]> Git Repo - linux.git/blob - drivers/firmware/qcom/qcom_scm.c
Linux 6.14-rc3
[linux.git] / drivers / firmware / qcom / qcom_scm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3  * Copyright (C) 2015 Linaro Ltd.
4  */
5
6 #include <linux/arm-smccc.h>
7 #include <linux/bitfield.h>
8 #include <linux/bits.h>
9 #include <linux/cleanup.h>
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/export.h>
16 #include <linux/firmware/qcom/qcom_scm.h>
17 #include <linux/firmware/qcom/qcom_tzmem.h>
18 #include <linux/init.h>
19 #include <linux/interconnect.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/of_reserved_mem.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset-controller.h>
30 #include <linux/sizes.h>
31 #include <linux/types.h>
32
33 #include "qcom_scm.h"
34 #include "qcom_tzmem.h"
35
36 static u32 download_mode;
37
38 struct qcom_scm {
39         struct device *dev;
40         struct clk *core_clk;
41         struct clk *iface_clk;
42         struct clk *bus_clk;
43         struct icc_path *path;
44         struct completion waitq_comp;
45         struct reset_controller_dev reset;
46
47         /* control access to the interconnect path */
48         struct mutex scm_bw_lock;
49         int scm_vote_count;
50
51         u64 dload_mode_addr;
52
53         struct qcom_tzmem_pool *mempool;
54 };
55
56 struct qcom_scm_current_perm_info {
57         __le32 vmid;
58         __le32 perm;
59         __le64 ctx;
60         __le32 ctx_size;
61         __le32 unused;
62 };
63
64 struct qcom_scm_mem_map_info {
65         __le64 mem_addr;
66         __le64 mem_size;
67 };
68
69 /**
70  * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
71  * @result:    Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
72  * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
73  * @data:      Response data. The type of this data is given in @resp_type.
74  */
75 struct qcom_scm_qseecom_resp {
76         u64 result;
77         u64 resp_type;
78         u64 data;
79 };
80
81 enum qcom_scm_qseecom_result {
82         QSEECOM_RESULT_SUCCESS                  = 0,
83         QSEECOM_RESULT_INCOMPLETE               = 1,
84         QSEECOM_RESULT_BLOCKED_ON_LISTENER      = 2,
85         QSEECOM_RESULT_FAILURE                  = 0xFFFFFFFF,
86 };
87
88 enum qcom_scm_qseecom_resp_type {
89         QSEECOM_SCM_RES_APP_ID                  = 0xEE01,
90         QSEECOM_SCM_RES_QSEOS_LISTENER_ID       = 0xEE02,
91 };
92
93 enum qcom_scm_qseecom_tz_owner {
94         QSEECOM_TZ_OWNER_SIP                    = 2,
95         QSEECOM_TZ_OWNER_TZ_APPS                = 48,
96         QSEECOM_TZ_OWNER_QSEE_OS                = 50
97 };
98
99 enum qcom_scm_qseecom_tz_svc {
100         QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER       = 0,
101         QSEECOM_TZ_SVC_APP_MGR                  = 1,
102         QSEECOM_TZ_SVC_INFO                     = 6,
103 };
104
105 enum qcom_scm_qseecom_tz_cmd_app {
106         QSEECOM_TZ_CMD_APP_SEND                 = 1,
107         QSEECOM_TZ_CMD_APP_LOOKUP               = 3,
108 };
109
110 enum qcom_scm_qseecom_tz_cmd_info {
111         QSEECOM_TZ_CMD_INFO_VERSION             = 3,
112 };
113
114 #define QSEECOM_MAX_APP_NAME_SIZE               64
115 #define SHMBRIDGE_RESULT_NOTSUPP                4
116
117 /* Each bit configures cold/warm boot address for one of the 4 CPUs */
118 static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
119         0, BIT(0), BIT(3), BIT(5)
120 };
121 static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
122         BIT(2), BIT(1), BIT(4), BIT(6)
123 };
124
125 #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE    BIT(0)
126
127 #define QCOM_DLOAD_MASK         GENMASK(5, 4)
128 #define QCOM_DLOAD_NODUMP       0
129 #define QCOM_DLOAD_FULLDUMP     1
130 #define QCOM_DLOAD_MINIDUMP     2
131 #define QCOM_DLOAD_BOTHDUMP     3
132
133 static const char * const qcom_scm_convention_names[] = {
134         [SMC_CONVENTION_UNKNOWN] = "unknown",
135         [SMC_CONVENTION_ARM_32] = "smc arm 32",
136         [SMC_CONVENTION_ARM_64] = "smc arm 64",
137         [SMC_CONVENTION_LEGACY] = "smc legacy",
138 };
139
140 static const char * const download_mode_name[] = {
141         [QCOM_DLOAD_NODUMP]     = "off",
142         [QCOM_DLOAD_FULLDUMP]   = "full",
143         [QCOM_DLOAD_MINIDUMP]   = "mini",
144         [QCOM_DLOAD_BOTHDUMP]   = "full,mini",
145 };
146
147 static struct qcom_scm *__scm;
148
149 static int qcom_scm_clk_enable(void)
150 {
151         int ret;
152
153         ret = clk_prepare_enable(__scm->core_clk);
154         if (ret)
155                 goto bail;
156
157         ret = clk_prepare_enable(__scm->iface_clk);
158         if (ret)
159                 goto disable_core;
160
161         ret = clk_prepare_enable(__scm->bus_clk);
162         if (ret)
163                 goto disable_iface;
164
165         return 0;
166
167 disable_iface:
168         clk_disable_unprepare(__scm->iface_clk);
169 disable_core:
170         clk_disable_unprepare(__scm->core_clk);
171 bail:
172         return ret;
173 }
174
175 static void qcom_scm_clk_disable(void)
176 {
177         clk_disable_unprepare(__scm->core_clk);
178         clk_disable_unprepare(__scm->iface_clk);
179         clk_disable_unprepare(__scm->bus_clk);
180 }
181
182 static int qcom_scm_bw_enable(void)
183 {
184         int ret = 0;
185
186         if (!__scm->path)
187                 return 0;
188
189         mutex_lock(&__scm->scm_bw_lock);
190         if (!__scm->scm_vote_count) {
191                 ret = icc_set_bw(__scm->path, 0, UINT_MAX);
192                 if (ret < 0) {
193                         dev_err(__scm->dev, "failed to set bandwidth request\n");
194                         goto err_bw;
195                 }
196         }
197         __scm->scm_vote_count++;
198 err_bw:
199         mutex_unlock(&__scm->scm_bw_lock);
200
201         return ret;
202 }
203
204 static void qcom_scm_bw_disable(void)
205 {
206         if (!__scm->path)
207                 return;
208
209         mutex_lock(&__scm->scm_bw_lock);
210         if (__scm->scm_vote_count-- == 1)
211                 icc_set_bw(__scm->path, 0, 0);
212         mutex_unlock(&__scm->scm_bw_lock);
213 }
214
215 enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
216 static DEFINE_SPINLOCK(scm_query_lock);
217
218 struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void)
219 {
220         if (!qcom_scm_is_available())
221                 return NULL;
222
223         return __scm->mempool;
224 }
225
226 static enum qcom_scm_convention __get_convention(void)
227 {
228         unsigned long flags;
229         struct qcom_scm_desc desc = {
230                 .svc = QCOM_SCM_SVC_INFO,
231                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
232                 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
233                                            QCOM_SCM_INFO_IS_CALL_AVAIL) |
234                            (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
235                 .arginfo = QCOM_SCM_ARGS(1),
236                 .owner = ARM_SMCCC_OWNER_SIP,
237         };
238         struct qcom_scm_res res;
239         enum qcom_scm_convention probed_convention;
240         int ret;
241         bool forced = false;
242
243         if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
244                 return qcom_scm_convention;
245
246         /*
247          * Per the "SMC calling convention specification", the 64-bit calling
248          * convention can only be used when the client is 64-bit, otherwise
249          * system will encounter the undefined behaviour.
250          */
251 #if IS_ENABLED(CONFIG_ARM64)
252         /*
253          * Device isn't required as there is only one argument - no device
254          * needed to dma_map_single to secure world
255          */
256         probed_convention = SMC_CONVENTION_ARM_64;
257         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
258         if (!ret && res.result[0] == 1)
259                 goto found;
260
261         /*
262          * Some SC7180 firmwares didn't implement the
263          * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
264          * calling conventions on these firmwares. Luckily we don't make any
265          * early calls into the firmware on these SoCs so the device pointer
266          * will be valid here to check if the compatible matches.
267          */
268         if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
269                 forced = true;
270                 goto found;
271         }
272 #endif
273
274         probed_convention = SMC_CONVENTION_ARM_32;
275         ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
276         if (!ret && res.result[0] == 1)
277                 goto found;
278
279         probed_convention = SMC_CONVENTION_LEGACY;
280 found:
281         spin_lock_irqsave(&scm_query_lock, flags);
282         if (probed_convention != qcom_scm_convention) {
283                 qcom_scm_convention = probed_convention;
284                 pr_info("qcom_scm: convention: %s%s\n",
285                         qcom_scm_convention_names[qcom_scm_convention],
286                         forced ? " (forced)" : "");
287         }
288         spin_unlock_irqrestore(&scm_query_lock, flags);
289
290         return qcom_scm_convention;
291 }
292
293 /**
294  * qcom_scm_call() - Invoke a syscall in the secure world
295  * @dev:        device
296  * @desc:       Descriptor structure containing arguments and return values
297  * @res:        Structure containing results from SMC/HVC call
298  *
299  * Sends a command to the SCM and waits for the command to finish processing.
