1570         ret = intel_gt_reset_trylock(gt, &srcu);
1571         if (ret)
1572                 goto err_trylock;
1573
1574         __update_guc_busyness_stats(guc);
1575
1576         /* adjust context stats for overflow */
1577         xa_for_each(&guc->context_lookup, index, ce)
1578                 guc_context_update_stats(ce);
1579
1580         intel_gt_reset_unlock(gt, srcu);
1581
1582         guc_enable_busyness_worker(guc);
1583
1584 err_trylock:
1585         intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1586 }
1587
1588 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1589 {
1590         struct intel_gt *gt = guc_to_gt(guc);
1591         struct intel_engine_cs *engine;
1592         enum intel_engine_id id;
1593         u32 offset = intel_guc_engine_usage_offset(guc);
1594         u32 action[] = {
1595                 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1596                 offset,
1597                 0,
1598         };
1599
1600         for_each_engine(engine, gt, id)
1601                 __set_engine_usage_record(engine, 0, 0xffffffff, 0);
1602
1603         return intel_guc_send(guc, action, ARRAY_SIZE(action));
1604 }
1605
1606 static int guc_init_engine_stats(struct intel_guc *guc)
1607 {
1608         struct intel_gt *gt = guc_to_gt(guc);
1609         intel_wakeref_t wakeref;
1610         int ret;
1611
1612         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1613                 ret = guc_action_enable_usage_stats(guc);
1614
1615         if (ret)
1616                 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1617         else
1618                 guc_enable_busyness_worker(guc);
1619
1620         return ret;
1621 }
1622
1623 static void guc_fini_engine_stats(struct intel_guc *guc)
1624 {
1625         guc_cancel_busyness_worker(guc);
1626 }
1627
1628 void intel_guc_busyness_park(struct intel_gt *gt)
1629 {
1630         struct intel_guc *guc = gt_to_guc(gt);
1631
1632         if (!guc_submission_initialized(guc))
1633                 return;
1634
1635         /* Assume no engines are running and set running state to false */
1636         __update_guc_busyness_running_state(guc);
1637
1638         /*
1639          * There is a race with suspend flow where the worker runs after suspend
1640          * and causes an unclaimed register access warning. Cancel the worker
1641          * synchronously here.
1642          */
1643         guc_cancel_busyness_worker(guc);
1644
1645         /*
1646          * Before parking, we should sample engine busyness stats if we need to.
1647          * We can skip it if we are less than half a ping from the last time we
1648          * sampled the busyness stats.
1649          */
1650         if (guc->timestamp.last_stat_jiffies &&
1651             !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1652                         (guc->timestamp.ping_delay / 2)))
1653                 return;
1654
1655         __update_guc_busyness_stats(guc);
1656 }
1657
1658 void intel_guc_busyness_unpark(struct intel_gt *gt)
1659 {
1660         struct intel_guc *guc = gt_to_guc(gt);
1661         unsigned long flags;
1662         ktime_t unused;
1663
1664         if (!guc_submission_initialized(guc))
1665                 return;
1666
1667         spin_lock_irqsave(&guc->timestamp.lock, flags);
1668         guc_update_pm_timestamp(guc, &unused);
1669         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1670         guc_enable_busyness_worker(guc);
1671 }
1672
1673 static inline bool
1674 submission_disabled(struct intel_guc *guc)
1675 {
1676         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1677
1678         return unlikely(!sched_engine ||
1679                         !__tasklet_is_enabled(&sched_engine->tasklet) ||
1680                         intel_gt_is_wedged(guc_to_gt(guc)));
1681 }
1682
1683 static void disable_submission(struct intel_guc *guc)
1684 {
1685         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1686
1687         if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1688                 GEM_BUG_ON(!guc->ct.enabled);
1689                 __tasklet_disable_sync_once(&sched_engine->tasklet);
1690                 sched_engine->tasklet.callback = NULL;
1691         }
1692 }
1693
1694 static void enable_submission(struct intel_guc *guc)
1695 {
1696         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1697         unsigned long flags;
1698
1699         spin_lock_irqsave(&guc->sched_engine->lock, flags);
1700         sched_engine->tasklet.callback = guc_submission_tasklet;
1701         wmb();  /* Make sure callback visible */
1702         if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1703             __tasklet_enable(&sched_engine->tasklet)) {
1704                 GEM_BUG_ON(!guc->ct.enabled);
1705
1706                 /* And kick in case we missed a new request submission. */
1707                 tasklet_hi_schedule(&sched_engine->tasklet);
1708         }
1709         spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1710 }
1711
1712 static void guc_flush_submissions(struct intel_guc *guc)
1713 {
1714         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1715         unsigned long flags;
1716
1717         spin_lock_irqsave(&sched_engine->lock, flags);
1718         spin_unlock_irqrestore(&sched_engine->lock, flags);
1719 }
1720
1721 void intel_guc_submission_flush_work(struct intel_guc *guc)
1722 {
1723         flush_work(&guc->submission_state.destroyed_worker);
1724 }
1725
1726 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1727
1728 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1729 {
1730         if (unlikely(!guc_submission_initialized(guc))) {
1731                 /* Reset called during driver load? GuC not yet initialised! */
1732                 return;
1733         }
1734
1735         intel_gt_park_heartbeats(guc_to_gt(guc));
1736         disable_submission(guc);
1737         guc->interrupts.disable(guc);
1738         __reset_guc_busyness_stats(guc);
1739
1740         /* Flush IRQ handler */
1741         spin_lock_irq(guc_to_gt(guc)->irq_lock);
1742         spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1743
1744         /* Flush tasklet */
1745         tasklet_disable(&guc->ct.receive_tasklet);
1746         tasklet_enable(&guc->ct.receive_tasklet);
1747
1748         guc_flush_submissions(guc);
1749         guc_flush_destroyed_contexts(guc);
1750         flush_work(&guc->ct.requests.worker);
1751
1752         scrub_guc_desc_for_outstanding_g2h(guc);
1753 }
1754
1755 static struct intel_engine_cs *
1756 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1757 {
1758         struct intel_engine_cs *engine;
1759         intel_engine_mask_t tmp, mask = ve->mask;
1760         unsigned int num_siblings = 0;
1761
1762         for_each_engine_masked(engine, ve->gt, mask, tmp)
1763                 if (num_siblings++ == sibling)
1764                         return engine;
1765
1766         return NULL;
1767 }
1768
1769 static inline struct intel_engine_cs *
1770 __context_to_physical_engine(struct intel_context *ce)
1771 {
1772         struct intel_engine_cs *engine = ce->engine;
1773
1774         if (intel_engine_is_virtual(engine))
1775                 engine = guc_virtual_get_sibling(engine, 0);
1776
1777         return engine;
1778 }
1779
1780 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1781 {
1782         struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1783
1784         if (!intel_context_is_schedulable(ce))
1785                 return;
1786
1787         GEM_BUG_ON(!intel_context_is_pinned(ce));
1788
1789         /*
1790          * We want a simple context + ring to execute the breadcrumb update.
1791          * We cannot rely on the context being intact across the GPU hang,
1792          * so clear it and rebuild just what we need for the breadcrumb.
1793          * All pending requests for this context will be zapped, and any
1794          * future request will be after userspace has had the opportunity
1795          * to recreate its own state.
1796          */
1797         if (scrub)
1798                 lrc_init_regs(ce, engine, true);
1799
1800         /* Rerun the request; its payload has been neutered (if guilty). */
1801         lrc_update_regs(ce, engine, head);
1802 }
1803
1804 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1805 {
1806         /*
1807          * Wa_22011802037: In addition to stopping the cs, we need
1808          * to wait for any pending mi force wakeups
1809          */
1810         if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1811                 intel_engine_stop_cs(engine);
1812                 intel_engine_wait_for_pending_mi_fw(engine);
1813         }
1814 }
1815
1816 static void guc_reset_nop(struct intel_engine_cs *engine)
1817 {
1818 }
1819
1820 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1821 {
1822 }
1823
1824 static void
1825 __unwind_incomplete_requests(struct intel_context *ce)
1826 {
1827         struct i915_request *rq, *rn;
1828         struct list_head *pl;
1829         int prio = I915_PRIORITY_INVALID;
1830         struct i915_sched_engine * const sched_engine =
1831                 ce->engine->sched_engine;
1832         unsigned long flags;
1833
1834         spin_lock_irqsave(&sched_engine->lock, flags);
1835         spin_lock(&ce->guc_state.lock);
1836         list_for_each_entry_safe_reverse(rq, rn,
1837                                          &ce->guc_state.requests,
1838                                          sched.link) {
1839                 if (i915_request_completed(rq))
1840                         continue;
1841
1842                 list_del_init(&rq->sched.link);
1843                 __i915_request_unsubmit(rq);
1844
1845                 /* Push the request back into the queue for later resubmission. */
1846                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1847                 if (rq_prio(rq) != prio) {
1848                         prio = rq_prio(rq);
1849                         pl = i915_sched_lookup_priolist(sched_engine, prio);
1850                 }
1851                 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1852
1853                 list_add(&rq->sched.link, pl);
1854                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1855         }
1856         spin_unlock(&ce->guc_state.lock);
1857         spin_unlock_irqrestore(&sched_engine->lock, flags);
1858 }
1859
1860 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1861 {
1862         bool guilty;
1863         struct i915_request *rq;
1864         unsigned long flags;
1865         u32 head;
1866         int i, number_children = ce->parallel.number_children;
1867         struct intel_context *parent = ce;
1868
1869         GEM_BUG_ON(intel_context_is_child(ce));
1870
1871         intel_context_get(ce);
1872
1873         /*
1874          * GuC will implicitly mark the context as non-schedulable when it sends
1875          * the reset notification. Make sure our state reflects this change. The
1876          * context will be marked enabled on resubmission.
1877          */
1878         spin_lock_irqsave(&ce->guc_state.lock, flags);
1879         clr_context_enabled(ce);
1880         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1881
1882         /*
1883          * For each context in the relationship find the hanging request
1884          * resetting each context / request as needed
1885          */
1886         for (i = 0; i < number_children + 1; ++i) {
1887                 if (!intel_context_is_pinned(ce))
1888                         goto next_context;
1889
1890                 guilty = false;
1891                 rq = intel_context_get_active_request(ce);
1892                 if (!rq) {
1893                         head = ce->ring->tail;
1894                         goto out_replay;
1895                 }
1896
1897                 if (i915_request_started(rq))
1898                         guilty = stalled & ce->engine->mask;
1899
1900                 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1901                 head = intel_ring_wrap(ce->ring, rq->head);
1902
1903                 __i915_request_reset(rq, guilty);
1904                 i915_request_put(rq);
1905 out_replay:
1906                 guc_reset_state(ce, head, guilty);
1907 next_context:
1908                 if (i != number_children)
1909                         ce = list_next_entry(ce, parallel.child_link);
1910         }
1911
1912         __unwind_incomplete_requests(parent);
1913         intel_context_put(parent);
1914 }
1915
1916 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1917 {
1918         struct intel_guc_tlb_wait *wait;
1919         unsigned long i;
1920
1921         if (!intel_guc_tlb_invalidation_is_available(guc))
1922                 return;
1923
1924         xa_lock_irq(&guc->tlb_lookup);
1925         xa_for_each(&guc->tlb_lookup, i, wait)
1926                 wake_up(&wait->wq);
1927         xa_unlock_irq(&guc->tlb_lookup);
1928 }
1929
1930 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1931 {
1932         struct intel_context *ce;
1933         unsigned long index;
1934         unsigned long flags;
1935
1936         if (unlikely(!guc_submission_initialized(guc))) {
1937                 /* Reset called during driver load? GuC not yet initialised! */
1938                 return;
1939         }
1940
1941         xa_lock_irqsave(&guc->context_lookup, flags);
1942         xa_for_each(&guc->context_lookup, index, ce) {
1943                 if (!kref_get_unless_zero(&ce->ref))
1944                         continue;
1945
1946                 xa_unlock(&guc->context_lookup);
1947
1948                 if (intel_context_is_pinned(ce) &&
1949                     !intel_context_is_child(ce))
1950                         __guc_reset_context(ce, stalled);
1951
1952                 intel_context_put(ce);
1953
1954                 xa_lock(&guc->context_lookup);
1955         }
1956         xa_unlock_irqrestore(&guc->context_lookup, flags);
1957
1958         /* GuC is blown away, drop all references to contexts */
1959         xa_destroy(&guc->context_lookup);
1960 }
1961
1962 static void guc_cancel_context_requests(struct intel_context *ce)
1963 {
1964         struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1965         struct i915_request *rq;
1966         unsigned long flags;
1967
1968         /* Mark all executing requests as skipped. */
1969         spin_lock_irqsave(&sched_engine->lock, flags);
1970         spin_lock(&ce->guc_state.lock);
1971         list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1972                 i915_request_put(i915_request_mark_eio(rq));
1973         spin_unlock(&ce->guc_state.lock);
1974         spin_unlock_irqrestore(&sched_engine->lock, flags);
1975 }
1976
1977 static void
1978 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1979 {
1980         struct i915_request *rq, *rn;
1981         struct rb_node *rb;
1982         unsigned long flags;
1983
1984         /* Can be called during boot if GuC fails to load */
1985         if (!sched_engine)
1986                 return;
1987
1988         /*
1989          * Before we call engine->cancel_requests(), we should have exclusive
1990          * access to the submission state. This is arranged for us by the
1991          * caller disabling the interrupt generation, the tasklet and other
1992          * threads that may then access the same state, giving us a free hand
1993          * to reset state. However, we still need to let lockdep be aware that
1994          * we know this state may be accessed in hardirq context, so we
1995          * disable the irq around this manipulation and we want to keep
1996          * the spinlock focused on its duties and not accidentally conflate
1997          * coverage to the submission's irq state. (Similarly, although we
1998          * shouldn't need to disable irq around the manipulation of the
1999          * submission's irq state, we also wish to remind ourselves that
2000          * it is irq state.)
2001          */
2002         spin_lock_irqsave(&sched_engine->lock, flags);
2003
2004         /* Flush the queued requests to the timeline list (for retiring). */
2005         while ((rb = rb_first_cached(&sched_engine->queue))) {
2006                 struct i915_priolist *p = to_priolist(rb);
2007
2008                 priolist_for_each_request_consume(rq, rn, p) {
2009                         list_del_init(&rq->sched.link);
2010
2011                         __i915_request_submit(rq);
2012
2013                         i915_request_put(i915_request_mark_eio(rq));
2014                 }
2015
2016                 rb_erase_cached(&p->node, &sched_engine->queue);
2017                 i915_priolist_free(p);
2018         }
2019
2020         /* Remaining _unready_ requests will be nop'ed when submitted */
2021
2022         sched_engine->queue_priority_hint = INT_MIN;
2023         sched_engine->queue = RB_ROOT_CACHED;
2024
2025         spin_unlock_irqrestore(&sched_engine->lock, flags);
2026 }
2027
2028 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
2029 {
2030         struct intel_context *ce;
2031         unsigned long index;
2032         unsigned long flags;
2033
2034         xa_lock_irqsave(&guc->context_lookup, flags);
2035         xa_for_each(&guc->context_lookup, index, ce) {
2036                 if (!kref_get_unless_zero(&ce->ref))
2037                         continue;
2038
2039                 xa_unlock(&guc->context_lookup);
2040
2041                 if (intel_context_is_pinned(ce) &&
2042                     !intel_context_is_child(ce))
2043                         guc_cancel_context_requests(ce);
2044
2045                 intel_context_put(ce);
2046
2047                 xa_lock(&guc->context_lookup);
2048         }
2049         xa_unlock_irqrestore(&guc->context_lookup, flags);
2050
2051         guc_cancel_sched_engine_requests(guc->sched_engine);
2052
2053         /* GuC is blown away, drop all references to contexts */
2054         xa_destroy(&guc->context_lookup);
2055
2056         /*
2057          * Wedged GT won't respond to any TLB invalidation request. Simply
2058          * release all the blocked waiters.
2059          */
2060         wake_up_all_tlb_invalidate(guc);
2061 }
2062
2063 void intel_guc_submission_reset_finish(struct intel_guc *guc)
2064 {
2065         int outstanding;
2066
2067         /* Reset called during driver load or during wedge? */
2068         if (unlikely(!guc_submission_initialized(guc) ||
2069                      !intel_guc_is_fw_running(guc) ||
2070                      intel_gt_is_wedged(guc_to_gt(guc)))) {
2071                 return;
2072         }
2073
2074         /*
2075          * Technically possible for either of these values to be non-zero here,
2076          * but very unlikely + harmless. Regardless let's add an error so we can
2077          * see in CI if this happens frequently / a precursor to taking down the
2078          * machine.
2079          */
2080         outstanding = atomic_read(&guc->outstanding_submission_g2h);
2081         if (outstanding)
2082                 guc_err(guc, "Unexpected outstanding GuC to Host response(s) in reset finish: %d\n",
2083                         outstanding);
2084         atomic_set(&guc->outstanding_submission_g2h, 0);
2085
2086         intel_guc_global_policies_update(guc);
2087         enable_submission(guc);
2088         intel_gt_unpark_heartbeats(guc_to_gt(guc));
2089
2090         /*
2091          * The full GT reset will have cleared the TLB caches and flushed the
2092          * G2H message queue; we can release all the blocked waiters.
