]> Git Repo - linux.git/blob - drivers/gpu/drm/gma500/cdv_intel_dp.c
Linux 6.14-rc3
[linux.git] / drivers / gpu / drm / gma500 / cdv_intel_dp.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <[email protected]>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31
32 #include <drm/display/drm_dp_helper.h>
33 #include <drm/drm_crtc.h>
34 #include <drm/drm_crtc_helper.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_modeset_helper_vtables.h>
37 #include <drm/drm_simple_kms_helper.h>
38
39 #include "gma_display.h"
40 #include "psb_drv.h"
41 #include "psb_intel_drv.h"
42 #include "psb_intel_reg.h"
43
44 /**
45  * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
46  *                               aux algorithm
47  * @running: set by the algo indicating whether an i2c is ongoing or whether
48  *           the i2c bus is quiescent
49  * @address: i2c target address for the currently ongoing transfer
50  * @aux_ch: driver callback to transfer a single byte of the i2c payload
51  */
52 struct i2c_algo_dp_aux_data {
53         bool running;
54         u16 address;
55         int (*aux_ch) (struct i2c_adapter *adapter,
56                        int mode, uint8_t write_byte,
57                        uint8_t *read_byte);
58 };
59
60 /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
61 static int
62 i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
63                             uint8_t write_byte, uint8_t *read_byte)
64 {
65         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
66         int ret;
67
68         ret = (*algo_data->aux_ch)(adapter, mode,
69                                    write_byte, read_byte);
70         return ret;
71 }
72
73 /*
74  * I2C over AUX CH
75  */
76
77 /*
78  * Send the address. If the I2C link is running, this 'restarts'
79  * the connection with the new address, this is used for doing
80  * a write followed by a read (as needed for DDC)
81  */
82 static int
83 i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
84 {
85         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
86         int mode = MODE_I2C_START;
87
88         if (reading)
89                 mode |= MODE_I2C_READ;
90         else
91                 mode |= MODE_I2C_WRITE;
92         algo_data->address = address;
93         algo_data->running = true;
94         return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
95 }
96
97 /*
98  * Stop the I2C transaction. This closes out the link, sending
99  * a bare address packet with the MOT bit turned off
100  */
101 static void
102 i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
103 {
104         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
105         int mode = MODE_I2C_STOP;
106
107         if (reading)
108                 mode |= MODE_I2C_READ;
109         else
110                 mode |= MODE_I2C_WRITE;
111         if (algo_data->running) {
112                 (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
113                 algo_data->running = false;
114         }
115 }
116
117 /*
118  * Write a single byte to the current I2C address, the
119  * I2C link must be running or this returns -EIO
120  */
121 static int
122 i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
123 {
124         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
125
126         if (!algo_data->running)
127                 return -EIO;
128
129         return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
130 }
131
132 /*
133  * Read a single byte from the current I2C address, the
134  * I2C link must be running or this returns -EIO
135  */
136 static int
137 i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138 {
139         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140
141         if (!algo_data->running)
142                 return -EIO;
143
144         return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
145 }
146
147 static int
148 i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
149                      struct i2c_msg *msgs,
150                      int num)
151 {
152         int ret = 0;
153         bool reading = false;
154         int m;
155         int b;
156
157         for (m = 0; m < num; m++) {
158                 u16 len = msgs[m].len;
159                 u8 *buf = msgs[m].buf;
160                 reading = (msgs[m].flags & I2C_M_RD) != 0;
161                 ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
162                 if (ret < 0)
163                         break;
164                 if (reading) {
165                         for (b = 0; b < len; b++) {
166                                 ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
167                                 if (ret < 0)
168                                         break;
169                         }
170                 } else {
171                         for (b = 0; b < len; b++) {
172                                 ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
173                                 if (ret < 0)
174                                         break;
175                         }
176                 }
177                 if (ret < 0)
178                         break;
179         }
180         if (ret >= 0)
181                 ret = num;
182         i2c_algo_dp_aux_stop(adapter, reading);
183         DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
184         return ret;
185 }
186
187 static u32
188 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
189 {
190         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
191                I2C_FUNC_SMBUS_READ_BLOCK_DATA |
192                I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
193                I2C_FUNC_10BIT_ADDR;
194 }
195
196 static const struct i2c_algorithm i2c_dp_aux_algo = {
197         .master_xfer    = i2c_algo_dp_aux_xfer,
198         .functionality  = i2c_algo_dp_aux_functionality,
199 };
200
201 static void
202 i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
203 {
204         (void) i2c_algo_dp_aux_address(adapter, 0, false);
205         (void) i2c_algo_dp_aux_stop(adapter, false);
206 }
207
208 static int
209 i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
210 {
211         adapter->algo = &i2c_dp_aux_algo;
212         adapter->retries = 3;
213         i2c_dp_aux_reset_bus(adapter);
214         return 0;
215 }
216
217 /*
218  * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
219  * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
220  */
221 static int
222 i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
223 {
224         int error;
225
226         error = i2c_dp_aux_prepare_bus(adapter);
227         if (error)
228                 return error;
229         error = i2c_add_adapter(adapter);
230         return error;
231 }
232
233 #define _wait_for(COND, MS, W) ({ \
234         unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
235         int ret__ = 0;                                                  \
236         while (! (COND)) {                                              \
237                 if (time_after(jiffies, timeout__)) {                   \
238                         ret__ = -ETIMEDOUT;                             \
239                         break;                                          \
240                 }                                                       \
241                 if (W && !in_dbg_master()) msleep(W);                   \
242         }                                                               \
243         ret__;                                                          \
244 })
245
246 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
247
248 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
249
250 #define DP_LINK_CONFIGURATION_SIZE      9
251
252 #define CDV_FAST_LINK_TRAIN     1
253
254 struct cdv_intel_dp {
255         uint32_t output_reg;
256         uint32_t DP;
257         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
258         bool has_audio;
259         int force_audio;
260         uint32_t color_range;
261         uint8_t link_bw;
262         uint8_t lane_count;
263         uint8_t dpcd[4];
264         struct gma_encoder *encoder;
265         struct i2c_adapter adapter;
266         struct i2c_algo_dp_aux_data algo;
267         uint8_t train_set[4];
268         uint8_t link_status[DP_LINK_STATUS_SIZE];
269         int panel_power_up_delay;
270         int panel_power_down_delay;
271         int panel_power_cycle_delay;
272         int backlight_on_delay;
273         int backlight_off_delay;
274         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
275         bool panel_on;
276 };
277
278 struct ddi_regoff {
279         uint32_t        PreEmph1;
280         uint32_t        PreEmph2;
281         uint32_t        VSwing1;
282         uint32_t        VSwing2;
283         uint32_t        VSwing3;
284         uint32_t        VSwing4;
285         uint32_t        VSwing5;
286 };
287
288 static struct ddi_regoff ddi_DP_train_table[] = {
289         {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
290         .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
291         .VSwing5 = 0x8158,},
292         {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
293         .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
294         .VSwing5 = 0x8258,},
295 };
296
297 static uint32_t dp_vswing_premph_table[] = {
298         0x55338954,     0x4000,
299         0x554d8954,     0x2000,
300         0x55668954,     0,
301         0x559ac0d4,     0x6000,
302 };
303 /**
304  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
305  * @encoder: GMA encoder struct
306  *
307  * If a CPU or PCH DP output is attached to an eDP panel, this function
308  * will return true, and false otherwise.