300  * This should *only* be called in pre-emptible context.
301  */
302 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
303                          struct qcom_scm_res *res)
304 {
305         might_sleep();
306         switch (__get_convention()) {
307         case SMC_CONVENTION_ARM_32:
308         case SMC_CONVENTION_ARM_64:
309                 return scm_smc_call(dev, desc, res, false);
310         case SMC_CONVENTION_LEGACY:
311                 return scm_legacy_call(dev, desc, res);
312         default:
313                 pr_err("Unknown current SCM calling convention.\n");
314                 return -EINVAL;
315         }
316 }
317
318 /**
319  * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
320  * @dev:        device
321  * @desc:       Descriptor structure containing arguments and return values
322  * @res:        Structure containing results from SMC/HVC call
323  *
324  * Sends a command to the SCM and waits for the command to finish processing.
325  * This can be called in atomic context.
326  */
327 static int qcom_scm_call_atomic(struct device *dev,
328                                 const struct qcom_scm_desc *desc,
329                                 struct qcom_scm_res *res)
330 {
331         switch (__get_convention()) {
332         case SMC_CONVENTION_ARM_32:
333         case SMC_CONVENTION_ARM_64:
334                 return scm_smc_call(dev, desc, res, true);
335         case SMC_CONVENTION_LEGACY:
336                 return scm_legacy_call_atomic(dev, desc, res);
337         default:
338                 pr_err("Unknown current SCM calling convention.\n");
339                 return -EINVAL;
340         }
341 }
342
343 static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
344                                          u32 cmd_id)
345 {
346         int ret;
347         struct qcom_scm_desc desc = {
348                 .svc = QCOM_SCM_SVC_INFO,
349                 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
350                 .owner = ARM_SMCCC_OWNER_SIP,
351         };
352         struct qcom_scm_res res;
353
354         desc.arginfo = QCOM_SCM_ARGS(1);
355         switch (__get_convention()) {
356         case SMC_CONVENTION_ARM_32:
357         case SMC_CONVENTION_ARM_64:
358                 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
359                                 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
360                 break;
361         case SMC_CONVENTION_LEGACY:
362                 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
363                 break;
364         default:
365                 pr_err("Unknown SMC convention being used\n");
366                 return false;
367         }
368
369         ret = qcom_scm_call(dev, &desc, &res);
370
371         return ret ? false : !!res.result[0];
372 }
373
374 static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
375 {
376         int cpu;
377         unsigned int flags = 0;
378         struct qcom_scm_desc desc = {
379                 .svc = QCOM_SCM_SVC_BOOT,
380                 .cmd = QCOM_SCM_BOOT_SET_ADDR,
381                 .arginfo = QCOM_SCM_ARGS(2),
382                 .owner = ARM_SMCCC_OWNER_SIP,
383         };
384
385         for_each_present_cpu(cpu) {
386                 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
387                         return -EINVAL;
388                 flags |= cpu_bits[cpu];
389         }
390
391         desc.args[0] = flags;
392         desc.args[1] = virt_to_phys(entry);
393
394         return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
395 }
396
397 static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
398 {
399         struct qcom_scm_desc desc = {
400                 .svc = QCOM_SCM_SVC_BOOT,
401                 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
402                 .owner = ARM_SMCCC_OWNER_SIP,
403                 .arginfo = QCOM_SCM_ARGS(6),
404                 .args = {
405                         virt_to_phys(entry),
406                         /* Apply to all CPUs in all affinity levels */
407                         ~0ULL, ~0ULL, ~0ULL, ~0ULL,
408                         flags,
409                 },
410         };
411
412         /* Need a device for DMA of the additional arguments */
413         if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
414                 return -EOPNOTSUPP;
415
416         return qcom_scm_call(__scm->dev, &desc, NULL);
417 }
418
419 /**
420  * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
421  * @entry: Entry point function for the cpus
422  *
423  * Set the Linux entry point for the SCM to transfer control to when coming
424  * out of a power down. CPU power down may be executed on cpuidle or hotplug.
425  */
426 int qcom_scm_set_warm_boot_addr(void *entry)
427 {
428         if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
429                 /* Fallback to old SCM call */
430                 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
431         return 0;
432 }
433 EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
434
435 /**
436  * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
437  * @entry: Entry point function for the cpus
438  */
439 int qcom_scm_set_cold_boot_addr(void *entry)
440 {
441         if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
442                 /* Fallback to old SCM call */
443                 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
444         return 0;
445 }
446 EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
447
448 /**
449  * qcom_scm_cpu_power_down() - Power down the cpu
450  * @flags:      Flags to flush cache
451  *
452  * This is an end point to power down cpu. If there was a pending interrupt,
453  * the control would return from this function, otherwise, the cpu jumps to the
454  * warm boot entry point set for this cpu upon reset.
455  */
456 void qcom_scm_cpu_power_down(u32 flags)
457 {
458         struct qcom_scm_desc desc = {
459                 .svc = QCOM_SCM_SVC_BOOT,
460                 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
461                 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
462                 .arginfo = QCOM_SCM_ARGS(1),
463                 .owner = ARM_SMCCC_OWNER_SIP,
464         };
465
466         qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
467 }
468 EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
469
470 int qcom_scm_set_remote_state(u32 state, u32 id)
471 {
472         struct qcom_scm_desc desc = {
473                 .svc = QCOM_SCM_SVC_BOOT,
474                 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
475                 .arginfo = QCOM_SCM_ARGS(2),
476                 .args[0] = state,
477                 .args[1] = id,
478                 .owner = ARM_SMCCC_OWNER_SIP,
479         };
480         struct qcom_scm_res res;
481         int ret;
482
483         ret = qcom_scm_call(__scm->dev, &desc, &res);
484
485         return ret ? : res.result[0];
486 }
487 EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
488
489 static int qcom_scm_disable_sdi(void)
490 {
491         int ret;
492         struct qcom_scm_desc desc = {
493                 .svc = QCOM_SCM_SVC_BOOT,
494                 .cmd = QCOM_SCM_BOOT_SDI_CONFIG,
495                 .args[0] = 1, /* Disable watchdog debug */
496                 .args[1] = 0, /* Disable SDI */
497                 .arginfo = QCOM_SCM_ARGS(2),
498                 .owner = ARM_SMCCC_OWNER_SIP,
499         };
500         struct qcom_scm_res res;
501
502         ret = qcom_scm_clk_enable();
503         if (ret)
504                 return ret;
505         ret = qcom_scm_call(__scm->dev, &desc, &res);
506
507         qcom_scm_clk_disable();
508
509         return ret ? : res.result[0];
510 }
511
512 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
513 {
514         struct qcom_scm_desc desc = {
515                 .svc = QCOM_SCM_SVC_BOOT,
516                 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
517                 .arginfo = QCOM_SCM_ARGS(2),
518                 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
519                 .owner = ARM_SMCCC_OWNER_SIP,
520         };
521
522         desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
523
524         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
525 }
526
527 static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val)
528 {
529         unsigned int old;
530         unsigned int new;
531         int ret;
532
533         ret = qcom_scm_io_readl(addr, &old);
534         if (ret)
535                 return ret;
536
537         new = (old & ~mask) | (val & mask);
538
539         return qcom_scm_io_writel(addr, new);
540 }
541
542 static void qcom_scm_set_download_mode(u32 dload_mode)
543 {
544         int ret = 0;
545
546         if (__scm->dload_mode_addr) {
547                 ret = qcom_scm_io_rmw(__scm->dload_mode_addr, QCOM_DLOAD_MASK,
548                                       FIELD_PREP(QCOM_DLOAD_MASK, dload_mode));
549         } else if (__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_BOOT,
550                                                 QCOM_SCM_BOOT_SET_DLOAD_MODE)) {
551                 ret = __qcom_scm_set_dload_mode(__scm->dev, !!dload_mode);
552         } else if (dload_mode) {
553                 dev_err(__scm->dev,
554                         "No available mechanism for setting download mode\n");
555         }
556
557         if (ret)
558                 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
559 }
560
561 /**
562  * qcom_scm_pas_init_image() - Initialize peripheral authentication service
563  *                             state machine for a given peripheral, using the
564  *                             metadata
565  * @peripheral: peripheral id
566  * @metadata:   pointer to memory containing ELF header, program header table
567  *              and optional blob of data used for authenticating the metadata
568  *              and the rest of the firmware
569  * @size:       size of the metadata
570  * @ctx:        optional metadata context
571  *
572  * Return: 0 on success.
573  *
574  * Upon successful return, the PAS metadata context (@ctx) will be used to
575  * track the metadata allocation, this needs to be released by invoking
576  * qcom_scm_pas_metadata_release() by the caller.
577  */
578 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
579                             struct qcom_scm_pas_metadata *ctx)
580 {
581         dma_addr_t mdata_phys;
582         void *mdata_buf;
583         int ret;
584         struct qcom_scm_desc desc = {
585                 .svc = QCOM_SCM_SVC_PIL,
586                 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
587                 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
588                 .args[0] = peripheral,
589                 .owner = ARM_SMCCC_OWNER_SIP,
590         };
591         struct qcom_scm_res res;
592
593         /*
594          * During the scm call memory protection will be enabled for the meta
595          * data blob, so make sure it's physically contiguous, 4K aligned and
596          * non-cachable to avoid XPU violations.
597          *
598          * For PIL calls the hypervisor creates SHM Bridges for the blob
599          * buffers on behalf of Linux so we must not do it ourselves hence
600          * not using the TZMem allocator here.