2093          */
2094         wake_up_all_tlb_invalidate(guc);
2095 }
2096
2097 static void destroyed_worker_func(struct work_struct *w);
2098 static void reset_fail_worker_func(struct work_struct *w);
2099
2100 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
2101 {
2102         return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
2103                 intel_guc_is_ready(guc);
2104 }
2105
2106 static int init_tlb_lookup(struct intel_guc *guc)
2107 {
2108         struct intel_guc_tlb_wait *wait;
2109         int err;
2110
2111         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2112                 return 0;
2113
2114         xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
2115
2116         wait = kzalloc(sizeof(*wait), GFP_KERNEL);
2117         if (!wait)
2118                 return -ENOMEM;
2119
2120         init_waitqueue_head(&wait->wq);
2121
2122         /* Preallocate a shared id for use under memory pressure. */
2123         err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2124                                   xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2125         if (err < 0) {
2126                 kfree(wait);
2127                 return err;
2128         }
2129
2130         return 0;
2131 }
2132
2133 static void fini_tlb_lookup(struct intel_guc *guc)
2134 {
2135         struct intel_guc_tlb_wait *wait;
2136
2137         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2138                 return;
2139
2140         wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2141         if (wait && wait->busy)
2142                 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2143         kfree(wait);
2144
2145         xa_destroy(&guc->tlb_lookup);
2146 }
2147
2148 /*
2149  * Set up the memory resources to be shared with the GuC (via the GGTT)
2150  * at firmware loading time.
2151  */
2152 int intel_guc_submission_init(struct intel_guc *guc)
2153 {
2154         struct intel_gt *gt = guc_to_gt(guc);
2155         int ret;
2156
2157         if (guc->submission_initialized)
2158                 return 0;
2159
2160         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2161                 ret = guc_lrc_desc_pool_create_v69(guc);
2162                 if (ret)
2163                         return ret;
2164         }
2165
2166         ret = init_tlb_lookup(guc);
2167         if (ret)
2168                 goto destroy_pool;
2169
2170         guc->submission_state.guc_ids_bitmap =
2171                 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2172         if (!guc->submission_state.guc_ids_bitmap) {
2173                 ret = -ENOMEM;
2174                 goto destroy_tlb;
2175         }
2176
2177         guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2178         guc->timestamp.shift = gpm_timestamp_shift(gt);
2179         guc->submission_initialized = true;
2180
2181         return 0;
2182
2183 destroy_tlb:
2184         fini_tlb_lookup(guc);
2185 destroy_pool:
2186         guc_lrc_desc_pool_destroy_v69(guc);
2187         return ret;
2188 }
2189
2190 void intel_guc_submission_fini(struct intel_guc *guc)
2191 {
2192         if (!guc->submission_initialized)
2193                 return;
2194
2195         guc_fini_engine_stats(guc);
2196         guc_flush_destroyed_contexts(guc);
2197         guc_lrc_desc_pool_destroy_v69(guc);
2198         i915_sched_engine_put(guc->sched_engine);
2199         bitmap_free(guc->submission_state.guc_ids_bitmap);
2200         fini_tlb_lookup(guc);
2201         guc->submission_initialized = false;
2202 }
2203
2204 static inline void queue_request(struct i915_sched_engine *sched_engine,
2205                                  struct i915_request *rq,
2206                                  int prio)
2207 {
2208         GEM_BUG_ON(!list_empty(&rq->sched.link));
2209         list_add_tail(&rq->sched.link,
2210                       i915_sched_lookup_priolist(sched_engine, prio));
2211         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2212         tasklet_hi_schedule(&sched_engine->tasklet);
2213 }
2214
2215 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2216                                      struct i915_request *rq)
2217 {
2218         int ret = 0;
2219
2220         __i915_request_submit(rq);
2221
2222         trace_i915_request_in(rq, 0);
2223
2224         if (is_multi_lrc_rq(rq)) {
2225                 if (multi_lrc_submit(rq)) {
2226                         ret = guc_wq_item_append(guc, rq);
2227                         if (!ret)
2228                                 ret = guc_add_request(guc, rq);
2229                 }
2230         } else {
2231                 guc_set_lrc_tail(rq);
2232                 ret = guc_add_request(guc, rq);
2233         }
2234
2235         if (unlikely(ret == -EPIPE))
2236                 disable_submission(guc);
2237
2238         return ret;
2239 }
2240
2241 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2242 {
2243         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2244         struct intel_context *ce = request_to_scheduling_context(rq);
2245
2246         return submission_disabled(guc) || guc->stalled_request ||
2247                 !i915_sched_engine_is_empty(sched_engine) ||
2248                 !ctx_id_mapped(guc, ce->guc_id.id);
2249 }
2250
2251 static void guc_submit_request(struct i915_request *rq)
2252 {
2253         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2254         struct intel_guc *guc = gt_to_guc(rq->engine->gt);
2255         unsigned long flags;
2256
2257         /* Will be called from irq-context when using foreign fences. */
2258         spin_lock_irqsave(&sched_engine->lock, flags);
2259
2260         if (need_tasklet(guc, rq))
2261                 queue_request(sched_engine, rq, rq_prio(rq));
2262         else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2263                 tasklet_hi_schedule(&sched_engine->tasklet);
2264
2265         spin_unlock_irqrestore(&sched_engine->lock, flags);
2266 }
2267
2268 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2269 {
2270         int ret;
2271
2272         GEM_BUG_ON(intel_context_is_child(ce));
2273
2274         if (intel_context_is_parent(ce))
2275                 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2276                                               NUMBER_MULTI_LRC_GUC_ID(guc),
2277                                               order_base_2(ce->parallel.number_children
2278                                                            + 1));
2279         else
2280                 ret = ida_alloc_range(&guc->submission_state.guc_ids,
2281                                       NUMBER_MULTI_LRC_GUC_ID(guc),
2282                                       guc->submission_state.num_guc_ids - 1,
2283                                       GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
2284         if (unlikely(ret < 0))
2285                 return ret;
2286
2287         if (!intel_context_is_parent(ce))
2288                 ++guc->submission_state.guc_ids_in_use;
2289
2290         ce->guc_id.id = ret;
2291         return 0;
2292 }
2293
2294 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2295 {
2296         GEM_BUG_ON(intel_context_is_child(ce));
2297
2298         if (!context_guc_id_invalid(ce)) {
2299                 if (intel_context_is_parent(ce)) {
2300                         bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2301                                               ce->guc_id.id,
2302                                               order_base_2(ce->parallel.number_children
2303                                                            + 1));
2304                 } else {
2305                         --guc->submission_state.guc_ids_in_use;
2306                         ida_free(&guc->submission_state.guc_ids,
2307                                  ce->guc_id.id);
2308                 }
2309                 clr_ctx_id_mapping(guc, ce->guc_id.id);
2310                 set_context_guc_id_invalid(ce);
2311         }
2312         if (!list_empty(&ce->guc_id.link))
2313                 list_del_init(&ce->guc_id.link);
2314 }
2315
2316 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2317 {
2318         unsigned long flags;
2319
2320         spin_lock_irqsave(&guc->submission_state.lock, flags);
2321         __release_guc_id(guc, ce);
2322         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2323 }
2324
2325 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2326 {
2327         struct intel_context *cn;
2328
2329         lockdep_assert_held(&guc->submission_state.lock);
2330         GEM_BUG_ON(intel_context_is_child(ce));
2331         GEM_BUG_ON(intel_context_is_parent(ce));
2332
2333         if (!list_empty(&guc->submission_state.guc_id_list)) {
2334                 cn = list_first_entry(&guc->submission_state.guc_id_list,
2335                                       struct intel_context,
2336                                       guc_id.link);
2337
2338                 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2339                 GEM_BUG_ON(context_guc_id_invalid(cn));
2340                 GEM_BUG_ON(intel_context_is_child(cn));
2341                 GEM_BUG_ON(intel_context_is_parent(cn));
2342
2343                 list_del_init(&cn->guc_id.link);
2344                 ce->guc_id.id = cn->guc_id.id;
2345
2346                 spin_lock(&cn->guc_state.lock);
2347                 clr_context_registered(cn);
2348                 spin_unlock(&cn->guc_state.lock);
2349
2350                 set_context_guc_id_invalid(cn);
2351
2352 #ifdef CONFIG_DRM_I915_SELFTEST
2353                 guc->number_guc_id_stolen++;
2354 #endif
2355
2356                 return 0;
2357         } else {
2358                 return -EAGAIN;
2359         }
2360 }
2361
2362 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2363 {
2364         int ret;
2365
2366         lockdep_assert_held(&guc->submission_state.lock);
2367         GEM_BUG_ON(intel_context_is_child(ce));
2368
2369         ret = new_guc_id(guc, ce);
2370         if (unlikely(ret < 0)) {
2371                 if (intel_context_is_parent(ce))
2372                         return -ENOSPC;
2373
2374                 ret = steal_guc_id(guc, ce);
2375                 if (ret < 0)
2376                         return ret;
2377         }
2378
2379         if (intel_context_is_parent(ce)) {
2380                 struct intel_context *child;
2381                 int i = 1;
2382
2383                 for_each_child(ce, child)
2384                         child->guc_id.id = ce->guc_id.id + i++;
2385         }
2386
2387         return 0;
2388 }
2389
2390 #define PIN_GUC_ID_TRIES        4
2391 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2392 {
2393         int ret = 0;
2394         unsigned long flags, tries = PIN_GUC_ID_TRIES;
2395
2396         GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2397
2398 try_again:
2399         spin_lock_irqsave(&guc->submission_state.lock, flags);
2400
2401         might_lock(&ce->guc_state.lock);
2402
2403         if (context_guc_id_invalid(ce)) {
2404                 ret = assign_guc_id(guc, ce);
2405                 if (ret)
2406                         goto out_unlock;
2407                 ret = 1;        /* Indidcates newly assigned guc_id */
2408         }
2409         if (!list_empty(&ce->guc_id.link))
2410                 list_del_init(&ce->guc_id.link);
2411         atomic_inc(&ce->guc_id.ref);
2412
2413 out_unlock:
2414         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2415
2416         /*
2417          * -EAGAIN indicates no guc_id are available, let's retire any
2418          * outstanding requests to see if that frees up a guc_id. If the first
2419          * retire didn't help, insert a sleep with the timeslice duration before
2420          * attempting to retire more requests. Double the sleep period each
2421          * subsequent pass before finally giving up. The sleep period has max of
2422          * 100ms and minimum of 1ms.
2423          */
2424         if (ret == -EAGAIN && --tries) {
2425                 if (PIN_GUC_ID_TRIES - tries > 1) {
2426                         unsigned int timeslice_shifted =
2427                                 ce->engine->props.timeslice_duration_ms <<
2428                                 (PIN_GUC_ID_TRIES - tries - 2);
2429                         unsigned int max = min_t(unsigned int, 100,
2430                                                  timeslice_shifted);
2431
2432                         msleep(max_t(unsigned int, max, 1));
2433                 }
2434                 intel_gt_retire_requests(guc_to_gt(guc));
2435                 goto try_again;
2436         }
2437
2438         return ret;
2439 }
2440
2441 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2442 {
2443         unsigned long flags;
2444
2445         GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2446         GEM_BUG_ON(intel_context_is_child(ce));
2447
2448         if (unlikely(context_guc_id_invalid(ce) ||
2449                      intel_context_is_parent(ce)))
2450                 return;
2451
2452         spin_lock_irqsave(&guc->submission_state.lock, flags);
2453         if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2454             !atomic_read(&ce->guc_id.ref))
2455                 list_add_tail(&ce->guc_id.link,
2456                               &guc->submission_state.guc_id_list);
2457         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2458 }
2459
2460 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2461                                                struct intel_context *ce,
2462                                                u32 guc_id,
2463                                                u32 offset,
2464                                                bool loop)
2465 {
2466         struct intel_context *child;
2467         u32 action[4 + MAX_ENGINE_INSTANCE];
2468         int len = 0;
2469
2470         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2471
2472         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2473         action[len++] = guc_id;
2474         action[len++] = ce->parallel.number_children + 1;
2475         action[len++] = offset;
2476         for_each_child(ce, child) {
2477                 offset += sizeof(struct guc_lrc_desc_v69);
2478                 action[len++] = offset;
2479         }
2480
2481         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2482 }
2483
2484 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2485                                                struct intel_context *ce,
2486                                                struct guc_ctxt_registration_info *info,
2487                                                bool loop)
2488 {
2489         struct intel_context *child;
2490         u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2491         int len = 0;
2492         u32 next_id;
2493
2494         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2495
2496         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2497         action[len++] = info->flags;
2498         action[len++] = info->context_idx;
2499         action[len++] = info->engine_class;
2500         action[len++] = info->engine_submit_mask;
2501         action[len++] = info->wq_desc_lo;
2502         action[len++] = info->wq_desc_hi;
2503         action[len++] = info->wq_base_lo;
2504         action[len++] = info->wq_base_hi;
2505         action[len++] = info->wq_size;
2506         action[len++] = ce->parallel.number_children + 1;
2507         action[len++] = info->hwlrca_lo;
2508         action[len++] = info->hwlrca_hi;
2509
2510         next_id = info->context_idx + 1;
2511         for_each_child(ce, child) {
2512                 GEM_BUG_ON(next_id++ != child->guc_id.id);
2513
2514                 /*
2515                  * NB: GuC interface supports 64 bit LRCA even though i915/HW
2516                  * only supports 32 bit currently.
2517                  */
2518                 action[len++] = lower_32_bits(child->lrc.lrca);
2519                 action[len++] = upper_32_bits(child->lrc.lrca);
2520         }
2521
2522         GEM_BUG_ON(len > ARRAY_SIZE(action));
2523
2524         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2525 }
2526
2527 static int __guc_action_register_context_v69(struct intel_guc *guc,
2528                                              u32 guc_id,
2529                                              u32 offset,
2530                                              bool loop)
2531 {
2532         u32 action[] = {
2533                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2534                 guc_id,
2535                 offset,
2536         };
2537
2538         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2539                                              0, loop);
2540 }
2541
2542 static int __guc_action_register_context_v70(struct intel_guc *guc,
2543                                              struct guc_ctxt_registration_info *info,
2544                                              bool loop)
2545 {
2546         u32 action[] = {
2547                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2548                 info->flags,
2549                 info->context_idx,
2550                 info->engine_class,
2551                 info->engine_submit_mask,
2552                 info->wq_desc_lo,
2553                 info->wq_desc_hi,
2554                 info->wq_base_lo,
2555                 info->wq_base_hi,
2556                 info->wq_size,
2557                 info->hwlrca_lo,
2558                 info->hwlrca_hi,
2559         };
2560
2561         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2562                                              0, loop);
2563 }
2564
2565 static void prepare_context_registration_info_v69(struct intel_context *ce);
2566 static void prepare_context_registration_info_v70(struct intel_context *ce,
2567                                                   struct guc_ctxt_registration_info *info);
2568
2569 static int
2570 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2571 {
2572         u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2573                 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2574
2575         prepare_context_registration_info_v69(ce);
2576
2577         if (intel_context_is_parent(ce))
2578                 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2579                                                            offset, loop);
2580         else
2581                 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2582                                                          offset, loop);
2583 }
2584
2585 static int
2586 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2587 {
2588         struct guc_ctxt_registration_info info;
2589
2590         prepare_context_registration_info_v70(ce, &info);
2591
2592         if (intel_context_is_parent(ce))
2593                 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2594         else
2595                 return __guc_action_register_context_v70(guc, &info, loop);
2596 }
2597
2598 static int register_context(struct intel_context *ce, bool loop)
2599 {
2600         struct intel_guc *guc = ce_to_guc(ce);
2601         int ret;
2602
2603         GEM_BUG_ON(intel_context_is_child(ce));
2604         trace_intel_context_register(ce);
2605
2606         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2607                 ret = register_context_v70(guc, ce, loop);
2608         else
2609                 ret = register_context_v69(guc, ce, loop);
2610
2611         if (likely(!ret)) {
2612                 unsigned long flags;
2613
2614                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2615                 set_context_registered(ce);
2616                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2617
2618                 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2619                         guc_context_policy_init_v70(ce, loop);
2620         }
2621
2622         return ret;
2623 }
2624
2625 static int __guc_action_deregister_context(struct intel_guc *guc,
2626                                            u32 guc_id)
2627 {
2628         u32 action[] = {
2629                 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2630                 guc_id,
2631         };
2632
2633         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2634                                              G2H_LEN_DW_DEREGISTER_CONTEXT,
2635                                              true);
2636 }
2637
2638 static int deregister_context(struct intel_context *ce, u32 guc_id)
2639 {
2640         struct intel_guc *guc = ce_to_guc(ce);
2641
2642         GEM_BUG_ON(intel_context_is_child(ce));
2643         trace_intel_context_deregister(ce);
2644
2645         return __guc_action_deregister_context(guc, guc_id);
2646 }
2647
2648 static inline void clear_children_join_go_memory(struct intel_context *ce)
2649 {
2650         struct parent_scratch *ps = __get_parent_scratch(ce);
2651         int i;
2652
2653         ps->go.semaphore = 0;
2654         for (i = 0; i < ce->parallel.number_children + 1; ++i)
2655                 ps->join[i].semaphore = 0;
2656 }
2657
2658 static inline u32 get_children_go_value(struct intel_context *ce)
2659 {
2660         return __get_parent_scratch(ce)->go.semaphore;
2661 }
2662
2663 static inline u32 get_children_join_value(struct intel_context *ce,
2664                                           u8 child_index)
2665 {
2666         return __get_parent_scratch(ce)->join[child_index].semaphore;
2667 }
2668
2669 struct context_policy {
2670         u32 count;
2671         struct guc_update_context_policy h2g;
2672 };
2673
2674 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2675 {
2676         size_t bytes = sizeof(policy->h2g.header) +
2677                        (sizeof(policy->h2g.klv[0]) * policy->count);
2678
2679         return bytes / sizeof(u32);
2680 }
2681
2682 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2683 {
2684         policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2685         policy->h2g.header.ctx_id = guc_id;
2686         policy->count = 0;
2687 }
2688
2689 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2690 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2691 { \
2692         GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2693         policy->h2g.klv[policy->count].kl = \
2694                 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2695                 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2696         policy->h2g.klv[policy->count].value = data; \
2697         policy->count++; \
2698 }
2699
2700 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2701 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2702 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2703 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2704 MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY)
2705
2706 #undef MAKE_CONTEXT_POLICY_ADD
2707
2708 static int __guc_context_set_context_policies(struct intel_guc *guc,
2709                                               struct context_policy *policy,
2710                                               bool loop)
2711 {
2712         return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2713                                         __guc_context_policy_action_size(policy),
2714                                         0, loop);
2715 }
2716
2717 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2718 {
2719         struct intel_engine_cs *engine = ce->engine;
2720         struct intel_guc *guc = gt_to_guc(engine->gt);
2721         struct context_policy policy;
2722         u32 execution_quantum;
2723         u32 preemption_timeout;
2724         u32 slpc_ctx_freq_req = 0;
2725         unsigned long flags;
2726         int ret;
2727
2728         /* NB: For both of these, zero means disabled. */
2729         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2730                                   execution_quantum));
2731         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2732                                   preemption_timeout));
2733         execution_quantum = engine->props.timeslice_duration_ms * 1000;
2734         preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2735
2736         if (ce->flags & BIT(CONTEXT_LOW_LATENCY))
2737                 slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE;
2738
2739         __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2740
2741         __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2742         __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2743         __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2744         __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req);
2745
2746         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2747                 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2748
2749         ret = __guc_context_set_context_policies(guc, &policy, loop);
2750
2751         spin_lock_irqsave(&ce->guc_state.lock, flags);
2752         if (ret != 0)
2753                 set_context_policy_required(ce);
2754         else
2755                 clr_context_policy_required(ce);
2756         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2757
2758         return ret;
2759 }
2760
2761 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2762                                         struct guc_lrc_desc_v69 *desc)
2763 {
2764         desc->policy_flags = 0;
2765
2766         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2767                 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2768
2769         /* NB: For both of these, zero means disabled. */
2770         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2771                                   desc->execution_quantum));
2772         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2773                                   desc->preemption_timeout));
2774         desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2775         desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2776 }
2777
2778 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2779 {
2780         /*
2781          * this matches the mapping we do in map_i915_prio_to_guc_prio()
2782          * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2783          */
2784         switch (prio) {
2785         default:
2786                 MISSING_CASE(prio);
2787                 fallthrough;
2788         case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2789                 return GEN12_CTX_PRIORITY_NORMAL;
2790         case GUC_CLIENT_PRIORITY_NORMAL:
2791                 return GEN12_CTX_PRIORITY_LOW;
2792         case GUC_CLIENT_PRIORITY_HIGH:
2793         case GUC_CLIENT_PRIORITY_KMD_HIGH:
2794                 return GEN12_CTX_PRIORITY_HIGH;
2795         }
2796 }
2797
2798 static void prepare_context_registration_info_v69(struct intel_context *ce)
2799 {
2800         struct intel_engine_cs *engine = ce->engine;
2801         struct intel_guc *guc = gt_to_guc(engine->gt);
2802         u32 ctx_id = ce->guc_id.id;
2803         struct guc_lrc_desc_v69 *desc;
2804         struct intel_context *child;
2805
2806         GEM_BUG_ON(!engine->mask);
2807
2808         /*
2809          * Ensure LRC + CT vmas are is same region as write barrier is done
2810          * based on CT vma region.