309  */
310 static bool is_edp(struct gma_encoder *encoder)
311 {
312         return encoder->type == INTEL_OUTPUT_EDP;
313 }
314
315
316 static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
317 static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
318 static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
319
320 static int
321 cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
322 {
323         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
324         int max_lane_count = 4;
325
326         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
327                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
328                 switch (max_lane_count) {
329                 case 1: case 2: case 4:
330                         break;
331                 default:
332                         max_lane_count = 4;
333                 }
334         }
335         return max_lane_count;
336 }
337
338 static int
339 cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
340 {
341         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
342         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
343
344         switch (max_link_bw) {
345         case DP_LINK_BW_1_62:
346         case DP_LINK_BW_2_7:
347                 break;
348         default:
349                 max_link_bw = DP_LINK_BW_1_62;
350                 break;
351         }
352         return max_link_bw;
353 }
354
355 static int
356 cdv_intel_dp_link_clock(uint8_t link_bw)
357 {
358         if (link_bw == DP_LINK_BW_2_7)
359                 return 270000;
360         else
361                 return 162000;
362 }
363
364 static int
365 cdv_intel_dp_link_required(int pixel_clock, int bpp)
366 {
367         return (pixel_clock * bpp + 7) / 8;
368 }
369
370 static int
371 cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
372 {
373         return (max_link_clock * max_lanes * 19) / 20;
374 }
375
376 static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
377 {
378         struct drm_device *dev = intel_encoder->base.dev;
379         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
380         u32 pp;
381
382         if (intel_dp->panel_on) {
383                 DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
384                 return;
385         }
386         DRM_DEBUG_KMS("\n");
387
388         pp = REG_READ(PP_CONTROL);
389
390         pp |= EDP_FORCE_VDD;
391         REG_WRITE(PP_CONTROL, pp);
392         REG_READ(PP_CONTROL);
393         msleep(intel_dp->panel_power_up_delay);
394 }
395
396 static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
397 {
398         struct drm_device *dev = intel_encoder->base.dev;
399         u32 pp;
400
401         DRM_DEBUG_KMS("\n");
402         pp = REG_READ(PP_CONTROL);
403
404         pp &= ~EDP_FORCE_VDD;
405         REG_WRITE(PP_CONTROL, pp);
406         REG_READ(PP_CONTROL);
407
408 }
409
410 /* Returns true if the panel was already on when called */
411 static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
412 {
413         struct drm_device *dev = intel_encoder->base.dev;
414         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
415         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
416
417         if (intel_dp->panel_on)
418                 return true;
419
420         DRM_DEBUG_KMS("\n");
421         pp = REG_READ(PP_CONTROL);
422         pp &= ~PANEL_UNLOCK_MASK;
423
424         pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
425         REG_WRITE(PP_CONTROL, pp);
426         REG_READ(PP_CONTROL);
427
428         if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
429                 DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
430                 intel_dp->panel_on = false;
431         } else
432                 intel_dp->panel_on = true;
433         msleep(intel_dp->panel_power_up_delay);
434
435         return false;
436 }
437
438 static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
439 {
440         struct drm_device *dev = intel_encoder->base.dev;
441         u32 pp, idle_off_mask = PP_ON ;
442         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
443
444         DRM_DEBUG_KMS("\n");
445
446         pp = REG_READ(PP_CONTROL);
447
448         if ((pp & POWER_TARGET_ON) == 0)
449                 return;
450
451         intel_dp->panel_on = false;
452         pp &= ~PANEL_UNLOCK_MASK;
453         /* ILK workaround: disable reset around power sequence */
454
455         pp &= ~POWER_TARGET_ON;
456         pp &= ~EDP_FORCE_VDD;
457         pp &= ~EDP_BLC_ENABLE;
458         REG_WRITE(PP_CONTROL, pp);
459         REG_READ(PP_CONTROL);
460         DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
461
462         if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
463                 DRM_DEBUG_KMS("Error in turning off Panel\n");
464         }
465
466         msleep(intel_dp->panel_power_cycle_delay);
467         DRM_DEBUG_KMS("Over\n");
468 }
469
470 static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
471 {
472         struct drm_device *dev = intel_encoder->base.dev;
473         u32 pp;
474
475         DRM_DEBUG_KMS("\n");
476         /*
477          * If we enable the backlight right away following a panel power
478          * on, we may see slight flicker as the panel syncs with the eDP
479          * link.  So delay a bit to make sure the image is solid before
480          * allowing it to appear.
481          */
482         msleep(300);
483         pp = REG_READ(PP_CONTROL);
484
485         pp |= EDP_BLC_ENABLE;
486         REG_WRITE(PP_CONTROL, pp);
487         gma_backlight_enable(dev);
488 }
489
490 static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
491 {
492         struct drm_device *dev = intel_encoder->base.dev;
493         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
494         u32 pp;
495
496         DRM_DEBUG_KMS("\n");
497         gma_backlight_disable(dev);
498         msleep(10);
499         pp = REG_READ(PP_CONTROL);
500
501         pp &= ~EDP_BLC_ENABLE;
502         REG_WRITE(PP_CONTROL, pp);
503         msleep(intel_dp->backlight_off_delay);
504 }
505
506 static enum drm_mode_status
507 cdv_intel_dp_mode_valid(struct drm_connector *connector,
508                     struct drm_display_mode *mode)
509 {
510         struct gma_encoder *encoder = gma_attached_encoder(connector);
511         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
512         int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
513         int max_lanes = cdv_intel_dp_max_lane_count(encoder);
514         struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
515
516         if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
517                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
518                         return MODE_PANEL;
519                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
520                         return MODE_PANEL;
521         }
522
523         /* only refuse the mode on non eDP since we have seen some weird eDP panels
524            which are outside spec tolerances but somehow work by magic */
525         if (!is_edp(encoder) &&
526             (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
527              > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
528                 return MODE_CLOCK_HIGH;
529
530         if (is_edp(encoder)) {
531             if (cdv_intel_dp_link_required(mode->clock, 24)
532                 > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
533                 return MODE_CLOCK_HIGH;
534
535         }
536         if (mode->clock < 10000)
537                 return MODE_CLOCK_LOW;
538
539         return MODE_OK;
540 }
541
542 static uint32_t
543 pack_aux(uint8_t *src, int src_bytes)
544 {
545         int     i;
546         uint32_t v = 0;
547
548         if (src_bytes > 4)
549                 src_bytes = 4;
550         for (i = 0; i < src_bytes; i++)
551                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
552         return v;
553 }
554
555 static void
556 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
557 {
558         int i;
559         if (dst_bytes > 4)
560                 dst_bytes = 4;
561         for (i = 0; i < dst_bytes; i++)
562                 dst[i] = src >> ((3-i) * 8);
563 }
564
565 static int
566 cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
567                 uint8_t *send, int send_bytes,
568                 uint8_t *recv, int recv_size)
569 {
570         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
571         uint32_t output_reg = intel_dp->output_reg;
572         struct drm_device *dev = encoder->base.dev;
573         uint32_t ch_ctl = output_reg + 0x10;
574         uint32_t ch_data = ch_ctl + 4;
575         int i;
576         int recv_bytes;
577         uint32_t status;
578         uint32_t aux_clock_divider;
579         int try, precharge;
580
581         /* The clock divider is based off the hrawclk,
582          * and would like to run at 2MHz. So, take the
583          * hrawclk value and divide by 2 and use that
584          * On CDV platform it uses 200MHz as hrawclk.
