]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_rps.c
Linux 6.14-rc3
[linux.git] / drivers / gpu / drm / i915 / gt / intel_rps.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/intel/i915_drm.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #include "../../../platform/x86/intel_ips.h"
28
29 #define BUSY_MAX_EI     20u /* ms */
30
31 /*
32  * Lock protecting IPS related data structures
33  */
34 static DEFINE_SPINLOCK(mchdev_lock);
35
36 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
37 {
38         return container_of(rps, struct intel_gt, rps);
39 }
40
41 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
42 {
43         return rps_to_gt(rps)->i915;
44 }
45
46 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
47 {
48         return rps_to_gt(rps)->uncore;
49 }
50
51 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
52 {
53         struct intel_gt *gt = rps_to_gt(rps);
54
55         return &gt_to_guc(gt)->slpc;
56 }
57
58 static bool rps_uses_slpc(struct intel_rps *rps)
59 {
60         struct intel_gt *gt = rps_to_gt(rps);
61
62         return intel_uc_uses_guc_slpc(&gt->uc);
63 }
64
65 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
66 {
67         return mask & ~rps->pm_intrmsk_mbz;
68 }
69
70 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
71 {
72         intel_uncore_write_fw(uncore, reg, val);
73 }
74
75 static void rps_timer(struct timer_list *t)
76 {
77         struct intel_rps *rps = from_timer(rps, t, timer);
78         struct intel_gt *gt = rps_to_gt(rps);
79         struct intel_engine_cs *engine;
80         ktime_t dt, last, timestamp;
81         enum intel_engine_id id;
82         s64 max_busy[3] = {};
83
84         timestamp = 0;
85         for_each_engine(engine, gt, id) {
86                 s64 busy;
87                 int i;
88
89                 dt = intel_engine_get_busy_time(engine, &timestamp);
90                 last = engine->stats.rps;
91                 engine->stats.rps = dt;
92
93                 busy = ktime_to_ns(ktime_sub(dt, last));
94                 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
95                         if (busy > max_busy[i])
96                                 swap(busy, max_busy[i]);
97                 }
98         }
99         last = rps->pm_timestamp;
100         rps->pm_timestamp = timestamp;
101
102         if (intel_rps_is_active(rps)) {
103                 s64 busy;
104                 int i;
105
106                 dt = ktime_sub(timestamp, last);
107
108                 /*
109                  * Our goal is to evaluate each engine independently, so we run
110                  * at the lowest clocks required to sustain the heaviest
111                  * workload. However, a task may be split into sequential
112                  * dependent operations across a set of engines, such that
113                  * the independent contributions do not account for high load,
114                  * but overall the task is GPU bound. For example, consider
115                  * video decode on vcs followed by colour post-processing
116                  * on vecs, followed by general post-processing on rcs.
117                  * Since multi-engines being active does imply a single
118                  * continuous workload across all engines, we hedge our
119                  * bets by only contributing a factor of the distributed
120                  * load into our busyness calculation.
121                  */
122                 busy = max_busy[0];
123                 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
124                         if (!max_busy[i])
125                                 break;
126
127                         busy += div_u64(max_busy[i], 1 << i);
128                 }
129                 GT_TRACE(gt,
130                          "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
131                          busy, (int)div64_u64(100 * busy, dt),
132                          max_busy[0], max_busy[1], max_busy[2],
133                          rps->pm_interval);
134
135                 if (100 * busy > rps->power.up_threshold * dt &&
136                     rps->cur_freq < rps->max_freq_softlimit) {
137                         rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
138                         rps->pm_interval = 1;
139                         queue_work(gt->i915->unordered_wq, &rps->work);
140                 } else if (100 * busy < rps->power.down_threshold * dt &&
141                            rps->cur_freq > rps->min_freq_softlimit) {
142                         rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
143                         rps->pm_interval = 1;
144                         queue_work(gt->i915->unordered_wq, &rps->work);
145                 } else {
146                         rps->last_adj = 0;
147                 }
148
149                 mod_timer(&rps->timer,
150                           jiffies + msecs_to_jiffies(rps->pm_interval));
151                 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
152         }
153 }
154
155 static void rps_start_timer(struct intel_rps *rps)
156 {
157         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158         rps->pm_interval = 1;
159         mod_timer(&rps->timer, jiffies + 1);
160 }
161
162 static void rps_stop_timer(struct intel_rps *rps)
163 {
164         del_timer_sync(&rps->timer);
165         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
166         cancel_work_sync(&rps->work);
167 }
168
169 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
170 {
171         u32 mask = 0;
172
173         /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
174         if (val > rps->min_freq_softlimit)
175                 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
176                          GEN6_PM_RP_DOWN_THRESHOLD |
177                          GEN6_PM_RP_DOWN_TIMEOUT);
178
179         if (val < rps->max_freq_softlimit)
180                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
181
182         mask &= rps->pm_events;
183
184         return rps_pm_sanitize_mask(rps, ~mask);
185 }
186
187 static void rps_reset_ei(struct intel_rps *rps)
188 {
189         memset(&rps->ei, 0, sizeof(rps->ei));
190 }
191
192 static void rps_enable_interrupts(struct intel_rps *rps)
193 {
194         struct intel_gt *gt = rps_to_gt(rps);
195
196         GEM_BUG_ON(rps_uses_slpc(rps));
197
198         GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
199                  rps->pm_events, rps_pm_mask(rps, rps->last_freq));
200
201         rps_reset_ei(rps);
202
203         spin_lock_irq(gt->irq_lock);
204         gen6_gt_pm_enable_irq(gt, rps->pm_events);
205         spin_unlock_irq(gt->irq_lock);
206
207         intel_uncore_write(gt->uncore,
208                            GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
209 }
210
211 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
212 {
213         gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
214 }
215
216 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
217 {
218         while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
219                 ;
220 }
221
222 static void rps_reset_interrupts(struct intel_rps *rps)
223 {
224         struct intel_gt *gt = rps_to_gt(rps);
225
226         spin_lock_irq(gt->irq_lock);
227         if (GRAPHICS_VER(gt->i915) >= 11)
228                 gen11_rps_reset_interrupts(rps);
229         else
230                 gen6_rps_reset_interrupts(rps);
231
232         rps->pm_iir = 0;
233         spin_unlock_irq(gt->irq_lock);
234 }
235
236 static void rps_disable_interrupts(struct intel_rps *rps)
237 {
238         struct intel_gt *gt = rps_to_gt(rps);
239
240         intel_uncore_write(gt->uncore,
241                            GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
242
243         spin_lock_irq(gt->irq_lock);
244         gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
245         spin_unlock_irq(gt->irq_lock);
246
247         intel_synchronize_irq(gt->i915);
248
249         /*
250          * Now that we will not be generating any more work, flush any
251          * outstanding tasks. As we are called on the RPS idle path,
252          * we will reset the GPU to minimum frequencies, so the current
253          * state of the worker can be discarded.
254          */
255         cancel_work_sync(&rps->work);
256
257         rps_reset_interrupts(rps);
258         GT_TRACE(gt, "interrupts:off\n");
259 }
260
261 static const struct cparams {
262         u16 i;
263         u16 t;
264         u16 m;
265         u16 c;
266 } cparams[] = {
267         { 1, 1333, 301, 28664 },
268         { 1, 1067, 294, 24460 },
269         { 1, 800, 294, 25192 },
270         { 0, 1333, 276, 27605 },
271         { 0, 1067, 276, 27605 },
272         { 0, 800, 231, 23784 },
273 };
274
275 static void gen5_rps_init(struct intel_rps *rps)
276 {
277         struct drm_i915_private *i915 = rps_to_i915(rps);
278         struct intel_uncore *uncore = rps_to_uncore(rps);
279         u8 fmax, fmin, fstart;
280         u32 rgvmodectl;
281         int c_m, i;
282
283         if (i915->fsb_freq <= 3200000)
284                 c_m = 0;
285         else if (i915->fsb_freq <= 4800000)
286                 c_m = 1;
287         else
288                 c_m = 2;
289
290         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
291                 if (cparams[i].i == c_m &&
292                     cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
293                         rps->ips.m = cparams[i].m;
294                         rps->ips.c = cparams[i].c;
295                         break;
296                 }
297         }
298
299         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
300
301         /* Set up min, max, and cur for interrupt handling */
302         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
303         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
304         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
305                 MEMMODE_FSTART_SHIFT;
306         drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
307                 fmax, fmin, fstart);
308
309         rps->min_freq = fmax;
310         rps->efficient_freq = fstart;
311         rps->max_freq = fmin;
312 }
313
314 static unsigned long
315 __ips_chipset_val(struct intel_ips *ips)
316 {
317         struct intel_uncore *uncore =
318                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
319         unsigned long now = jiffies_to_msecs(jiffies), dt;
320         unsigned long result;
321         u64 total, delta;
322
323         lockdep_assert_held(&mchdev_lock);
324
325         /*
326          * Prevent division-by-zero if we are asking too fast.
327          * Also, we don't get interesting results if we are polling
328          * faster than once in 10ms, so just return the saved value
329          * in such cases.