601          *
602          * If we pass a buffer that is already part of an SHM Bridge to this
603          * call, it will fail.
604          */
605         mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
606                                        GFP_KERNEL);
607         if (!mdata_buf)
608                 return -ENOMEM;
609
610         memcpy(mdata_buf, metadata, size);
611
612         ret = qcom_scm_clk_enable();
613         if (ret)
614                 goto out;
615
616         ret = qcom_scm_bw_enable();
617         if (ret)
618                 goto disable_clk;
619
620         desc.args[1] = mdata_phys;
621
622         ret = qcom_scm_call(__scm->dev, &desc, &res);
623         qcom_scm_bw_disable();
624
625 disable_clk:
626         qcom_scm_clk_disable();
627
628 out:
629         if (ret < 0 || !ctx) {
630                 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
631         } else if (ctx) {
632                 ctx->ptr = mdata_buf;
633                 ctx->phys = mdata_phys;
634                 ctx->size = size;
635         }
636
637         return ret ? : res.result[0];
638 }
639 EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
640
641 /**
642  * qcom_scm_pas_metadata_release() - release metadata context
643  * @ctx:        metadata context
644  */
645 void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
646 {
647         if (!ctx->ptr)
648                 return;
649
650         dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
651
652         ctx->ptr = NULL;
653         ctx->phys = 0;
654         ctx->size = 0;
655 }
656 EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
657
658 /**
659  * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
660  *                            for firmware loading
661  * @peripheral: peripheral id
662  * @addr:       start address of memory area to prepare
663  * @size:       size of the memory area to prepare
664  *
665  * Returns 0 on success.
666  */
667 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
668 {
669         int ret;
670         struct qcom_scm_desc desc = {
671                 .svc = QCOM_SCM_SVC_PIL,
672                 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
673                 .arginfo = QCOM_SCM_ARGS(3),
674                 .args[0] = peripheral,
675                 .args[1] = addr,
676                 .args[2] = size,
677                 .owner = ARM_SMCCC_OWNER_SIP,
678         };
679         struct qcom_scm_res res;
680
681         ret = qcom_scm_clk_enable();
682         if (ret)
683                 return ret;
684
685         ret = qcom_scm_bw_enable();
686         if (ret)
687                 goto disable_clk;
688
689         ret = qcom_scm_call(__scm->dev, &desc, &res);
690         qcom_scm_bw_disable();
691
692 disable_clk:
693         qcom_scm_clk_disable();
694
695         return ret ? : res.result[0];
696 }
697 EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
698
699 /**
700  * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
701  *                                 and reset the remote processor
702  * @peripheral: peripheral id
703  *
704  * Return 0 on success.
705  */
706 int qcom_scm_pas_auth_and_reset(u32 peripheral)
707 {
708         int ret;
709         struct qcom_scm_desc desc = {
710                 .svc = QCOM_SCM_SVC_PIL,
711                 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
712                 .arginfo = QCOM_SCM_ARGS(1),
713                 .args[0] = peripheral,
714                 .owner = ARM_SMCCC_OWNER_SIP,
715         };
716         struct qcom_scm_res res;
717
718         ret = qcom_scm_clk_enable();
719         if (ret)
720                 return ret;
721
722         ret = qcom_scm_bw_enable();
723         if (ret)
724                 goto disable_clk;
725
726         ret = qcom_scm_call(__scm->dev, &desc, &res);
727         qcom_scm_bw_disable();
728
729 disable_clk:
730         qcom_scm_clk_disable();
731
732         return ret ? : res.result[0];
733 }
734 EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
735
736 /**
737  * qcom_scm_pas_shutdown() - Shut down the remote processor
738  * @peripheral: peripheral id
739  *
740  * Returns 0 on success.
741  */
742 int qcom_scm_pas_shutdown(u32 peripheral)
743 {
744         int ret;
745         struct qcom_scm_desc desc = {
746                 .svc = QCOM_SCM_SVC_PIL,
747                 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
748                 .arginfo = QCOM_SCM_ARGS(1),
749                 .args[0] = peripheral,
750                 .owner = ARM_SMCCC_OWNER_SIP,
751         };
752         struct qcom_scm_res res;
753
754         ret = qcom_scm_clk_enable();
755         if (ret)
756                 return ret;
757
758         ret = qcom_scm_bw_enable();
759         if (ret)
760                 goto disable_clk;
761
762         ret = qcom_scm_call(__scm->dev, &desc, &res);
763         qcom_scm_bw_disable();
764
765 disable_clk:
766         qcom_scm_clk_disable();
767
768         return ret ? : res.result[0];
769 }
770 EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
771
772 /**
773  * qcom_scm_pas_supported() - Check if the peripheral authentication service is
774  *                            available for the given peripherial
775  * @peripheral: peripheral id
776  *
777  * Returns true if PAS is supported for this peripheral, otherwise false.
778  */
779 bool qcom_scm_pas_supported(u32 peripheral)
780 {
781         int ret;
782         struct qcom_scm_desc desc = {
783                 .svc = QCOM_SCM_SVC_PIL,
784                 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
785                 .arginfo = QCOM_SCM_ARGS(1),
786                 .args[0] = peripheral,
787                 .owner = ARM_SMCCC_OWNER_SIP,
788         };
789         struct qcom_scm_res res;
790
791         if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
792                                           QCOM_SCM_PIL_PAS_IS_SUPPORTED))
793                 return false;
794
795         ret = qcom_scm_call(__scm->dev, &desc, &res);
796
797         return ret ? false : !!res.result[0];
798 }
799 EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
800
801 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
802 {
803         struct qcom_scm_desc desc = {
804                 .svc = QCOM_SCM_SVC_PIL,
805                 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
806                 .arginfo = QCOM_SCM_ARGS(2),
807                 .args[0] = reset,
808                 .args[1] = 0,
809                 .owner = ARM_SMCCC_OWNER_SIP,
810         };
811         struct qcom_scm_res res;
812         int ret;
813
814         ret = qcom_scm_call(__scm->dev, &desc, &res);
815
816         return ret ? : res.result[0];
817 }
818
819 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
820                                      unsigned long idx)
821 {
822         if (idx != 0)
823                 return -EINVAL;
824
825         return __qcom_scm_pas_mss_reset(__scm->dev, 1);
826 }
827
828 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
829                                        unsigned long idx)
830 {
831         if (idx != 0)
832                 return -EINVAL;
833
834         return __qcom_scm_pas_mss_reset(__scm->dev, 0);
835 }
836
837 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
838         .assert = qcom_scm_pas_reset_assert,
839         .deassert = qcom_scm_pas_reset_deassert,
840 };
841
842 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
843 {
844         struct qcom_scm_desc desc = {
845                 .svc = QCOM_SCM_SVC_IO,
846                 .cmd = QCOM_SCM_IO_READ,
847                 .arginfo = QCOM_SCM_ARGS(1),
848                 .args[0] = addr,
849                 .owner = ARM_SMCCC_OWNER_SIP,
850         };
851         struct qcom_scm_res res;
852         int ret;
853
854
855         ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
856         if (ret >= 0)
857                 *val = res.result[0];
858
859         return ret < 0 ? ret : 0;
860 }
861 EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
862
863 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
864 {
865         struct qcom_scm_desc desc = {
866                 .svc = QCOM_SCM_SVC_IO,
867                 .cmd = QCOM_SCM_IO_WRITE,
868                 .arginfo = QCOM_SCM_ARGS(2),
869                 .args[0] = addr,
870                 .args[1] = val,
871                 .owner = ARM_SMCCC_OWNER_SIP,
872         };
873
874         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
875 }
876 EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
877
878 /**
879  * qcom_scm_restore_sec_cfg_available() - Check if secure environment
880  * supports restore security config interface.
881  *
882  * Return true if restore-cfg interface is supported, false if not.