585          *
586          */
587         aux_clock_divider = 200 / 2;
588
589         precharge = 4;
590         if (is_edp(encoder))
591                 precharge = 10;
592
593         if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
594                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
595                           REG_READ(ch_ctl));
596                 return -EBUSY;
597         }
598
599         /* Must try at least 3 times according to DP spec */
600         for (try = 0; try < 5; try++) {
601                 /* Load the send data into the aux channel data registers */
602                 for (i = 0; i < send_bytes; i += 4)
603                         REG_WRITE(ch_data + i,
604                                    pack_aux(send + i, send_bytes - i));
605
606                 /* Send the command and wait for it to complete */
607                 REG_WRITE(ch_ctl,
608                            DP_AUX_CH_CTL_SEND_BUSY |
609                            DP_AUX_CH_CTL_TIME_OUT_400us |
610                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
611                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
612                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
613                            DP_AUX_CH_CTL_DONE |
614                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
615                            DP_AUX_CH_CTL_RECEIVE_ERROR);
616                 for (;;) {
617                         status = REG_READ(ch_ctl);
618                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
619                                 break;
620                         udelay(100);
621                 }
622
623                 /* Clear done status and any errors */
624                 REG_WRITE(ch_ctl,
625                            status |
626                            DP_AUX_CH_CTL_DONE |
627                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
628                            DP_AUX_CH_CTL_RECEIVE_ERROR);
629                 if (status & DP_AUX_CH_CTL_DONE)
630                         break;
631         }
632
633         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
634                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
635                 return -EBUSY;
636         }
637
638         /* Check for timeout or receive error.
639          * Timeouts occur when the sink is not connected
640          */
641         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
642                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
643                 return -EIO;
644         }
645
646         /* Timeouts occur when the device isn't connected, so they're
647          * "normal" -- don't fill the kernel log with these */
648         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
649                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
650                 return -ETIMEDOUT;
651         }
652
653         /* Unload any bytes sent back from the other side */
654         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
655                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
656         if (recv_bytes > recv_size)
657                 recv_bytes = recv_size;
658
659         for (i = 0; i < recv_bytes; i += 4)
660                 unpack_aux(REG_READ(ch_data + i),
661                            recv + i, recv_bytes - i);
662
663         return recv_bytes;
664 }
665
666 /* Write data to the aux channel in native mode */
667 static int
668 cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
669                           uint16_t address, uint8_t *send, int send_bytes)
670 {
671         int ret;
672         uint8_t msg[20];
673         int msg_bytes;
674         uint8_t ack;
675
676         if (send_bytes > 16)
677                 return -1;
678         msg[0] = DP_AUX_NATIVE_WRITE << 4;
679         msg[1] = address >> 8;
680         msg[2] = address & 0xff;
681         msg[3] = send_bytes - 1;
682         memcpy(&msg[4], send, send_bytes);
683         msg_bytes = send_bytes + 4;
684         for (;;) {
685                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
686                 if (ret < 0)
687                         return ret;
688                 ack >>= 4;
689                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
690                         break;
691                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
692                         udelay(100);
693                 else
694                         return -EIO;
695         }
696         return send_bytes;
697 }
698
699 /* Write a single byte to the aux channel in native mode */
700 static int
701 cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
702                             uint16_t address, uint8_t byte)
703 {
704         return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
705 }
706
707 /* read bytes from a native aux channel */
708 static int
709 cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
710                          uint16_t address, uint8_t *recv, int recv_bytes)
711 {
712         uint8_t msg[4];
713         int msg_bytes;
714         uint8_t reply[20];
715         int reply_bytes;
716         uint8_t ack;
717         int ret;
718
719         msg[0] = DP_AUX_NATIVE_READ << 4;
720         msg[1] = address >> 8;
721         msg[2] = address & 0xff;
722         msg[3] = recv_bytes - 1;
723
724         msg_bytes = 4;
725         reply_bytes = recv_bytes + 1;
726
727         for (;;) {
728                 ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
729                                       reply, reply_bytes);
730                 if (ret == 0)
731                         return -EPROTO;
732                 if (ret < 0)
733                         return ret;
734                 ack = reply[0] >> 4;
735                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
736                         memcpy(recv, reply + 1, ret - 1);
737                         return ret - 1;
738                 }
739                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
740                         udelay(100);
741                 else
742                         return -EIO;
743         }
744 }
745
746 static int
747 cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
748                     uint8_t write_byte, uint8_t *read_byte)
749 {
750         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
751         struct cdv_intel_dp *intel_dp = container_of(adapter,
752                                                 struct cdv_intel_dp,
753                                                 adapter);
754         struct gma_encoder *encoder = intel_dp->encoder;
755         uint16_t address = algo_data->address;
756         uint8_t msg[5];
757         uint8_t reply[2];
758         unsigned retry;
759         int msg_bytes;
760         int reply_bytes;
761         int ret;
762
763         /* Set up the command byte */
764         if (mode & MODE_I2C_READ)
765                 msg[0] = DP_AUX_I2C_READ << 4;
766         else
767                 msg[0] = DP_AUX_I2C_WRITE << 4;
768
769         if (!(mode & MODE_I2C_STOP))
770                 msg[0] |= DP_AUX_I2C_MOT << 4;
771
772         msg[1] = address >> 8;
773         msg[2] = address;
774
775         switch (mode) {
776         case MODE_I2C_WRITE:
777                 msg[3] = 0;
778                 msg[4] = write_byte;
779                 msg_bytes = 5;
780                 reply_bytes = 1;
781                 break;
782         case MODE_I2C_READ:
783                 msg[3] = 0;
784                 msg_bytes = 4;
785                 reply_bytes = 2;
786                 break;
787         default:
788                 msg_bytes = 3;
789                 reply_bytes = 1;
790                 break;
791         }
792
793         for (retry = 0; retry < 5; retry++) {
794                 ret = cdv_intel_dp_aux_ch(encoder,
795                                       msg, msg_bytes,
796                                       reply, reply_bytes);
797                 if (ret < 0) {
798                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
799                         return ret;
800                 }
801
802                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
803                 case DP_AUX_NATIVE_REPLY_ACK:
804                         /* I2C-over-AUX Reply field is only valid
805                          * when paired with AUX ACK.