330          */
331         dt = now - ips->last_time1;
332         if (dt <= 10)
333                 return ips->chipset_power;
334
335         /* FIXME: handle per-counter overflow */
336         total = intel_uncore_read(uncore, DMIEC);
337         total += intel_uncore_read(uncore, DDREC);
338         total += intel_uncore_read(uncore, CSIEC);
339
340         delta = total - ips->last_count1;
341
342         result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
343
344         ips->last_count1 = total;
345         ips->last_time1 = now;
346
347         ips->chipset_power = result;
348
349         return result;
350 }
351
352 static unsigned long ips_mch_val(struct intel_uncore *uncore)
353 {
354         unsigned int m, x, b;
355         u32 tsfs;
356
357         tsfs = intel_uncore_read(uncore, TSFS);
358         x = intel_uncore_read8(uncore, TR1);
359
360         b = tsfs & TSFS_INTR_MASK;
361         m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
362
363         return m * x / 127 - b;
364 }
365
366 static int _pxvid_to_vd(u8 pxvid)
367 {
368         if (pxvid == 0)
369                 return 0;
370
371         if (pxvid >= 8 && pxvid < 31)
372                 pxvid = 31;
373
374         return (pxvid + 2) * 125;
375 }
376
377 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
378 {
379         const int vd = _pxvid_to_vd(pxvid);
380
381         if (INTEL_INFO(i915)->is_mobile)
382                 return max(vd - 1125, 0);
383
384         return vd;
385 }
386
387 static void __gen5_ips_update(struct intel_ips *ips)
388 {
389         struct intel_uncore *uncore =
390                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
391         u64 now, delta, dt;
392         u32 count;
393
394         lockdep_assert_held(&mchdev_lock);
395
396         now = ktime_get_raw_ns();
397         dt = now - ips->last_time2;
398         do_div(dt, NSEC_PER_MSEC);
399
400         /* Don't divide by 0 */
401         if (dt <= 10)
402                 return;
403
404         count = intel_uncore_read(uncore, GFXEC);
405         delta = count - ips->last_count2;
406
407         ips->last_count2 = count;
408         ips->last_time2 = now;
409
410         /* More magic constants... */
411         ips->gfx_power = div_u64(delta * 1181, dt * 10);
412 }
413
414 static void gen5_rps_update(struct intel_rps *rps)
415 {
416         spin_lock_irq(&mchdev_lock);
417         __gen5_ips_update(&rps->ips);
418         spin_unlock_irq(&mchdev_lock);
419 }
420
421 static unsigned int gen5_invert_freq(struct intel_rps *rps,
422                                      unsigned int val)
423 {
424         /* Invert the frequency bin into an ips delay */
425         val = rps->max_freq - val;
426         val = rps->min_freq + val;
427
428         return val;
429 }
430
431 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433         struct intel_uncore *uncore = rps_to_uncore(rps);
434         u16 rgvswctl;
435
436         lockdep_assert_held(&mchdev_lock);
437
438         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
439         if (rgvswctl & MEMCTL_CMD_STS) {
440                 drm_dbg(&rps_to_i915(rps)->drm,
441                         "gpu busy, RCS change rejected\n");
442                 return -EBUSY; /* still busy with another command */
443         }
444
445         /* Invert the frequency bin into an ips delay */
446         val = gen5_invert_freq(rps, val);
447
448         rgvswctl =
449                 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
450                 (val << MEMCTL_FREQ_SHIFT) |
451                 MEMCTL_SFCAVM;
452         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
453         intel_uncore_posting_read16(uncore, MEMSWCTL);
454
455         rgvswctl |= MEMCTL_CMD_STS;
456         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
457
458         return 0;
459 }
460
461 static int gen5_rps_set(struct intel_rps *rps, u8 val)
462 {
463         int err;
464
465         spin_lock_irq(&mchdev_lock);
466         err = __gen5_rps_set(rps, val);
467         spin_unlock_irq(&mchdev_lock);
468
469         return err;
470 }
471
472 static unsigned long intel_pxfreq(u32 vidfreq)
473 {
474         int div = (vidfreq & 0x3f0000) >> 16;
475         int post = (vidfreq & 0x3000) >> 12;
476         int pre = (vidfreq & 0x7);
477
478         if (!pre)
479                 return 0;
480
481         return div * 133333 / (pre << post);
482 }
483
484 static unsigned int init_emon(struct intel_uncore *uncore)
485 {
486         u8 pxw[16];
487         int i;
488
489         /* Disable to program */
490         intel_uncore_write(uncore, ECR, 0);
491         intel_uncore_posting_read(uncore, ECR);
492
493         /* Program energy weights for various events */
494         intel_uncore_write(uncore, SDEW, 0x15040d00);
495         intel_uncore_write(uncore, CSIEW0, 0x007f0000);
496         intel_uncore_write(uncore, CSIEW1, 0x1e220004);
497         intel_uncore_write(uncore, CSIEW2, 0x04000004);
498
499         for (i = 0; i < 5; i++)
500                 intel_uncore_write(uncore, PEW(i), 0);
501         for (i = 0; i < 3; i++)
502                 intel_uncore_write(uncore, DEW(i), 0);
503
504         /* Program P-state weights to account for frequency power adjustment */
505         for (i = 0; i < 16; i++) {
506                 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
507                 unsigned int freq = intel_pxfreq(pxvidfreq);
508                 unsigned int vid =
509                         (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
510                 unsigned int val;
511
512                 val = vid * vid * freq / 1000 * 255;
513                 val /= 127 * 127 * 900;
514
515                 pxw[i] = val;
516         }
517         /* Render standby states get 0 weight */
518         pxw[14] = 0;
519         pxw[15] = 0;
520
521         for (i = 0; i < 4; i++) {
522                 intel_uncore_write(uncore, PXW(i),
523                                    pxw[i * 4 + 0] << 24 |
524                                    pxw[i * 4 + 1] << 16 |
525                                    pxw[i * 4 + 2] <<  8 |
526                                    pxw[i * 4 + 3] <<  0);
527         }
528
529         /* Adjust magic regs to magic values (more experimental results) */
530         intel_uncore_write(uncore, OGW0, 0);
531         intel_uncore_write(uncore, OGW1, 0);
532         intel_uncore_write(uncore, EG0, 0x00007f00);
533         intel_uncore_write(uncore, EG1, 0x0000000e);
534         intel_uncore_write(uncore, EG2, 0x000e0000);
535         intel_uncore_write(uncore, EG3, 0x68000300);
536         intel_uncore_write(uncore, EG4, 0x42000000);
537         intel_uncore_write(uncore, EG5, 0x00140031);
538         intel_uncore_write(uncore, EG6, 0);
539         intel_uncore_write(uncore, EG7, 0);
540
541         for (i = 0; i < 8; i++)
542                 intel_uncore_write(uncore, PXWL(i), 0);
543
544         /* Enable PMON + select events */
545         intel_uncore_write(uncore, ECR, 0x80000019);
546
547         return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
548 }
549
550 static bool gen5_rps_enable(struct intel_rps *rps)
551 {
552         struct drm_i915_private *i915 = rps_to_i915(rps);
553         struct intel_uncore *uncore = rps_to_uncore(rps);
554         u8 fstart, vstart;
555         u32 rgvmodectl;
556
557         spin_lock_irq(&mchdev_lock);
558
559         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
560
561         /* Enable temp reporting */
562         intel_uncore_write16(uncore, PMMISC,
563                              intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
564         intel_uncore_write16(uncore, TSC1,
565                              intel_uncore_read16(uncore, TSC1) | TSE);
566
567         /* 100ms RC evaluation intervals */
568         intel_uncore_write(uncore, RCUPEI, 100000);
569         intel_uncore_write(uncore, RCDNEI, 100000);
570
571         /* Set max/min thresholds to 90ms and 80ms respectively */
572         intel_uncore_write(uncore, RCBMAXAVG, 90000);
573         intel_uncore_write(uncore, RCBMINAVG, 80000);
574
575         intel_uncore_write(uncore, MEMIHYST, 1);
576
577         /* Set up min, max, and cur for interrupt handling */
578         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
579                 MEMMODE_FSTART_SHIFT;
580
581         vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
582                   PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
583
584         intel_uncore_write(uncore,
585                            MEMINTREN,
586                            MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
587
588         intel_uncore_write(uncore, VIDSTART, vstart);
589         intel_uncore_posting_read(uncore, VIDSTART);
590
591         rgvmodectl |= MEMMODE_SWMODE_EN;
592         intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
593
594         if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
595                              MEMCTL_CMD_STS) == 0, 10))
596                 drm_err(&uncore->i915->drm,
597                         "stuck trying to change perf mode\n");
598         mdelay(1);
599
600         __gen5_rps_set(rps, rps->cur_freq);
601
602         rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
603         rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
604         rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
605         rps->ips.last_time1 = jiffies_to_msecs(jiffies);
606
607         rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
608         rps->ips.last_time2 = ktime_get_raw_ns();
609
610         spin_lock(&i915->irq_lock);
611         ilk_enable_display_irq(i915, DE_PCU_EVENT);
612         spin_unlock(&i915->irq_lock);
613
614         spin_unlock_irq(&mchdev_lock);
615
616         rps->ips.corr = init_emon(uncore);
617
618         return true;
619 }
620
621 static void gen5_rps_disable(struct intel_rps *rps)
622 {
623         struct drm_i915_private *i915 = rps_to_i915(rps);
624         struct intel_uncore *uncore = rps_to_uncore(rps);
625         u16 rgvswctl;
626
627         spin_lock_irq(&mchdev_lock);
628
629         spin_lock(&i915->irq_lock);
630         ilk_disable_display_irq(i915, DE_PCU_EVENT);
631         spin_unlock(&i915->irq_lock);
632
633         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
634
635         /* Ack interrupts, disable EFC interrupt */
636         intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
637         intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
638
639         /* Go back to the starting frequency */
640         __gen5_rps_set(rps, rps->idle_freq);
641         mdelay(1);
642         rgvswctl |= MEMCTL_CMD_STS;
643         intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
644         mdelay(1);
645
646         spin_unlock_irq(&mchdev_lock);
647 }
648
649 static u32 rps_limits(struct intel_rps *rps, u8 val)
650 {
651         u32 limits;
652
653         /*
654          * Only set the down limit when we've reached the lowest level to avoid
655          * getting more interrupts, otherwise leave this clear. This prevents a
656          * race in the hw when coming out of rc6: There's a tiny window where
657          * the hw runs at the minimal clock before selecting the desired
658          * frequency, if the down threshold expires in that window we will not
659          * receive a down interrupt.
660          */
661         if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
662                 limits = rps->max_freq_softlimit << 23;
663                 if (val <= rps->min_freq_softlimit)
664                         limits |= rps->min_freq_softlimit << 14;
665         } else {
666                 limits = rps->max_freq_softlimit << 24;
667                 if (val <= rps->min_freq_softlimit)
668                         limits |= rps->min_freq_softlimit << 16;
669         }
670
671         return limits;
672 }
673
674 static void rps_set_power(struct intel_rps *rps, int new_power)
675 {
676         struct intel_gt *gt = rps_to_gt(rps);
677         struct intel_uncore *uncore = gt->uncore;
678         u32 ei_up = 0, ei_down = 0;
679
680         lockdep_assert_held(&rps->power.mutex);
681
682         if (new_power == rps->power.mode)
683                 return;
684
685         /* Note the units here are not exactly 1us, but 1280ns. */
686         switch (new_power) {
687         case LOW_POWER:
688                 ei_up = 16000;
689                 ei_down = 32000;
690                 break;
691
692         case BETWEEN:
693                 ei_up = 13000;
694                 ei_down = 32000;
695                 break;
696
697         case HIGH_POWER:
698                 ei_up = 10000;
699                 ei_down = 32000;
700                 break;
701         }
702
703         /* When byt can survive without system hang with dynamic
704          * sw freq adjustments, this restriction can be lifted.