883  */
884 bool qcom_scm_restore_sec_cfg_available(void)
885 {
886         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
887                                             QCOM_SCM_MP_RESTORE_SEC_CFG);
888 }
889 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
890
891 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
892 {
893         struct qcom_scm_desc desc = {
894                 .svc = QCOM_SCM_SVC_MP,
895                 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
896                 .arginfo = QCOM_SCM_ARGS(2),
897                 .args[0] = device_id,
898                 .args[1] = spare,
899                 .owner = ARM_SMCCC_OWNER_SIP,
900         };
901         struct qcom_scm_res res;
902         int ret;
903
904         ret = qcom_scm_call(__scm->dev, &desc, &res);
905
906         return ret ? : res.result[0];
907 }
908 EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
909
910 #define QCOM_SCM_CP_APERTURE_CONTEXT_MASK       GENMASK(7, 0)
911
912 bool qcom_scm_set_gpu_smmu_aperture_is_available(void)
913 {
914         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
915                                             QCOM_SCM_MP_CP_SMMU_APERTURE_ID);
916 }
917 EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture_is_available);
918
919 int qcom_scm_set_gpu_smmu_aperture(unsigned int context_bank)
920 {
921         struct qcom_scm_desc desc = {
922                 .svc = QCOM_SCM_SVC_MP,
923                 .cmd = QCOM_SCM_MP_CP_SMMU_APERTURE_ID,
924                 .arginfo = QCOM_SCM_ARGS(4),
925                 .args[0] = 0xffff0000 | FIELD_PREP(QCOM_SCM_CP_APERTURE_CONTEXT_MASK, context_bank),
926                 .args[1] = 0xffffffff,
927                 .args[2] = 0xffffffff,
928                 .args[3] = 0xffffffff,
929                 .owner = ARM_SMCCC_OWNER_SIP
930         };
931
932         return qcom_scm_call(__scm->dev, &desc, NULL);
933 }
934 EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture);
935
936 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
937 {
938         struct qcom_scm_desc desc = {
939                 .svc = QCOM_SCM_SVC_MP,
940                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
941                 .arginfo = QCOM_SCM_ARGS(1),
942                 .args[0] = spare,
943                 .owner = ARM_SMCCC_OWNER_SIP,
944         };
945         struct qcom_scm_res res;
946         int ret;
947
948         ret = qcom_scm_call(__scm->dev, &desc, &res);
949
950         if (size)
951                 *size = res.result[0];
952
953         return ret ? : res.result[1];
954 }
955 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
956
957 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
958 {
959         struct qcom_scm_desc desc = {
960                 .svc = QCOM_SCM_SVC_MP,
961                 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
962                 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
963                                          QCOM_SCM_VAL),
964                 .args[0] = addr,
965                 .args[1] = size,
966                 .args[2] = spare,
967                 .owner = ARM_SMCCC_OWNER_SIP,
968         };
969         int ret;
970
971         ret = qcom_scm_call(__scm->dev, &desc, NULL);
972
973         /* the pg table has been initialized already, ignore the error */
974         if (ret == -EPERM)
975                 ret = 0;
976
977         return ret;
978 }
979 EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
980
981 int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
982 {
983         struct qcom_scm_desc desc = {
984                 .svc = QCOM_SCM_SVC_MP,
985                 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
986                 .arginfo = QCOM_SCM_ARGS(2),
987                 .args[0] = size,
988                 .args[1] = spare,
989                 .owner = ARM_SMCCC_OWNER_SIP,
990         };
991
992         return qcom_scm_call(__scm->dev, &desc, NULL);
993 }
994 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
995
996 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
997                                    u32 cp_nonpixel_start,
998                                    u32 cp_nonpixel_size)
999 {
1000         int ret;
1001         struct qcom_scm_desc desc = {
1002                 .svc = QCOM_SCM_SVC_MP,
1003                 .cmd = QCOM_SCM_MP_VIDEO_VAR,
1004                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1005                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
1006                 .args[0] = cp_start,
1007                 .args[1] = cp_size,
1008                 .args[2] = cp_nonpixel_start,
1009                 .args[3] = cp_nonpixel_size,
1010                 .owner = ARM_SMCCC_OWNER_SIP,
1011         };
1012         struct qcom_scm_res res;
1013
1014         ret = qcom_scm_call(__scm->dev, &desc, &res);
1015
1016         return ret ? : res.result[0];
1017 }
1018 EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
1019
1020 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
1021                                  size_t mem_sz, phys_addr_t src, size_t src_sz,
1022                                  phys_addr_t dest, size_t dest_sz)
1023 {
1024         int ret;
1025         struct qcom_scm_desc desc = {
1026                 .svc = QCOM_SCM_SVC_MP,
1027                 .cmd = QCOM_SCM_MP_ASSIGN,
1028                 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
1029                                          QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
1030                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
1031                 .args[0] = mem_region,
1032                 .args[1] = mem_sz,
1033                 .args[2] = src,
1034                 .args[3] = src_sz,
1035                 .args[4] = dest,
1036                 .args[5] = dest_sz,
1037                 .args[6] = 0,
1038                 .owner = ARM_SMCCC_OWNER_SIP,
1039         };
1040         struct qcom_scm_res res;
1041
1042         ret = qcom_scm_call(dev, &desc, &res);
1043
1044         return ret ? : res.result[0];
1045 }
1046
1047 /**
1048  * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
1049  * @mem_addr: mem region whose ownership need to be reassigned
1050  * @mem_sz:   size of the region.
1051  * @srcvm:    vmid for current set of owners, each set bit in
1052  *            flag indicate a unique owner
1053  * @newvm:    array having new owners and corresponding permission
1054  *            flags
1055  * @dest_cnt: number of owners in next set.
1056  *
1057  * Return negative errno on failure or 0 on success with @srcvm updated.
1058  */
1059 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
1060                         u64 *srcvm,
1061                         const struct qcom_scm_vmperm *newvm,
1062                         unsigned int dest_cnt)
1063 {
1064         struct qcom_scm_current_perm_info *destvm;
1065         struct qcom_scm_mem_map_info *mem_to_map;
1066         phys_addr_t mem_to_map_phys;
1067         phys_addr_t dest_phys;
1068         phys_addr_t ptr_phys;
1069         size_t mem_to_map_sz;
1070         size_t dest_sz;
1071         size_t src_sz;
1072         size_t ptr_sz;
1073         int next_vm;
1074         __le32 *src;
1075         int ret, i, b;
1076         u64 srcvm_bits = *srcvm;
1077
1078         src_sz = hweight64(srcvm_bits) * sizeof(*src);
1079         mem_to_map_sz = sizeof(*mem_to_map);
1080         dest_sz = dest_cnt * sizeof(*destvm);
1081         ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1082                         ALIGN(dest_sz, SZ_64);
1083
1084         void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1085                                                         ptr_sz, GFP_KERNEL);
1086         if (!ptr)
1087                 return -ENOMEM;
1088
1089         ptr_phys = qcom_tzmem_to_phys(ptr);
1090
1091         /* Fill source vmid detail */
1092         src = ptr;
1093         i = 0;
1094         for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1095                 if (srcvm_bits & BIT(b))
1096                         src[i++] = cpu_to_le32(b);
1097         }
1098
1099         /* Fill details of mem buff to map */
1100         mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1101         mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1102         mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1103         mem_to_map->mem_size = cpu_to_le64(mem_sz);
1104
1105         next_vm = 0;
1106         /* Fill details of next vmid detail */
1107         destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1108         dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1109         for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1110                 destvm->vmid = cpu_to_le32(newvm->vmid);
1111                 destvm->perm = cpu_to_le32(newvm->perm);
1112                 destvm->ctx = 0;
1113                 destvm->ctx_size = 0;
1114                 next_vm |= BIT(newvm->vmid);
1115         }
1116
1117         ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
1118                                     ptr_phys, src_sz, dest_phys, dest_sz);
1119         if (ret) {
1120                 dev_err(__scm->dev,
1121                         "Assign memory protection call failed %d\n", ret);
1122                 return -EINVAL;
1123         }
1124
1125         *srcvm = next_vm;
1126         return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1129
1130 /**
1131  * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1132  */
1133 bool qcom_scm_ocmem_lock_available(void)
1134 {
1135         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
1136                                             QCOM_SCM_OCMEM_LOCK_CMD);
1137 }
1138 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1139
1140 /**
1141  * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1142  * region to the specified initiator
1143  *
1144  * @id:     tz initiator id
1145  * @offset: OCMEM offset
1146  * @size:   OCMEM size
1147  * @mode:   access mode (WIDE/NARROW)
1148  */
1149 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1150                         u32 mode)
1151 {
1152         struct qcom_scm_desc desc = {
1153                 .svc = QCOM_SCM_SVC_OCMEM,
1154                 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1155                 .args[0] = id,
1156                 .args[1] = offset,
1157                 .args[2] = size,
1158                 .args[3] = mode,
1159                 .arginfo = QCOM_SCM_ARGS(4),
1160         };
1161
1162         return qcom_scm_call(__scm->dev, &desc, NULL);
1163 }
1164 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1165
1166 /**
1167  * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1168  * region from the specified initiator
1169  *
1170  * @id:     tz initiator id
1171  * @offset: OCMEM offset
1172  * @size:   OCMEM size
1173  */
1174 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1175 {
1176         struct qcom_scm_desc desc = {
1177                 .svc = QCOM_SCM_SVC_OCMEM,
1178                 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1179                 .args[0] = id,
1180                 .args[1] = offset,
1181                 .args[2] = size,
1182                 .arginfo = QCOM_SCM_ARGS(3),
1183         };
1184
1185         return qcom_scm_call(__scm->dev, &desc, NULL);
1186 }
1187 EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1188
1189 /**
1190  * qcom_scm_ice_available() - Is the ICE key programming interface available?
1191  *
1192  * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1193  *         qcom_scm_ice_set_key() are available.
1194  */
1195 bool qcom_scm_ice_available(void)
1196 {
1197         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1198                                             QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1199                 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1200                                              QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1201 }
1202 EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1203
1204 /**
1205  * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1206  * @index: the keyslot to invalidate
1207  *
1208  * The UFSHCI and eMMC standards define a standard way to do this, but it
1209  * doesn't work on these SoCs; only this SCM call does.
1210  *
1211  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1212  * call doesn't specify which ICE instance the keyslot belongs to.
1213  *
1214  * Return: 0 on success; -errno on failure.
1215  */
1216 int qcom_scm_ice_invalidate_key(u32 index)
1217 {
1218         struct qcom_scm_desc desc = {
1219                 .svc = QCOM_SCM_SVC_ES,
1220                 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1221                 .arginfo = QCOM_SCM_ARGS(1),
1222                 .args[0] = index,
1223                 .owner = ARM_SMCCC_OWNER_SIP,
1224         };
1225
1226         return qcom_scm_call(__scm->dev, &desc, NULL);
1227 }
1228 EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1229
1230 /**
1231  * qcom_scm_ice_set_key() - Set an inline encryption key
1232  * @index: the keyslot into which to set the key
1233  * @key: the key to program
1234  * @key_size: the size of the key in bytes
1235  * @cipher: the encryption algorithm the key is for
1236  * @data_unit_size: the encryption data unit size, i.e. the size of each
1237  *                  individual plaintext and ciphertext.  Given in 512-byte
1238  *                  units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1239  *
1240  * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1241  * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1242  *
1243  * The UFSHCI and eMMC standards define a standard way to do this, but it
1244  * doesn't work on these SoCs; only this SCM call does.