2811          */
2812         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2813                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2814
2815         desc = __get_lrc_desc_v69(guc, ctx_id);
2816         GEM_BUG_ON(!desc);
2817         desc->engine_class = engine_class_to_guc_class(engine->class);
2818         desc->engine_submit_mask = engine->logical_mask;
2819         desc->hw_context_desc = ce->lrc.lrca;
2820         desc->priority = ce->guc_state.prio;
2821         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2822         guc_context_policy_init_v69(engine, desc);
2823
2824         /*
2825          * If context is a parent, we need to register a process descriptor
2826          * describing a work queue and register all child contexts.
2827          */
2828         if (intel_context_is_parent(ce)) {
2829                 struct guc_process_desc_v69 *pdesc;
2830
2831                 ce->parallel.guc.wqi_tail = 0;
2832                 ce->parallel.guc.wqi_head = 0;
2833
2834                 desc->process_desc = i915_ggtt_offset(ce->state) +
2835                         __get_parent_scratch_offset(ce);
2836                 desc->wq_addr = i915_ggtt_offset(ce->state) +
2837                         __get_wq_offset(ce);
2838                 desc->wq_size = WQ_SIZE;
2839
2840                 pdesc = __get_process_desc_v69(ce);
2841                 memset(pdesc, 0, sizeof(*(pdesc)));
2842                 pdesc->stage_id = ce->guc_id.id;
2843                 pdesc->wq_base_addr = desc->wq_addr;
2844                 pdesc->wq_size_bytes = desc->wq_size;
2845                 pdesc->wq_status = WQ_STATUS_ACTIVE;
2846
2847                 ce->parallel.guc.wq_head = &pdesc->head;
2848                 ce->parallel.guc.wq_tail = &pdesc->tail;
2849                 ce->parallel.guc.wq_status = &pdesc->wq_status;
2850
2851                 for_each_child(ce, child) {
2852                         desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2853
2854                         desc->engine_class =
2855                                 engine_class_to_guc_class(engine->class);
2856                         desc->hw_context_desc = child->lrc.lrca;
2857                         desc->priority = ce->guc_state.prio;
2858                         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2859                         guc_context_policy_init_v69(engine, desc);
2860                 }
2861
2862                 clear_children_join_go_memory(ce);
2863         }
2864 }
2865
2866 static void prepare_context_registration_info_v70(struct intel_context *ce,
2867                                                   struct guc_ctxt_registration_info *info)
2868 {
2869         struct intel_engine_cs *engine = ce->engine;
2870         struct intel_guc *guc = gt_to_guc(engine->gt);
2871         u32 ctx_id = ce->guc_id.id;
2872
2873         GEM_BUG_ON(!engine->mask);
2874
2875         /*
2876          * Ensure LRC + CT vmas are is same region as write barrier is done
2877          * based on CT vma region.
2878          */
2879         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2880                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2881
2882         memset(info, 0, sizeof(*info));
2883         info->context_idx = ctx_id;
2884         info->engine_class = engine_class_to_guc_class(engine->class);
2885         info->engine_submit_mask = engine->logical_mask;
2886         /*
2887          * NB: GuC interface supports 64 bit LRCA even though i915/HW
2888          * only supports 32 bit currently.
2889          */
2890         info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2891         info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2892         if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2893                 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2894         info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2895
2896         /*
2897          * If context is a parent, we need to register a process descriptor
2898          * describing a work queue and register all child contexts.
2899          */
2900         if (intel_context_is_parent(ce)) {
2901                 struct guc_sched_wq_desc *wq_desc;
2902                 u64 wq_desc_offset, wq_base_offset;
2903
2904                 ce->parallel.guc.wqi_tail = 0;
2905                 ce->parallel.guc.wqi_head = 0;
2906
2907                 wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2908                                  __get_parent_scratch_offset(ce);
2909                 wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2910                                  __get_wq_offset(ce);
2911                 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2912                 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2913                 info->wq_base_lo = lower_32_bits(wq_base_offset);
2914                 info->wq_base_hi = upper_32_bits(wq_base_offset);
2915                 info->wq_size = WQ_SIZE;
2916
2917                 wq_desc = __get_wq_desc_v70(ce);
2918                 memset(wq_desc, 0, sizeof(*wq_desc));
2919                 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2920
2921                 ce->parallel.guc.wq_head = &wq_desc->head;
2922                 ce->parallel.guc.wq_tail = &wq_desc->tail;
2923                 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2924
2925                 clear_children_join_go_memory(ce);
2926         }
2927 }
2928
2929 static int try_context_registration(struct intel_context *ce, bool loop)
2930 {
2931         struct intel_engine_cs *engine = ce->engine;
2932         struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2933         struct intel_guc *guc = gt_to_guc(engine->gt);
2934         intel_wakeref_t wakeref;
2935         u32 ctx_id = ce->guc_id.id;
2936         bool context_registered;
2937         int ret = 0;
2938
2939         GEM_BUG_ON(!sched_state_is_init(ce));
2940
2941         context_registered = ctx_id_mapped(guc, ctx_id);
2942
2943         clr_ctx_id_mapping(guc, ctx_id);
2944         set_ctx_id_mapping(guc, ctx_id, ce);
2945
2946         /*
2947          * The context_lookup xarray is used to determine if the hardware
2948          * context is currently registered. There are two cases in which it
2949          * could be registered either the guc_id has been stolen from another
2950          * context or the lrc descriptor address of this context has changed. In
2951          * either case the context needs to be deregistered with the GuC before
2952          * registering this context.
2953          */
2954         if (context_registered) {
2955                 bool disabled;
2956                 unsigned long flags;
2957
2958                 trace_intel_context_steal_guc_id(ce);
2959                 GEM_BUG_ON(!loop);
2960
2961                 /* Seal race with Reset */
2962                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2963                 disabled = submission_disabled(guc);
2964                 if (likely(!disabled)) {
2965                         set_context_wait_for_deregister_to_register(ce);
2966                         intel_context_get(ce);
2967                 }
2968                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2969                 if (unlikely(disabled)) {
2970                         clr_ctx_id_mapping(guc, ctx_id);
2971                         return 0;       /* Will get registered later */
2972                 }
2973
2974                 /*
2975                  * If stealing the guc_id, this ce has the same guc_id as the
2976                  * context whose guc_id was stolen.
2977                  */
2978                 with_intel_runtime_pm(runtime_pm, wakeref)
2979                         ret = deregister_context(ce, ce->guc_id.id);
2980                 if (unlikely(ret == -ENODEV))
2981                         ret = 0;        /* Will get registered later */
2982         } else {
2983                 with_intel_runtime_pm(runtime_pm, wakeref)
2984                         ret = register_context(ce, loop);
2985                 if (unlikely(ret == -EBUSY)) {
2986                         clr_ctx_id_mapping(guc, ctx_id);
2987                 } else if (unlikely(ret == -ENODEV)) {
2988                         clr_ctx_id_mapping(guc, ctx_id);
2989                         ret = 0;        /* Will get registered later */
2990                 }
2991         }
2992
2993         return ret;
2994 }
2995
2996 static int __guc_context_pre_pin(struct intel_context *ce,
2997                                  struct intel_engine_cs *engine,
2998                                  struct i915_gem_ww_ctx *ww,
2999                                  void **vaddr)
3000 {
3001         return lrc_pre_pin(ce, engine, ww, vaddr);
3002 }
3003
3004 static int __guc_context_pin(struct intel_context *ce,
3005                              struct intel_engine_cs *engine,
3006                              void *vaddr)
3007 {
3008         if (i915_ggtt_offset(ce->state) !=
3009             (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
3010                 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3011
3012         /*
3013          * GuC context gets pinned in guc_request_alloc. See that function for
3014          * explaination of why.
3015          */
3016
3017         return lrc_pin(ce, engine, vaddr);
3018 }
3019
3020 static int guc_context_pre_pin(struct intel_context *ce,
3021                                struct i915_gem_ww_ctx *ww,
3022                                void **vaddr)
3023 {
3024         return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
3025 }
3026
3027 static int guc_context_pin(struct intel_context *ce, void *vaddr)
3028 {
3029         int ret = __guc_context_pin(ce, ce->engine, vaddr);
3030
3031         if (likely(!ret && !intel_context_is_barrier(ce)))
3032                 intel_engine_pm_get(ce->engine);
3033
3034         return ret;
3035 }
3036
3037 static void guc_context_unpin(struct intel_context *ce)
3038 {
3039         struct intel_guc *guc = ce_to_guc(ce);
3040
3041         __guc_context_update_stats(ce);
3042         unpin_guc_id(guc, ce);
3043         lrc_unpin(ce);
3044
3045         if (likely(!intel_context_is_barrier(ce)))
3046                 intel_engine_pm_put_async(ce->engine);
3047 }
3048
3049 static void guc_context_post_unpin(struct intel_context *ce)
3050 {
3051         lrc_post_unpin(ce);
3052 }
3053
3054 static void __guc_context_sched_enable(struct intel_guc *guc,
3055                                        struct intel_context *ce)
3056 {
3057         u32 action[] = {
3058                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3059                 ce->guc_id.id,
3060                 GUC_CONTEXT_ENABLE
3061         };
3062
3063         trace_intel_context_sched_enable(ce);
3064
3065         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3066                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3067 }
3068
3069 static void __guc_context_sched_disable(struct intel_guc *guc,
3070                                         struct intel_context *ce,
3071                                         u16 guc_id)
3072 {
3073         u32 action[] = {
3074                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
3075                 guc_id, /* ce->guc_id.id not stable */
3076                 GUC_CONTEXT_DISABLE
3077         };
3078
3079         GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
3080
3081         GEM_BUG_ON(intel_context_is_child(ce));
3082         trace_intel_context_sched_disable(ce);
3083
3084         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
3085                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
3086 }
3087
3088 static void guc_blocked_fence_complete(struct intel_context *ce)
3089 {
3090         lockdep_assert_held(&ce->guc_state.lock);
3091
3092         if (!i915_sw_fence_done(&ce->guc_state.blocked))
3093                 i915_sw_fence_complete(&ce->guc_state.blocked);
3094 }
3095
3096 static void guc_blocked_fence_reinit(struct intel_context *ce)
3097 {
3098         lockdep_assert_held(&ce->guc_state.lock);
3099         GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
3100
3101         /*
3102          * This fence is always complete unless a pending schedule disable is
3103          * outstanding. We arm the fence here and complete it when we receive
3104          * the pending schedule disable complete message.
3105          */
3106         i915_sw_fence_fini(&ce->guc_state.blocked);
3107         i915_sw_fence_reinit(&ce->guc_state.blocked);
3108         i915_sw_fence_await(&ce->guc_state.blocked);
3109         i915_sw_fence_commit(&ce->guc_state.blocked);
3110 }
3111
3112 static u16 prep_context_pending_disable(struct intel_context *ce)
3113 {
3114         lockdep_assert_held(&ce->guc_state.lock);
3115
3116         set_context_pending_disable(ce);
3117         clr_context_enabled(ce);
3118         guc_blocked_fence_reinit(ce);
3119         intel_context_get(ce);
3120
3121         return ce->guc_id.id;
3122 }
3123
3124 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
3125 {
3126         struct intel_guc *guc = ce_to_guc(ce);
3127         unsigned long flags;
3128         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3129         intel_wakeref_t wakeref;
3130         u16 guc_id;
3131         bool enabled;
3132
3133         GEM_BUG_ON(intel_context_is_child(ce));
3134
3135         spin_lock_irqsave(&ce->guc_state.lock, flags);
3136
3137         incr_context_blocked(ce);
3138
3139         enabled = context_enabled(ce);
3140         if (unlikely(!enabled || submission_disabled(guc))) {
3141                 if (enabled)
3142                         clr_context_enabled(ce);
3143                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3144                 return &ce->guc_state.blocked;
3145         }
3146
3147         /*
3148          * We add +2 here as the schedule disable complete CTB handler calls
3149          * intel_context_sched_disable_unpin (-2 to pin_count).