705          */
706         if (IS_VALLEYVIEW(gt->i915))
707                 goto skip_hw_write;
708
709         GT_TRACE(gt,
710                  "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
711                  new_power,
712                  rps->power.up_threshold, ei_up,
713                  rps->power.down_threshold, ei_down);
714
715         set(uncore, GEN6_RP_UP_EI,
716             intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
717         set(uncore, GEN6_RP_UP_THRESHOLD,
718             intel_gt_ns_to_pm_interval(gt,
719                                        ei_up * rps->power.up_threshold * 10));
720
721         set(uncore, GEN6_RP_DOWN_EI,
722             intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
723         set(uncore, GEN6_RP_DOWN_THRESHOLD,
724             intel_gt_ns_to_pm_interval(gt,
725                                        ei_down *
726                                        rps->power.down_threshold * 10));
727
728         set(uncore, GEN6_RP_CONTROL,
729             (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
730             GEN6_RP_MEDIA_HW_NORMAL_MODE |
731             GEN6_RP_MEDIA_IS_GFX |
732             GEN6_RP_ENABLE |
733             GEN6_RP_UP_BUSY_AVG |
734             GEN6_RP_DOWN_IDLE_AVG);
735
736 skip_hw_write:
737         rps->power.mode = new_power;
738 }
739
740 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
741 {
742         int new_power;
743
744         new_power = rps->power.mode;
745         switch (rps->power.mode) {
746         case LOW_POWER:
747                 if (val > rps->efficient_freq + 1 &&
748                     val > rps->cur_freq)
749                         new_power = BETWEEN;
750                 break;
751
752         case BETWEEN:
753                 if (val <= rps->efficient_freq &&
754                     val < rps->cur_freq)
755                         new_power = LOW_POWER;
756                 else if (val >= rps->rp0_freq &&
757                          val > rps->cur_freq)
758                         new_power = HIGH_POWER;
759                 break;
760
761         case HIGH_POWER:
762                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
763                     val < rps->cur_freq)
764                         new_power = BETWEEN;
765                 break;
766         }
767         /* Max/min bins are special */
768         if (val <= rps->min_freq_softlimit)
769                 new_power = LOW_POWER;
770         if (val >= rps->max_freq_softlimit)
771                 new_power = HIGH_POWER;
772
773         mutex_lock(&rps->power.mutex);
774         if (rps->power.interactive)
775                 new_power = HIGH_POWER;
776         rps_set_power(rps, new_power);
777         mutex_unlock(&rps->power.mutex);
778 }
779
780 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
781 {
782         GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
783                  str_yes_no(interactive));
784
785         mutex_lock(&rps->power.mutex);
786         if (interactive) {
787                 if (!rps->power.interactive++ && intel_rps_is_active(rps))
788                         rps_set_power(rps, HIGH_POWER);
789         } else {
790                 GEM_BUG_ON(!rps->power.interactive);
791                 rps->power.interactive--;
792         }
793         mutex_unlock(&rps->power.mutex);
794 }
795
796 static int gen6_rps_set(struct intel_rps *rps, u8 val)
797 {
798         struct intel_uncore *uncore = rps_to_uncore(rps);
799         struct drm_i915_private *i915 = rps_to_i915(rps);
800         u32 swreq;
801
802         GEM_BUG_ON(rps_uses_slpc(rps));
803
804         if (GRAPHICS_VER(i915) >= 9)
805                 swreq = GEN9_FREQUENCY(val);
806         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
807                 swreq = HSW_FREQUENCY(val);
808         else
809                 swreq = (GEN6_FREQUENCY(val) |
810                          GEN6_OFFSET(0) |
811                          GEN6_AGGRESSIVE_TURBO);
812         set(uncore, GEN6_RPNSWREQ, swreq);
813
814         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
815                  val, intel_gpu_freq(rps, val), swreq);
816
817         return 0;
818 }
819
820 static int vlv_rps_set(struct intel_rps *rps, u8 val)
821 {
822         struct drm_i915_private *i915 = rps_to_i915(rps);
823         int err;
824
825         vlv_punit_get(i915);
826         err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
827         vlv_punit_put(i915);
828
829         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
830                  val, intel_gpu_freq(rps, val));
831
832         return err;
833 }
834
835 static int rps_set(struct intel_rps *rps, u8 val, bool update)
836 {
837         struct drm_i915_private *i915 = rps_to_i915(rps);
838         int err;
839
840         if (val == rps->last_freq)
841                 return 0;
842
843         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
844                 err = vlv_rps_set(rps, val);
845         else if (GRAPHICS_VER(i915) >= 6)
846                 err = gen6_rps_set(rps, val);
847         else
848                 err = gen5_rps_set(rps, val);
849         if (err)
850                 return err;
851
852         if (update && GRAPHICS_VER(i915) >= 6)
853                 gen6_rps_set_thresholds(rps, val);
854         rps->last_freq = val;
855
856         return 0;
857 }
858
859 void intel_rps_unpark(struct intel_rps *rps)
860 {
861         if (!intel_rps_is_enabled(rps))
862                 return;
863
864         GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
865
866         /*
867          * Use the user's desired frequency as a guide, but for better
868          * performance, jump directly to RPe as our starting frequency.
869          */
870         mutex_lock(&rps->lock);
871
872         intel_rps_set_active(rps);
873         intel_rps_set(rps,
874                       clamp(rps->cur_freq,
875                             rps->min_freq_softlimit,
876                             rps->max_freq_softlimit));
877
878         mutex_unlock(&rps->lock);
879
880         rps->pm_iir = 0;
881         if (intel_rps_has_interrupts(rps))
882                 rps_enable_interrupts(rps);
883         if (intel_rps_uses_timer(rps))
884                 rps_start_timer(rps);
885
886         if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
887                 gen5_rps_update(rps);
888 }
889
890 void intel_rps_park(struct intel_rps *rps)
891 {
892         int adj;
893
894         if (!intel_rps_is_enabled(rps))
895                 return;
896
897         if (!intel_rps_clear_active(rps))
898                 return;
899
900         if (intel_rps_uses_timer(rps))
901                 rps_stop_timer(rps);
902         if (intel_rps_has_interrupts(rps))
903                 rps_disable_interrupts(rps);
904
905         if (rps->last_freq <= rps->idle_freq)
906                 return;
907
908         /*
909          * The punit delays the write of the frequency and voltage until it
910          * determines the GPU is awake. During normal usage we don't want to
911          * waste power changing the frequency if the GPU is sleeping (rc6).
912          * However, the GPU and driver is now idle and we do not want to delay
913          * switching to minimum voltage (reducing power whilst idle) as we do
914          * not expect to be woken in the near future and so must flush the
915          * change by waking the device.
916          *
917          * We choose to take the media powerwell (either would do to trick the
918          * punit into committing the voltage change) as that takes a lot less
919          * power than the render powerwell.
920          */
921         intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922         rps_set(rps, rps->idle_freq, false);
923         intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
924
925         /*
926          * Since we will try and restart from the previously requested
927          * frequency on unparking, treat this idle point as a downclock
928          * interrupt and reduce the frequency for resume. If we park/unpark
929          * more frequently than the rps worker can run, we will not respond
930          * to any EI and never see a change in frequency.
931          *
932          * (Note we accommodate Cherryview's limitation of only using an
933          * even bin by applying it to all.)
934          */
935         adj = rps->last_adj;
936         if (adj < 0)
937                 adj *= 2;
938         else /* CHV needs even encode values */
939                 adj = -2;
940         rps->last_adj = adj;
941         rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
942         if (rps->cur_freq < rps->efficient_freq) {
943                 rps->cur_freq = rps->efficient_freq;
944                 rps->last_adj = 0;
945         }
946
947         GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
948 }
949
950 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
951 {
952         struct intel_guc_slpc *slpc;
953
954         if (rps_uses_slpc(rps)) {
955                 slpc = rps_to_slpc(rps);
956
957                 return slpc->boost_freq;
958         } else {
959                 return intel_gpu_freq(rps, rps->boost_freq);
960         }
961 }
962
963 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
964 {
965         bool boost = false;
966
967         /* Validate against (static) hardware limits */
968         val = intel_freq_opcode(rps, val);
969         if (val < rps->min_freq || val > rps->max_freq)
970                 return -EINVAL;
971
972         mutex_lock(&rps->lock);
973         if (val != rps->boost_freq) {
974                 rps->boost_freq = val;
975                 boost = atomic_read(&rps->num_waiters);
976         }
977         mutex_unlock(&rps->lock);
978         if (boost)
979                 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
980
981         return 0;
982 }
983
984 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
985 {
986         struct intel_guc_slpc *slpc;
987
988         if (rps_uses_slpc(rps)) {
989                 slpc = rps_to_slpc(rps);
990
991                 return intel_guc_slpc_set_boost_freq(slpc, freq);
992         } else {
993                 return rps_set_boost_freq(rps, freq);
994         }
995 }
996
997 void intel_rps_dec_waiters(struct intel_rps *rps)
998 {
999         struct intel_guc_slpc *slpc;
1000
1001         if (rps_uses_slpc(rps)) {
1002                 slpc = rps_to_slpc(rps);
1003
1004                 intel_guc_slpc_dec_waiters(slpc);
1005         } else {
1006                 atomic_dec(&rps->num_waiters);
1007         }
1008 }
1009
1010 void intel_rps_boost(struct i915_request *rq)
1011 {
1012         struct intel_guc_slpc *slpc;
1013
1014         if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1015                 return;
1016
1017         /* Waitboost is not needed for contexts marked with a Freq hint */
1018         if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1019                 return;
1020
1021         /* Serializes with i915_request_retire() */
1022         if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1023                 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1024
1025                 if (rps_uses_slpc(rps)) {
1026                         slpc = rps_to_slpc(rps);
1027
1028                         if (slpc->min_freq_softlimit >= slpc->boost_freq)
1029                                 return;
1030
1031                         /* Return if old value is non zero */
1032                         if (!atomic_fetch_inc(&slpc->num_waiters)) {
1033                                 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1034                                          rq->fence.context, rq->fence.seqno);
1035                                 queue_work(rps_to_gt(rps)->i915->unordered_wq,
1036                                            &slpc->boost_work);
1037                         }
1038
1039                         return;
1040                 }
1041
1042                 if (atomic_fetch_inc(&rps->num_waiters))
1043                         return;
1044
1045                 if (!intel_rps_is_active(rps))
1046                         return;
1047
1048                 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1049                          rq->fence.context, rq->fence.seqno);
1050
1051                 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1052                         queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1053
1054                 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1055         }
1056 }
1057
1058 int intel_rps_set(struct intel_rps *rps, u8 val)
1059 {
1060         int err;
1061
1062         lockdep_assert_held(&rps->lock);
1063         GEM_BUG_ON(val > rps->max_freq);
1064         GEM_BUG_ON(val < rps->min_freq);
1065
1066         if (intel_rps_is_active(rps)) {
1067                 err = rps_set(rps, val, true);
1068                 if (err)
1069                         return err;
1070
1071                 /*
1072                  * Make sure we continue to get interrupts
1073                  * until we hit the minimum or maximum frequencies.