1245  *
1246  * It is assumed that the SoC has only one ICE instance being used, as this SCM
1247  * call doesn't specify which ICE instance the keyslot belongs to.
1248  *
1249  * Return: 0 on success; -errno on failure.
1250  */
1251 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1252                          enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1253 {
1254         struct qcom_scm_desc desc = {
1255                 .svc = QCOM_SCM_SVC_ES,
1256                 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1257                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1258                                          QCOM_SCM_VAL, QCOM_SCM_VAL,
1259                                          QCOM_SCM_VAL),
1260                 .args[0] = index,
1261                 .args[2] = key_size,
1262                 .args[3] = cipher,
1263                 .args[4] = data_unit_size,
1264                 .owner = ARM_SMCCC_OWNER_SIP,
1265         };
1266
1267         int ret;
1268
1269         void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1270                                                            key_size,
1271                                                            GFP_KERNEL);
1272         if (!keybuf)
1273                 return -ENOMEM;
1274         memcpy(keybuf, key, key_size);
1275         desc.args[1] = qcom_tzmem_to_phys(keybuf);
1276
1277         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1278
1279         memzero_explicit(keybuf, key_size);
1280
1281         return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1284
1285 bool qcom_scm_has_wrapped_key_support(void)
1286 {
1287         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1288                                             QCOM_SCM_ES_DERIVE_SW_SECRET) &&
1289                __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1290                                             QCOM_SCM_ES_GENERATE_ICE_KEY) &&
1291                __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1292                                             QCOM_SCM_ES_PREPARE_ICE_KEY) &&
1293                __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1294                                             QCOM_SCM_ES_IMPORT_ICE_KEY);
1295 }
1296 EXPORT_SYMBOL_GPL(qcom_scm_has_wrapped_key_support);
1297
1298 /**
1299  * qcom_scm_derive_sw_secret() - Derive software secret from wrapped key
1300  * @eph_key: an ephemerally-wrapped key
1301  * @eph_key_size: size of @eph_key in bytes
1302  * @sw_secret: output buffer for the software secret
1303  * @sw_secret_size: size of the software secret to derive in bytes
1304  *
1305  * Derive a software secret from an ephemerally-wrapped key for software crypto
1306  * operations.  This is done by calling into the secure execution environment,
1307  * which then calls into the hardware to unwrap and derive the secret.
1308  *
1309  * For more information on sw_secret, see the "Hardware-wrapped keys" section of
1310  * Documentation/block/inline-encryption.rst.
1311  *
1312  * Return: 0 on success; -errno on failure.
1313  */
1314 int qcom_scm_derive_sw_secret(const u8 *eph_key, size_t eph_key_size,
1315                               u8 *sw_secret, size_t sw_secret_size)
1316 {
1317         struct qcom_scm_desc desc = {
1318                 .svc = QCOM_SCM_SVC_ES,
1319                 .cmd = QCOM_SCM_ES_DERIVE_SW_SECRET,
1320                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL,
1321                                          QCOM_SCM_RW, QCOM_SCM_VAL),
1322                 .owner = ARM_SMCCC_OWNER_SIP,
1323         };
1324         int ret;
1325
1326         void *eph_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1327                                                                 eph_key_size,
1328                                                                 GFP_KERNEL);
1329         if (!eph_key_buf)
1330                 return -ENOMEM;
1331
1332         void *sw_secret_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1333                                                                   sw_secret_size,
1334                                                                   GFP_KERNEL);
1335         if (!sw_secret_buf)
1336                 return -ENOMEM;
1337
1338         memcpy(eph_key_buf, eph_key, eph_key_size);
1339         desc.args[0] = qcom_tzmem_to_phys(eph_key_buf);
1340         desc.args[1] = eph_key_size;
1341         desc.args[2] = qcom_tzmem_to_phys(sw_secret_buf);
1342         desc.args[3] = sw_secret_size;
1343
1344         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1345         if (!ret)
1346                 memcpy(sw_secret, sw_secret_buf, sw_secret_size);
1347
1348         memzero_explicit(eph_key_buf, eph_key_size);
1349         memzero_explicit(sw_secret_buf, sw_secret_size);
1350         return ret;
1351 }
1352 EXPORT_SYMBOL_GPL(qcom_scm_derive_sw_secret);
1353
1354 /**
1355  * qcom_scm_generate_ice_key() - Generate a wrapped key for storage encryption
1356  * @lt_key: output buffer for the long-term wrapped key
1357  * @lt_key_size: size of @lt_key in bytes.  Must be the exact wrapped key size
1358  *               used by the SoC.
1359  *
1360  * Generate a key using the built-in HW module in the SoC.  The resulting key is
1361  * returned wrapped with the platform-specific Key Encryption Key.
1362  *
1363  * Return: 0 on success; -errno on failure.
1364  */
1365 int qcom_scm_generate_ice_key(u8 *lt_key, size_t lt_key_size)
1366 {
1367         struct qcom_scm_desc desc = {
1368                 .svc = QCOM_SCM_SVC_ES,
1369                 .cmd =  QCOM_SCM_ES_GENERATE_ICE_KEY,
1370                 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL),
1371                 .owner = ARM_SMCCC_OWNER_SIP,
1372         };
1373         int ret;
1374
1375         void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1376                                                                lt_key_size,
1377                                                                GFP_KERNEL);
1378         if (!lt_key_buf)
1379                 return -ENOMEM;
1380
1381         desc.args[0] = qcom_tzmem_to_phys(lt_key_buf);
1382         desc.args[1] = lt_key_size;
1383
1384         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1385         if (!ret)
1386                 memcpy(lt_key, lt_key_buf, lt_key_size);
1387
1388         memzero_explicit(lt_key_buf, lt_key_size);
1389         return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(qcom_scm_generate_ice_key);
1392
1393 /**
1394  * qcom_scm_prepare_ice_key() - Re-wrap a key with the per-boot ephemeral key
1395  * @lt_key: a long-term wrapped key
1396  * @lt_key_size: size of @lt_key in bytes
1397  * @eph_key: output buffer for the ephemerally-wrapped key
1398  * @eph_key_size: size of @eph_key in bytes.  Must be the exact wrapped key size
1399  *                used by the SoC.
1400  *
1401  * Given a long-term wrapped key, re-wrap it with the per-boot ephemeral key for
1402  * added protection.  The resulting key will only be valid for the current boot.
1403  *
1404  * Return: 0 on success; -errno on failure.
1405  */
1406 int qcom_scm_prepare_ice_key(const u8 *lt_key, size_t lt_key_size,
1407                              u8 *eph_key, size_t eph_key_size)
1408 {
1409         struct qcom_scm_desc desc = {
1410                 .svc = QCOM_SCM_SVC_ES,
1411                 .cmd =  QCOM_SCM_ES_PREPARE_ICE_KEY,
1412                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RO, QCOM_SCM_VAL,
1413                                          QCOM_SCM_RW, QCOM_SCM_VAL),
1414                 .owner = ARM_SMCCC_OWNER_SIP,
1415         };
1416         int ret;
1417
1418         void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1419                                                                lt_key_size,
1420                                                                GFP_KERNEL);
1421         if (!lt_key_buf)
1422                 return -ENOMEM;
1423
1424         void *eph_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1425                                                                 eph_key_size,
1426                                                                 GFP_KERNEL);
1427         if (!eph_key_buf)
1428                 return -ENOMEM;
1429
1430         memcpy(lt_key_buf, lt_key, lt_key_size);
1431         desc.args[0] = qcom_tzmem_to_phys(lt_key_buf);
1432         desc.args[1] = lt_key_size;
1433         desc.args[2] = qcom_tzmem_to_phys(eph_key_buf);
1434         desc.args[3] = eph_key_size;
1435
1436         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1437         if (!ret)
1438                 memcpy(eph_key, eph_key_buf, eph_key_size);
1439
1440         memzero_explicit(lt_key_buf, lt_key_size);
1441         memzero_explicit(eph_key_buf, eph_key_size);
1442         return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(qcom_scm_prepare_ice_key);
1445
1446 /**
1447  * qcom_scm_import_ice_key() - Import key for storage encryption
1448  * @raw_key: the raw key to import
1449  * @raw_key_size: size of @raw_key in bytes
1450  * @lt_key: output buffer for the long-term wrapped key
1451  * @lt_key_size: size of @lt_key in bytes.  Must be the exact wrapped key size
1452  *               used by the SoC.
1453  *
1454  * Import a raw key and return a long-term wrapped key.  Uses the SoC's HWKM to
1455  * wrap the raw key using the platform-specific Key Encryption Key.
1456  *
1457  * Return: 0 on success; -errno on failure.