806                          */
807                         break;
808                 case DP_AUX_NATIVE_REPLY_NACK:
809                         DRM_DEBUG_KMS("aux_ch native nack\n");
810                         return -EREMOTEIO;
811                 case DP_AUX_NATIVE_REPLY_DEFER:
812                         udelay(100);
813                         continue;
814                 default:
815                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
816                                   reply[0]);
817                         return -EREMOTEIO;
818                 }
819
820                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
821                 case DP_AUX_I2C_REPLY_ACK:
822                         if (mode == MODE_I2C_READ) {
823                                 *read_byte = reply[1];
824                         }
825                         return reply_bytes - 1;
826                 case DP_AUX_I2C_REPLY_NACK:
827                         DRM_DEBUG_KMS("aux_i2c nack\n");
828                         return -EREMOTEIO;
829                 case DP_AUX_I2C_REPLY_DEFER:
830                         DRM_DEBUG_KMS("aux_i2c defer\n");
831                         udelay(100);
832                         break;
833                 default:
834                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
835                         return -EREMOTEIO;
836                 }
837         }
838
839         DRM_ERROR("too many retries, giving up\n");
840         return -EREMOTEIO;
841 }
842
843 static int
844 cdv_intel_dp_i2c_init(struct gma_connector *connector,
845                       struct gma_encoder *encoder, const char *name)
846 {
847         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
848         int ret;
849
850         DRM_DEBUG_KMS("i2c_init %s\n", name);
851
852         intel_dp->algo.running = false;
853         intel_dp->algo.address = 0;
854         intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
855
856         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
857         intel_dp->adapter.owner = THIS_MODULE;
858         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
859         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
860         intel_dp->adapter.algo_data = &intel_dp->algo;
861         intel_dp->adapter.dev.parent = connector->base.kdev;
862
863         if (is_edp(encoder))
864                 cdv_intel_edp_panel_vdd_on(encoder);
865         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
866         if (is_edp(encoder))
867                 cdv_intel_edp_panel_vdd_off(encoder);
868
869         return ret;
870 }
871
872 static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
873         struct drm_display_mode *adjusted_mode)
874 {
875         adjusted_mode->hdisplay = fixed_mode->hdisplay;
876         adjusted_mode->hsync_start = fixed_mode->hsync_start;
877         adjusted_mode->hsync_end = fixed_mode->hsync_end;
878         adjusted_mode->htotal = fixed_mode->htotal;
879
880         adjusted_mode->vdisplay = fixed_mode->vdisplay;
881         adjusted_mode->vsync_start = fixed_mode->vsync_start;
882         adjusted_mode->vsync_end = fixed_mode->vsync_end;
883         adjusted_mode->vtotal = fixed_mode->vtotal;
884
885         adjusted_mode->clock = fixed_mode->clock;
886
887         drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
888 }
889
890 static bool
891 cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
892                     struct drm_display_mode *adjusted_mode)
893 {
894         struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
895         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
896         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
897         int lane_count, clock;
898         int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
899         int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
900         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
901         int refclock = mode->clock;
902         int bpp = 24;
903
904         if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
905                 cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
906                 refclock = intel_dp->panel_fixed_mode->clock;
907                 bpp = dev_priv->edp.bpp;
908         }
909
910         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
911                 for (clock = max_clock; clock >= 0; clock--) {
912                         int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
913
914                         if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
915                                 intel_dp->link_bw = bws[clock];
916                                 intel_dp->lane_count = lane_count;
917                                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
918                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
919                                                 "count %d clock %d\n",
920                                        intel_dp->link_bw, intel_dp->lane_count,
921                                        adjusted_mode->clock);
922                                 return true;
923                         }
924                 }
925         }
926         if (is_edp(intel_encoder)) {
927                 /* okay we failed just pick the highest */
928                 intel_dp->lane_count = max_lane_count;
929                 intel_dp->link_bw = bws[max_clock];
930                 adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
931                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
932                               "count %d clock %d\n",
933                               intel_dp->link_bw, intel_dp->lane_count,
934                               adjusted_mode->clock);
935
936                 return true;
937         }
938         return false;
939 }
940
941 struct cdv_intel_dp_m_n {
942         uint32_t        tu;
943         uint32_t        gmch_m;
944         uint32_t        gmch_n;
945         uint32_t        link_m;
946         uint32_t        link_n;
947 };
948
949 static void
950 cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
951 {
952         /*
953         while (*num > 0xffffff || *den > 0xffffff) {
954                 *num >>= 1;
955                 *den >>= 1;
956         }*/
957         uint64_t value, m;
958         m = *num;
959         value = m * (0x800000);
960         m = do_div(value, *den);
961         *num = value;
962         *den = 0x800000;
963 }
964
965 static void
966 cdv_intel_dp_compute_m_n(int bpp,
967                      int nlanes,
968                      int pixel_clock,
969                      int link_clock,
970                      struct cdv_intel_dp_m_n *m_n)
971 {
972         m_n->tu = 64;
973         m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
974         m_n->gmch_n = link_clock * nlanes;
975         cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
976         m_n->link_m = pixel_clock;
977         m_n->link_n = link_clock;
978         cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
979 }
980
981 void
982 cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
983                  struct drm_display_mode *adjusted_mode)
984 {
985         struct drm_device *dev = crtc->dev;
986         struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
987         struct drm_mode_config *mode_config = &dev->mode_config;
988         struct drm_encoder *encoder;
989         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
990         int lane_count = 4, bpp = 24;
991         struct cdv_intel_dp_m_n m_n;
992         int pipe = gma_crtc->pipe;
993
994         /*
995          * Find the lane count in the intel_encoder private
996          */
997         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
998                 struct gma_encoder *intel_encoder;
999                 struct cdv_intel_dp *intel_dp;
1000
1001                 if (encoder->crtc != crtc)
1002                         continue;
1003
1004                 intel_encoder = to_gma_encoder(encoder);
1005                 intel_dp = intel_encoder->dev_priv;
1006                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1007                         lane_count = intel_dp->lane_count;
1008                         break;
1009                 } else if (is_edp(intel_encoder)) {
1010                         lane_count = intel_dp->lane_count;
1011                         bpp = dev_priv->edp.bpp;
1012                         break;
1013                 }
1014         }
1015
1016         /*
1017          * Compute the GMCH and Link ratios. The '3' here is
1018          * the number of bytes_per_pixel post-LUT, which we always
1019          * set up for 8-bits of R/G/B, or 3 bytes total.
1020          */
1021         cdv_intel_dp_compute_m_n(bpp, lane_count,
1022                              mode->clock, adjusted_mode->clock, &m_n);
1023
1024         {
1025                 REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1026                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1027                            m_n.gmch_m);
1028                 REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1029                 REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1030                 REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1031         }
1032 }
1033
1034 static void
1035 cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1036                   struct drm_display_mode *adjusted_mode)
1037 {
1038         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1039         struct drm_crtc *crtc = encoder->crtc;
1040         struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1041         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1042         struct drm_device *dev = encoder->dev;
1043
1044         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1045         intel_dp->DP |= intel_dp->color_range;
1046
1047         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1048                 intel_dp->DP |= DP_SYNC_HS_HIGH;
1049         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1050                 intel_dp->DP |= DP_SYNC_VS_HIGH;
1051
1052         intel_dp->DP |= DP_LINK_TRAIN_OFF;
1053
1054         switch (intel_dp->lane_count) {
1055         case 1:
1056                 intel_dp->DP |= DP_PORT_WIDTH_1;
1057                 break;
1058         case 2:
1059                 intel_dp->DP |= DP_PORT_WIDTH_2;
1060                 break;
1061         case 4:
1062                 intel_dp->DP |= DP_PORT_WIDTH_4;
1063                 break;
1064         }
1065         if (intel_dp->has_audio)
1066                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1067
1068         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1069         intel_dp->link_configuration[0] = intel_dp->link_bw;
1070         intel_dp->link_configuration[1] = intel_dp->lane_count;
1071
1072         /*
1073          * Check for DPCD version > 1.1 and enhanced framing support
1074          */
1075         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1076             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1077                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1078                 intel_dp->DP |= DP_ENHANCED_FRAMING;
1079         }
1080
1081         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
1082         if (gma_crtc->pipe == 1)
1083                 intel_dp->DP |= DP_PIPEB_SELECT;
1084
1085         REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1086         DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1087         if (is_edp(intel_encoder)) {
1088                 uint32_t pfit_control;
1089                 cdv_intel_edp_panel_on(intel_encoder);
1090
1091                 if (mode->hdisplay != adjusted_mode->hdisplay ||
1092                             mode->vdisplay != adjusted_mode->vdisplay)
1093                         pfit_control = PFIT_ENABLE;
1094                 else
1095                         pfit_control = 0;
1096
1097                 pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1098
1099                 REG_WRITE(PFIT_CONTROL, pfit_control);
1100         }
1101 }
1102
1103
1104 /* If the sink supports it, try to set the power state appropriately */
1105 static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1106 {
1107         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1108         int ret, i;
1109
1110         /* Should have a valid DPCD by this point */
1111         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1112                 return;
1113
1114         if (mode != DRM_MODE_DPMS_ON) {
1115                 ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1116                                                   DP_SET_POWER_D3);
1117                 if (ret != 1)
1118                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1119         } else {
1120                 /*
1121                  * When turning on, we need to retry for 1ms to give the sink
1122                  * time to wake up.