1074                  */
1075                 if (intel_rps_has_interrupts(rps)) {
1076                         struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078                         set(uncore,
1079                             GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1080
1081                         set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1082                 }
1083         }
1084
1085         rps->cur_freq = val;
1086         return 0;
1087 }
1088
1089 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1090 {
1091         struct drm_i915_private *i915 = rps_to_i915(rps);
1092         struct intel_uncore *uncore = rps_to_uncore(rps);
1093
1094         if (IS_GEN9_LP(i915))
1095                 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1096         else
1097                 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1098 }
1099
1100 static void
1101 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1102 {
1103         struct intel_uncore *uncore = rps_to_uncore(rps);
1104         u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1105                                 intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1106                                 intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1107         u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1108                         intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1109                         intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1110
1111         /* MTL values are in units of 16.67 MHz */
1112         caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1113         caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1114         caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1115 }
1116
1117 static void
1118 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1119 {
1120         struct drm_i915_private *i915 = rps_to_i915(rps);
1121         u32 rp_state_cap;
1122
1123         rp_state_cap = intel_rps_read_state_cap(rps);
1124
1125         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1126         if (IS_GEN9_LP(i915)) {
1127                 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1128                 caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1129                 caps->min_freq = (rp_state_cap >>  0) & 0xff;
1130         } else {
1131                 caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1132                 if (GRAPHICS_VER(i915) >= 10)
1133                         caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1134                                                        intel_uncore_read(to_gt(i915)->uncore,
1135                                                        GEN10_FREQ_INFO_REC));
1136                 else
1137                         caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1138                 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1139         }
1140
1141         if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142                 /*
1143                  * In this case rp_state_cap register reports frequencies in
1144                  * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1145                  * units of 16.67 MHz
1146                  */
1147                 caps->rp0_freq *= GEN9_FREQ_SCALER;
1148                 caps->rp1_freq *= GEN9_FREQ_SCALER;
1149                 caps->min_freq *= GEN9_FREQ_SCALER;
1150         }
1151 }
1152
1153 /**
1154  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1155  * @rps: the intel_rps structure
1156  * @caps: returned freq caps
1157  *
1158  * Returned "caps" frequencies should be converted to MHz using
1159  * intel_gpu_freq()
1160  */
1161 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1162 {
1163         struct drm_i915_private *i915 = rps_to_i915(rps);
1164
1165         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1166                 return mtl_get_freq_caps(rps, caps);
1167         else
1168                 return __gen6_rps_get_freq_caps(rps, caps);
1169 }
1170
1171 static void gen6_rps_init(struct intel_rps *rps)
1172 {
1173         struct drm_i915_private *i915 = rps_to_i915(rps);
1174         struct intel_rps_freq_caps caps;
1175
1176         gen6_rps_get_freq_caps(rps, &caps);
1177         rps->rp0_freq = caps.rp0_freq;
1178         rps->rp1_freq = caps.rp1_freq;
1179         rps->min_freq = caps.min_freq;
1180
1181         /* hw_max = RP0 until we check for overclocking */
1182         rps->max_freq = rps->rp0_freq;
1183
1184         rps->efficient_freq = rps->rp1_freq;
1185         if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1186             IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1187                 u32 ddcc_status = 0;
1188                 u32 mult = 1;
1189
1190                 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1191                         mult = GEN9_FREQ_SCALER;
1192                 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1193                                    HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1194                                    &ddcc_status, NULL) == 0)
1195                         rps->efficient_freq =
1196                                 clamp_t(u32,
1197                                         ((ddcc_status >> 8) & 0xff) * mult,
1198                                         rps->min_freq,
1199                                         rps->max_freq);
1200         }
1201 }
1202
1203 static bool rps_reset(struct intel_rps *rps)
1204 {
1205         struct drm_i915_private *i915 = rps_to_i915(rps);
1206
1207         /* force a reset */
1208         rps->power.mode = -1;
1209         rps->last_freq = -1;
1210
1211         if (rps_set(rps, rps->min_freq, true)) {
1212                 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1213                 return false;
1214         }
1215
1216         rps->cur_freq = rps->min_freq;
1217         return true;
1218 }
1219
1220 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1221 static bool gen9_rps_enable(struct intel_rps *rps)
1222 {
1223         struct intel_gt *gt = rps_to_gt(rps);
1224         struct intel_uncore *uncore = gt->uncore;
1225
1226         /* Program defaults and thresholds for RPS */
1227         if (GRAPHICS_VER(gt->i915) == 9)
1228                 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1229                                       GEN9_FREQUENCY(rps->rp1_freq));
1230
1231         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1232
1233         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1234
1235         return rps_reset(rps);
1236 }
1237
1238 static bool gen8_rps_enable(struct intel_rps *rps)
1239 {
1240         struct intel_uncore *uncore = rps_to_uncore(rps);
1241
1242         intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1243                               HSW_FREQUENCY(rps->rp1_freq));
1244
1245         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1246
1247         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1248
1249         return rps_reset(rps);
1250 }
1251
1252 static bool gen6_rps_enable(struct intel_rps *rps)
1253 {
1254         struct intel_uncore *uncore = rps_to_uncore(rps);
1255
1256         /* Power down if completely idle for over 50ms */
1257         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1258         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1259
1260         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1261                           GEN6_PM_RP_DOWN_THRESHOLD |
1262                           GEN6_PM_RP_DOWN_TIMEOUT);
1263
1264         return rps_reset(rps);
1265 }
1266
1267 static int chv_rps_max_freq(struct intel_rps *rps)
1268 {
1269         struct drm_i915_private *i915 = rps_to_i915(rps);
1270         struct intel_gt *gt = rps_to_gt(rps);
1271         u32 val;
1272
1273         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1274
1275         switch (gt->info.sseu.eu_total) {
1276         case 8:
1277                 /* (2 * 4) config */
1278                 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1279                 break;
1280         case 12:
1281                 /* (2 * 6) config */
1282                 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1283                 break;
1284         case 16:
1285                 /* (2 * 8) config */
1286         default:
1287                 /* Setting (2 * 8) Min RP0 for any other combination */
1288                 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1289                 break;
1290         }
1291
1292         return val & FB_GFX_FREQ_FUSE_MASK;
1293 }
1294
1295 static int chv_rps_rpe_freq(struct intel_rps *rps)
1296 {
1297         struct drm_i915_private *i915 = rps_to_i915(rps);
1298         u32 val;
1299
1300         val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1301         val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1302
1303         return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1304 }
1305
1306 static int chv_rps_guar_freq(struct intel_rps *rps)
1307 {
1308         struct drm_i915_private *i915 = rps_to_i915(rps);
1309         u32 val;
1310
1311         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1312
1313         return val & FB_GFX_FREQ_FUSE_MASK;
1314 }
1315
1316 static u32 chv_rps_min_freq(struct intel_rps *rps)
1317 {
1318         struct drm_i915_private *i915 = rps_to_i915(rps);
1319         u32 val;
1320
1321         val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1322         val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1323
1324         return val & FB_GFX_FREQ_FUSE_MASK;
1325 }
1326
1327 static bool chv_rps_enable(struct intel_rps *rps)
1328 {
1329         struct intel_uncore *uncore = rps_to_uncore(rps);
1330         struct drm_i915_private *i915 = rps_to_i915(rps);
1331         u32 val;
1332
1333         /* 1: Program defaults and thresholds for RPS*/
1334         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1335         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1336         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1337         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1338         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1339
1340         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1341
1342         /* 2: Enable RPS */
1343         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1344                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1345                               GEN6_RP_MEDIA_IS_GFX |
1346                               GEN6_RP_ENABLE |
1347                               GEN6_RP_UP_BUSY_AVG |
1348                               GEN6_RP_DOWN_IDLE_AVG);
1349
1350         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1351                           GEN6_PM_RP_DOWN_THRESHOLD |
1352                           GEN6_PM_RP_DOWN_TIMEOUT);
1353
1354         /* Setting Fixed Bias */
1355         vlv_punit_get(i915);
1356
1357         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1358         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1359
1360         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1361
1362         vlv_punit_put(i915);
1363
1364         /* RPS code assumes GPLL is used */
1365         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1366                       "GPLL not enabled\n");
1367
1368         drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1369                 str_yes_no(val & GPLLENABLE));
1370         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1371
1372         return rps_reset(rps);
1373 }
1374
1375 static int vlv_rps_guar_freq(struct intel_rps *rps)
1376 {
1377         struct drm_i915_private *i915 = rps_to_i915(rps);
1378         u32 val, rp1;
1379
1380         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1381
1382         rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1383         rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1384
1385         return rp1;
1386 }
1387
1388 static int vlv_rps_max_freq(struct intel_rps *rps)
1389 {
1390         struct drm_i915_private *i915 = rps_to_i915(rps);
1391         u32 val, rp0;
1392
1393         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1394
1395         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1396         /* Clamp to max */
1397         rp0 = min_t(u32, rp0, 0xea);
1398
1399         return rp0;
1400 }
1401
1402 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1403 {
1404         struct drm_i915_private *i915 = rps_to_i915(rps);
1405         u32 val, rpe;
1406
1407         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1408         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1409         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1410         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1411
1412         return rpe;
1413 }
1414
1415 static int vlv_rps_min_freq(struct intel_rps *rps)
1416 {
1417         struct drm_i915_private *i915 = rps_to_i915(rps);
1418         u32 val;
1419
1420         val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1421         /*
1422          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1423          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1424          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1425          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1426          * to make sure it matches what Punit accepts.