1458  */
1459 int qcom_scm_import_ice_key(const u8 *raw_key, size_t raw_key_size,
1460                             u8 *lt_key, size_t lt_key_size)
1461 {
1462         struct qcom_scm_desc desc = {
1463                 .svc = QCOM_SCM_SVC_ES,
1464                 .cmd =  QCOM_SCM_ES_IMPORT_ICE_KEY,
1465                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RO, QCOM_SCM_VAL,
1466                                          QCOM_SCM_RW, QCOM_SCM_VAL),
1467                 .owner = ARM_SMCCC_OWNER_SIP,
1468         };
1469         int ret;
1470
1471         void *raw_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1472                                                                 raw_key_size,
1473                                                                 GFP_KERNEL);
1474         if (!raw_key_buf)
1475                 return -ENOMEM;
1476
1477         void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1478                                                                lt_key_size,
1479                                                                GFP_KERNEL);
1480         if (!lt_key_buf)
1481                 return -ENOMEM;
1482
1483         memcpy(raw_key_buf, raw_key, raw_key_size);
1484         desc.args[0] = qcom_tzmem_to_phys(raw_key_buf);
1485         desc.args[1] = raw_key_size;
1486         desc.args[2] = qcom_tzmem_to_phys(lt_key_buf);
1487         desc.args[3] = lt_key_size;
1488
1489         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1490         if (!ret)
1491                 memcpy(lt_key, lt_key_buf, lt_key_size);
1492
1493         memzero_explicit(raw_key_buf, raw_key_size);
1494         memzero_explicit(lt_key_buf, lt_key_size);
1495         return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(qcom_scm_import_ice_key);
1498
1499 /**
1500  * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1501  *
1502  * Return true if HDCP is supported, false if not.
1503  */
1504 bool qcom_scm_hdcp_available(void)
1505 {
1506         bool avail;
1507         int ret = qcom_scm_clk_enable();
1508
1509         if (ret)
1510                 return ret;
1511
1512         avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1513                                                 QCOM_SCM_HDCP_INVOKE);
1514
1515         qcom_scm_clk_disable();
1516
1517         return avail;
1518 }
1519 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1520
1521 /**
1522  * qcom_scm_hdcp_req() - Send HDCP request.
1523  * @req: HDCP request array
1524  * @req_cnt: HDCP request array count
1525  * @resp: response buffer passed to SCM
1526  *
1527  * Write HDCP register(s) through SCM.
1528  */
1529 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1530 {
1531         int ret;
1532         struct qcom_scm_desc desc = {
1533                 .svc = QCOM_SCM_SVC_HDCP,
1534                 .cmd = QCOM_SCM_HDCP_INVOKE,
1535                 .arginfo = QCOM_SCM_ARGS(10),
1536                 .args = {
1537                         req[0].addr,
1538                         req[0].val,
1539                         req[1].addr,
1540                         req[1].val,
1541                         req[2].addr,
1542                         req[2].val,
1543                         req[3].addr,
1544                         req[3].val,
1545                         req[4].addr,
1546                         req[4].val
1547                 },
1548                 .owner = ARM_SMCCC_OWNER_SIP,
1549         };
1550         struct qcom_scm_res res;
1551
1552         if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1553                 return -ERANGE;
1554
1555         ret = qcom_scm_clk_enable();
1556         if (ret)
1557                 return ret;
1558
1559         ret = qcom_scm_call(__scm->dev, &desc, &res);
1560         *resp = res.result[0];
1561
1562         qcom_scm_clk_disable();
1563
1564         return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1567
1568 int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1569 {
1570         struct qcom_scm_desc desc = {
1571                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1572                 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1573                 .arginfo = QCOM_SCM_ARGS(3),
1574                 .args[0] = sec_id,
1575                 .args[1] = ctx_num,
1576                 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1577                 .owner = ARM_SMCCC_OWNER_SIP,
1578         };
1579
1580         return qcom_scm_call(__scm->dev, &desc, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1583
1584 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1585 {
1586         struct qcom_scm_desc desc = {
1587                 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1588                 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1589                 .arginfo = QCOM_SCM_ARGS(2),
1590                 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1591                 .args[1] = en,
1592                 .owner = ARM_SMCCC_OWNER_SIP,
1593         };
1594
1595
1596         return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1599
1600 bool qcom_scm_lmh_dcvsh_available(void)
1601 {
1602         return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1603 }
1604 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1605
1606 int qcom_scm_shm_bridge_enable(void)
1607 {
1608         int ret;
1609
1610         struct qcom_scm_desc desc = {
1611                 .svc = QCOM_SCM_SVC_MP,
1612                 .cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE,
1613                 .owner = ARM_SMCCC_OWNER_SIP
1614         };
1615
1616         struct qcom_scm_res res;
1617
1618         if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
1619                                           QCOM_SCM_MP_SHM_BRIDGE_ENABLE))
1620                 return -EOPNOTSUPP;
1621
1622         ret = qcom_scm_call(__scm->dev, &desc, &res);
1623
1624         if (ret)
1625                 return ret;
1626
1627         if (res.result[0] == SHMBRIDGE_RESULT_NOTSUPP)
1628                 return -EOPNOTSUPP;
1629
1630         return res.result[0];
1631 }
1632 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable);
1633
1634 int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags,
1635                                u64 ipfn_and_s_perm_flags, u64 size_and_flags,
1636                                u64 ns_vmids, u64 *handle)
1637 {
1638         struct qcom_scm_desc desc = {
1639                 .svc = QCOM_SCM_SVC_MP,
1640                 .cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE,
1641                 .owner = ARM_SMCCC_OWNER_SIP,
1642                 .args[0] = pfn_and_ns_perm_flags,
1643                 .args[1] = ipfn_and_s_perm_flags,
1644                 .args[2] = size_and_flags,
1645                 .args[3] = ns_vmids,
1646                 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
1647                                          QCOM_SCM_VAL, QCOM_SCM_VAL),
1648         };
1649
1650         struct qcom_scm_res res;
1651         int ret;
1652
1653         ret = qcom_scm_call(__scm->dev, &desc, &res);
1654
1655         if (handle && !ret)
1656                 *handle = res.result[1];
1657
1658         return ret ?: res.result[0];
1659 }
1660 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create);
1661
1662 int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle)
1663 {
1664         struct qcom_scm_desc desc = {
1665                 .svc = QCOM_SCM_SVC_MP,
1666                 .cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE,
1667                 .owner = ARM_SMCCC_OWNER_SIP,
1668                 .args[0] = handle,
1669                 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1670         };
1671
1672         return qcom_scm_call(__scm->dev, &desc, NULL);
1673 }
1674 EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete);
1675
1676 int qcom_scm_lmh_profile_change(u32 profile_id)
1677 {
1678         struct qcom_scm_desc desc = {
1679                 .svc = QCOM_SCM_SVC_LMH,
1680                 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1681                 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1682                 .args[0] = profile_id,
1683                 .owner = ARM_SMCCC_OWNER_SIP,
1684         };
1685
1686         return qcom_scm_call(__scm->dev, &desc, NULL);
1687 }
1688 EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1689
1690 int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1691                        u64 limit_node, u32 node_id, u64 version)
1692 {
1693         int ret, payload_size = 5 * sizeof(u32);
1694
1695         struct qcom_scm_desc desc = {
1696                 .svc = QCOM_SCM_SVC_LMH,
1697                 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1698                 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1699                                         QCOM_SCM_VAL, QCOM_SCM_VAL),
1700                 .args[1] = payload_size,
1701                 .args[2] = limit_node,
1702                 .args[3] = node_id,
1703                 .args[4] = version,
1704                 .owner = ARM_SMCCC_OWNER_SIP,
1705         };
1706
1707         u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1708                                                                payload_size,
1709                                                                GFP_KERNEL);
1710         if (!payload_buf)
1711                 return -ENOMEM;
1712
1713         payload_buf[0] = payload_fn;
1714         payload_buf[1] = 0;
1715         payload_buf[2] = payload_reg;
1716         payload_buf[3] = 1;
1717         payload_buf[4] = payload_val;
1718
1719         desc.args[0] = qcom_tzmem_to_phys(payload_buf);
1720
1721         ret = qcom_scm_call(__scm->dev, &desc, NULL);
1722
1723         return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1726
1727 int qcom_scm_gpu_init_regs(u32 gpu_req)
1728 {
1729         struct qcom_scm_desc desc = {
1730                 .svc = QCOM_SCM_SVC_GPU,
1731                 .cmd = QCOM_SCM_SVC_GPU_INIT_REGS,
1732                 .arginfo = QCOM_SCM_ARGS(1),
1733                 .args[0] = gpu_req,
1734                 .owner = ARM_SMCCC_OWNER_SIP,
1735         };
1736
1737         return qcom_scm_call(__scm->dev, &desc, NULL);
1738 }
1739 EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs);
1740
1741 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1742 {
1743         struct device_node *tcsr;
1744         struct device_node *np = dev->of_node;
1745         struct resource res;
1746         u32 offset;
1747         int ret;
1748
1749         tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1750         if (!tcsr)
1751                 return 0;
1752
1753         ret = of_address_to_resource(tcsr, 0, &res);
1754         of_node_put(tcsr);
1755         if (ret)
1756                 return ret;
1757
1758         ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1759         if (ret < 0)
1760                 return ret;
1761
1762         *addr = res.start + offset;
1763
1764         return 0;
1765 }
1766
1767 #ifdef CONFIG_QCOM_QSEECOM
1768
1769 /* Lock for QSEECOM SCM call executions */
1770 static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1771
1772 static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1773                                    struct qcom_scm_qseecom_resp *res)
1774 {
1775         struct qcom_scm_res scm_res = {};
1776         int status;
1777
1778         /*
1779          * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1780          * require the respective call lock to be held.
1781          */
1782         lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1783
1784         status = qcom_scm_call(__scm->dev, desc, &scm_res);
1785
1786         res->result = scm_res.result[0];
1787         res->resp_type = scm_res.result[1];
1788         res->data = scm_res.result[2];
1789
1790         if (status)
1791                 return status;
1792
1793         return 0;
1794 }
1795
1796 /**
1797  * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1798  * @desc: SCM call descriptor.