3150          */
3151         atomic_add(2, &ce->pin_count);
3152
3153         guc_id = prep_context_pending_disable(ce);
3154
3155         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3156
3157         with_intel_runtime_pm(runtime_pm, wakeref)
3158                 __guc_context_sched_disable(guc, ce, guc_id);
3159
3160         return &ce->guc_state.blocked;
3161 }
3162
3163 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3164         (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3165 #define SCHED_STATE_NO_UNBLOCK \
3166         (SCHED_STATE_MULTI_BLOCKED_MASK | \
3167          SCHED_STATE_PENDING_DISABLE | \
3168          SCHED_STATE_BANNED)
3169
3170 static bool context_cant_unblock(struct intel_context *ce)
3171 {
3172         lockdep_assert_held(&ce->guc_state.lock);
3173
3174         return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3175                 context_guc_id_invalid(ce) ||
3176                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3177                 !intel_context_is_pinned(ce);
3178 }
3179
3180 static void guc_context_unblock(struct intel_context *ce)
3181 {
3182         struct intel_guc *guc = ce_to_guc(ce);
3183         unsigned long flags;
3184         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3185         intel_wakeref_t wakeref;
3186         bool enable;
3187
3188         GEM_BUG_ON(context_enabled(ce));
3189         GEM_BUG_ON(intel_context_is_child(ce));
3190
3191         spin_lock_irqsave(&ce->guc_state.lock, flags);
3192
3193         if (unlikely(submission_disabled(guc) ||
3194                      context_cant_unblock(ce))) {
3195                 enable = false;
3196         } else {
3197                 enable = true;
3198                 set_context_pending_enable(ce);
3199                 set_context_enabled(ce);
3200                 intel_context_get(ce);
3201         }
3202
3203         decr_context_blocked(ce);
3204
3205         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3206
3207         if (enable) {
3208                 with_intel_runtime_pm(runtime_pm, wakeref)
3209                         __guc_context_sched_enable(guc, ce);
3210         }
3211 }
3212
3213 static void guc_context_cancel_request(struct intel_context *ce,
3214                                        struct i915_request *rq)
3215 {
3216         struct intel_context *block_context =
3217                 request_to_scheduling_context(rq);
3218
3219         if (i915_sw_fence_signaled(&rq->submit)) {
3220                 struct i915_sw_fence *fence;
3221
3222                 intel_context_get(ce);
3223                 fence = guc_context_block(block_context);
3224                 i915_sw_fence_wait(fence);
3225                 if (!i915_request_completed(rq)) {
3226                         __i915_request_skip(rq);
3227                         guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3228                                         true);
3229                 }
3230
3231                 guc_context_unblock(block_context);
3232                 intel_context_put(ce);
3233         }
3234 }
3235
3236 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3237                                                  u16 guc_id,
3238                                                  u32 preemption_timeout)
3239 {
3240         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3241                 struct context_policy policy;
3242
3243                 __guc_context_policy_start_klv(&policy, guc_id);
3244                 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3245                 __guc_context_set_context_policies(guc, &policy, true);
3246         } else {
3247                 u32 action[] = {
3248                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3249                         guc_id,
3250                         preemption_timeout
3251                 };
3252
3253                 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3254         }
3255 }
3256
3257 static void
3258 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3259                    unsigned int preempt_timeout_ms)
3260 {
3261         struct intel_guc *guc = ce_to_guc(ce);
3262         struct intel_runtime_pm *runtime_pm =
3263                 &ce->engine->gt->i915->runtime_pm;
3264         intel_wakeref_t wakeref;
3265         unsigned long flags;
3266
3267         GEM_BUG_ON(intel_context_is_child(ce));
3268
3269         guc_flush_submissions(guc);
3270
3271         spin_lock_irqsave(&ce->guc_state.lock, flags);
3272         set_context_banned(ce);
3273
3274         if (submission_disabled(guc) ||
3275             (!context_enabled(ce) && !context_pending_disable(ce))) {
3276                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3277
3278                 guc_cancel_context_requests(ce);
3279                 intel_engine_signal_breadcrumbs(ce->engine);
3280         } else if (!context_pending_disable(ce)) {
3281                 u16 guc_id;
3282
3283                 /*
3284                  * We add +2 here as the schedule disable complete CTB handler
3285                  * calls intel_context_sched_disable_unpin (-2 to pin_count).
3286                  */
3287                 atomic_add(2, &ce->pin_count);
3288
3289                 guc_id = prep_context_pending_disable(ce);
3290                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3291
3292                 /*
3293                  * In addition to disabling scheduling, set the preemption
3294                  * timeout to the minimum value (1 us) so the banned context
3295                  * gets kicked off the HW ASAP.
3296                  */
3297                 with_intel_runtime_pm(runtime_pm, wakeref) {
3298                         __guc_context_set_preemption_timeout(guc, guc_id,
3299                                                              preempt_timeout_ms);
3300                         __guc_context_sched_disable(guc, ce, guc_id);
3301                 }
3302         } else {
3303                 if (!context_guc_id_invalid(ce))
3304                         with_intel_runtime_pm(runtime_pm, wakeref)
3305                                 __guc_context_set_preemption_timeout(guc,
3306                                                                      ce->guc_id.id,
3307                                                                      preempt_timeout_ms);
3308                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3309         }
3310 }
3311
3312 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3313                              unsigned long flags)
3314         __releases(ce->guc_state.lock)
3315 {
3316         struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3317         intel_wakeref_t wakeref;
3318         u16 guc_id;
3319
3320         lockdep_assert_held(&ce->guc_state.lock);
3321         guc_id = prep_context_pending_disable(ce);
3322
3323         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3324
3325         with_intel_runtime_pm(runtime_pm, wakeref)
3326                 __guc_context_sched_disable(guc, ce, guc_id);
3327 }
3328
3329 static bool bypass_sched_disable(struct intel_guc *guc,
3330                                  struct intel_context *ce)
3331 {
3332         lockdep_assert_held(&ce->guc_state.lock);
3333         GEM_BUG_ON(intel_context_is_child(ce));
3334
3335         if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3336             !ctx_id_mapped(guc, ce->guc_id.id)) {
3337                 clr_context_enabled(ce);
3338                 return true;
3339         }
3340
3341         return !context_enabled(ce);
3342 }
3343
3344 static void __delay_sched_disable(struct work_struct *wrk)
3345 {
3346         struct intel_context *ce =
3347                 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3348         struct intel_guc *guc = ce_to_guc(ce);
3349         unsigned long flags;
3350
3351         spin_lock_irqsave(&ce->guc_state.lock, flags);
3352
3353         if (bypass_sched_disable(guc, ce)) {
3354                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3355                 intel_context_sched_disable_unpin(ce);
3356         } else {
3357                 do_sched_disable(guc, ce, flags);
3358         }
3359 }
3360
3361 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3362 {
3363         /*
3364          * parent contexts are perma-pinned, if we are unpinning do schedule
3365          * disable immediately.
3366          */
3367         if (intel_context_is_parent(ce))
3368                 return true;
3369
3370         /*
3371          * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3372          */
3373         return guc->submission_state.guc_ids_in_use >
3374                 guc->submission_state.sched_disable_gucid_threshold;
3375 }
3376
3377 static void guc_context_sched_disable(struct intel_context *ce)
3378 {
3379         struct intel_guc *guc = ce_to_guc(ce);
3380         u64 delay = guc->submission_state.sched_disable_delay_ms;
3381         unsigned long flags;
3382
3383         spin_lock_irqsave(&ce->guc_state.lock, flags);
3384
3385         if (bypass_sched_disable(guc, ce)) {
3386                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3387                 intel_context_sched_disable_unpin(ce);
3388         } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3389                    delay) {
3390                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3391                 mod_delayed_work(system_unbound_wq,
3392                                  &ce->guc_state.sched_disable_delay_work,
3393                                  msecs_to_jiffies(delay));
3394         } else {
3395                 do_sched_disable(guc, ce, flags);
3396         }
3397 }
3398
3399 static void guc_context_close(struct intel_context *ce)
3400 {
3401         unsigned long flags;
3402
3403         if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3404             cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3405                 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3406
3407         spin_lock_irqsave(&ce->guc_state.lock, flags);
3408         set_context_close_done(ce);
3409         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3410 }
3411
3412 static inline int guc_lrc_desc_unpin(struct intel_context *ce)
3413 {
3414         struct intel_guc *guc = ce_to_guc(ce);
3415         struct intel_gt *gt = guc_to_gt(guc);
3416         unsigned long flags;
3417         bool disabled;
3418         int ret;
3419
3420         GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3421         GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3422         GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3423         GEM_BUG_ON(context_enabled(ce));
3424
3425         /* Seal race with Reset */
3426         spin_lock_irqsave(&ce->guc_state.lock, flags);
3427         disabled = submission_disabled(guc);
3428         if (likely(!disabled)) {
3429                 /*
3430                  * Take a gt-pm ref and change context state to be destroyed.
3431                  * NOTE: a G2H IRQ that comes after will put this gt-pm ref back
3432                  */
3433                 __intel_gt_pm_get(gt);
3434                 set_context_destroyed(ce);
3435                 clr_context_registered(ce);
3436         }
3437         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3438
3439         if (unlikely(disabled)) {
3440                 release_guc_id(guc, ce);
3441                 __guc_context_destroy(ce);
3442                 return 0;
3443         }
3444
3445         /*
3446          * GuC is active, lets destroy this context, but at this point we can still be racing
3447          * with suspend, so we undo everything if the H2G fails in deregister_context so
3448          * that GuC reset will find this context during clean up.
3449          */
3450         ret = deregister_context(ce, ce->guc_id.id);
3451         if (ret) {
3452                 spin_lock(&ce->guc_state.lock);
3453                 set_context_registered(ce);
3454                 clr_context_destroyed(ce);
3455                 spin_unlock(&ce->guc_state.lock);
3456                 /*
3457                  * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements
3458                  * the wakeref immediately but per function spec usage call this after unlock.
3459                  */
3460                 intel_wakeref_put_async(&gt->wakeref);
3461         }
3462
3463         return ret;
3464 }
3465
3466 static void __guc_context_destroy(struct intel_context *ce)
3467 {
3468         GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3469                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3470                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3471                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3472
3473         lrc_fini(ce);
3474         intel_context_fini(ce);
3475
3476         if (intel_engine_is_virtual(ce->engine)) {
3477                 struct guc_virtual_engine *ve =
3478                         container_of(ce, typeof(*ve), context);
3479
3480                 if (ve->base.breadcrumbs)
3481                         intel_breadcrumbs_put(ve->base.breadcrumbs);
3482
3483                 kfree(ve);
3484         } else {
3485                 intel_context_free(ce);
3486         }
3487 }
3488
3489 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3490 {
3491         struct intel_context *ce;
3492         unsigned long flags;
3493
3494         GEM_BUG_ON(!submission_disabled(guc) &&
3495                    guc_submission_initialized(guc));
3496
3497         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3498                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3499                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3500                                               struct intel_context,
3501                                               destroyed_link);
3502                 if (ce)
3503                         list_del_init(&ce->destroyed_link);
3504                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3505
3506                 if (!ce)
3507                         break;
3508
3509                 release_guc_id(guc, ce);
3510                 __guc_context_destroy(ce);
3511         }
3512 }
3513
3514 static void deregister_destroyed_contexts(struct intel_guc *guc)
3515 {
3516         struct intel_context *ce;
3517         unsigned long flags;
3518
3519         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3520                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3521                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3522                                               struct intel_context,
3523                                               destroyed_link);
3524                 if (ce)
3525                         list_del_init(&ce->destroyed_link);
3526                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3527
3528                 if (!ce)
3529                         break;
3530
3531                 if (guc_lrc_desc_unpin(ce)) {
3532                         /*
3533                          * This means GuC's CT link severed mid-way which could happen
3534                          * in suspend-resume corner cases. In this case, put the
3535                          * context back into the destroyed_contexts list which will
3536                          * get picked up on the next context deregistration event or
3537                          * purged in a GuC sanitization event (reset/unload/wedged/...).
3538                          */
3539                         spin_lock_irqsave(&guc->submission_state.lock, flags);
3540                         list_add_tail(&ce->destroyed_link,
3541                                       &guc->submission_state.destroyed_contexts);
3542                         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3543                         /* Bail now since the list might never be emptied if h2gs fail */
3544                         break;
3545                 }
3546
3547         }
3548 }
3549
3550 static void destroyed_worker_func(struct work_struct *w)
3551 {
3552         struct intel_guc *guc = container_of(w, struct intel_guc,
3553                                              submission_state.destroyed_worker);
3554         struct intel_gt *gt = guc_to_gt(guc);
3555         intel_wakeref_t wakeref;
3556
3557         /*
3558          * In rare cases we can get here via async context-free fence-signals that
3559          * come very late in suspend flow or very early in resume flows. In these
3560          * cases, GuC won't be ready but just skipping it here is fine as these
3561          * pending-destroy-contexts get destroyed totally at GuC reset time at the
3562          * end of suspend.. OR.. this worker can be picked up later on the next
3563          * context destruction trigger after resume-completes
3564          */
3565         if (!intel_guc_is_ready(guc))
3566                 return;
3567
3568         with_intel_gt_pm(gt, wakeref)
3569                 deregister_destroyed_contexts(guc);
3570 }
3571
3572 static void guc_context_destroy(struct kref *kref)
3573 {
3574         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3575         struct intel_guc *guc = ce_to_guc(ce);
3576         unsigned long flags;
3577         bool destroy;
3578
3579         /*
3580          * If the guc_id is invalid this context has been stolen and we can free
3581          * it immediately. Also can be freed immediately if the context is not
3582          * registered with the GuC or the GuC is in the middle of a reset.
3583          */
3584         spin_lock_irqsave(&guc->submission_state.lock, flags);
3585         destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3586                 !ctx_id_mapped(guc, ce->guc_id.id);
3587         if (likely(!destroy)) {
3588                 if (!list_empty(&ce->guc_id.link))
3589                         list_del_init(&ce->guc_id.link);
3590                 list_add_tail(&ce->destroyed_link,
3591                               &guc->submission_state.destroyed_contexts);
3592         } else {
3593                 __release_guc_id(guc, ce);
3594         }
3595         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3596         if (unlikely(destroy)) {
3597                 __guc_context_destroy(ce);
3598                 return;
3599         }
3600
3601         /*
3602          * We use a worker to issue the H2G to deregister the context as we can
3603          * take the GT PM for the first time which isn't allowed from an atomic
3604          * context.
3605          */
3606         queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3607 }
3608
3609 static int guc_context_alloc(struct intel_context *ce)
3610 {
3611         return lrc_alloc(ce, ce->engine);
3612 }
3613
3614 static void __guc_context_set_prio(struct intel_guc *guc,
3615                                    struct intel_context *ce)
3616 {
3617         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3618                 struct context_policy policy;
3619
3620                 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3621                 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3622                 __guc_context_set_context_policies(guc, &policy, true);
3623         } else {
3624                 u32 action[] = {
3625                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3626                         ce->guc_id.id,
3627                         ce->guc_state.prio,
3628                 };
3629
3630                 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3631         }
3632 }
3633
3634 static void guc_context_set_prio(struct intel_guc *guc,
3635                                  struct intel_context *ce,
3636                                  u8 prio)
3637 {
3638         GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3639                    prio > GUC_CLIENT_PRIORITY_NORMAL);
3640         lockdep_assert_held(&ce->guc_state.lock);
3641
3642         if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3643             !context_registered(ce)) {
3644                 ce->guc_state.prio = prio;
3645                 return;
3646         }
3647
3648         ce->guc_state.prio = prio;
3649         __guc_context_set_prio(guc, ce);
3650
3651         trace_intel_context_set_prio(ce);
3652 }
3653
3654 static inline u8 map_i915_prio_to_guc_prio(int prio)
3655 {
3656         if (prio == I915_PRIORITY_NORMAL)
3657                 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3658         else if (prio < I915_PRIORITY_NORMAL)
3659                 return GUC_CLIENT_PRIORITY_NORMAL;
3660         else if (prio < I915_PRIORITY_DISPLAY)
3661                 return GUC_CLIENT_PRIORITY_HIGH;
3662         else
3663                 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3664 }
3665
3666 static inline void add_context_inflight_prio(struct intel_context *ce,
3667                                              u8 guc_prio)
3668 {
3669         lockdep_assert_held(&ce->guc_state.lock);
3670         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3671
3672         ++ce->guc_state.prio_count[guc_prio];
3673
3674         /* Overflow protection */
3675         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3676 }
3677
3678 static inline void sub_context_inflight_prio(struct intel_context *ce,
3679                                              u8 guc_prio)
3680 {
3681         lockdep_assert_held(&ce->guc_state.lock);
3682         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3683
3684         /* Underflow protection */
3685         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3686
3687         --ce->guc_state.prio_count[guc_prio];
3688 }
3689
3690 static inline void update_context_prio(struct intel_context *ce)
3691 {
3692         struct intel_guc *guc = &ce->engine->gt->uc.guc;
3693         int i;
3694
3695         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3696         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3697
3698         lockdep_assert_held(&ce->guc_state.lock);
3699
3700         for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3701                 if (ce->guc_state.prio_count[i]) {
3702                         guc_context_set_prio(guc, ce, i);
3703                         break;
3704                 }
3705         }
3706 }
3707
3708 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3709 {
3710         /* Lower value is higher priority */
3711         return new_guc_prio < old_guc_prio;
3712 }
3713
3714 static void add_to_context(struct i915_request *rq)
3715 {
3716         struct intel_context *ce = request_to_scheduling_context(rq);
3717         u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3718
3719         GEM_BUG_ON(intel_context_is_child(ce));
3720         GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3721
3722         spin_lock(&ce->guc_state.lock);
3723         list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3724
3725         if (rq->guc_prio == GUC_PRIO_INIT) {
3726                 rq->guc_prio = new_guc_prio;
3727                 add_context_inflight_prio(ce, rq->guc_prio);
3728         } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3729                 sub_context_inflight_prio(ce, rq->guc_prio);
3730                 rq->guc_prio = new_guc_prio;
3731                 add_context_inflight_prio(ce, rq->guc_prio);
3732         }
3733         update_context_prio(ce);
3734
3735         spin_unlock(&ce->guc_state.lock);
3736 }
3737
3738 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3739 {
3740         lockdep_assert_held(&ce->guc_state.lock);
3741
3742         if (rq->guc_prio != GUC_PRIO_INIT &&
3743             rq->guc_prio != GUC_PRIO_FINI) {
3744                 sub_context_inflight_prio(ce, rq->guc_prio);
3745                 update_context_prio(ce);
3746         }
3747         rq->guc_prio = GUC_PRIO_FINI;
3748 }
3749
3750 static void remove_from_context(struct i915_request *rq)
3751 {
3752         struct intel_context *ce = request_to_scheduling_context(rq);
3753
3754         GEM_BUG_ON(intel_context_is_child(ce));
3755
3756         spin_lock_irq(&ce->guc_state.lock);
3757
3758         list_del_init(&rq->sched.link);
3759         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3760
3761         /* Prevent further __await_execution() registering a cb, then flush */
3762         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3763
3764         guc_prio_fini(rq, ce);
3765
3766         spin_unlock_irq(&ce->guc_state.lock);
3767
3768         atomic_dec(&ce->guc_id.ref);
3769         i915_request_notify_execute_cb_imm(rq);
3770 }
3771
3772 static const struct intel_context_ops guc_context_ops = {
3773         .flags = COPS_RUNTIME_CYCLES,
3774         .alloc = guc_context_alloc,
3775
3776         .close = guc_context_close,
3777
3778         .pre_pin = guc_context_pre_pin,
3779         .pin = guc_context_pin,
3780         .unpin = guc_context_unpin,
3781         .post_unpin = guc_context_post_unpin,
3782
3783         .revoke = guc_context_revoke,
3784
3785         .cancel_request = guc_context_cancel_request,
3786
3787         .enter = intel_context_enter_engine,
3788         .exit = intel_context_exit_engine,
3789
3790         .sched_disable = guc_context_sched_disable,
3791
3792         .update_stats = guc_context_update_stats,
3793
3794         .reset = lrc_reset,
3795         .destroy = guc_context_destroy,
3796
3797         .create_virtual = guc_create_virtual,
3798         .create_parallel = guc_create_parallel,
3799 };
3800
3801 static void submit_work_cb(struct irq_work *wrk)
3802 {
3803         struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3804
3805         might_lock(&rq->engine->sched_engine->lock);
3806         i915_sw_fence_complete(&rq->submit);
3807 }
3808
3809 static void __guc_signal_context_fence(struct intel_context *ce)
3810 {
3811         struct i915_request *rq, *rn;
3812
3813         lockdep_assert_held(&ce->guc_state.lock);
3814
3815         if (!list_empty(&ce->guc_state.fences))
3816                 trace_intel_context_fence_release(ce);
3817
3818         /*
3819          * Use an IRQ to ensure locking order of sched_engine->lock ->
3820          * ce->guc_state.lock is preserved.