1427          */
1428         return max_t(u32, val, 0xc0);
1429 }
1430
1431 static bool vlv_rps_enable(struct intel_rps *rps)
1432 {
1433         struct intel_uncore *uncore = rps_to_uncore(rps);
1434         struct drm_i915_private *i915 = rps_to_i915(rps);
1435         u32 val;
1436
1437         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1438         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1439         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1440         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1441         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1442
1443         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1444
1445         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1446                               GEN6_RP_MEDIA_TURBO |
1447                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1448                               GEN6_RP_MEDIA_IS_GFX |
1449                               GEN6_RP_ENABLE |
1450                               GEN6_RP_UP_BUSY_AVG |
1451                               GEN6_RP_DOWN_IDLE_CONT);
1452
1453         /* WaGsvRC0ResidencyMethod:vlv */
1454         rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1455
1456         vlv_punit_get(i915);
1457
1458         /* Setting Fixed Bias */
1459         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1460         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1461
1462         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1463
1464         vlv_punit_put(i915);
1465
1466         /* RPS code assumes GPLL is used */
1467         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1468                       "GPLL not enabled\n");
1469
1470         drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1471                 str_yes_no(val & GPLLENABLE));
1472         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1473
1474         return rps_reset(rps);
1475 }
1476
1477 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1478 {
1479         struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1480         struct intel_uncore *uncore = rps_to_uncore(rps);
1481         unsigned int t, state1, state2;
1482         u32 pxvid, ext_v;
1483         u64 corr, corr2;
1484
1485         lockdep_assert_held(&mchdev_lock);
1486
1487         pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1488         pxvid = (pxvid >> 24) & 0x7f;
1489         ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1490
1491         state1 = ext_v;
1492
1493         /* Revel in the empirically derived constants */
1494
1495         /* Correction factor in 1/100000 units */
1496         t = ips_mch_val(uncore);
1497         if (t > 80)
1498                 corr = t * 2349 + 135940;
1499         else if (t >= 50)
1500                 corr = t * 964 + 29317;
1501         else /* < 50 */
1502                 corr = t * 301 + 1004;
1503
1504         corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1505         corr2 = div_u64(corr, 100000) * ips->corr;
1506
1507         state2 = div_u64(corr2 * state1, 10000);
1508         state2 /= 100; /* convert to mW */
1509
1510         __gen5_ips_update(ips);
1511
1512         return ips->gfx_power + state2;
1513 }
1514
1515 static bool has_busy_stats(struct intel_rps *rps)
1516 {
1517         struct intel_engine_cs *engine;
1518         enum intel_engine_id id;
1519
1520         for_each_engine(engine, rps_to_gt(rps), id) {
1521                 if (!intel_engine_supports_stats(engine))
1522                         return false;
1523         }
1524
1525         return true;
1526 }
1527
1528 void intel_rps_enable(struct intel_rps *rps)
1529 {
1530         struct drm_i915_private *i915 = rps_to_i915(rps);
1531         struct intel_uncore *uncore = rps_to_uncore(rps);
1532         bool enabled = false;
1533
1534         if (!HAS_RPS(i915))
1535                 return;
1536
1537         if (rps_uses_slpc(rps))
1538                 return;
1539
1540         intel_gt_check_clock_frequency(rps_to_gt(rps));
1541
1542         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1543         if (rps->max_freq <= rps->min_freq)
1544                 /* leave disabled, no room for dynamic reclocking */;
1545         else if (IS_CHERRYVIEW(i915))
1546                 enabled = chv_rps_enable(rps);
1547         else if (IS_VALLEYVIEW(i915))
1548                 enabled = vlv_rps_enable(rps);
1549         else if (GRAPHICS_VER(i915) >= 9)
1550                 enabled = gen9_rps_enable(rps);
1551         else if (GRAPHICS_VER(i915) >= 8)
1552                 enabled = gen8_rps_enable(rps);
1553         else if (GRAPHICS_VER(i915) >= 6)
1554                 enabled = gen6_rps_enable(rps);
1555         else if (IS_IRONLAKE_M(i915))
1556                 enabled = gen5_rps_enable(rps);
1557         else
1558                 MISSING_CASE(GRAPHICS_VER(i915));
1559         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1560         if (!enabled)
1561                 return;
1562
1563         GT_TRACE(rps_to_gt(rps),
1564                  "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1565                  rps->min_freq, rps->max_freq,
1566                  intel_gpu_freq(rps, rps->min_freq),
1567                  intel_gpu_freq(rps, rps->max_freq),
1568                  rps->power.up_threshold,
1569                  rps->power.down_threshold);
1570
1571         GEM_BUG_ON(rps->max_freq < rps->min_freq);
1572         GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1573
1574         GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1575         GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1576
1577         if (has_busy_stats(rps))
1578                 intel_rps_set_timer(rps);
1579         else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1580                 intel_rps_set_interrupts(rps);
1581         else
1582                 /* Ironlake currently uses intel_ips.ko */ {}
1583
1584         intel_rps_set_enabled(rps);
1585 }
1586
1587 static void gen6_rps_disable(struct intel_rps *rps)
1588 {
1589         set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1590 }
1591
1592 void intel_rps_disable(struct intel_rps *rps)
1593 {
1594         struct drm_i915_private *i915 = rps_to_i915(rps);
1595
1596         if (!intel_rps_is_enabled(rps))
1597                 return;
1598
1599         intel_rps_clear_enabled(rps);
1600         intel_rps_clear_interrupts(rps);
1601         intel_rps_clear_timer(rps);
1602
1603         if (GRAPHICS_VER(i915) >= 6)
1604                 gen6_rps_disable(rps);
1605         else if (IS_IRONLAKE_M(i915))
1606                 gen5_rps_disable(rps);
1607 }
1608
1609 static int byt_gpu_freq(struct intel_rps *rps, int val)
1610 {
1611         /*
1612          * N = val - 0xb7
1613          * Slow = Fast = GPLL ref * N
1614          */
1615         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1616 }
1617
1618 static int byt_freq_opcode(struct intel_rps *rps, int val)
1619 {
1620         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1621 }
1622
1623 static int chv_gpu_freq(struct intel_rps *rps, int val)
1624 {
1625         /*
1626          * N = val / 2
1627          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1628          */
1629         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1630 }
1631
1632 static int chv_freq_opcode(struct intel_rps *rps, int val)
1633 {
1634         /* CHV needs even values */
1635         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1636 }
1637
1638 int intel_gpu_freq(struct intel_rps *rps, int val)
1639 {
1640         struct drm_i915_private *i915 = rps_to_i915(rps);
1641
1642         if (GRAPHICS_VER(i915) >= 9)
1643                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1644                                          GEN9_FREQ_SCALER);
1645         else if (IS_CHERRYVIEW(i915))
1646                 return chv_gpu_freq(rps, val);
1647         else if (IS_VALLEYVIEW(i915))
1648                 return byt_gpu_freq(rps, val);
1649         else if (GRAPHICS_VER(i915) >= 6)
1650                 return val * GT_FREQUENCY_MULTIPLIER;
1651         else
1652                 return val;
1653 }
1654
1655 int intel_freq_opcode(struct intel_rps *rps, int val)
1656 {
1657         struct drm_i915_private *i915 = rps_to_i915(rps);
1658
1659         if (GRAPHICS_VER(i915) >= 9)
1660                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1661                                          GT_FREQUENCY_MULTIPLIER);
1662         else if (IS_CHERRYVIEW(i915))
1663                 return chv_freq_opcode(rps, val);
1664         else if (IS_VALLEYVIEW(i915))
1665                 return byt_freq_opcode(rps, val);
1666         else if (GRAPHICS_VER(i915) >= 6)
1667                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1668         else
1669                 return val;
1670 }
1671
1672 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1673 {
1674         struct drm_i915_private *i915 = rps_to_i915(rps);
1675
1676         rps->gpll_ref_freq =
1677                 vlv_get_cck_clock(i915, "GPLL ref",
1678                                   CCK_GPLL_CLOCK_CONTROL,
1679                                   i915->czclk_freq);
1680
1681         drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1682                 rps->gpll_ref_freq);
1683 }
1684
1685 static void vlv_rps_init(struct intel_rps *rps)
1686 {
1687         struct drm_i915_private *i915 = rps_to_i915(rps);
1688
1689         vlv_iosf_sb_get(i915,
1690                         BIT(VLV_IOSF_SB_PUNIT) |
1691                         BIT(VLV_IOSF_SB_NC) |
1692                         BIT(VLV_IOSF_SB_CCK));
1693
1694         vlv_init_gpll_ref_freq(rps);
1695
1696         rps->max_freq = vlv_rps_max_freq(rps);
1697         rps->rp0_freq = rps->max_freq;
1698         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1699                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1700
1701         rps->efficient_freq = vlv_rps_rpe_freq(rps);
1702         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1703                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1704
1705         rps->rp1_freq = vlv_rps_guar_freq(rps);
1706         drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1707                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1708
1709         rps->min_freq = vlv_rps_min_freq(rps);
1710         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1711                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1712
1713         vlv_iosf_sb_put(i915,
1714                         BIT(VLV_IOSF_SB_PUNIT) |
1715                         BIT(VLV_IOSF_SB_NC) |
1716                         BIT(VLV_IOSF_SB_CCK));
1717 }
1718
1719 static void chv_rps_init(struct intel_rps *rps)
1720 {
1721         struct drm_i915_private *i915 = rps_to_i915(rps);
1722
1723         vlv_iosf_sb_get(i915,
1724                         BIT(VLV_IOSF_SB_PUNIT) |
1725                         BIT(VLV_IOSF_SB_NC) |
1726                         BIT(VLV_IOSF_SB_CCK));
1727
1728         vlv_init_gpll_ref_freq(rps);
1729
1730         rps->max_freq = chv_rps_max_freq(rps);
1731         rps->rp0_freq = rps->max_freq;
1732         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1733                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1734
1735         rps->efficient_freq = chv_rps_rpe_freq(rps);
1736         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1737                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1738
1739         rps->rp1_freq = chv_rps_guar_freq(rps);
1740         drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1741                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1742
1743         rps->min_freq = chv_rps_min_freq(rps);
1744         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1745                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1746
1747         vlv_iosf_sb_put(i915,
1748                         BIT(VLV_IOSF_SB_PUNIT) |
1749                         BIT(VLV_IOSF_SB_NC) |
1750                         BIT(VLV_IOSF_SB_CCK));
1751
1752         drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1753                                    rps->rp1_freq | rps->min_freq) & 1,
1754                       "Odd GPU freq values\n");
1755 }
1756
1757 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1758 {
1759         ei->ktime = ktime_get_raw();
1760         ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1761         ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1762 }
1763
1764 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1765 {
1766         struct intel_uncore *uncore = rps_to_uncore(rps);
1767         const struct intel_rps_ei *prev = &rps->ei;
1768         struct intel_rps_ei now;
1769         u32 events = 0;
1770
1771         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1772                 return 0;
1773
1774         vlv_c0_read(uncore, &now);
1775
1776         if (prev->ktime) {
1777                 u64 time, c0;
1778                 u32 render, media;
1779
1780                 time = ktime_us_delta(now.ktime, prev->ktime);
1781
1782                 time *= rps_to_i915(rps)->czclk_freq;
1783
1784                 /* Workload can be split between render + media,
1785                  * e.g. SwapBuffers being blitted in X after being rendered in
1786                  * mesa. To account for this we need to combine both engines
1787                  * into our activity counter.