1123                  */
1124                 for (i = 0; i < 3; i++) {
1125                         ret = cdv_intel_dp_aux_native_write_1(encoder,
1126                                                           DP_SET_POWER,
1127                                                           DP_SET_POWER_D0);
1128                         if (ret == 1)
1129                                 break;
1130                         udelay(1000);
1131                 }
1132         }
1133 }
1134
1135 static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1136 {
1137         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1138         int edp = is_edp(intel_encoder);
1139
1140         if (edp) {
1141                 cdv_intel_edp_backlight_off(intel_encoder);
1142                 cdv_intel_edp_panel_off(intel_encoder);
1143                 cdv_intel_edp_panel_vdd_on(intel_encoder);
1144         }
1145         /* Wake up the sink first */
1146         cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1147         cdv_intel_dp_link_down(intel_encoder);
1148         if (edp)
1149                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1150 }
1151
1152 static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1153 {
1154         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1155         int edp = is_edp(intel_encoder);
1156
1157         if (edp)
1158                 cdv_intel_edp_panel_on(intel_encoder);
1159         cdv_intel_dp_start_link_train(intel_encoder);
1160         cdv_intel_dp_complete_link_train(intel_encoder);
1161         if (edp)
1162                 cdv_intel_edp_backlight_on(intel_encoder);
1163 }
1164
1165 static void
1166 cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1167 {
1168         struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1169         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1170         struct drm_device *dev = encoder->dev;
1171         uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1172         int edp = is_edp(intel_encoder);
1173
1174         if (mode != DRM_MODE_DPMS_ON) {
1175                 if (edp) {
1176                         cdv_intel_edp_backlight_off(intel_encoder);
1177                         cdv_intel_edp_panel_vdd_on(intel_encoder);
1178                 }
1179                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1180                 cdv_intel_dp_link_down(intel_encoder);
1181                 if (edp) {
1182                         cdv_intel_edp_panel_vdd_off(intel_encoder);
1183                         cdv_intel_edp_panel_off(intel_encoder);
1184                 }
1185         } else {
1186                 if (edp)
1187                         cdv_intel_edp_panel_on(intel_encoder);
1188                 cdv_intel_dp_sink_dpms(intel_encoder, mode);
1189                 if (!(dp_reg & DP_PORT_EN)) {
1190                         cdv_intel_dp_start_link_train(intel_encoder);
1191                         cdv_intel_dp_complete_link_train(intel_encoder);
1192                 }
1193                 if (edp)
1194                         cdv_intel_edp_backlight_on(intel_encoder);
1195         }
1196 }
1197
1198 /*
1199  * Native read with retry for link status and receiver capability reads for
1200  * cases where the sink may still be asleep.
1201  */
1202 static bool
1203 cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1204                                uint8_t *recv, int recv_bytes)
1205 {
1206         int ret, i;
1207
1208         /*
1209          * Sinks are *supposed* to come up within 1ms from an off state,
1210          * but we're also supposed to retry 3 times per the spec.
1211          */
1212         for (i = 0; i < 3; i++) {
1213                 ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1214                                                recv_bytes);
1215                 if (ret == recv_bytes)
1216                         return true;
1217                 udelay(1000);
1218         }
1219
1220         return false;
1221 }
1222
1223 /*
1224  * Fetch AUX CH registers 0x202 - 0x207 which contain
1225  * link status information
1226  */
1227 static bool
1228 cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1229 {
1230         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1231         return cdv_intel_dp_aux_native_read_retry(encoder,
1232                                               DP_LANE0_1_STATUS,
1233                                               intel_dp->link_status,
1234                                               DP_LINK_STATUS_SIZE);
1235 }
1236
1237 static uint8_t
1238 cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1239                      int r)
1240 {
1241         return link_status[r - DP_LANE0_1_STATUS];
1242 }
1243
1244 static uint8_t
1245 cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1246                                  int lane)
1247 {
1248         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1249         int         s = ((lane & 1) ?
1250                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1251                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1252         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1253
1254         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1255 }
1256
1257 static uint8_t
1258 cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1259                                       int lane)
1260 {
1261         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1262         int         s = ((lane & 1) ?