1799  * @res:  SCM call response (output).
1800  *
1801  * Performs the QSEECOM SCM call described by @desc, returning the response in
1802  * @rsp.
1803  *
1804  * Return: Zero on success, nonzero on failure.
1805  */
1806 static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1807                                  struct qcom_scm_qseecom_resp *res)
1808 {
1809         int status;
1810
1811         /*
1812          * Note: Multiple QSEECOM SCM calls should not be executed same time,
1813          * so lock things here. This needs to be extended to callback/listener
1814          * handling when support for that is implemented.
1815          */
1816
1817         mutex_lock(&qcom_scm_qseecom_call_lock);
1818         status = __qcom_scm_qseecom_call(desc, res);
1819         mutex_unlock(&qcom_scm_qseecom_call_lock);
1820
1821         dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1822                 __func__, desc->owner, desc->svc, desc->cmd, res->result,
1823                 res->resp_type, res->data);
1824
1825         if (status) {
1826                 dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1827                 return status;
1828         }
1829
1830         /*
1831          * TODO: Handle incomplete and blocked calls:
1832          *
1833          * Incomplete and blocked calls are not supported yet. Some devices
1834          * and/or commands require those, some don't. Let's warn about them
1835          * prominently in case someone attempts to try these commands with a
1836          * device/command combination that isn't supported yet.
1837          */
1838         WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1839         WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1840
1841         return 0;
1842 }
1843
1844 /**
1845  * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1846  * @version: Pointer where the QSEECOM version will be stored.
1847  *
1848  * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1849  * the TrustZone.
1850  *
1851  * Return: Zero on success, nonzero on failure.
1852  */
1853 static int qcom_scm_qseecom_get_version(u32 *version)
1854 {
1855         struct qcom_scm_desc desc = {};
1856         struct qcom_scm_qseecom_resp res = {};
1857         u32 feature = 10;
1858         int ret;
1859
1860         desc.owner = QSEECOM_TZ_OWNER_SIP;
1861         desc.svc = QSEECOM_TZ_SVC_INFO;
1862         desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1863         desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1864         desc.args[0] = feature;
1865
1866         ret = qcom_scm_qseecom_call(&desc, &res);
1867         if (ret)
1868                 return ret;
1869
1870         *version = res.result;
1871         return 0;
1872 }
1873
1874 /**
1875  * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1876  * @app_name: The name of the app.
1877  * @app_id:   The returned app ID.
1878  *
1879  * Query and return the application ID of the SEE app identified by the given
1880  * name. This returned ID is the unique identifier of the app required for
1881  * subsequent communication.
1882  *
1883  * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1884  * loaded or could not be found.
1885  */
1886 int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1887 {
1888         unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1889         unsigned long app_name_len = strlen(app_name);
1890         struct qcom_scm_desc desc = {};
1891         struct qcom_scm_qseecom_resp res = {};
1892         int status;
1893
1894         if (app_name_len >= name_buf_size)
1895                 return -EINVAL;
1896
1897         char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(__scm->mempool,
1898                                                              name_buf_size,
1899                                                              GFP_KERNEL);
1900         if (!name_buf)
1901                 return -ENOMEM;
1902
1903         memcpy(name_buf, app_name, app_name_len);
1904
1905         desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1906         desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1907         desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1908         desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1909         desc.args[0] = qcom_tzmem_to_phys(name_buf);
1910         desc.args[1] = app_name_len;
1911
1912         status = qcom_scm_qseecom_call(&desc, &res);
1913
1914         if (status)
1915                 return status;
1916
1917         if (res.result == QSEECOM_RESULT_FAILURE)
1918                 return -ENOENT;
1919
1920         if (res.result != QSEECOM_RESULT_SUCCESS)
1921                 return -EINVAL;
1922
1923         if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1924                 return -EINVAL;
1925
1926         *app_id = res.data;
1927         return 0;
1928 }
1929 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1930
1931 /**
1932  * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1933  * @app_id:   The ID of the target app.
1934  * @req:      Request buffer sent to the app (must be TZ memory)
1935  * @req_size: Size of the request buffer.
1936  * @rsp:      Response buffer, written to by the app (must be TZ memory)
1937  * @rsp_size: Size of the response buffer.
1938  *
1939  * Sends a request to the QSEE app associated with the given ID and read back
1940  * its response. The caller must provide two DMA memory regions, one for the
1941  * request and one for the response, and fill out the @req region with the
1942  * respective (app-specific) request data. The QSEE app reads this and returns
1943  * its response in the @rsp region.
1944  *
1945  * Return: Zero on success, nonzero on failure.
1946  */
1947 int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size,
1948                               void *rsp, size_t rsp_size)
1949 {
1950         struct qcom_scm_qseecom_resp res = {};
1951         struct qcom_scm_desc desc = {};
1952         phys_addr_t req_phys;
1953         phys_addr_t rsp_phys;
1954         int status;
1955
1956         req_phys = qcom_tzmem_to_phys(req);
1957         rsp_phys = qcom_tzmem_to_phys(rsp);
1958
1959         desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1960         desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1961         desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1962         desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1963                                      QCOM_SCM_RW, QCOM_SCM_VAL,
1964                                      QCOM_SCM_RW, QCOM_SCM_VAL);
1965         desc.args[0] = app_id;
1966         desc.args[1] = req_phys;
1967         desc.args[2] = req_size;
1968         desc.args[3] = rsp_phys;
1969         desc.args[4] = rsp_size;
1970
1971         status = qcom_scm_qseecom_call(&desc, &res);
1972
1973         if (status)
1974                 return status;
1975
1976         if (res.result != QSEECOM_RESULT_SUCCESS)
1977                 return -EIO;
1978
1979         return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1982
1983 /*
1984  * We do not yet support re-entrant calls via the qseecom interface. To prevent
1985  + any potential issues with this, only allow validated machines for now.
1986  */
1987 static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = {
1988         { .compatible = "asus,vivobook-s15" },
1989         { .compatible = "dell,xps13-9345" },
1990         { .compatible = "hp,omnibook-x14" },
1991         { .compatible = "huawei,gaokun3" },
1992         { .compatible = "lenovo,flex-5g" },
1993         { .compatible = "lenovo,thinkpad-t14s" },
1994         { .compatible = "lenovo,thinkpad-x13s", },
1995         { .compatible = "lenovo,yoga-slim7x" },
1996         { .compatible = "microsoft,arcata", },
1997         { .compatible = "microsoft,blackrock" },
1998         { .compatible = "microsoft,romulus13", },
1999         { .compatible = "microsoft,romulus15", },
2000         { .compatible = "qcom,sc8180x-primus" },
2001         { .compatible = "qcom,x1e001de-devkit" },
2002         { .compatible = "qcom,x1e80100-crd" },
2003         { .compatible = "qcom,x1e80100-qcp" },
2004         { .compatible = "qcom,x1p42100-crd" },
2005         { }
2006 };
2007
2008 static bool qcom_scm_qseecom_machine_is_allowed(void)
2009 {
2010         struct device_node *np;
2011         bool match;
2012
2013         np = of_find_node_by_path("/");
2014         if (!np)
2015                 return false;
2016
2017         match = of_match_node(qcom_scm_qseecom_allowlist, np);
2018         of_node_put(np);
2019
2020         return match;
2021 }
2022
2023 static void qcom_scm_qseecom_free(void *data)
2024 {
2025         struct platform_device *qseecom_dev = data;
2026
2027         platform_device_del(qseecom_dev);
2028         platform_device_put(qseecom_dev);
2029 }
2030
2031 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
2032 {
2033         struct platform_device *qseecom_dev;
2034         u32 version;
2035         int ret;
2036
2037         /*
2038          * Note: We do two steps of validation here: First, we try to query the
2039          * QSEECOM version as a check to see if the interface exists on this
2040          * device. Second, we check against known good devices due to current
2041          * driver limitations (see comment in qcom_scm_qseecom_allowlist).
2042          *
2043          * Note that we deliberately do the machine check after the version
2044          * check so that we can log potentially supported devices. This should
2045          * be safe as downstream sources indicate that the version query is
2046          * neither blocking nor reentrant.
2047          */
2048         ret = qcom_scm_qseecom_get_version(&version);
2049         if (ret)
2050                 return 0;
2051
2052         dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
2053
2054         if (!qcom_scm_qseecom_machine_is_allowed()) {
2055                 dev_info(scm->dev, "qseecom: untested machine, skipping\n");
2056                 return 0;
2057         }
2058
2059         /*
2060          * Set up QSEECOM interface device. All application clients will be
2061          * set up and managed by the corresponding driver for it.
2062          */
2063         qseecom_dev = platform_device_alloc("qcom_qseecom", -1);
2064         if (!qseecom_dev)
2065                 return -ENOMEM;
2066
2067         qseecom_dev->dev.parent = scm->dev;
2068
2069         ret = platform_device_add(qseecom_dev);
2070         if (ret) {
2071                 platform_device_put(qseecom_dev);
2072                 return ret;
2073         }
2074
2075         return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
2076 }
2077
2078 #else /* CONFIG_QCOM_QSEECOM */
2079
2080 static int qcom_scm_qseecom_init(struct qcom_scm *scm)
2081 {
2082         return 0;
2083 }
2084
2085 #endif /* CONFIG_QCOM_QSEECOM */
2086
2087 /**
2088  * qcom_scm_is_available() - Checks if SCM is available
2089  */
2090 bool qcom_scm_is_available(void)
2091 {
2092         /* Paired with smp_store_release() in qcom_scm_probe */
2093         return !!smp_load_acquire(&__scm);
2094 }
2095 EXPORT_SYMBOL_GPL(qcom_scm_is_available);
2096
2097 static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
2098 {
2099         /* FW currently only supports a single wq_ctx (zero).