3821          */
3822         list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3823                                  guc_fence_link) {
3824                 list_del(&rq->guc_fence_link);
3825                 irq_work_queue(&rq->submit_work);
3826         }
3827
3828         INIT_LIST_HEAD(&ce->guc_state.fences);
3829 }
3830
3831 static void guc_signal_context_fence(struct intel_context *ce)
3832 {
3833         unsigned long flags;
3834
3835         GEM_BUG_ON(intel_context_is_child(ce));
3836
3837         spin_lock_irqsave(&ce->guc_state.lock, flags);
3838         clr_context_wait_for_deregister_to_register(ce);
3839         __guc_signal_context_fence(ce);
3840         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3841 }
3842
3843 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3844 {
3845         return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3846                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3847                 !submission_disabled(ce_to_guc(ce));
3848 }
3849
3850 static void guc_context_init(struct intel_context *ce)
3851 {
3852         const struct i915_gem_context *ctx;
3853         int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3854
3855         rcu_read_lock();
3856         ctx = rcu_dereference(ce->gem_context);
3857         if (ctx)
3858                 prio = ctx->sched.priority;
3859         rcu_read_unlock();
3860
3861         ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3862
3863         INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3864                           __delay_sched_disable);
3865
3866         set_bit(CONTEXT_GUC_INIT, &ce->flags);
3867 }
3868
3869 static int guc_request_alloc(struct i915_request *rq)
3870 {
3871         struct intel_context *ce = request_to_scheduling_context(rq);
3872         struct intel_guc *guc = ce_to_guc(ce);
3873         unsigned long flags;
3874         int ret;
3875
3876         GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3877
3878         /*
3879          * Flush enough space to reduce the likelihood of waiting after
3880          * we start building the request - in which case we will just
3881          * have to repeat work.
3882          */
3883         rq->reserved_space += GUC_REQUEST_SIZE;
3884
3885         /*
3886          * Note that after this point, we have committed to using
3887          * this request as it is being used to both track the
3888          * state of engine initialisation and liveness of the
3889          * golden renderstate above. Think twice before you try
3890          * to cancel/unwind this request now.
3891          */
3892
3893         /* Unconditionally invalidate GPU caches and TLBs. */
3894         ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3895         if (ret)
3896                 return ret;
3897
3898         rq->reserved_space -= GUC_REQUEST_SIZE;
3899
3900         if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3901                 guc_context_init(ce);
3902
3903         /*
3904          * If the context gets closed while the execbuf is ongoing, the context
3905          * close code will race with the below code to cancel the delayed work.
3906          * If the context close wins the race and cancels the work, it will
3907          * immediately call the sched disable (see guc_context_close), so there
3908          * is a chance we can get past this check while the sched_disable code
3909          * is being executed. To make sure that code completes before we check
3910          * the status further down, we wait for the close process to complete.
3911          * Else, this code path could send a request down thinking that the
3912          * context is still in a schedule-enable mode while the GuC ends up
3913          * dropping the request completely because the disable did go from the
3914          * context_close path right to GuC just prior. In the event the CT is
3915          * full, we could potentially need to wait up to 1.5 seconds.
3916          */
3917         if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3918                 intel_context_sched_disable_unpin(ce);
3919         else if (intel_context_is_closed(ce))
3920                 if (wait_for(context_close_done(ce), 1500))
3921                         guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3922         /*
3923          * Call pin_guc_id here rather than in the pinning step as with
3924          * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3925          * guc_id and creating horrible race conditions. This is especially bad
3926          * when guc_id are being stolen due to over subscription. By the time
3927          * this function is reached, it is guaranteed that the guc_id will be
3928          * persistent until the generated request is retired. Thus, sealing these
3929          * race conditions. It is still safe to fail here if guc_id are
3930          * exhausted and return -EAGAIN to the user indicating that they can try
3931          * again in the future.
3932          *
3933          * There is no need for a lock here as the timeline mutex ensures at
3934          * most one context can be executing this code path at once. The
3935          * guc_id_ref is incremented once for every request in flight and
3936          * decremented on each retire. When it is zero, a lock around the
3937          * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3938          */
3939         if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3940                 goto out;
3941
3942         ret = pin_guc_id(guc, ce);      /* returns 1 if new guc_id assigned */
3943         if (unlikely(ret < 0))
3944                 return ret;
3945         if (context_needs_register(ce, !!ret)) {
3946                 ret = try_context_registration(ce, true);
3947                 if (unlikely(ret)) {    /* unwind */
3948                         if (ret == -EPIPE) {
3949                                 disable_submission(guc);
3950                                 goto out;       /* GPU will be reset */
3951                         }
3952                         atomic_dec(&ce->guc_id.ref);
3953                         unpin_guc_id(guc, ce);
3954                         return ret;
3955                 }
3956         }
3957
3958         clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3959
3960 out:
3961         /*
3962          * We block all requests on this context if a G2H is pending for a
3963          * schedule disable or context deregistration as the GuC will fail a
3964          * schedule enable or context registration if either G2H is pending
3965          * respectfully. Once a G2H returns, the fence is released that is
3966          * blocking these requests (see guc_signal_context_fence).
3967          */
3968         spin_lock_irqsave(&ce->guc_state.lock, flags);
3969         if (context_wait_for_deregister_to_register(ce) ||
3970             context_pending_disable(ce)) {
3971                 init_irq_work(&rq->submit_work, submit_work_cb);
3972                 i915_sw_fence_await(&rq->submit);
3973
3974                 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3975         }
3976         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3977
3978         return 0;
3979 }
3980
3981 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3982                                        struct i915_gem_ww_ctx *ww,
3983                                        void **vaddr)
3984 {
3985         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3986
3987         return __guc_context_pre_pin(ce, engine, ww, vaddr);
3988 }
3989
3990 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3991 {
3992         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3993         int ret = __guc_context_pin(ce, engine, vaddr);
3994         intel_engine_mask_t tmp, mask = ce->engine->mask;
3995
3996         if (likely(!ret))
3997                 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3998                         intel_engine_pm_get(engine);
3999
4000         return ret;
4001 }
4002
4003 static void guc_virtual_context_unpin(struct intel_context *ce)
4004 {
4005         intel_engine_mask_t tmp, mask = ce->engine->mask;
4006         struct intel_engine_cs *engine;
4007         struct intel_guc *guc = ce_to_guc(ce);
4008
4009         GEM_BUG_ON(context_enabled(ce));
4010         GEM_BUG_ON(intel_context_is_barrier(ce));
4011
4012         unpin_guc_id(guc, ce);
4013         lrc_unpin(ce);
4014
4015         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4016                 intel_engine_pm_put_async(engine);
4017 }
4018
4019 static void guc_virtual_context_enter(struct intel_context *ce)
4020 {
4021         intel_engine_mask_t tmp, mask = ce->engine->mask;
4022         struct intel_engine_cs *engine;
4023
4024         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4025                 intel_engine_pm_get(engine);
4026
4027         intel_timeline_enter(ce->timeline);
4028 }
4029
4030 static void guc_virtual_context_exit(struct intel_context *ce)
4031 {
4032         intel_engine_mask_t tmp, mask = ce->engine->mask;
4033         struct intel_engine_cs *engine;
4034
4035         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
4036                 intel_engine_pm_put(engine);
4037
4038         intel_timeline_exit(ce->timeline);
4039 }
4040
4041 static int guc_virtual_context_alloc(struct intel_context *ce)
4042 {
4043         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4044
4045         return lrc_alloc(ce, engine);
4046 }
4047
4048 static const struct intel_context_ops virtual_guc_context_ops = {
4049         .flags = COPS_RUNTIME_CYCLES,
4050         .alloc = guc_virtual_context_alloc,
4051
4052         .close = guc_context_close,
4053
4054         .pre_pin = guc_virtual_context_pre_pin,
4055         .pin = guc_virtual_context_pin,
4056         .unpin = guc_virtual_context_unpin,
4057         .post_unpin = guc_context_post_unpin,
4058
4059         .revoke = guc_context_revoke,
4060
4061         .cancel_request = guc_context_cancel_request,
4062
4063         .enter = guc_virtual_context_enter,
4064         .exit = guc_virtual_context_exit,
4065
4066         .sched_disable = guc_context_sched_disable,
4067         .update_stats = guc_context_update_stats,
4068
4069         .destroy = guc_context_destroy,
4070
4071         .get_sibling = guc_virtual_get_sibling,
4072 };
4073
4074 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
4075 {
4076         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4077         struct intel_guc *guc = ce_to_guc(ce);
4078         int ret;
4079
4080         GEM_BUG_ON(!intel_context_is_parent(ce));
4081         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4082
4083         ret = pin_guc_id(guc, ce);
4084         if (unlikely(ret < 0))
4085                 return ret;
4086
4087         return __guc_context_pin(ce, engine, vaddr);
4088 }
4089
4090 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
4091 {
4092         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
4093
4094         GEM_BUG_ON(!intel_context_is_child(ce));
4095         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4096
4097         __intel_context_pin(ce->parallel.parent);
4098         return __guc_context_pin(ce, engine, vaddr);
4099 }
4100
4101 static void guc_parent_context_unpin(struct intel_context *ce)
4102 {
4103         struct intel_guc *guc = ce_to_guc(ce);
4104
4105         GEM_BUG_ON(context_enabled(ce));
4106         GEM_BUG_ON(intel_context_is_barrier(ce));
4107         GEM_BUG_ON(!intel_context_is_parent(ce));
4108         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4109
4110         unpin_guc_id(guc, ce);
4111         lrc_unpin(ce);
4112 }
4113
4114 static void guc_child_context_unpin(struct intel_context *ce)
4115 {
4116         GEM_BUG_ON(context_enabled(ce));
4117         GEM_BUG_ON(intel_context_is_barrier(ce));
4118         GEM_BUG_ON(!intel_context_is_child(ce));
4119         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4120
4121         lrc_unpin(ce);
4122 }
4123
4124 static void guc_child_context_post_unpin(struct intel_context *ce)
4125 {
4126         GEM_BUG_ON(!intel_context_is_child(ce));
4127         GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
4128         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
4129
4130         lrc_post_unpin(ce);
4131         intel_context_unpin(ce->parallel.parent);
4132 }
4133
4134 static void guc_child_context_destroy(struct kref *kref)
4135 {
4136         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
4137
4138         __guc_context_destroy(ce);
4139 }
4140
4141 static const struct intel_context_ops virtual_parent_context_ops = {
4142         .alloc = guc_virtual_context_alloc,
4143
4144         .close = guc_context_close,
4145
4146         .pre_pin = guc_context_pre_pin,
4147         .pin = guc_parent_context_pin,
4148         .unpin = guc_parent_context_unpin,
4149         .post_unpin = guc_context_post_unpin,
4150
4151         .revoke = guc_context_revoke,
4152
4153         .cancel_request = guc_context_cancel_request,
4154
4155         .enter = guc_virtual_context_enter,
4156         .exit = guc_virtual_context_exit,
4157
4158         .sched_disable = guc_context_sched_disable,
4159
4160         .destroy = guc_context_destroy,
4161
4162         .get_sibling = guc_virtual_get_sibling,
4163 };
4164
4165 static const struct intel_context_ops virtual_child_context_ops = {
4166         .alloc = guc_virtual_context_alloc,
4167
4168         .pre_pin = guc_context_pre_pin,
4169         .pin = guc_child_context_pin,
4170         .unpin = guc_child_context_unpin,
4171         .post_unpin = guc_child_context_post_unpin,
4172
4173         .cancel_request = guc_context_cancel_request,
4174
4175         .enter = guc_virtual_context_enter,
4176         .exit = guc_virtual_context_exit,
4177
4178         .destroy = guc_child_context_destroy,
4179
4180         .get_sibling = guc_virtual_get_sibling,
4181 };
4182
4183 /*
4184  * The below override of the breadcrumbs is enabled when the user configures a
4185  * context for parallel submission (multi-lrc, parent-child).
4186  *
4187  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4188  * safely preempt all the hw contexts configured for parallel submission
4189  * between each BB. The contract between the i915 and GuC is if the parent
4190  * context can be preempted, all the children can be preempted, and the GuC will
4191  * always try to preempt the parent before the children. A handshake between the
4192  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4193  * creating a window to preempt between each set of BBs.
4194  */
4195 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4196                                                      u64 offset, u32 len,
4197                                                      const unsigned int flags);
4198 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4199                                                     u64 offset, u32 len,
4200                                                     const unsigned int flags);
4201 static u32 *
4202 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4203                                                  u32 *cs);
4204 static u32 *
4205 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4206                                                 u32 *cs);
4207
4208 static struct intel_context *
4209 guc_create_parallel(struct intel_engine_cs **engines,
4210                     unsigned int num_siblings,
4211                     unsigned int width)
4212 {
4213         struct intel_engine_cs **siblings = NULL;
4214         struct intel_context *parent = NULL, *ce, *err;
4215         int i, j;
4216
4217         siblings = kmalloc_array(num_siblings,
4218                                  sizeof(*siblings),
4219                                  GFP_KERNEL);
4220         if (!siblings)
4221                 return ERR_PTR(-ENOMEM);
4222
4223         for (i = 0; i < width; ++i) {
4224                 for (j = 0; j < num_siblings; ++j)
4225                         siblings[j] = engines[i * num_siblings + j];
4226
4227                 ce = intel_engine_create_virtual(siblings, num_siblings,
4228                                                  FORCE_VIRTUAL);
4229                 if (IS_ERR(ce)) {
4230                         err = ERR_CAST(ce);
4231                         goto unwind;
4232                 }
4233
4234                 if (i == 0) {
4235                         parent = ce;
4236                         parent->ops = &virtual_parent_context_ops;
4237                 } else {
4238                         ce->ops = &virtual_child_context_ops;
4239                         intel_context_bind_parent_child(parent, ce);
4240                 }
4241         }
4242
4243         parent->parallel.fence_context = dma_fence_context_alloc(1);
4244
4245         parent->engine->emit_bb_start =
4246                 emit_bb_start_parent_no_preempt_mid_batch;
4247         parent->engine->emit_fini_breadcrumb =
4248                 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4249         parent->engine->emit_fini_breadcrumb_dw =
4250                 12 + 4 * parent->parallel.number_children;
4251         for_each_child(parent, ce) {
4252                 ce->engine->emit_bb_start =
4253                         emit_bb_start_child_no_preempt_mid_batch;
4254                 ce->engine->emit_fini_breadcrumb =
4255                         emit_fini_breadcrumb_child_no_preempt_mid_batch;
4256                 ce->engine->emit_fini_breadcrumb_dw = 16;
4257         }
4258
4259         kfree(siblings);
4260         return parent;
4261
4262 unwind:
4263         if (parent)
4264                 intel_context_put(parent);
4265         kfree(siblings);
4266         return err;
4267 }
4268
4269 static bool
4270 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4271 {
4272         struct intel_engine_cs *sibling;
4273         intel_engine_mask_t tmp, mask = b->engine_mask;
4274         bool result = false;
4275
4276         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4277                 result |= intel_engine_irq_enable(sibling);
4278
4279         return result;
4280 }
4281
4282 static void
4283 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4284 {
4285         struct intel_engine_cs *sibling;
4286         intel_engine_mask_t tmp, mask = b->engine_mask;
4287
4288         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4289                 intel_engine_irq_disable(sibling);
4290 }
4291
4292 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4293 {
4294         int i;
4295
4296         /*
4297          * In GuC submission mode we do not know which physical engine a request
4298          * will be scheduled on, this creates a problem because the breadcrumb
4299          * interrupt is per physical engine. To work around this we attach
4300          * requests and direct all breadcrumb interrupts to the first instance
4301          * of an engine per class. In addition all breadcrumb interrupts are
4302          * enabled / disabled across an engine class in unison.