1263                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1264                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1265         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1266
1267         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1268 }
1269
1270 #define CDV_DP_VOLTAGE_MAX          DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1271
1272 static void
1273 cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1274 {
1275         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1276         uint8_t v = 0;
1277         uint8_t p = 0;
1278         int lane;
1279
1280         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1281                 uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1282                 uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1283
1284                 if (this_v > v)
1285                         v = this_v;
1286                 if (this_p > p)
1287                         p = this_p;
1288         }
1289
1290         if (v >= CDV_DP_VOLTAGE_MAX)
1291                 v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1292
1293         if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1294                 p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1295
1296         for (lane = 0; lane < 4; lane++)
1297                 intel_dp->train_set[lane] = v | p;
1298 }
1299
1300
1301 static uint8_t
1302 cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1303                       int lane)
1304 {
1305         int i = DP_LANE0_1_STATUS + (lane >> 1);
1306         int s = (lane & 1) * 4;
1307         uint8_t l = cdv_intel_dp_link_status(link_status, i);
1308
1309         return (l >> s) & 0xf;
1310 }
1311
1312 /* Check for clock recovery is done on all channels */
1313 static bool
1314 cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1315 {
1316         int lane;
1317         uint8_t lane_status;
1318
1319         for (lane = 0; lane < lane_count; lane++) {
1320                 lane_status = cdv_intel_get_lane_status(link_status, lane);
1321                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 /* Check to see if channel eq is done on all channels */
1328 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1329                          DP_LANE_CHANNEL_EQ_DONE|\
1330                          DP_LANE_SYMBOL_LOCKED)
1331 static bool
1332 cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1333 {
1334         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1335         uint8_t lane_align;
1336         uint8_t lane_status;
1337         int lane;
1338
1339         lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1340                                           DP_LANE_ALIGN_STATUS_UPDATED);
1341         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1342                 return false;
1343         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1344                 lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1345                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1346                         return false;
1347         }
1348         return true;
1349 }
1350
1351 static bool
1352 cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1353                         uint32_t dp_reg_value,
1354                         uint8_t dp_train_pat)
1355 {
1356         struct drm_device *dev = encoder->base.dev;
1357         int ret;
1358         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1359
1360         REG_WRITE(intel_dp->output_reg, dp_reg_value);
1361         REG_READ(intel_dp->output_reg);
1362
1363         ret = cdv_intel_dp_aux_native_write_1(encoder,
1364                                     DP_TRAINING_PATTERN_SET,
1365                                     dp_train_pat);
1366
1367         if (ret != 1) {
1368                 DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1369                                 dp_train_pat);
1370                 return false;
1371         }
1372
1373         return true;
1374 }
1375
1376
1377 static bool
1378 cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1379                         uint8_t dp_train_pat)
1380 {
1381         int ret;
1382         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1383
1384         ret = cdv_intel_dp_aux_native_write(encoder,
1385                                         DP_TRAINING_LANE0_SET,
1386                                         intel_dp->train_set,
1387                                         intel_dp->lane_count);
1388
1389         if (ret != intel_dp->lane_count) {
1390                 DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1391                                 intel_dp->train_set[0], intel_dp->lane_count);
1392                 return false;
1393         }
1394         return true;
1395 }
1396
1397 static void
1398 cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1399 {
1400         struct drm_device *dev = encoder->base.dev;
1401         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402         struct ddi_regoff *ddi_reg;
1403         int vswing, premph, index;
1404
1405         if (intel_dp->output_reg == DP_B)
1406                 ddi_reg = &ddi_DP_train_table[0];
1407         else
1408                 ddi_reg = &ddi_DP_train_table[1];
1409
1410         vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1411         premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1412                                 DP_TRAIN_PRE_EMPHASIS_SHIFT;
1413
1414         if (vswing + premph > 3)
1415                 return;
1416 #ifdef CDV_FAST_LINK_TRAIN
1417         return;
1418 #endif
1419         DRM_DEBUG_KMS("Test2\n");
1420         //return ;
1421         cdv_sb_reset(dev);
1422         /* ;Swing voltage programming
1423         ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1424         cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1425
1426         /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1427         cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1428
1429         /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1430          * The VSwing_PreEmph table is also considered based on the vswing/premp
1431          */
1432         index = (vswing + premph) * 2;
1433         if (premph == 1 && vswing == 1) {
1434                 cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1435         } else
1436                 cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1437
1438         /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1439         if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1440                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1441         else
1442                 cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1443
1444         /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1445         /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1446
1447         /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1448         cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1449
1450         /* ;Pre emphasis programming
1451          * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1452          */
1453         cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1454
1455         /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1456         index = 2 * premph + 1;
1457         cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1458         return;
1459 }
1460
1461
1462 /* Enable corresponding port and start training pattern 1 */
1463 static void
1464 cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1465 {
1466         struct drm_device *dev = encoder->base.dev;
1467         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1468         int i;
1469         uint8_t voltage;
1470         bool clock_recovery = false;
1471         int tries;
1472         u32 reg;
1473         uint32_t DP = intel_dp->DP;
1474
1475         DP |= DP_PORT_EN;
1476         DP &= ~DP_LINK_TRAIN_MASK;
1477
1478         reg = DP;
1479         reg |= DP_LINK_TRAIN_PAT_1;
1480         /* Enable output, wait for it to become active */
1481         REG_WRITE(intel_dp->output_reg, reg);
1482         REG_READ(intel_dp->output_reg);
1483         gma_wait_for_vblank(dev);
1484
1485         DRM_DEBUG_KMS("Link config\n");
1486         /* Write the link configuration data */
1487         cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1488                                   intel_dp->link_configuration,
1489                                   2);
1490
1491         memset(intel_dp->train_set, 0, 4);
1492         voltage = 0;
1493         tries = 0;
1494         clock_recovery = false;
1495
1496         DRM_DEBUG_KMS("Start train\n");
1497         reg = DP | DP_LINK_TRAIN_PAT_1;
1498
1499         for (;;) {
1500                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1501                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1502                                 intel_dp->train_set[0],
1503                                 intel_dp->link_configuration[0],
1504                                 intel_dp->link_configuration[1]);
1505
1506                 if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1507                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1508                 }
1509                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1510                 /* Set training pattern 1 */
1511
1512                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1513
1514                 udelay(200);
1515                 if (!cdv_intel_dp_get_link_status(encoder))
1516                         break;
1517
1518                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1519                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1520                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1521
1522                 if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1523                         DRM_DEBUG_KMS("PT1 train is done\n");
1524                         clock_recovery = true;
1525                         break;
1526                 }
1527
1528                 /* Check to see if we've tried the max voltage */
1529                 for (i = 0; i < intel_dp->lane_count; i++)
1530                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1531                                 break;
1532                 if (i == intel_dp->lane_count)
1533                         break;
1534
1535                 /* Check to see if we've tried the same voltage 5 times */
1536                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1537                         ++tries;
1538                         if (tries == 5)
1539                                 break;
1540                 } else
1541                         tries = 0;
1542                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1543
1544                 /* Compute new intel_dp->train_set as requested by target */
1545                 cdv_intel_get_adjust_train(encoder);
1546
1547         }
1548
1549         if (!clock_recovery) {
1550                 DRM_DEBUG_KMS("failure in DP pattern 1 training, train set %x\n", intel_dp->train_set[0]);
1551         }
1552
1553         intel_dp->DP = DP;
1554 }
1555
1556 static void
1557 cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1558 {
1559         struct drm_device *dev = encoder->base.dev;
1560         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1561         int tries, cr_tries;
1562         u32 reg;
1563         uint32_t DP = intel_dp->DP;
1564
1565         /* channel equalization */
1566         tries = 0;
1567         cr_tries = 0;
1568
1569         DRM_DEBUG_KMS("\n");
1570         reg = DP | DP_LINK_TRAIN_PAT_2;
1571
1572         for (;;) {
1573
1574                 DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1575                                 intel_dp->train_set[0],
1576                                 intel_dp->link_configuration[0],
1577                                 intel_dp->link_configuration[1]);
1578                 /* channel eq pattern */
1579
1580                 if (!cdv_intel_dp_set_link_train(encoder, reg,
1581                                              DP_TRAINING_PATTERN_2)) {
1582                         DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1583                 }
1584                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1585
1586                 if (cr_tries > 5) {
1587                         DRM_ERROR("failed to train DP, aborting\n");
1588                         cdv_intel_dp_link_down(encoder);
1589                         break;
1590                 }
1591
1592                 cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1593
1594                 cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1595
1596                 udelay(1000);
1597                 if (!cdv_intel_dp_get_link_status(encoder))
1598                         break;
1599
1600                 DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1601                                 intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1602                                 intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1603
1604                 /* Make sure clock is still ok */
1605                 if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1606                         cdv_intel_dp_start_link_train(encoder);
1607                         cr_tries++;
1608                         continue;
1609                 }
1610
1611                 if (cdv_intel_channel_eq_ok(encoder)) {
1612                         DRM_DEBUG_KMS("PT2 train is done\n");
1613                         break;
1614                 }
1615
1616                 /* Try 5 times, then try clock recovery if that fails */
1617                 if (tries > 5) {
1618                         cdv_intel_dp_link_down(encoder);
1619                         cdv_intel_dp_start_link_train(encoder);
1620                         tries = 0;
1621                         cr_tries++;
1622                         continue;
1623                 }
1624
1625                 /* Compute new intel_dp->train_set as requested by target */
1626                 cdv_intel_get_adjust_train(encoder);
1627                 ++tries;
1628
1629         }
1630
1631         reg = DP | DP_LINK_TRAIN_OFF;
1632
1633         REG_WRITE(intel_dp->output_reg, reg);
1634         REG_READ(intel_dp->output_reg);
1635         cdv_intel_dp_aux_native_write_1(encoder,
1636                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1637 }
1638
1639 static void
1640 cdv_intel_dp_link_down(struct gma_encoder *encoder)
1641 {
1642         struct drm_device *dev = encoder->base.dev;
1643         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1644         uint32_t DP = intel_dp->DP;
1645
1646         if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1647                 return;
1648
1649         DRM_DEBUG_KMS("\n");
1650
1651
1652         {
1653                 DP &= ~DP_LINK_TRAIN_MASK;
1654                 REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1655         }
1656         REG_READ(intel_dp->output_reg);
1657
1658         msleep(17);
1659
1660         REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1661         REG_READ(intel_dp->output_reg);
1662 }
1663
1664 static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1665 {
1666         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1667         enum drm_connector_status status;
1668
1669         status = connector_status_disconnected;
1670         if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1671                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1672         {
1673                 if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1674                         status = connector_status_connected;
1675         }
1676         if (status == connector_status_connected)
1677                 DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1678                         intel_dp->dpcd[0], intel_dp->dpcd[1],
1679                         intel_dp->dpcd[2], intel_dp->dpcd[3]);
1680         return status;
1681 }
1682
1683 /*
1684  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1685  *
1686  * \return true if DP port is connected.