1788                  */
1789                 render = now.render_c0 - prev->render_c0;
1790                 media = now.media_c0 - prev->media_c0;
1791                 c0 = max(render, media);
1792                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1793
1794                 if (c0 > time * rps->power.up_threshold)
1795                         events = GEN6_PM_RP_UP_THRESHOLD;
1796                 else if (c0 < time * rps->power.down_threshold)
1797                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1798         }
1799
1800         rps->ei = now;
1801         return events;
1802 }
1803
1804 static void rps_work(struct work_struct *work)
1805 {
1806         struct intel_rps *rps = container_of(work, typeof(*rps), work);
1807         struct intel_gt *gt = rps_to_gt(rps);
1808         struct drm_i915_private *i915 = rps_to_i915(rps);
1809         bool client_boost = false;
1810         int new_freq, adj, min, max;
1811         u32 pm_iir = 0;
1812
1813         spin_lock_irq(gt->irq_lock);
1814         pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1815         client_boost = atomic_read(&rps->num_waiters);
1816         spin_unlock_irq(gt->irq_lock);
1817
1818         /* Make sure we didn't queue anything we're not going to process. */
1819         if (!pm_iir && !client_boost)
1820                 goto out;
1821
1822         mutex_lock(&rps->lock);
1823         if (!intel_rps_is_active(rps)) {
1824                 mutex_unlock(&rps->lock);
1825                 return;
1826         }
1827
1828         pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1829
1830         adj = rps->last_adj;
1831         new_freq = rps->cur_freq;
1832         min = rps->min_freq_softlimit;
1833         max = rps->max_freq_softlimit;
1834         if (client_boost)
1835                 max = rps->max_freq;
1836
1837         GT_TRACE(gt,
1838                  "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1839                  pm_iir, str_yes_no(client_boost),
1840                  adj, new_freq, min, max);
1841
1842         if (client_boost && new_freq < rps->boost_freq) {
1843                 new_freq = rps->boost_freq;
1844                 adj = 0;
1845         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1846                 if (adj > 0)
1847                         adj *= 2;
1848                 else /* CHV needs even encode values */
1849                         adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1850
1851                 if (new_freq >= rps->max_freq_softlimit)
1852                         adj = 0;
1853         } else if (client_boost) {
1854                 adj = 0;
1855         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1856                 if (rps->cur_freq > rps->efficient_freq)
1857                         new_freq = rps->efficient_freq;
1858                 else if (rps->cur_freq > rps->min_freq_softlimit)
1859                         new_freq = rps->min_freq_softlimit;
1860                 adj = 0;
1861         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1862                 if (adj < 0)
1863                         adj *= 2;
1864                 else /* CHV needs even encode values */
1865                         adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1866
1867                 if (new_freq <= rps->min_freq_softlimit)
1868                         adj = 0;
1869         } else { /* unknown event */
1870                 adj = 0;
1871         }
1872
1873         /*
1874          * sysfs frequency limits may have snuck in while
1875          * servicing the interrupt
1876          */
1877         new_freq += adj;
1878         new_freq = clamp_t(int, new_freq, min, max);
1879
1880         if (intel_rps_set(rps, new_freq)) {
1881                 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1882                 adj = 0;
1883         }
1884         rps->last_adj = adj;
1885
1886         mutex_unlock(&rps->lock);
1887
1888 out:
1889         spin_lock_irq(gt->irq_lock);
1890         gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1891         spin_unlock_irq(gt->irq_lock);
1892 }
1893
1894 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1895 {
1896         struct intel_gt *gt = rps_to_gt(rps);
1897         const u32 events = rps->pm_events & pm_iir;
1898
1899         lockdep_assert_held(gt->irq_lock);
1900
1901         if (unlikely(!events))
1902                 return;
1903
1904         GT_TRACE(gt, "irq events:%x\n", events);
1905
1906         gen6_gt_pm_mask_irq(gt, events);
1907
1908         rps->pm_iir |= events;
1909         queue_work(gt->i915->unordered_wq, &rps->work);
1910 }
1911
1912 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1913 {
1914         struct intel_gt *gt = rps_to_gt(rps);
1915         u32 events;
1916
1917         events = pm_iir & rps->pm_events;
1918         if (events) {
1919                 spin_lock(gt->irq_lock);
1920
1921                 GT_TRACE(gt, "irq events:%x\n", events);
1922
1923                 gen6_gt_pm_mask_irq(gt, events);
1924                 rps->pm_iir |= events;
1925
1926                 queue_work(gt->i915->unordered_wq, &rps->work);
1927                 spin_unlock(gt->irq_lock);
1928         }
1929
1930         if (GRAPHICS_VER(gt->i915) >= 8)
1931                 return;
1932
1933         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1934                 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1935
1936         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1937                 drm_dbg(&rps_to_i915(rps)->drm,
1938                         "Command parser error, pm_iir 0x%08x\n", pm_iir);
1939 }
1940
1941 void gen5_rps_irq_handler(struct intel_rps *rps)
1942 {
1943         struct intel_uncore *uncore = rps_to_uncore(rps);
1944         u32 busy_up, busy_down, max_avg, min_avg;
1945         u8 new_freq;
1946
1947         spin_lock(&mchdev_lock);
1948
1949         intel_uncore_write16(uncore,
1950                              MEMINTRSTS,
1951                              intel_uncore_read(uncore, MEMINTRSTS));
1952
1953         intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1954         busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1955         busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1956         max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1957         min_avg = intel_uncore_read(uncore, RCBMINAVG);
1958
1959         /* Handle RCS change request from hw */
1960         new_freq = rps->cur_freq;
1961         if (busy_up > max_avg)
1962                 new_freq++;
1963         else if (busy_down < min_avg)
1964                 new_freq--;
1965         new_freq = clamp(new_freq,
1966                          rps->min_freq_softlimit,
1967                          rps->max_freq_softlimit);
1968
1969         if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1970                 rps->cur_freq = new_freq;
1971
1972         spin_unlock(&mchdev_lock);
1973 }
1974
1975 void intel_rps_init_early(struct intel_rps *rps)
1976 {
1977         mutex_init(&rps->lock);
1978         mutex_init(&rps->power.mutex);
1979
1980         INIT_WORK(&rps->work, rps_work);
1981         timer_setup(&rps->timer, rps_timer, 0);
1982
1983         atomic_set(&rps->num_waiters, 0);
1984 }
1985
1986 void intel_rps_init(struct intel_rps *rps)
1987 {
1988         struct drm_i915_private *i915 = rps_to_i915(rps);
1989
1990         if (rps_uses_slpc(rps))
1991                 return;
1992
1993         if (IS_CHERRYVIEW(i915))
1994                 chv_rps_init(rps);
1995         else if (IS_VALLEYVIEW(i915))
1996                 vlv_rps_init(rps);
1997         else if (GRAPHICS_VER(i915) >= 6)
1998                 gen6_rps_init(rps);
1999         else if (IS_IRONLAKE_M(i915))
2000                 gen5_rps_init(rps);
2001
2002         /* Derive initial user preferences/limits from the hardware limits */
2003         rps->max_freq_softlimit = rps->max_freq;
2004         rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2005         rps->min_freq_softlimit = rps->min_freq;
2006         rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2007
2008         /* After setting max-softlimit, find the overclock max freq */
2009         if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2010                 u32 params = 0;
2011
2012                 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
2013                 if (params & BIT(31)) { /* OC supported */
2014                         drm_dbg(&i915->drm,
2015                                 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2016                                 (rps->max_freq & 0xff) * 50,
2017                                 (params & 0xff) * 50);
2018                         rps->max_freq = params & 0xff;
2019                 }
2020         }
2021
2022         /* Set default thresholds in % */
2023         rps->power.up_threshold = 95;
2024         rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2025         rps->power.down_threshold = 85;
2026         rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2027
2028         /* Finally allow us to boost to max by default */
2029         rps->boost_freq = rps->max_freq;
2030         rps->idle_freq = rps->min_freq;
2031
2032         /* Start in the middle, from here we will autotune based on workload */
2033         rps->cur_freq = rps->efficient_freq;
2034
2035         rps->pm_intrmsk_mbz = 0;
2036
2037         /*
2038          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2039          * if GEN6_PM_UP_EI_EXPIRED is masked.
2040          *
2041          * TODO: verify if this can be reproduced on VLV,CHV.
2042          */
2043         if (GRAPHICS_VER(i915) <= 7)
2044                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2045
2046         if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2047                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2048
2049         /* GuC needs ARAT expired interrupt unmasked */
2050         if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2051                 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2052 }
2053
2054 void intel_rps_sanitize(struct intel_rps *rps)
2055 {
2056         if (rps_uses_slpc(rps))
2057                 return;
2058
2059         if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2060                 rps_disable_interrupts(rps);
2061 }
2062
2063 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2064 {
2065         struct drm_i915_private *i915 = rps_to_i915(rps);
2066         i915_reg_t rpstat;
2067
2068         rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2069
2070         return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2071 }
2072
2073 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2074 {
2075         struct drm_i915_private *i915 = rps_to_i915(rps);
2076         u32 cagf;
2077
2078         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2079                 cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2080         else if (GRAPHICS_VER(i915) >= 12)
2081                 cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2082         else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2083                 cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2084         else if (GRAPHICS_VER(i915) >= 9)
2085                 cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2086         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2087                 cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2088         else if (GRAPHICS_VER(i915) >= 6)
2089                 cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2090         else
2091                 cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2092
2093         return cagf;
2094 }
2095
2096 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2097 {
2098         struct drm_i915_private *i915 = rps_to_i915(rps);
2099         struct intel_uncore *uncore = rps_to_uncore(rps);
2100         i915_reg_t r = INVALID_MMIO_REG;
2101         u32 freq;
2102
2103         /*
2104          * For Gen12+ reading freq from HW does not need a forcewake and
2105          * registers will return 0 freq when GT is in RC6
2106          */
2107         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2108                 r = MTL_MIRROR_TARGET_WP1;
2109         } else if (GRAPHICS_VER(i915) >= 12) {
2110                 r = GEN12_RPSTAT1;
2111         } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2112                 vlv_punit_get(i915);
2113                 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2114                 vlv_punit_put(i915);
2115         } else if (GRAPHICS_VER(i915) >= 6) {
2116                 r = GEN6_RPSTAT1;
2117         } else {
2118                 r = MEMSTAT_ILK;
2119         }
2120
2121         if (i915_mmio_reg_valid(r))
2122                 freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2123
2124         return intel_rps_get_cagf(rps, freq);
2125 }
2126
2127 static u32 read_cagf(struct intel_rps *rps)
2128 {
2129         return __read_cagf(rps, true);
2130 }
2131
2132 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2133 {
2134         struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2135         intel_wakeref_t wakeref;
2136         u32 freq = 0;
2137
2138         with_intel_runtime_pm_if_in_use(rpm, wakeref)
2139                 freq = intel_gpu_freq(rps, read_cagf(rps));
2140
2141         return freq;
2142 }
2143
2144 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2145 {
2146         return intel_gpu_freq(rps, __read_cagf(rps, false));
2147 }
2148
2149 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2150 {
2151         struct intel_uncore *uncore = rps_to_uncore(rps);
2152         struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2153         intel_wakeref_t wakeref;
2154         u32 freq = 0;
2155
2156         with_intel_runtime_pm_if_in_use(rpm, wakeref)
2157                 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2158
2159         return freq;
2160 }
2161
2162 static u32 intel_rps_get_req(u32 pureq)
2163 {
2164         u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2165
2166         return req;
2167 }
2168
2169 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2170 {
2171         u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2172
2173         return intel_gpu_freq(rps, freq);
2174 }
2175
2176 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2177 {
2178         if (rps_uses_slpc(rps))
2179                 return intel_rps_read_punit_req_frequency(rps);
2180         else
2181                 return intel_gpu_freq(rps, rps->cur_freq);
2182 }
2183
2184 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2185 {
2186         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2187
2188         if (rps_uses_slpc(rps))
2189                 return slpc->max_freq_softlimit;
2190         else
2191                 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2192 }
2193
2194 /**
2195  * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2196  * @rps: the intel_rps structure
2197  *
2198  * Returns the max frequency in a raw format. In newer platforms raw is in
2199  * units of 50 MHz.