4303          */
4304         for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4305                 struct intel_engine_cs *sibling =
4306                         engine->gt->engine_class[engine->class][i];
4307
4308                 if (sibling) {
4309                         if (engine->breadcrumbs != sibling->breadcrumbs) {
4310                                 intel_breadcrumbs_put(engine->breadcrumbs);
4311                                 engine->breadcrumbs =
4312                                         intel_breadcrumbs_get(sibling->breadcrumbs);
4313                         }
4314                         break;
4315                 }
4316         }
4317
4318         if (engine->breadcrumbs) {
4319                 engine->breadcrumbs->engine_mask |= engine->mask;
4320                 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4321                 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4322         }
4323 }
4324
4325 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4326                                            int prio)
4327 {
4328         struct intel_context *ce = request_to_scheduling_context(rq);
4329         u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4330
4331         /* Short circuit function */
4332         if (prio < I915_PRIORITY_NORMAL)
4333                 return;
4334
4335         spin_lock(&ce->guc_state.lock);
4336
4337         if (rq->guc_prio == GUC_PRIO_FINI)
4338                 goto exit;
4339
4340         if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio))
4341                 goto exit;
4342
4343         if (rq->guc_prio != GUC_PRIO_INIT)
4344                 sub_context_inflight_prio(ce, rq->guc_prio);
4345
4346         rq->guc_prio = new_guc_prio;
4347         add_context_inflight_prio(ce, rq->guc_prio);
4348         update_context_prio(ce);
4349
4350 exit:
4351         spin_unlock(&ce->guc_state.lock);
4352 }
4353
4354 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4355 {
4356         struct intel_context *ce = request_to_scheduling_context(rq);
4357
4358         spin_lock(&ce->guc_state.lock);
4359         guc_prio_fini(rq, ce);
4360         spin_unlock(&ce->guc_state.lock);
4361 }
4362
4363 static void sanitize_hwsp(struct intel_engine_cs *engine)
4364 {
4365         struct intel_timeline *tl;
4366
4367         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4368                 intel_timeline_reset_seqno(tl);
4369 }
4370
4371 static void guc_sanitize(struct intel_engine_cs *engine)
4372 {
4373         /*
4374          * Poison residual state on resume, in case the suspend didn't!
4375          *
4376          * We have to assume that across suspend/resume (or other loss
4377          * of control) that the contents of our pinned buffers has been
4378          * lost, replaced by garbage. Since this doesn't always happen,
4379          * let's poison such state so that we more quickly spot when
4380          * we falsely assume it has been preserved.
4381          */
4382         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4383                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4384
4385         /*
4386          * The kernel_context HWSP is stored in the status_page. As above,
4387          * that may be lost on resume/initialisation, and so we need to
4388          * reset the value in the HWSP.
4389          */
4390         sanitize_hwsp(engine);
4391
4392         /* And scrub the dirty cachelines for the HWSP */
4393         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4394
4395         intel_engine_reset_pinned_contexts(engine);
4396 }
4397
4398 static void setup_hwsp(struct intel_engine_cs *engine)
4399 {
4400         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4401
4402         ENGINE_WRITE_FW(engine,
4403                         RING_HWS_PGA,
4404                         i915_ggtt_offset(engine->status_page.vma));
4405 }
4406
4407 static void start_engine(struct intel_engine_cs *engine)
4408 {
4409         ENGINE_WRITE_FW(engine,
4410                         RING_MODE_GEN7,
4411                         _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4412
4413         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4414         ENGINE_POSTING_READ(engine, RING_MI_MODE);
4415 }
4416
4417 static int guc_resume(struct intel_engine_cs *engine)
4418 {
4419         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4420
4421         intel_mocs_init_engine(engine);
4422
4423         intel_breadcrumbs_reset(engine->breadcrumbs);
4424
4425         setup_hwsp(engine);
4426         start_engine(engine);
4427
4428         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4429                 xehp_enable_ccs_engines(engine);
4430
4431         return 0;
4432 }
4433
4434 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4435 {
4436         return !sched_engine->tasklet.callback;
4437 }
4438
4439 static void guc_set_default_submission(struct intel_engine_cs *engine)
4440 {
4441         engine->submit_request = guc_submit_request;
4442 }
4443
4444 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4445                                          struct intel_context *ce)
4446 {
4447         int ret;
4448
4449         /*
4450          * Note: we purposefully do not check the returns below because
4451          * the registration can only fail if a reset is just starting.
4452          * This is called at the end of reset so presumably another reset
4453          * isn't happening and even it did this code would be run again.
4454          */
4455
4456         if (context_guc_id_invalid(ce)) {
4457                 ret = pin_guc_id(guc, ce);
4458
4459                 if (ret < 0)
4460                         return ret;
4461         }
4462
4463         if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4464                 guc_context_init(ce);
4465
4466         ret = try_context_registration(ce, true);
4467         if (ret)
4468                 unpin_guc_id(guc, ce);
4469
4470         return ret;
4471 }
4472
4473 static inline int guc_init_submission(struct intel_guc *guc)
4474 {
4475         struct intel_gt *gt = guc_to_gt(guc);
4476         struct intel_engine_cs *engine;
4477         enum intel_engine_id id;
4478
4479         /* make sure all descriptors are clean... */
4480         xa_destroy(&guc->context_lookup);
4481
4482         /*
4483          * A reset might have occurred while we had a pending stalled request,
4484          * so make sure we clean that up.
4485          */
4486         guc->stalled_request = NULL;
4487         guc->submission_stall_reason = STALL_NONE;
4488
4489         /*
4490          * Some contexts might have been pinned before we enabled GuC
4491          * submission, so we need to add them to the GuC bookeeping.
4492          * Also, after a reset the of the GuC we want to make sure that the
4493          * information shared with GuC is properly reset. The kernel LRCs are
4494          * not attached to the gem_context, so they need to be added separately.
4495          */
4496         for_each_engine(engine, gt, id) {
4497                 struct intel_context *ce;
4498
4499                 list_for_each_entry(ce, &engine->pinned_contexts_list,
4500                                     pinned_contexts_link) {
4501                         int ret = guc_kernel_context_pin(guc, ce);
4502
4503                         if (ret) {
4504                                 /* No point in trying to clean up as i915 will wedge on failure */
4505                                 return ret;
4506                         }
4507                 }
4508         }
4509
4510         return 0;
4511 }
4512
4513 static void guc_release(struct intel_engine_cs *engine)
4514 {
4515         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4516
4517         intel_engine_cleanup_common(engine);
4518         lrc_fini_wa_ctx(engine);
4519 }
4520
4521 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4522 {
4523         struct intel_engine_cs *e;
4524         intel_engine_mask_t tmp, mask = engine->mask;
4525
4526         for_each_engine_masked(e, engine->gt, mask, tmp)
4527                 e->serial++;
4528 }
4529
4530 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4531 {
4532         /* Default vfuncs which can be overridden by each engine. */
4533
4534         engine->resume = guc_resume;
4535
4536         engine->cops = &guc_context_ops;
4537         engine->request_alloc = guc_request_alloc;
4538         engine->add_active_request = add_to_context;
4539         engine->remove_active_request = remove_from_context;
4540
4541         engine->sched_engine->schedule = i915_schedule;
4542
4543         engine->reset.prepare = guc_engine_reset_prepare;
4544         engine->reset.rewind = guc_rewind_nop;
4545         engine->reset.cancel = guc_reset_nop;
4546         engine->reset.finish = guc_reset_nop;
4547
4548         engine->emit_flush = gen8_emit_flush_xcs;
4549         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4550         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4551         if (GRAPHICS_VER(engine->i915) >= 12) {
4552                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4553                 engine->emit_flush = gen12_emit_flush_xcs;
4554         }
4555         engine->set_default_submission = guc_set_default_submission;
4556         engine->busyness = guc_engine_busyness;
4557
4558         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4559         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4560         engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4561
4562         /* Wa_14014475959:dg2 */
4563         if (engine->class == COMPUTE_CLASS)
4564                 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4565                     IS_DG2(engine->i915))
4566                         engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4567
4568         /* Wa_16019325821 */
4569         /* Wa_14019159160 */
4570         if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
4571             IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
4572                 engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT;
4573
4574         /*
4575          * TODO: GuC supports timeslicing and semaphores as well, but they're
4576          * handled by the firmware so some minor tweaks are required before
4577          * enabling.
4578          *
4579          * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4580          */
4581
4582         engine->emit_bb_start = gen8_emit_bb_start;
4583         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
4584                 engine->emit_bb_start = xehp_emit_bb_start;
4585 }
4586
4587 static void rcs_submission_override(struct intel_engine_cs *engine)
4588 {
4589         switch (GRAPHICS_VER(engine->i915)) {
4590         case 12:
4591                 engine->emit_flush = gen12_emit_flush_rcs;
4592                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4593                 break;
4594         case 11:
4595                 engine->emit_flush = gen11_emit_flush_rcs;
4596                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4597                 break;
4598         default:
4599                 engine->emit_flush = gen8_emit_flush_rcs;
4600                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4601                 break;
4602         }
4603 }
4604
4605 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4606 {
4607         engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4608         intel_engine_set_irq_handler(engine, cs_irq_handler);
4609 }
4610
4611 static void guc_sched_engine_destroy(struct kref *kref)
4612 {
4613         struct i915_sched_engine *sched_engine =
4614                 container_of(kref, typeof(*sched_engine), ref);
4615         struct intel_guc *guc = sched_engine->private_data;
4616
4617         guc->sched_engine = NULL;
4618         tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4619         kfree(sched_engine);
4620 }
4621
4622 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4623 {
4624         struct drm_i915_private *i915 = engine->i915;
4625         struct intel_guc *guc = gt_to_guc(engine->gt);
4626
4627         /*
4628          * The setup relies on several assumptions (e.g. irqs always enabled)
4629          * that are only valid on gen11+
4630          */
4631         GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4632
4633         if (!guc->sched_engine) {
4634                 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4635                 if (!guc->sched_engine)
4636                         return -ENOMEM;
4637
4638                 guc->sched_engine->schedule = i915_schedule;
4639                 guc->sched_engine->disabled = guc_sched_engine_disabled;
4640                 guc->sched_engine->private_data = guc;
4641                 guc->sched_engine->destroy = guc_sched_engine_destroy;
4642                 guc->sched_engine->bump_inflight_request_prio =
4643                         guc_bump_inflight_request_prio;
4644                 guc->sched_engine->retire_inflight_request_prio =
4645                         guc_retire_inflight_request_prio;
4646                 tasklet_setup(&guc->sched_engine->tasklet,
4647                               guc_submission_tasklet);
4648         }
4649         i915_sched_engine_put(engine->sched_engine);
4650         engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4651
4652         guc_default_vfuncs(engine);
4653         guc_default_irqs(engine);
4654         guc_init_breadcrumbs(engine);
4655
4656         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4657                 rcs_submission_override(engine);
4658
4659         lrc_init_wa_ctx(engine);
4660
4661         /* Finally, take ownership and responsibility for cleanup! */
4662         engine->sanitize = guc_sanitize;
4663         engine->release = guc_release;
4664
4665         return 0;
4666 }
4667
4668 struct scheduling_policy {
4669         /* internal data */
4670         u32 max_words, num_words;
4671         u32 count;
4672         /* API data */
4673         struct guc_update_scheduling_policy h2g;
4674 };
4675
4676 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4677 {
4678         u32 *start = (void *)&policy->h2g;
4679         u32 *end = policy->h2g.data + policy->num_words;
4680         size_t delta = end - start;
4681
4682         return delta;
4683 }
4684
4685 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4686 {
4687         policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4688         policy->max_words = ARRAY_SIZE(policy->h2g.data);
4689         policy->num_words = 0;
4690         policy->count = 0;
4691
4692         return policy;
4693 }
4694
4695 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4696                                             u32 action, u32 *data, u32 len)
4697 {
4698         u32 *klv_ptr = policy->h2g.data + policy->num_words;
4699
4700         GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4701         *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4702                        FIELD_PREP(GUC_KLV_0_LEN, len);
4703         memcpy(klv_ptr, data, sizeof(u32) * len);
4704         policy->num_words += 1 + len;
4705         policy->count++;
4706 }
4707
4708 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4709                                                 struct scheduling_policy *policy)
4710 {
4711         int ret;
4712
4713         ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4714                              __guc_scheduling_policy_action_size(policy));
4715         if (ret < 0) {
4716                 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4717                                 ERR_PTR(ret));
4718                 return ret;
4719         }
4720
4721         if (ret != policy->count) {
4722                 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4723                          ret, policy->count);
4724                 if (ret > policy->count)
4725                         return -EPROTO;
4726         }
4727
4728         return 0;
4729 }
4730
4731 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4732 {
4733         struct scheduling_policy policy;
4734         struct intel_gt *gt = guc_to_gt(guc);
4735         intel_wakeref_t wakeref;
4736         int ret;
4737
4738         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4739                 return 0;
4740
4741         __guc_scheduling_policy_start_klv(&policy);
4742
4743         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4744                 u32 yield[] = {
4745                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4746                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4747                 };
4748
4749                 __guc_scheduling_policy_add_klv(&policy,
4750                                                 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4751                                                 yield, ARRAY_SIZE(yield));
4752
4753                 ret = __guc_action_set_scheduling_policies(guc, &policy);
4754         }
4755
4756         return ret;
4757 }
4758
4759 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4760 {
4761         struct intel_gt *gt = guc_to_gt(guc);
4762         u32 val;
4763
4764         if (GRAPHICS_VER(gt->i915) < 12)
4765                 return;
4766
4767         if (to_guc)
4768                 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4769         else
4770                 val = 0;
4771
4772         intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4773 }
4774
4775 int intel_guc_submission_enable(struct intel_guc *guc)
4776 {
4777         int ret;
4778
4779         /* Semaphore interrupt enable and route to GuC */
4780         guc_route_semaphores(guc, true);
4781
4782         ret = guc_init_submission(guc);
4783         if (ret)
4784                 goto fail_sem;
4785
4786         ret = guc_init_engine_stats(guc);
4787         if (ret)
4788                 goto fail_sem;
4789
4790         ret = guc_init_global_schedule_policy(guc);
4791         if (ret)
4792                 goto fail_stats;
4793
4794         return 0;
4795
4796 fail_stats:
4797         guc_fini_engine_stats(guc);
4798 fail_sem:
4799         guc_route_semaphores(guc, false);
4800         return ret;
4801 }
4802
4803 /* Note: By the time we're here, GuC may have already been reset */
4804 void intel_guc_submission_disable(struct intel_guc *guc)
4805 {
4806         guc_cancel_busyness_worker(guc);
4807
4808         /* Semaphore interrupt disable and route to host */
4809         guc_route_semaphores(guc, false);
4810 }
4811
4812 static bool __guc_submission_supported(struct intel_guc *guc)
4813 {
4814         /* GuC submission is unavailable for pre-Gen11 */
4815         return intel_guc_is_supported(guc) &&
4816                GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4817 }
4818
4819 static bool __guc_submission_selected(struct intel_guc *guc)
4820 {
4821         struct drm_i915_private *i915 = guc_to_i915(guc);
4822
4823         if (!intel_guc_submission_is_supported(guc))
4824                 return false;
4825
4826         return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4827 }
4828
4829 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4830 {
4831         return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4832 }
4833
4834 /*
4835  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4836  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4837  * operation. This matches the 30fps game-render + encode (real world) workload this
4838  * knob was tested against.
4839  */
4840 #define SCHED_DISABLE_DELAY_MS  34
4841
4842 /*
4843  * A threshold of 75% is a reasonable starting point considering that real world apps
4844  * generally don't get anywhere near this.
4845  */
4846 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4847         (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4848
4849 void intel_guc_submission_init_early(struct intel_guc *guc)
4850 {
4851         xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4852
4853         spin_lock_init(&guc->submission_state.lock);
4854         INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4855         ida_init(&guc->submission_state.guc_ids);
4856         INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4857         INIT_WORK(&guc->submission_state.destroyed_worker,
4858                   destroyed_worker_func);
4859         INIT_WORK(&guc->submission_state.reset_fail_worker,
4860                   reset_fail_worker_func);
4861
4862         spin_lock_init(&guc->timestamp.lock);
4863         INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4864
4865         guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4866         guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4867         guc->submission_state.sched_disable_gucid_threshold =
4868                 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4869         guc->submission_supported = __guc_submission_supported(guc);
4870         guc->submission_selected = __guc_submission_selected(guc);
4871 }
4872
4873 static inline struct intel_context *
4874 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4875 {
4876         struct intel_context *ce;
4877
4878         if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4879                 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4880                 return NULL;
4881         }
4882
4883         ce = __get_context(guc, ctx_id);
4884         if (unlikely(!ce)) {
4885                 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4886                 return NULL;
4887         }
4888
4889         if (unlikely(intel_context_is_child(ce))) {
4890                 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4891                 return NULL;
4892         }
4893
4894         return ce;
4895 }
4896
4897 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4898 {
4899         struct intel_guc_tlb_wait *wait;
4900         unsigned long flags;
4901
4902         xa_lock_irqsave(&guc->tlb_lookup, flags);
4903         wait = xa_load(&guc->tlb_lookup, seqno);
4904
4905         if (wait)
4906                 wake_up(&wait->wq);
4907         else
4908                 guc_dbg(guc,
4909                         "Stale TLB invalidation response with seqno %d\n", seqno);
4910
4911         xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4912 }
4913
4914 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4915                                     const u32 *payload, u32 len)
4916 {
4917         if (len < 1)
4918                 return -EPROTO;
4919
4920         wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4921         return 0;
4922 }
4923
4924 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4925 {
4926         /*
4927          * This is equivalent to wait_woken() with the exception that
4928          * we do not wake up early if the kthread task has been completed.
4929          * As we are called from page reclaim in any task context,
4930          * we may be invoked from stopped kthreads, but we *must*
4931          * complete the wait from the HW.