2100          * TODO: Update this logic to include dynamic allocation and lookup of
2101          * completion structs when FW supports more wq_ctx values.
2102          */
2103         if (wq_ctx != 0) {
2104                 dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
2105                 return -EINVAL;
2106         }
2107
2108         return 0;
2109 }
2110
2111 int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
2112 {
2113         int ret;
2114
2115         ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
2116         if (ret)
2117                 return ret;
2118
2119         wait_for_completion(&__scm->waitq_comp);
2120
2121         return 0;
2122 }
2123
2124 static int qcom_scm_waitq_wakeup(unsigned int wq_ctx)
2125 {
2126         int ret;
2127
2128         ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
2129         if (ret)
2130                 return ret;
2131
2132         complete(&__scm->waitq_comp);
2133
2134         return 0;
2135 }
2136
2137 static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
2138 {
2139         int ret;
2140         struct qcom_scm *scm = data;
2141         u32 wq_ctx, flags, more_pending = 0;
2142
2143         do {
2144                 ret = scm_get_wq_ctx(&wq_ctx, &flags, &more_pending);
2145                 if (ret) {
2146                         dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
2147                         goto out;
2148                 }
2149
2150                 if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) {
2151                         dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n", flags);
2152                         goto out;
2153                 }
2154
2155                 ret = qcom_scm_waitq_wakeup(wq_ctx);
2156                 if (ret)
2157                         goto out;
2158         } while (more_pending);
2159
2160 out:
2161         return IRQ_HANDLED;
2162 }
2163
2164 static int get_download_mode(char *buffer, const struct kernel_param *kp)
2165 {
2166         if (download_mode >= ARRAY_SIZE(download_mode_name))
2167                 return sysfs_emit(buffer, "unknown mode\n");
2168
2169         return sysfs_emit(buffer, "%s\n", download_mode_name[download_mode]);
2170 }
2171
2172 static int set_download_mode(const char *val, const struct kernel_param *kp)
2173 {
2174         bool tmp;
2175         int ret;
2176
2177         ret = sysfs_match_string(download_mode_name, val);
2178         if (ret < 0) {
2179                 ret = kstrtobool(val, &tmp);
2180                 if (ret < 0) {
2181                         pr_err("qcom_scm: err: %d\n", ret);
2182                         return ret;
2183                 }
2184
2185                 ret = tmp ? 1 : 0;
2186         }
2187
2188         download_mode = ret;
2189         if (__scm)
2190                 qcom_scm_set_download_mode(download_mode);
2191
2192         return 0;
2193 }
2194
2195 static const struct kernel_param_ops download_mode_param_ops = {
2196         .get = get_download_mode,
2197         .set = set_download_mode,
2198 };
2199
2200 module_param_cb(download_mode, &download_mode_param_ops, NULL, 0644);
2201 MODULE_PARM_DESC(download_mode, "download mode: off/0/N for no dump mode, full/on/1/Y for full dump mode, mini for minidump mode and full,mini for both full and minidump mode together are acceptable values");
2202
2203 static int qcom_scm_probe(struct platform_device *pdev)
2204 {
2205         struct qcom_tzmem_pool_config pool_config;
2206         struct qcom_scm *scm;
2207         int irq, ret;
2208
2209         scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
2210         if (!scm)
2211                 return -ENOMEM;
2212
2213         scm->dev = &pdev->dev;
2214         ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
2215         if (ret < 0)
2216                 return ret;
2217
2218         init_completion(&scm->waitq_comp);
2219         mutex_init(&scm->scm_bw_lock);
2220
2221         scm->path = devm_of_icc_get(&pdev->dev, NULL);
2222         if (IS_ERR(scm->path))
2223                 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
2224                                      "failed to acquire interconnect path\n");
2225
2226         scm->core_clk = devm_clk_get_optional(&pdev->dev, "core");
2227         if (IS_ERR(scm->core_clk))
2228                 return PTR_ERR(scm->core_clk);
2229
2230         scm->iface_clk = devm_clk_get_optional(&pdev->dev, "iface");
2231         if (IS_ERR(scm->iface_clk))
2232                 return PTR_ERR(scm->iface_clk);
2233
2234         scm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
2235         if (IS_ERR(scm->bus_clk))
2236                 return PTR_ERR(scm->bus_clk);
2237
2238         scm->reset.ops = &qcom_scm_pas_reset_ops;
2239         scm->reset.nr_resets = 1;
2240         scm->reset.of_node = pdev->dev.of_node;
2241         ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
2242         if (ret)
2243                 return ret;
2244
2245         /* vote for max clk rate for highest performance */
2246         ret = clk_set_rate(scm->core_clk, INT_MAX);
2247         if (ret)
2248                 return ret;
2249
2250         /* Paired with smp_load_acquire() in qcom_scm_is_available(). */
2251         smp_store_release(&__scm, scm);
2252
2253         irq = platform_get_irq_optional(pdev, 0);
2254         if (irq < 0) {
2255                 if (irq != -ENXIO) {
2256                         ret = irq;
2257                         goto err;
2258                 }
2259         } else {
2260                 ret = devm_request_threaded_irq(__scm->dev, irq, NULL, qcom_scm_irq_handler,
2261                                                 IRQF_ONESHOT, "qcom-scm", __scm);
2262                 if (ret < 0) {
2263                         dev_err_probe(scm->dev, ret, "Failed to request qcom-scm irq\n");
2264                         goto err;
2265                 }
2266         }
2267
2268         __get_convention();
2269
2270         /*
2271          * If "download mode" is requested, from this point on warmboot
2272          * will cause the boot stages to enter download mode, unless
2273          * disabled below by a clean shutdown/reboot.
2274          */
2275         qcom_scm_set_download_mode(download_mode);
2276
2277         /*
2278          * Disable SDI if indicated by DT that it is enabled by default.
2279          */
2280         if (of_property_read_bool(pdev->dev.of_node, "qcom,sdi-enabled") || !download_mode)
2281                 qcom_scm_disable_sdi();
2282
2283         ret = of_reserved_mem_device_init(__scm->dev);
2284         if (ret && ret != -ENODEV) {
2285                 dev_err_probe(__scm->dev, ret,
2286                               "Failed to setup the reserved memory region for TZ mem\n");
2287                 goto err;
2288         }
2289
2290         ret = qcom_tzmem_enable(__scm->dev);
2291         if (ret) {
2292                 dev_err_probe(__scm->dev, ret,
2293                               "Failed to enable the TrustZone memory allocator\n");
2294                 goto err;
2295         }
2296
2297         memset(&pool_config, 0, sizeof(pool_config));
2298         pool_config.initial_size = 0;
2299         pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND;
2300         pool_config.max_size = SZ_256K;
2301
2302         __scm->mempool = devm_qcom_tzmem_pool_new(__scm->dev, &pool_config);
2303         if (IS_ERR(__scm->mempool)) {
2304                 dev_err_probe(__scm->dev, PTR_ERR(__scm->mempool),
2305                               "Failed to create the SCM memory pool\n");
2306                 goto err;
2307         }
2308
2309         /*
2310          * Initialize the QSEECOM interface.
2311          *
2312          * Note: QSEECOM is fairly self-contained and this only adds the
2313          * interface device (the driver of which does most of the heavy
2314          * lifting). So any errors returned here should be either -ENOMEM or
2315          * -EINVAL (with the latter only in case there's a bug in our code).
2316          * This means that there is no need to bring down the whole SCM driver.
2317          * Just log the error instead and let SCM live.
2318          */
2319         ret = qcom_scm_qseecom_init(scm);
2320         WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
2321
2322         return 0;
2323
2324 err:
2325         /* Paired with smp_load_acquire() in qcom_scm_is_available(). */
2326         smp_store_release(&__scm, NULL);
2327
2328         return ret;
2329 }
2330
2331 static void qcom_scm_shutdown(struct platform_device *pdev)
2332 {
2333         /* Clean shutdown, disable download mode to allow normal restart */
2334         qcom_scm_set_download_mode(QCOM_DLOAD_NODUMP);
2335 }
2336
2337 static const struct of_device_id qcom_scm_dt_match[] = {
2338         { .compatible = "qcom,scm" },
2339
2340         /* Legacy entries kept for backwards compatibility */
2341         { .compatible = "qcom,scm-apq8064" },
2342         { .compatible = "qcom,scm-apq8084" },
2343         { .compatible = "qcom,scm-ipq4019" },
2344         { .compatible = "qcom,scm-msm8953" },
2345         { .compatible = "qcom,scm-msm8974" },
2346         { .compatible = "qcom,scm-msm8996" },
2347         {}
2348 };
2349 MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
2350
2351 static struct platform_driver qcom_scm_driver = {
2352         .driver = {
2353                 .name   = "qcom_scm",
2354                 .of_match_table = qcom_scm_dt_match,
2355                 .suppress_bind_attrs = true,
2356         },
2357         .probe = qcom_scm_probe,
2358         .shutdown = qcom_scm_shutdown,
2359 };
2360
2361 static int __init qcom_scm_init(void)
2362 {
2363         return platform_driver_register(&qcom_scm_driver);
2364 }
2365 subsys_initcall(qcom_scm_init);
2366
2367 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
2368 MODULE_LICENSE("GPL v2");
This page took 0.174034 seconds and 4 git commands to generate.