2200  */
2201 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2202 {
2203         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2204         u32 freq;
2205
2206         if (rps_uses_slpc(rps)) {
2207                 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2208                                          GT_FREQUENCY_MULTIPLIER);
2209         } else {
2210                 freq = rps->max_freq;
2211                 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2212                         /* Convert GT frequency to 50 MHz units */
2213                         freq /= GEN9_FREQ_SCALER;
2214                 }
2215                 return freq;
2216         }
2217 }
2218
2219 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2220 {
2221         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2222
2223         if (rps_uses_slpc(rps))
2224                 return slpc->rp0_freq;
2225         else
2226                 return intel_gpu_freq(rps, rps->rp0_freq);
2227 }
2228
2229 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2230 {
2231         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2232
2233         if (rps_uses_slpc(rps))
2234                 return slpc->rp1_freq;
2235         else
2236                 return intel_gpu_freq(rps, rps->rp1_freq);
2237 }
2238
2239 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2240 {
2241         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2242
2243         if (rps_uses_slpc(rps))
2244                 return slpc->min_freq;
2245         else
2246                 return intel_gpu_freq(rps, rps->min_freq);
2247 }
2248
2249 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2250 {
2251         struct intel_gt *gt = rps_to_gt(rps);
2252         struct drm_i915_private *i915 = gt->i915;
2253         struct intel_uncore *uncore = gt->uncore;
2254         struct intel_rps_freq_caps caps;
2255         u32 rp_state_limits;
2256         u32 gt_perf_status;
2257         u32 rpmodectl, rpinclimit, rpdeclimit;
2258         u32 rpstat, cagf, reqf;
2259         u32 rpcurupei, rpcurup, rpprevup;
2260         u32 rpcurdownei, rpcurdown, rpprevdown;
2261         u32 rpupei, rpupt, rpdownei, rpdownt;
2262         u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2263
2264         rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2265         gen6_rps_get_freq_caps(rps, &caps);
2266         if (IS_GEN9_LP(i915))
2267                 gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2268         else
2269                 gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2270
2271         /* RPSTAT1 is in the GT power well */
2272         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2273
2274         reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2275         if (GRAPHICS_VER(i915) >= 9) {
2276                 reqf >>= 23;
2277         } else {
2278                 reqf &= ~GEN6_TURBO_DISABLE;
2279                 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2280                         reqf >>= 24;
2281                 else
2282                         reqf >>= 25;
2283         }
2284         reqf = intel_gpu_freq(rps, reqf);
2285
2286         rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2287         rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2288         rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2289
2290         rpstat = intel_rps_read_rpstat(rps);
2291         rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2292         rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2293         rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2294         rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2295         rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2296         rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2297
2298         rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2299         rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2300
2301         rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2302         rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2303
2304         cagf = intel_rps_read_actual_frequency(rps);
2305
2306         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2307
2308         if (GRAPHICS_VER(i915) >= 11) {
2309                 pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2310                 pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2311                 /*
2312                  * The equivalent to the PM ISR & IIR cannot be read
2313                  * without affecting the current state of the system
2314                  */
2315                 pm_isr = 0;
2316                 pm_iir = 0;
2317         } else if (GRAPHICS_VER(i915) >= 8) {
2318                 pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2319                 pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2320                 pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2321                 pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2322         } else {
2323                 pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2324                 pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2325                 pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2326                 pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2327         }
2328         pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2329
2330         drm_printf(p, "Video Turbo Mode: %s\n",
2331                    str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2332         drm_printf(p, "HW control enabled: %s\n",
2333                    str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2334         drm_printf(p, "SW control enabled: %s\n",
2335                    str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2336
2337         drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2338                    pm_ier, pm_imr, pm_mask);
2339         if (GRAPHICS_VER(i915) <= 10)
2340                 drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2341                            pm_isr, pm_iir);
2342         drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2343                    rps->pm_intrmsk_mbz);
2344         drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2345         drm_printf(p, "Render p-state ratio: %d\n",
2346                    (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2347         drm_printf(p, "Render p-state VID: %d\n",
2348                    gt_perf_status & 0xff);
2349         drm_printf(p, "Render p-state limit: %d\n",
2350                    rp_state_limits & 0xff);
2351         drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2352         drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2353         drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2354         drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2355         drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2356         drm_printf(p, "CAGF: %dMHz\n", cagf);
2357         drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2358                    rpcurupei,
2359                    intel_gt_pm_interval_to_ns(gt, rpcurupei));
2360         drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2361                    rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2362         drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2363                    rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2364         drm_printf(p, "Up threshold: %d%%\n",
2365                    rps->power.up_threshold);
2366         drm_printf(p, "RP UP EI: %d (%lldns)\n",
2367                    rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2368         drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2369                    rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2370
2371         drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2372                    rpcurdownei,
2373                    intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2374         drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2375                    rpcurdown,
2376                    intel_gt_pm_interval_to_ns(gt, rpcurdown));
2377         drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2378                    rpprevdown,
2379                    intel_gt_pm_interval_to_ns(gt, rpprevdown));
2380         drm_printf(p, "Down threshold: %d%%\n",
2381                    rps->power.down_threshold);
2382         drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2383                    rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2384         drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2385                    rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2386
2387         drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2388                    intel_gpu_freq(rps, caps.min_freq));
2389         drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2390                    intel_gpu_freq(rps, caps.rp1_freq));
2391         drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2392                    intel_gpu_freq(rps, caps.rp0_freq));
2393         drm_printf(p, "Max overclocked frequency: %dMHz\n",
2394                    intel_gpu_freq(rps, rps->max_freq));
2395
2396         drm_printf(p, "Current freq: %d MHz\n",
2397                    intel_gpu_freq(rps, rps->cur_freq));
2398         drm_printf(p, "Actual freq: %d MHz\n", cagf);
2399         drm_printf(p, "Idle freq: %d MHz\n",
2400                    intel_gpu_freq(rps, rps->idle_freq));
2401         drm_printf(p, "Min freq: %d MHz\n",
2402                    intel_gpu_freq(rps, rps->min_freq));
2403         drm_printf(p, "Boost freq: %d MHz\n",
2404                    intel_gpu_freq(rps, rps->boost_freq));
2405         drm_printf(p, "Max freq: %d MHz\n",
2406                    intel_gpu_freq(rps, rps->max_freq));
2407         drm_printf(p,
2408                    "efficient (RPe) frequency: %d MHz\n",
2409                    intel_gpu_freq(rps, rps->efficient_freq));
2410 }
2411
2412 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2413 {
2414         struct intel_gt *gt = rps_to_gt(rps);
2415         struct intel_uncore *uncore = gt->uncore;
2416         struct intel_rps_freq_caps caps;
2417         u32 pm_mask;
2418
2419         gen6_rps_get_freq_caps(rps, &caps);
2420         pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2421
2422         drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2423         drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2424                    rps->pm_intrmsk_mbz);
2425         drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2426         drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2427         drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2428                    intel_gpu_freq(rps, caps.min_freq));
2429         drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2430                    intel_gpu_freq(rps, caps.rp1_freq));
2431         drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2432                    intel_gpu_freq(rps, caps.rp0_freq));
2433         drm_printf(p, "Current freq: %d MHz\n",
2434                    intel_rps_get_requested_frequency(rps));
2435         drm_printf(p, "Actual freq: %d MHz\n",
2436                    intel_rps_read_actual_frequency(rps));
2437         drm_printf(p, "Min freq: %d MHz\n",
2438                    intel_rps_get_min_frequency(rps));
2439         drm_printf(p, "Boost freq: %d MHz\n",
2440                    intel_rps_get_boost_frequency(rps));
2441         drm_printf(p, "Max freq: %d MHz\n",
2442                    intel_rps_get_max_frequency(rps));
2443         drm_printf(p,
2444                    "efficient (RPe) frequency: %d MHz\n",
2445                    intel_gpu_freq(rps, caps.rp1_freq));
2446 }
2447
2448 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2449 {
2450         if (rps_uses_slpc(rps))
2451                 return slpc_frequency_dump(rps, p);
2452         else
2453                 return rps_frequency_dump(rps, p);
2454 }
2455
2456 static int set_max_freq(struct intel_rps *rps, u32 val)
2457 {
2458         struct drm_i915_private *i915 = rps_to_i915(rps);
2459         int ret = 0;
2460
2461         mutex_lock(&rps->lock);
2462
2463         val = intel_freq_opcode(rps, val);
2464         if (val < rps->min_freq ||
2465             val > rps->max_freq ||
2466             val < rps->min_freq_softlimit) {
2467                 ret = -EINVAL;
2468                 goto unlock;
2469         }
2470
2471         if (val > rps->rp0_freq)
2472                 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2473                         intel_gpu_freq(rps, val));
2474
2475         rps->max_freq_softlimit = val;
2476
2477         val = clamp_t(int, rps->cur_freq,
2478                       rps->min_freq_softlimit,
2479                       rps->max_freq_softlimit);
2480
2481         /*
2482          * We still need *_set_rps to process the new max_delay and
2483          * update the interrupt limits and PMINTRMSK even though
2484          * frequency request may be unchanged.
2485          */
2486         intel_rps_set(rps, val);
2487
2488 unlock:
2489         mutex_unlock(&rps->lock);
2490
2491         return ret;
2492 }
2493
2494 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2495 {
2496         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2497
2498         if (rps_uses_slpc(rps))
2499                 return intel_guc_slpc_set_max_freq(slpc, val);
2500         else
2501                 return set_max_freq(rps, val);
2502 }
2503
2504 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2505 {
2506         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2507
2508         if (rps_uses_slpc(rps))
2509                 return slpc->min_freq_softlimit;
2510         else
2511                 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2512 }
2513
2514 /**
2515  * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2516  * @rps: the intel_rps structure
2517  *
2518  * Returns the min frequency in a raw format. In newer platforms raw is in
2519  * units of 50 MHz.