4932          */
4933         do {
4934                 set_current_state(TASK_UNINTERRUPTIBLE);
4935                 if (wq_entry->flags & WQ_FLAG_WOKEN)
4936                         break;
4937
4938                 timeout = schedule_timeout(timeout);
4939         } while (timeout);
4940
4941         /* See wait_woken() and woken_wake_function() */
4942         __set_current_state(TASK_RUNNING);
4943         smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4944
4945         return timeout;
4946 }
4947
4948 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4949 {
4950         /* Check if GT is wedged or suspended */
4951         if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4952                 return false;
4953         return true;
4954 }
4955
4956 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4957                                    enum intel_guc_tlb_invalidation_type type)
4958 {
4959         struct intel_guc_tlb_wait _wq, *wq = &_wq;
4960         struct intel_gt *gt = guc_to_gt(guc);
4961         DEFINE_WAIT_FUNC(wait, woken_wake_function);
4962         int err;
4963         u32 seqno;
4964         u32 action[] = {
4965                 INTEL_GUC_ACTION_TLB_INVALIDATION,
4966                 0,
4967                 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4968                         REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4969                                        INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4970                         INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4971         };
4972         u32 size = ARRAY_SIZE(action);
4973
4974         /*
4975          * Early guard against GT enablement.  TLB invalidation should not be
4976          * attempted if the GT is disabled due to suspend/wedge.
4977          */
4978         if (!intel_gt_is_enabled(gt))
4979                 return -EINVAL;
4980
4981         init_waitqueue_head(&_wq.wq);
4982
4983         if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4984                                 xa_limit_32b, &guc->next_seqno,
4985                                 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4986                 /* Under severe memory pressure? Serialise TLB allocations */
4987                 xa_lock_irq(&guc->tlb_lookup);
4988                 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4989                 wait_event_lock_irq(wq->wq,
4990                                     !READ_ONCE(wq->busy),
4991                                     guc->tlb_lookup.xa_lock);
4992                 /*
4993                  * Update wq->busy under lock to ensure only one waiter can
4994                  * issue the TLB invalidation command using the serial slot at a
4995                  * time. The condition is set to true before releasing the lock
4996                  * so that other caller continue to wait until woken up again.
4997                  */
4998                 wq->busy = true;
4999                 xa_unlock_irq(&guc->tlb_lookup);
5000
5001                 seqno = guc->serial_slot;
5002         }
5003
5004         action[1] = seqno;
5005
5006         add_wait_queue(&wq->wq, &wait);
5007
5008         /* This is a critical reclaim path and thus we must loop here. */
5009         err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
5010         if (err)
5011                 goto out;
5012
5013         /*
5014          * Late guard against GT enablement.  It is not an error for the TLB
5015          * invalidation to time out if the GT is disabled during the process
5016          * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
5017          * in this case.
5018          */
5019         if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
5020             intel_gt_is_enabled(gt)) {
5021                 guc_err(guc,
5022                         "TLB invalidation response timed out for seqno %u\n", seqno);
5023                 err = -ETIME;
5024         }
5025 out:
5026         remove_wait_queue(&wq->wq, &wait);
5027         if (seqno != guc->serial_slot)
5028                 xa_erase_irq(&guc->tlb_lookup, seqno);
5029
5030         return err;
5031 }
5032
5033 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
5034 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
5035 {
5036         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
5037 }
5038
5039 /* Send a H2G command to invalidate the GuC's internal TLB. */
5040 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
5041 {
5042         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
5043 }
5044
5045 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
5046                                           const u32 *msg,
5047                                           u32 len)
5048 {
5049         struct intel_context *ce;
5050         u32 ctx_id;
5051
5052         if (unlikely(len < 1)) {
5053                 guc_err(guc, "Invalid length %u\n", len);
5054                 return -EPROTO;
5055         }
5056         ctx_id = msg[0];
5057
5058         ce = g2h_context_lookup(guc, ctx_id);
5059         if (unlikely(!ce))
5060                 return -EPROTO;
5061
5062         trace_intel_context_deregister_done(ce);
5063
5064 #ifdef CONFIG_DRM_I915_SELFTEST
5065         if (unlikely(ce->drop_deregister)) {
5066                 ce->drop_deregister = false;
5067                 return 0;
5068         }
5069 #endif
5070
5071         if (context_wait_for_deregister_to_register(ce)) {
5072                 struct intel_runtime_pm *runtime_pm =
5073                         &ce->engine->gt->i915->runtime_pm;
5074                 intel_wakeref_t wakeref;
5075
5076                 /*
5077                  * Previous owner of this guc_id has been deregistered, now safe
5078                  * register this context.
5079                  */
5080                 with_intel_runtime_pm(runtime_pm, wakeref)
5081                         register_context(ce, true);
5082                 guc_signal_context_fence(ce);
5083                 intel_context_put(ce);
5084         } else if (context_destroyed(ce)) {
5085                 /* Context has been destroyed */
5086                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
5087                 release_guc_id(guc, ce);
5088                 __guc_context_destroy(ce);
5089         }
5090
5091         decr_outstanding_submission_g2h(guc);
5092
5093         return 0;
5094 }
5095
5096 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
5097                                      const u32 *msg,
5098                                      u32 len)
5099 {
5100         struct intel_context *ce;
5101         unsigned long flags;
5102         u32 ctx_id;
5103
5104         if (unlikely(len < 2)) {
5105                 guc_err(guc, "Invalid length %u\n", len);
5106                 return -EPROTO;
5107         }
5108         ctx_id = msg[0];
5109
5110         ce = g2h_context_lookup(guc, ctx_id);
5111         if (unlikely(!ce))
5112                 return -EPROTO;
5113
5114         if (unlikely(context_destroyed(ce) ||
5115                      (!context_pending_enable(ce) &&
5116                      !context_pending_disable(ce)))) {
5117                 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
5118                         ce->guc_state.sched_state, ctx_id);
5119                 return -EPROTO;
5120         }
5121
5122         trace_intel_context_sched_done(ce);
5123
5124         if (context_pending_enable(ce)) {
5125 #ifdef CONFIG_DRM_I915_SELFTEST
5126                 if (unlikely(ce->drop_schedule_enable)) {
5127                         ce->drop_schedule_enable = false;
5128                         return 0;
5129                 }
5130 #endif
5131
5132                 spin_lock_irqsave(&ce->guc_state.lock, flags);
5133                 clr_context_pending_enable(ce);
5134                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5135         } else if (context_pending_disable(ce)) {
5136                 bool banned;
5137
5138 #ifdef CONFIG_DRM_I915_SELFTEST
5139                 if (unlikely(ce->drop_schedule_disable)) {
5140                         ce->drop_schedule_disable = false;
5141                         return 0;
5142                 }
5143 #endif
5144
5145                 /*
5146                  * Unpin must be done before __guc_signal_context_fence,
5147                  * otherwise a race exists between the requests getting
5148                  * submitted + retired before this unpin completes resulting in
5149                  * the pin_count going to zero and the context still being
5150                  * enabled.
5151                  */
5152                 intel_context_sched_disable_unpin(ce);
5153
5154                 spin_lock_irqsave(&ce->guc_state.lock, flags);
5155                 banned = context_banned(ce);
5156                 clr_context_banned(ce);
5157                 clr_context_pending_disable(ce);
5158                 __guc_signal_context_fence(ce);
5159                 guc_blocked_fence_complete(ce);
5160                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
5161
5162                 if (banned) {
5163                         guc_cancel_context_requests(ce);
5164                         intel_engine_signal_breadcrumbs(ce->engine);
5165                 }
5166         }
5167
5168         decr_outstanding_submission_g2h(guc);
5169         intel_context_put(ce);
5170
5171         return 0;
5172 }
5173
5174 static void capture_error_state(struct intel_guc *guc,
5175                                 struct intel_context *ce)
5176 {
5177         struct intel_gt *gt = guc_to_gt(guc);
5178         struct drm_i915_private *i915 = gt->i915;
5179         intel_wakeref_t wakeref;
5180         intel_engine_mask_t engine_mask;
5181
5182         if (intel_engine_is_virtual(ce->engine)) {
5183                 struct intel_engine_cs *e;
5184                 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
5185
5186                 engine_mask = 0;
5187                 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5188                         bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5189
5190                         if (match) {
5191                                 intel_engine_set_hung_context(e, ce);
5192                                 engine_mask |= e->mask;
5193                                 i915_increase_reset_engine_count(&i915->gpu_error,
5194                                                                  e);
5195                         }
5196                 }
5197
5198                 if (!engine_mask) {
5199                         guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5200                                  ce->guc_id.id, ce->engine->name);
5201                         engine_mask = ~0U;
5202                 }
5203         } else {
5204                 intel_engine_set_hung_context(ce->engine, ce);
5205                 engine_mask = ce->engine->mask;
5206                 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5207         }
5208
5209         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5210                 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5211 }
5212
5213 static void guc_context_replay(struct intel_context *ce)
5214 {
5215         struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5216
5217         __guc_reset_context(ce, ce->engine->mask);
5218         tasklet_hi_schedule(&sched_engine->tasklet);
5219 }
5220
5221 static void guc_handle_context_reset(struct intel_guc *guc,
5222                                      struct intel_context *ce)
5223 {
5224         bool capture = intel_context_is_schedulable(ce);
5225
5226         trace_intel_context_reset(ce);
5227
5228         guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5229                 capture ? "Got" : "Ignoring",
5230                 ce->guc_id.id, ce->engine->name,
5231                 str_yes_no(intel_context_is_exiting(ce)),
5232                 str_yes_no(intel_context_is_banned(ce)));
5233
5234         if (capture) {
5235                 capture_error_state(guc, ce);
5236                 guc_context_replay(ce);
5237         }
5238 }
5239
5240 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5241                                         const u32 *msg, u32 len)
5242 {
5243         struct intel_context *ce;
5244         unsigned long flags;
5245         int ctx_id;
5246
5247         if (unlikely(len != 1)) {
5248                 guc_err(guc, "Invalid length %u", len);
5249                 return -EPROTO;
5250         }
5251
5252         ctx_id = msg[0];
5253
5254         /*
5255          * The context lookup uses the xarray but lookups only require an RCU lock
5256          * not the full spinlock. So take the lock explicitly and keep it until the
5257          * context has been reference count locked to ensure it can't be destroyed
5258          * asynchronously until the reset is done.
5259          */
5260         xa_lock_irqsave(&guc->context_lookup, flags);
5261         ce = g2h_context_lookup(guc, ctx_id);
5262         if (ce)
5263                 intel_context_get(ce);
5264         xa_unlock_irqrestore(&guc->context_lookup, flags);
5265
5266         if (unlikely(!ce))
5267                 return -EPROTO;
5268
5269         guc_handle_context_reset(guc, ce);
5270         intel_context_put(ce);
5271
5272         return 0;
5273 }
5274
5275 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5276                                         const u32 *msg, u32 len)
5277 {
5278         u32 status;
5279
5280         if (unlikely(len != 1)) {
5281                 guc_dbg(guc, "Invalid length %u", len);
5282                 return -EPROTO;
5283         }
5284
5285         status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5286         if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5287                 guc_warn(guc, "No space for error capture");
5288
5289         intel_guc_capture_process(guc);
5290
5291         return 0;
5292 }
5293
5294 struct intel_engine_cs *
5295 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5296 {
5297         struct intel_gt *gt = guc_to_gt(guc);
5298         u8 engine_class = guc_class_to_engine_class(guc_class);
5299
5300         /* Class index is checked in class converter */
5301         GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5302
5303         return gt->engine_class[engine_class][instance];
5304 }
5305
5306 static void reset_fail_worker_func(struct work_struct *w)
5307 {
5308         struct intel_guc *guc = container_of(w, struct intel_guc,
5309                                              submission_state.reset_fail_worker);
5310         struct intel_gt *gt = guc_to_gt(guc);
5311         intel_engine_mask_t reset_fail_mask;
5312         unsigned long flags;
5313
5314         spin_lock_irqsave(&guc->submission_state.lock, flags);
5315         reset_fail_mask = guc->submission_state.reset_fail_mask;
5316         guc->submission_state.reset_fail_mask = 0;
5317         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5318
5319         if (likely(reset_fail_mask)) {
5320                 struct intel_engine_cs *engine;
5321                 enum intel_engine_id id;
5322
5323                 /*
5324                  * GuC is toast at this point - it dead loops after sending the failed
5325                  * reset notification. So need to manually determine the guilty context.
5326                  * Note that it should be reliable to do this here because the GuC is
5327                  * toast and will not be scheduling behind the KMD's back.
5328                  */
5329                 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5330                         intel_guc_find_hung_context(engine);
5331
5332                 intel_gt_handle_error(gt, reset_fail_mask,
5333                                       I915_ERROR_CAPTURE,
5334                                       "GuC failed to reset engine mask=0x%x",
5335                                       reset_fail_mask);
5336         }
5337 }
5338
5339 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5340                                          const u32 *msg, u32 len)
5341 {
5342         struct intel_engine_cs *engine;
5343         u8 guc_class, instance;
5344         u32 reason;
5345         unsigned long flags;
5346
5347         if (unlikely(len != 3)) {
5348                 guc_err(guc, "Invalid length %u", len);
5349                 return -EPROTO;
5350         }
5351
5352         guc_class = msg[0];
5353         instance = msg[1];
5354         reason = msg[2];
5355
5356         engine = intel_guc_lookup_engine(guc, guc_class, instance);
5357         if (unlikely(!engine)) {
5358                 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5359                 return -EPROTO;
5360         }
5361
5362         /*
5363          * This is an unexpected failure of a hardware feature. So, log a real
5364          * error message not just the informational that comes with the reset.
5365          */
5366         guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5367                 guc_class, instance, engine->name, reason);
5368
5369         spin_lock_irqsave(&guc->submission_state.lock, flags);
5370         guc->submission_state.reset_fail_mask |= engine->mask;
5371         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5372
5373         /*
5374          * A GT reset flushes this worker queue (G2H handler) so we must use
5375          * another worker to trigger a GT reset.