1687  * \return false if DP port is disconnected.
1688  */
1689 static enum drm_connector_status
1690 cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1691 {
1692         struct gma_encoder *encoder = gma_attached_encoder(connector);
1693         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1694         enum drm_connector_status status;
1695         struct edid *edid = NULL;
1696         int edp = is_edp(encoder);
1697
1698         intel_dp->has_audio = false;
1699
1700         if (edp)
1701                 cdv_intel_edp_panel_vdd_on(encoder);
1702         status = cdv_dp_detect(encoder);
1703         if (status != connector_status_connected) {
1704                 if (edp)
1705                         cdv_intel_edp_panel_vdd_off(encoder);
1706                 return status;
1707         }
1708
1709         if (intel_dp->force_audio) {
1710                 intel_dp->has_audio = intel_dp->force_audio > 0;
1711         } else {
1712                 edid = drm_get_edid(connector, &intel_dp->adapter);
1713                 if (edid) {
1714                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1715                         kfree(edid);
1716                 }
1717         }
1718         if (edp)
1719                 cdv_intel_edp_panel_vdd_off(encoder);
1720
1721         return connector_status_connected;
1722 }
1723
1724 static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1725 {
1726         struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1727         struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1728         struct edid *edid = NULL;
1729         int ret = 0;
1730         int edp = is_edp(intel_encoder);
1731
1732
1733         edid = drm_get_edid(connector, &intel_dp->adapter);
1734         if (edid) {
1735                 drm_connector_update_edid_property(connector, edid);
1736                 ret = drm_add_edid_modes(connector, edid);
1737                 kfree(edid);
1738         }
1739
1740         if (is_edp(intel_encoder)) {
1741                 struct drm_device *dev = connector->dev;
1742                 struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1743
1744                 cdv_intel_edp_panel_vdd_off(intel_encoder);
1745                 if (ret) {
1746                         if (edp && !intel_dp->panel_fixed_mode) {
1747                                 struct drm_display_mode *newmode;
1748                                 list_for_each_entry(newmode, &connector->probed_modes,
1749                                             head) {
1750                                         if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1751                                                 intel_dp->panel_fixed_mode =
1752                                                         drm_mode_duplicate(dev, newmode);
1753                                                 break;
1754                                         }
1755                                 }
1756                         }
1757
1758                         return ret;
1759                 }
1760                 if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1761                         intel_dp->panel_fixed_mode =
1762                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1763                         if (intel_dp->panel_fixed_mode) {
1764                                 intel_dp->panel_fixed_mode->type |=
1765                                         DRM_MODE_TYPE_PREFERRED;
1766                         }
1767                 }
1768                 if (intel_dp->panel_fixed_mode != NULL) {
1769                         struct drm_display_mode *mode;
1770                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1771                         drm_mode_probed_add(connector, mode);
1772                         return 1;
1773                 }
1774         }
1775
1776         return ret;
1777 }
1778
1779 static bool
1780 cdv_intel_dp_detect_audio(struct drm_connector *connector)
1781 {
1782         struct gma_encoder *encoder = gma_attached_encoder(connector);
1783         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1784         struct edid *edid;
1785         bool has_audio = false;
1786         int edp = is_edp(encoder);
1787
1788         if (edp)
1789                 cdv_intel_edp_panel_vdd_on(encoder);
1790
1791         edid = drm_get_edid(connector, &intel_dp->adapter);
1792         if (edid) {
1793                 has_audio = drm_detect_monitor_audio(edid);
1794                 kfree(edid);
1795         }
1796         if (edp)
1797                 cdv_intel_edp_panel_vdd_off(encoder);
1798
1799         return has_audio;
1800 }
1801
1802 static int
1803 cdv_intel_dp_set_property(struct drm_connector *connector,
1804                       struct drm_property *property,
1805                       uint64_t val)
1806 {
1807         struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1808         struct gma_encoder *encoder = gma_attached_encoder(connector);
1809         struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1810         int ret;
1811
1812         ret = drm_object_property_set_value(&connector->base, property, val);
1813         if (ret)
1814                 return ret;
1815
1816         if (property == dev_priv->force_audio_property) {
1817                 int i = val;
1818                 bool has_audio;
1819
1820                 if (i == intel_dp->force_audio)
1821                         return 0;
1822
1823                 intel_dp->force_audio = i;
1824
1825                 if (i == 0)
1826                         has_audio = cdv_intel_dp_detect_audio(connector);
1827                 else
1828                         has_audio = i > 0;
1829
1830                 if (has_audio == intel_dp->has_audio)
1831                         return 0;
1832
1833                 intel_dp->has_audio = has_audio;
1834                 goto done;
1835         }
1836
1837         if (property == dev_priv->broadcast_rgb_property) {
1838                 if (val == !!intel_dp->color_range)
1839                         return 0;
1840
1841                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1842                 goto done;
1843         }
1844
1845         return -EINVAL;
1846
1847 done:
1848         if (encoder->base.crtc) {
1849                 struct drm_crtc *crtc = encoder->base.crtc;
1850                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1851                                          crtc->x, crtc->y,
1852                                          crtc->primary->fb);
1853         }
1854
1855         return 0;
1856 }
1857
1858 static void
1859 cdv_intel_dp_destroy(struct drm_connector *connector)
1860 {
1861         struct gma_connector *gma_connector = to_gma_connector(connector);
1862         struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1863         struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1864
1865         if (is_edp(gma_encoder)) {
1866         /*      cdv_intel_panel_destroy_backlight(connector->dev); */
1867                 kfree(intel_dp->panel_fixed_mode);
1868                 intel_dp->panel_fixed_mode = NULL;
1869         }
1870         i2c_del_adapter(&intel_dp->adapter);
1871         drm_connector_cleanup(connector);
1872         kfree(gma_connector);
1873 }
1874
1875 static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1876         .dpms = cdv_intel_dp_dpms,
1877         .mode_fixup = cdv_intel_dp_mode_fixup,
1878         .prepare = cdv_intel_dp_prepare,
1879         .mode_set = cdv_intel_dp_mode_set,
1880         .commit = cdv_intel_dp_commit,
1881 };
1882
1883 static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1884         .dpms = drm_helper_connector_dpms,
1885         .detect = cdv_intel_dp_detect,
1886         .fill_modes = drm_helper_probe_single_connector_modes,
1887         .set_property = cdv_intel_dp_set_property,
1888         .destroy = cdv_intel_dp_destroy,
1889 };
1890
1891 static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1892         .get_modes = cdv_intel_dp_get_modes,
1893         .mode_valid = cdv_intel_dp_mode_valid,
1894         .best_encoder = gma_best_encoder,
1895 };
1896
1897 static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1898 {