2520  */
2521 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2522 {
2523         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2524         u32 freq;
2525
2526         if (rps_uses_slpc(rps)) {
2527                 return DIV_ROUND_CLOSEST(slpc->min_freq,
2528                                          GT_FREQUENCY_MULTIPLIER);
2529         } else {
2530                 freq = rps->min_freq;
2531                 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2532                         /* Convert GT frequency to 50 MHz units */
2533                         freq /= GEN9_FREQ_SCALER;
2534                 }
2535                 return freq;
2536         }
2537 }
2538
2539 static int set_min_freq(struct intel_rps *rps, u32 val)
2540 {
2541         int ret = 0;
2542
2543         mutex_lock(&rps->lock);
2544
2545         val = intel_freq_opcode(rps, val);
2546         if (val < rps->min_freq ||
2547             val > rps->max_freq ||
2548             val > rps->max_freq_softlimit) {
2549                 ret = -EINVAL;
2550                 goto unlock;
2551         }
2552
2553         rps->min_freq_softlimit = val;
2554
2555         val = clamp_t(int, rps->cur_freq,
2556                       rps->min_freq_softlimit,
2557                       rps->max_freq_softlimit);
2558
2559         /*
2560          * We still need *_set_rps to process the new min_delay and
2561          * update the interrupt limits and PMINTRMSK even though
2562          * frequency request may be unchanged.
2563          */
2564         intel_rps_set(rps, val);
2565
2566 unlock:
2567         mutex_unlock(&rps->lock);
2568
2569         return ret;
2570 }
2571
2572 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2573 {
2574         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2575
2576         if (rps_uses_slpc(rps))
2577                 return intel_guc_slpc_set_min_freq(slpc, val);
2578         else
2579                 return set_min_freq(rps, val);
2580 }
2581
2582 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2583 {
2584         return rps->power.up_threshold;
2585 }
2586
2587 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2588 {
2589         int ret;
2590
2591         if (val > 100)
2592                 return -EINVAL;
2593
2594         ret = mutex_lock_interruptible(&rps->lock);
2595         if (ret)
2596                 return ret;
2597
2598         if (*threshold == val)
2599                 goto out_unlock;
2600
2601         *threshold = val;
2602
2603         /* Force reset. */
2604         rps->last_freq = -1;
2605         mutex_lock(&rps->power.mutex);
2606         rps->power.mode = -1;
2607         mutex_unlock(&rps->power.mutex);
2608
2609         intel_rps_set(rps, clamp(rps->cur_freq,
2610                                  rps->min_freq_softlimit,
2611                                  rps->max_freq_softlimit));
2612
2613 out_unlock:
2614         mutex_unlock(&rps->lock);
2615
2616         return ret;
2617 }
2618
2619 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2620 {
2621         return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2622 }
2623
2624 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2625 {
2626         return rps->power.down_threshold;
2627 }
2628
2629 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2630 {
2631         return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2632 }
2633
2634 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2635 {
2636         struct intel_uncore *uncore = rps_to_uncore(rps);
2637         u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2638
2639         /* Allow punit to process software requests */
2640         intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2641 }
2642
2643 void intel_rps_raise_unslice(struct intel_rps *rps)
2644 {
2645         struct intel_uncore *uncore = rps_to_uncore(rps);
2646
2647         mutex_lock(&rps->lock);
2648
2649         if (rps_uses_slpc(rps)) {
2650                 /* RP limits have not been initialized yet for SLPC path */
2651                 struct intel_rps_freq_caps caps;
2652
2653                 gen6_rps_get_freq_caps(rps, &caps);
2654
2655                 intel_rps_set_manual(rps, true);
2656                 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2657                                    ((caps.rp0_freq <<
2658                                    GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2659                                    GEN9_IGNORE_SLICE_RATIO));
2660                 intel_rps_set_manual(rps, false);
2661         } else {
2662                 intel_rps_set(rps, rps->rp0_freq);
2663         }
2664
2665         mutex_unlock(&rps->lock);
2666 }
2667
2668 void intel_rps_lower_unslice(struct intel_rps *rps)
2669 {
2670         struct intel_uncore *uncore = rps_to_uncore(rps);
2671
2672         mutex_lock(&rps->lock);
2673
2674         if (rps_uses_slpc(rps)) {
2675                 /* RP limits have not been initialized yet for SLPC path */
2676                 struct intel_rps_freq_caps caps;
2677
2678                 gen6_rps_get_freq_caps(rps, &caps);
2679
2680                 intel_rps_set_manual(rps, true);
2681                 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2682                                    ((caps.min_freq <<
2683                                    GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2684                                    GEN9_IGNORE_SLICE_RATIO));
2685                 intel_rps_set_manual(rps, false);
2686         } else {
2687                 intel_rps_set(rps, rps->min_freq);
2688         }
2689
2690         mutex_unlock(&rps->lock);
2691 }
2692
2693 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2694 {
2695         struct intel_gt *gt = rps_to_gt(rps);
2696         intel_wakeref_t wakeref;
2697         u32 val;
2698
2699         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2700                 val = intel_uncore_read(gt->uncore, reg32);
2701
2702         return val;
2703 }
2704
2705 bool rps_read_mask_mmio(struct intel_rps *rps,
2706                         i915_reg_t reg32, u32 mask)
2707 {
2708         return rps_read_mmio(rps, reg32) & mask;
2709 }
2710
2711 /* External interface for intel_ips.ko */
2712
2713 static struct drm_i915_private __rcu *ips_mchdev;
2714
2715 /*
2716  * Tells the intel_ips driver that the i915 driver is now loaded, if
2717  * IPS got loaded first.
2718  *
2719  * This awkward dance is so that neither module has to depend on the
2720  * other in order for IPS to do the appropriate communication of
2721  * GPU turbo limits to i915.
2722  */
2723 static void
2724 ips_ping_for_i915_load(void)
2725 {
2726         void (*link)(void);
2727
2728         link = symbol_get(ips_link_to_i915_driver);
2729         if (link) {
2730                 link();
2731                 symbol_put(ips_link_to_i915_driver);
2732         }
2733 }
2734
2735 void intel_rps_driver_register(struct intel_rps *rps)
2736 {
2737         struct intel_gt *gt = rps_to_gt(rps);
2738
2739         /*
2740          * We only register the i915 ips part with intel-ips once everything is
2741          * set up, to avoid intel-ips sneaking in and reading bogus values.
2742          */
2743         if (GRAPHICS_VER(gt->i915) == 5) {
2744                 GEM_BUG_ON(ips_mchdev);
2745                 rcu_assign_pointer(ips_mchdev, gt->i915);
2746                 ips_ping_for_i915_load();
2747         }
2748 }
2749
2750 void intel_rps_driver_unregister(struct intel_rps *rps)
2751 {
2752         if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2753                 rcu_assign_pointer(ips_mchdev, NULL);
2754 }
2755
2756 static struct drm_i915_private *mchdev_get(void)
2757 {
2758         struct drm_i915_private *i915;
2759
2760         rcu_read_lock();
2761         i915 = rcu_dereference(ips_mchdev);
2762         if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2763                 i915 = NULL;
2764         rcu_read_unlock();
2765
2766         return i915;
2767 }
2768
2769 /**
2770  * i915_read_mch_val - return value for IPS use
2771  *
2772  * Calculate and return a value for the IPS driver to use when deciding whether
2773  * we have thermal and power headroom to increase CPU or GPU power budget.
2774  */
2775 unsigned long i915_read_mch_val(void)
2776 {
2777         struct drm_i915_private *i915;
2778         unsigned long chipset_val = 0;
2779         unsigned long graphics_val = 0;
2780         intel_wakeref_t wakeref;
2781
2782         i915 = mchdev_get();
2783         if (!i915)
2784                 return 0;
2785
2786         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2787                 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2788
2789                 spin_lock_irq(&mchdev_lock);
2790                 chipset_val = __ips_chipset_val(ips);
2791                 graphics_val = __ips_gfx_val(ips);
2792                 spin_unlock_irq(&mchdev_lock);
2793         }
2794
2795         drm_dev_put(&i915->drm);
2796         return chipset_val + graphics_val;
2797 }
2798 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2799
2800 /**
2801  * i915_gpu_raise - raise GPU frequency limit
2802  *
2803  * Raise the limit; IPS indicates we have thermal headroom.
2804  */
2805 bool i915_gpu_raise(void)
2806 {
2807         struct drm_i915_private *i915;
2808         struct intel_rps *rps;
2809
2810         i915 = mchdev_get();
2811         if (!i915)
2812                 return false;
2813
2814         rps = &to_gt(i915)->rps;
2815
2816         spin_lock_irq(&mchdev_lock);
2817         if (rps->max_freq_softlimit < rps->max_freq)
2818                 rps->max_freq_softlimit++;
2819         spin_unlock_irq(&mchdev_lock);
2820
2821         drm_dev_put(&i915->drm);
2822         return true;
2823 }
2824 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2825
2826 /**
2827  * i915_gpu_lower - lower GPU frequency limit
2828  *
2829  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2830  * frequency maximum.
2831  */
2832 bool i915_gpu_lower(void)
2833 {
2834         struct drm_i915_private *i915;
2835         struct intel_rps *rps;
2836
2837         i915 = mchdev_get();
2838         if (!i915)
2839                 return false;
2840
2841         rps = &to_gt(i915)->rps;
2842
2843         spin_lock_irq(&mchdev_lock);
2844         if (rps->max_freq_softlimit > rps->min_freq)
2845                 rps->max_freq_softlimit--;
2846         spin_unlock_irq(&mchdev_lock);
2847
2848         drm_dev_put(&i915->drm);
2849         return true;
2850 }
2851 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2852
2853 /**
2854  * i915_gpu_busy - indicate GPU business to IPS
2855  *
2856  * Tell the IPS driver whether or not the GPU is busy.
2857  */
2858 bool i915_gpu_busy(void)
2859 {
2860         struct drm_i915_private *i915;
2861         bool ret;
2862
2863         i915 = mchdev_get();
2864         if (!i915)
2865                 return false;
2866
2867         ret = to_gt(i915)->awake;
2868
2869         drm_dev_put(&i915->drm);
2870         return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2873
2874 /**
2875  * i915_gpu_turbo_disable - disable graphics turbo
2876  *
2877  * Disable graphics turbo by resetting the max frequency and setting the
2878  * current frequency to the default.
2879  */
2880 bool i915_gpu_turbo_disable(void)
2881 {
2882         struct drm_i915_private *i915;
2883         struct intel_rps *rps;
2884         bool ret;
2885
2886         i915 = mchdev_get();
2887         if (!i915)
2888                 return false;
2889
2890         rps = &to_gt(i915)->rps;
2891
2892         spin_lock_irq(&mchdev_lock);
2893         rps->max_freq_softlimit = rps->min_freq;
2894         ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2895         spin_unlock_irq(&mchdev_lock);
2896
2897         drm_dev_put(&i915->drm);
2898         return ret;
2899 }
2900 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2901
2902 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2903 #include "selftest_rps.c"
2904 #include "selftest_slpc.c"
2905 #endif
This page took 0.198159 seconds and 4 git commands to generate.