5376          */
5377         queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5378
5379         return 0;
5380 }
5381
5382 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5383 {
5384         struct intel_guc *guc = gt_to_guc(engine->gt);
5385         struct intel_context *ce;
5386         struct i915_request *rq;
5387         unsigned long index;
5388         unsigned long flags;
5389
5390         /* Reset called during driver load? GuC not yet initialised! */
5391         if (unlikely(!guc_submission_initialized(guc)))
5392                 return;
5393
5394         xa_lock_irqsave(&guc->context_lookup, flags);
5395         xa_for_each(&guc->context_lookup, index, ce) {
5396                 bool found;
5397
5398                 if (!kref_get_unless_zero(&ce->ref))
5399                         continue;
5400
5401                 xa_unlock(&guc->context_lookup);
5402
5403                 if (!intel_context_is_pinned(ce))
5404                         goto next;
5405
5406                 if (intel_engine_is_virtual(ce->engine)) {
5407                         if (!(ce->engine->mask & engine->mask))
5408                                 goto next;
5409                 } else {
5410                         if (ce->engine != engine)
5411                                 goto next;
5412                 }
5413
5414                 found = false;
5415                 spin_lock(&ce->guc_state.lock);
5416                 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5417                         if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5418                                 continue;
5419
5420                         found = true;
5421                         break;
5422                 }
5423                 spin_unlock(&ce->guc_state.lock);
5424
5425                 if (found) {
5426                         intel_engine_set_hung_context(engine, ce);
5427
5428                         /* Can only cope with one hang at a time... */
5429                         intel_context_put(ce);
5430                         xa_lock(&guc->context_lookup);
5431                         goto done;
5432                 }
5433
5434 next:
5435                 intel_context_put(ce);
5436                 xa_lock(&guc->context_lookup);
5437         }
5438 done:
5439         xa_unlock_irqrestore(&guc->context_lookup, flags);
5440 }
5441
5442 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5443                                     struct i915_request *hung_rq,
5444                                     struct drm_printer *m)
5445 {
5446         struct intel_guc *guc = gt_to_guc(engine->gt);
5447         struct intel_context *ce;
5448         unsigned long index;
5449         unsigned long flags;
5450
5451         /* Reset called during driver load? GuC not yet initialised! */
5452         if (unlikely(!guc_submission_initialized(guc)))
5453                 return;
5454
5455         xa_lock_irqsave(&guc->context_lookup, flags);
5456         xa_for_each(&guc->context_lookup, index, ce) {
5457                 if (!kref_get_unless_zero(&ce->ref))
5458                         continue;
5459
5460                 xa_unlock(&guc->context_lookup);
5461
5462                 if (!intel_context_is_pinned(ce))
5463                         goto next;
5464
5465                 if (intel_engine_is_virtual(ce->engine)) {
5466                         if (!(ce->engine->mask & engine->mask))
5467                                 goto next;
5468                 } else {
5469                         if (ce->engine != engine)
5470                                 goto next;
5471                 }
5472
5473                 spin_lock(&ce->guc_state.lock);
5474                 intel_engine_dump_active_requests(&ce->guc_state.requests,
5475                                                   hung_rq, m);
5476                 spin_unlock(&ce->guc_state.lock);
5477
5478 next:
5479                 intel_context_put(ce);
5480                 xa_lock(&guc->context_lookup);
5481         }
5482         xa_unlock_irqrestore(&guc->context_lookup, flags);
5483 }
5484
5485 void intel_guc_submission_print_info(struct intel_guc *guc,
5486                                      struct drm_printer *p)
5487 {
5488         struct i915_sched_engine *sched_engine = guc->sched_engine;
5489         struct rb_node *rb;
5490         unsigned long flags;
5491
5492         if (!sched_engine)
5493                 return;
5494
5495         drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5496                    guc->submission_version.major, guc->submission_version.minor,
5497                    guc->submission_version.patch);
5498         drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5499                    atomic_read(&guc->outstanding_submission_g2h));
5500         drm_printf(p, "GuC tasklet count: %u\n",
5501                    atomic_read(&sched_engine->tasklet.count));
5502
5503         spin_lock_irqsave(&sched_engine->lock, flags);
5504         drm_printf(p, "Requests in GuC submit tasklet:\n");
5505         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5506                 struct i915_priolist *pl = to_priolist(rb);
5507                 struct i915_request *rq;
5508
5509                 priolist_for_each_request(rq, pl)
5510                         drm_printf(p, "guc_id=%u, seqno=%llu\n",
5511                                    rq->context->guc_id.id,
5512                                    rq->fence.seqno);
5513         }
5514         spin_unlock_irqrestore(&sched_engine->lock, flags);
5515         drm_printf(p, "\n");
5516 }
5517
5518 static inline void guc_log_context_priority(struct drm_printer *p,
5519                                             struct intel_context *ce)
5520 {
5521         int i;
5522
5523         drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5524         drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5525         for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5526              i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5527                 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5528                            i, ce->guc_state.prio_count[i]);
5529         }
5530         drm_printf(p, "\n");
5531 }
5532
5533 static inline void guc_log_context(struct drm_printer *p,
5534                                    struct intel_context *ce)
5535 {
5536         drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5537         drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5538         if (intel_context_pin_if_active(ce)) {
5539                 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5540                            ce->ring->head,
5541                            ce->lrc_reg_state[CTX_RING_HEAD]);
5542                 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5543                            ce->ring->tail,
5544                            ce->lrc_reg_state[CTX_RING_TAIL]);
5545                 intel_context_unpin(ce);
5546         } else {
5547                 drm_printf(p, "\t\tLRC Head: Internal %u, Memory not pinned\n",
5548                            ce->ring->head);
5549                 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory not pinned\n",
5550                            ce->ring->tail);
5551         }
5552         drm_printf(p, "\t\tContext Pin Count: %u\n",
5553                    atomic_read(&ce->pin_count));
5554         drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5555                    atomic_read(&ce->guc_id.ref));
5556         drm_printf(p, "\t\tSchedule State: 0x%x\n",
5557                    ce->guc_state.sched_state);
5558 }
5559
5560 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5561                                              struct drm_printer *p)
5562 {
5563         struct intel_context *ce;
5564         unsigned long index;
5565         unsigned long flags;
5566
5567         xa_lock_irqsave(&guc->context_lookup, flags);
5568         xa_for_each(&guc->context_lookup, index, ce) {
5569                 GEM_BUG_ON(intel_context_is_child(ce));
5570
5571                 guc_log_context(p, ce);
5572                 guc_log_context_priority(p, ce);
5573
5574                 if (intel_context_is_parent(ce)) {
5575                         struct intel_context *child;
5576
5577                         drm_printf(p, "\t\tNumber children: %u\n",
5578                                    ce->parallel.number_children);
5579
5580                         if (ce->parallel.guc.wq_status) {
5581                                 drm_printf(p, "\t\tWQI Head: %u\n",
5582                                            READ_ONCE(*ce->parallel.guc.wq_head));
5583                                 drm_printf(p, "\t\tWQI Tail: %u\n",
5584                                            READ_ONCE(*ce->parallel.guc.wq_tail));
5585                                 drm_printf(p, "\t\tWQI Status: %u\n",
5586                                            READ_ONCE(*ce->parallel.guc.wq_status));
5587                         }
5588
5589                         if (ce->engine->emit_bb_start ==
5590                             emit_bb_start_parent_no_preempt_mid_batch) {
5591                                 u8 i;
5592
5593                                 drm_printf(p, "\t\tChildren Go: %u\n",
5594                                            get_children_go_value(ce));
5595                                 for (i = 0; i < ce->parallel.number_children; ++i)
5596                                         drm_printf(p, "\t\tChildren Join: %u\n",
5597                                                    get_children_join_value(ce, i));
5598                         }
5599
5600                         for_each_child(ce, child)
5601                                 guc_log_context(p, child);
5602                 }
5603         }
5604         xa_unlock_irqrestore(&guc->context_lookup, flags);
5605 }
5606
5607 static inline u32 get_children_go_addr(struct intel_context *ce)
5608 {
5609         GEM_BUG_ON(!intel_context_is_parent(ce));
5610
5611         return i915_ggtt_offset(ce->state) +
5612                 __get_parent_scratch_offset(ce) +
5613                 offsetof(struct parent_scratch, go.semaphore);
5614 }
5615
5616 static inline u32 get_children_join_addr(struct intel_context *ce,
5617                                          u8 child_index)
5618 {
5619         GEM_BUG_ON(!intel_context_is_parent(ce));
5620
5621         return i915_ggtt_offset(ce->state) +
5622                 __get_parent_scratch_offset(ce) +
5623                 offsetof(struct parent_scratch, join[child_index].semaphore);
5624 }
5625
5626 #define PARENT_GO_BB                    1
5627 #define PARENT_GO_FINI_BREADCRUMB       0
5628 #define CHILD_GO_BB                     1
5629 #define CHILD_GO_FINI_BREADCRUMB        0
5630 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5631                                                      u64 offset, u32 len,
5632                                                      const unsigned int flags)
5633 {
5634         struct intel_context *ce = rq->context;
5635         u32 *cs;
5636         u8 i;
5637
5638         GEM_BUG_ON(!intel_context_is_parent(ce));
5639
5640         cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5641         if (IS_ERR(cs))
5642                 return PTR_ERR(cs);
5643
5644         /* Wait on children */
5645         for (i = 0; i < ce->parallel.number_children; ++i) {
5646                 *cs++ = (MI_SEMAPHORE_WAIT |
5647                          MI_SEMAPHORE_GLOBAL_GTT |
5648                          MI_SEMAPHORE_POLL |
5649                          MI_SEMAPHORE_SAD_EQ_SDD);
5650                 *cs++ = PARENT_GO_BB;
5651                 *cs++ = get_children_join_addr(ce, i);
5652                 *cs++ = 0;
5653         }
5654
5655         /* Turn off preemption */
5656         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5657         *cs++ = MI_NOOP;
5658
5659         /* Tell children go */
5660         cs = gen8_emit_ggtt_write(cs,
5661                                   CHILD_GO_BB,
5662                                   get_children_go_addr(ce),
5663                                   0);
5664
5665         /* Jump to batch */
5666         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5667                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5668         *cs++ = lower_32_bits(offset);
5669         *cs++ = upper_32_bits(offset);
5670         *cs++ = MI_NOOP;
5671
5672         intel_ring_advance(rq, cs);
5673
5674         return 0;
5675 }
5676
5677 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5678                                                     u64 offset, u32 len,
5679                                                     const unsigned int flags)
5680 {
5681         struct intel_context *ce = rq->context;
5682         struct intel_context *parent = intel_context_to_parent(ce);
5683         u32 *cs;
5684
5685         GEM_BUG_ON(!intel_context_is_child(ce));
5686
5687         cs = intel_ring_begin(rq, 12);
5688         if (IS_ERR(cs))
5689                 return PTR_ERR(cs);
5690
5691         /* Signal parent */
5692         cs = gen8_emit_ggtt_write(cs,
5693                                   PARENT_GO_BB,
5694                                   get_children_join_addr(parent,
5695                                                          ce->parallel.child_index),
5696                                   0);
5697
5698         /* Wait on parent for go */
5699         *cs++ = (MI_SEMAPHORE_WAIT |
5700                  MI_SEMAPHORE_GLOBAL_GTT |
5701                  MI_SEMAPHORE_POLL |
5702                  MI_SEMAPHORE_SAD_EQ_SDD);
5703         *cs++ = CHILD_GO_BB;
5704         *cs++ = get_children_go_addr(parent);
5705         *cs++ = 0;
5706
5707         /* Turn off preemption */
5708         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5709
5710         /* Jump to batch */
5711         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5712                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5713         *cs++ = lower_32_bits(offset);
5714         *cs++ = upper_32_bits(offset);
5715
5716         intel_ring_advance(rq, cs);
5717
5718         return 0;
5719 }
5720
5721 static u32 *
5722 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5723                                                    u32 *cs)
5724 {
5725         struct intel_context *ce = rq->context;
5726         u8 i;
5727
5728         GEM_BUG_ON(!intel_context_is_parent(ce));
5729
5730         /* Wait on children */
5731         for (i = 0; i < ce->parallel.number_children; ++i) {
5732                 *cs++ = (MI_SEMAPHORE_WAIT |
5733                          MI_SEMAPHORE_GLOBAL_GTT |
5734                          MI_SEMAPHORE_POLL |
5735                          MI_SEMAPHORE_SAD_EQ_SDD);
5736                 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5737                 *cs++ = get_children_join_addr(ce, i);
5738                 *cs++ = 0;
5739         }
5740
5741         /* Turn on preemption */
5742         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5743         *cs++ = MI_NOOP;
5744
5745         /* Tell children go */
5746         cs = gen8_emit_ggtt_write(cs,
5747                                   CHILD_GO_FINI_BREADCRUMB,
5748                                   get_children_go_addr(ce),
5749                                   0);
5750
5751         return cs;
5752 }
5753
5754 /*
5755  * If this true, a submission of multi-lrc requests had an error and the
5756  * requests need to be skipped. The front end (execuf IOCTL) should've called
5757  * i915_request_skip which squashes the BB but we still need to emit the fini
5758  * breadrcrumbs seqno write. At this point we don't know how many of the
5759  * requests in the multi-lrc submission were generated so we can't do the
5760  * handshake between the parent and children (e.g. if 4 requests should be
5761  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5762  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5763  * has occurred on any of the requests in submission / relationship.
5764  */
5765 static inline bool skip_handshake(struct i915_request *rq)
5766 {
5767         return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5768 }
5769
5770 #define NON_SKIP_LEN    6
5771 static u32 *
5772 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5773                                                  u32 *cs)
5774 {
5775         struct intel_context *ce = rq->context;
5776         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5777         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5778
5779         GEM_BUG_ON(!intel_context_is_parent(ce));
5780
5781         if (unlikely(skip_handshake(rq))) {
5782                 /*
5783                  * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5784                  * the NON_SKIP_LEN comes from the length of the emits below.
5785                  */
5786                 memset(cs, 0, sizeof(u32) *
5787                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5788                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5789         } else {
5790                 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5791         }
5792
5793         /* Emit fini breadcrumb */
5794         before_fini_breadcrumb_user_interrupt_cs = cs;
5795         cs = gen8_emit_ggtt_write(cs,
5796                                   rq->fence.seqno,
5797                                   i915_request_active_timeline(rq)->hwsp_offset,
5798                                   0);
5799
5800         /* User interrupt */
5801         *cs++ = MI_USER_INTERRUPT;
5802         *cs++ = MI_NOOP;
5803
5804         /* Ensure our math for skip + emit is correct */
5805         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5806                    cs);
5807         GEM_BUG_ON(start_fini_breadcrumb_cs +
5808                    ce->engine->emit_fini_breadcrumb_dw != cs);
5809
5810         rq->tail = intel_ring_offset(rq, cs);
5811
5812         return cs;
5813 }
5814
5815 static u32 *
5816 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5817                                                   u32 *cs)
5818 {
5819         struct intel_context *ce = rq->context;
5820         struct intel_context *parent = intel_context_to_parent(ce);
5821
5822         GEM_BUG_ON(!intel_context_is_child(ce));
5823
5824         /* Turn on preemption */
5825         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5826         *cs++ = MI_NOOP;
5827
5828         /* Signal parent */
5829         cs = gen8_emit_ggtt_write(cs,
5830                                   PARENT_GO_FINI_BREADCRUMB,
5831                                   get_children_join_addr(parent,
5832                                                          ce->parallel.child_index),
5833                                   0);
5834
5835         /* Wait parent on for go */
5836         *cs++ = (MI_SEMAPHORE_WAIT |
5837                  MI_SEMAPHORE_GLOBAL_GTT |
5838                  MI_SEMAPHORE_POLL |
5839                  MI_SEMAPHORE_SAD_EQ_SDD);
5840         *cs++ = CHILD_GO_FINI_BREADCRUMB;
5841         *cs++ = get_children_go_addr(parent);
5842         *cs++ = 0;
5843
5844         return cs;
5845 }
5846
5847 static u32 *
5848 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5849                                                 u32 *cs)
5850 {
5851         struct intel_context *ce = rq->context;
5852         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5853         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5854
5855         GEM_BUG_ON(!intel_context_is_child(ce));
5856
5857         if (unlikely(skip_handshake(rq))) {
5858                 /*
5859                  * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5860                  * the NON_SKIP_LEN comes from the length of the emits below.
5861                  */
5862                 memset(cs, 0, sizeof(u32) *
5863                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5864                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5865         } else {
5866                 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5867         }
5868
5869         /* Emit fini breadcrumb */
5870         before_fini_breadcrumb_user_interrupt_cs = cs;
5871         cs = gen8_emit_ggtt_write(cs,
5872                                   rq->fence.seqno,
5873                                   i915_request_active_timeline(rq)->hwsp_offset,
5874                                   0);
5875
5876         /* User interrupt */
5877         *cs++ = MI_USER_INTERRUPT;
5878         *cs++ = MI_NOOP;
5879
5880         /* Ensure our math for skip + emit is correct */
5881         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5882                    cs);
5883         GEM_BUG_ON(start_fini_breadcrumb_cs +
5884                    ce->engine->emit_fini_breadcrumb_dw != cs);
5885
5886         rq->tail = intel_ring_offset(rq, cs);
5887
5888         return cs;
5889 }
5890
5891 #undef NON_SKIP_LEN
5892
5893 static struct intel_context *
5894 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5895                    unsigned long flags)
5896 {
5897         struct guc_virtual_engine *ve;
5898         struct intel_guc *guc;
5899         unsigned int n;
5900         int err;
5901
5902         ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5903         if (!ve)
5904                 return ERR_PTR(-ENOMEM);
5905
5906         guc = gt_to_guc(siblings[0]->gt);
5907
5908         ve->base.i915 = siblings[0]->i915;
5909         ve->base.gt = siblings[0]->gt;
5910         ve->base.uncore = siblings[0]->uncore;
5911         ve->base.id = -1;
5912
5913         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5914         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5915         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5916         ve->base.saturated = ALL_ENGINES;
5917
5918         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5919
5920         ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5921
5922         ve->base.cops = &virtual_guc_context_ops;
5923         ve->base.request_alloc = guc_request_alloc;
5924         ve->base.bump_serial = virtual_guc_bump_serial;
5925
5926         ve->base.submit_request = guc_submit_request;
5927
5928         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5929
5930         BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5931         ve->base.mask = VIRTUAL_ENGINES;
5932
5933         intel_context_init(&ve->context, &ve->base);
5934
5935         for (n = 0; n < count; n++) {
5936                 struct intel_engine_cs *sibling = siblings[n];
5937
5938                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5939                 if (sibling->mask & ve->base.mask) {
5940                         guc_dbg(guc, "duplicate %s entry in load balancer\n",
5941                                 sibling->name);
5942                         err = -EINVAL;
5943                         goto err_put;
5944                 }
5945
5946                 ve->base.mask |= sibling->mask;
5947                 ve->base.logical_mask |= sibling->logical_mask;
5948
5949                 if (n != 0 && ve->base.class != sibling->class) {
5950                         guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5951                                 sibling->class, ve->base.class);
5952                         err = -EINVAL;
5953                         goto err_put;
5954                 } else if (n == 0) {
5955                         ve->base.class = sibling->class;
5956                         ve->base.uabi_class = sibling->uabi_class;
5957                         snprintf(ve->base.name, sizeof(ve->base.name),
5958                                  "v%dx%d", ve->base.class, count);
5959                         ve->base.context_size = sibling->context_size;
5960
5961                         ve->base.add_active_request =
5962                                 sibling->add_active_request;
5963                         ve->base.remove_active_request =
5964                                 sibling->remove_active_request;
5965                         ve->base.emit_bb_start = sibling->emit_bb_start;
5966                         ve->base.emit_flush = sibling->emit_flush;
5967                         ve->base.emit_init_breadcrumb =
5968                                 sibling->emit_init_breadcrumb;
5969                         ve->base.emit_fini_breadcrumb =
5970                                 sibling->emit_fini_breadcrumb;
5971                         ve->base.emit_fini_breadcrumb_dw =
5972                                 sibling->emit_fini_breadcrumb_dw;
5973                         ve->base.breadcrumbs =
5974                                 intel_breadcrumbs_get(sibling->breadcrumbs);
5975
5976                         ve->base.flags |= sibling->flags;
5977
5978                         ve->base.props.timeslice_duration_ms =
5979                                 sibling->props.timeslice_duration_ms;
5980                         ve->base.props.preempt_timeout_ms =
5981                                 sibling->props.preempt_timeout_ms;
5982                 }
5983         }
5984
5985         return &ve->context;
5986
5987 err_put:
5988         intel_context_put(&ve->context);
5989         return ERR_PTR(err);
5990 }
5991
5992 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5993 {
5994         struct intel_engine_cs *engine;
5995         intel_engine_mask_t tmp, mask = ve->mask;
5996
5997         for_each_engine_masked(engine, ve->gt, mask, tmp)
5998                 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5999                         return true;
6000
6001         return false;
6002 }
6003
6004 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6005 #include "selftest_guc.c"
6006 #include "selftest_guc_multi_lrc.c"
6007 #include "selftest_guc_hangcheck.c"
6008 #endif
This page took 0.380728 seconds and 4 git commands to generate.