1899         cdv_intel_attach_force_audio_property(connector);
1900         cdv_intel_attach_broadcast_rgb_property(connector);
1901 }
1902
1903 /* check the VBT to see whether the eDP is on DP-D port */
1904 static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1905 {
1906         struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1907         struct child_device_config *p_child;
1908         int i;
1909
1910         if (!dev_priv->child_dev_num)
1911                 return false;
1912
1913         for (i = 0; i < dev_priv->child_dev_num; i++) {
1914                 p_child = dev_priv->child_dev + i;
1915
1916                 if (p_child->dvo_port == PORT_IDPC &&
1917                     p_child->device_type == DEVICE_TYPE_eDP)
1918                         return true;
1919         }
1920         return false;
1921 }
1922
1923 /* Cedarview display clock gating
1924
1925    We need this disable dot get correct behaviour while enabling
1926    DP/eDP. TODO - investigate if we can turn it back to normality
1927    after enabling */
1928 static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1929 {
1930         u32 reg_value;
1931         reg_value = REG_READ(DSPCLK_GATE_D);
1932
1933         reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1934                         DPUNIT_PIPEA_GATE_DISABLE |
1935                         DPCUNIT_CLOCK_GATE_DISABLE |
1936                         DPLSUNIT_CLOCK_GATE_DISABLE |
1937                         DPOUNIT_CLOCK_GATE_DISABLE |
1938                         DPIOUNIT_CLOCK_GATE_DISABLE);
1939
1940         REG_WRITE(DSPCLK_GATE_D, reg_value);
1941
1942         udelay(500);
1943 }
1944
1945 void
1946 cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1947 {
1948         struct gma_encoder *gma_encoder;
1949         struct gma_connector *gma_connector;
1950         struct drm_connector *connector;
1951         struct drm_encoder *encoder;
1952         struct cdv_intel_dp *intel_dp;
1953         const char *name = NULL;
1954         int type = DRM_MODE_CONNECTOR_DisplayPort;
1955
1956         gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1957         if (!gma_encoder)
1958                 return;
1959         gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1960         if (!gma_connector)
1961                 goto err_connector;
1962         intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1963         if (!intel_dp)
1964                 goto err_priv;
1965
1966         if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1967                 type = DRM_MODE_CONNECTOR_eDP;
1968
1969         connector = &gma_connector->base;
1970         encoder = &gma_encoder->base;
1971
1972         drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1973         drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1974
1975         gma_connector_attach_encoder(gma_connector, gma_encoder);
1976
1977         if (type == DRM_MODE_CONNECTOR_DisplayPort)
1978                 gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1979         else
1980                 gma_encoder->type = INTEL_OUTPUT_EDP;
1981
1982
1983         gma_encoder->dev_priv=intel_dp;
1984         intel_dp->encoder = gma_encoder;
1985         intel_dp->output_reg = output_reg;
1986
1987         drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1988         drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1989
1990         connector->polled = DRM_CONNECTOR_POLL_HPD;
1991         connector->interlace_allowed = false;
1992         connector->doublescan_allowed = false;
1993
1994         /* Set up the DDC bus. */
1995         switch (output_reg) {
1996                 case DP_B:
1997                         name = "DPDDC-B";
1998                         gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1999                         break;
2000                 case DP_C:
2001                         name = "DPDDC-C";
2002                         gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2003                         break;
2004         }
2005
2006         cdv_disable_intel_clock_gating(dev);
2007
2008         cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2009         /* FIXME:fail check */
2010         cdv_intel_dp_add_properties(connector);
2011
2012         if (is_edp(gma_encoder)) {
2013                 int ret;
2014                 struct edp_power_seq cur;
2015                 u32 pp_on, pp_off, pp_div;
2016                 u32 pwm_ctrl;
2017
2018                 pp_on = REG_READ(PP_CONTROL);
2019                 pp_on &= ~PANEL_UNLOCK_MASK;
2020                 pp_on |= PANEL_UNLOCK_REGS;
2021
2022                 REG_WRITE(PP_CONTROL, pp_on);
2023
2024                 pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2025                 pwm_ctrl |= PWM_PIPE_B;
2026                 REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2027
2028                 pp_on = REG_READ(PP_ON_DELAYS);
2029                 pp_off = REG_READ(PP_OFF_DELAYS);
2030                 pp_div = REG_READ(PP_DIVISOR);
2031
2032                 /* Pull timing values out of registers */
2033                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2034                         PANEL_POWER_UP_DELAY_SHIFT;
2035
2036                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2037                         PANEL_LIGHT_ON_DELAY_SHIFT;
2038
2039                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2040                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2041
2042                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2043                         PANEL_POWER_DOWN_DELAY_SHIFT;
2044
2045                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2046                                PANEL_POWER_CYCLE_DELAY_SHIFT);
2047
2048                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2049                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2050
2051
2052                 intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2053                 intel_dp->backlight_on_delay = cur.t8 / 10;
2054                 intel_dp->backlight_off_delay = cur.t9 / 10;
2055                 intel_dp->panel_power_down_delay = cur.t10 / 10;
2056                 intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2057
2058                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2059                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2060                               intel_dp->panel_power_cycle_delay);
2061
2062                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2063                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2064
2065
2066                 cdv_intel_edp_panel_vdd_on(gma_encoder);
2067                 ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2068                                                intel_dp->dpcd,
2069                                                sizeof(intel_dp->dpcd));
2070                 cdv_intel_edp_panel_vdd_off(gma_encoder);
2071                 if (ret <= 0) {
2072                         /* if this fails, presume the device is a ghost */
2073                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2074                         drm_encoder_cleanup(encoder);
2075                         cdv_intel_dp_destroy(connector);
2076                         goto err_connector;
2077                 } else {
2078                         DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2079                                 intel_dp->dpcd[0], intel_dp->dpcd[1],
2080                                 intel_dp->dpcd[2], intel_dp->dpcd[3]);
2081
2082                 }
2083                 /* The CDV reference driver moves pnale backlight setup into the displays that
2084                    have a backlight: this is a good idea and one we should probably adopt, however
2085                    we need to migrate all the drivers before we can do that */
2086                 /*cdv_intel_panel_setup_backlight(dev); */
2087         }
2088         return;
2089
2090 err_priv:
2091         kfree(gma_connector);
2092 err_connector:
2093         kfree(gma_encoder);
2094 }
This page took 0.155074 seconds and 4 git commands to generate.