]> Git Repo - linux.git/blob - drivers/crypto/ccp/sev-dev.c
Linux 6.14-rc3
[linux.git] / drivers / crypto / ccp / sev-dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Secure Encrypted Virtualization (SEV) interface
4  *
5  * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6  *
7  * Author: Brijesh Singh <[email protected]>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/ccp.h>
23 #include <linux/firmware.h>
24 #include <linux/panic_notifier.h>
25 #include <linux/gfp.h>
26 #include <linux/cpufeature.h>
27 #include <linux/fs.h>
28 #include <linux/fs_struct.h>
29 #include <linux/psp.h>
30 #include <linux/amd-iommu.h>
31
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/e820/types.h>
35 #include <asm/sev.h>
36
37 #include "psp-dev.h"
38 #include "sev-dev.h"
39
40 #define DEVICE_NAME             "sev"
41 #define SEV_FW_FILE             "amd/sev.fw"
42 #define SEV_FW_NAME_SIZE        64
43
44 /* Minimum firmware version required for the SEV-SNP support */
45 #define SNP_MIN_API_MAJOR       1
46 #define SNP_MIN_API_MINOR       51
47
48 /*
49  * Maximum number of firmware-writable buffers that might be specified
50  * in the parameters of a legacy SEV command buffer.
51  */
52 #define CMD_BUF_FW_WRITABLE_MAX 2
53
54 /* Leave room in the descriptor array for an end-of-list indicator. */
55 #define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
56
57 static DEFINE_MUTEX(sev_cmd_mutex);
58 static struct sev_misc_dev *misc_dev;
59
60 static int psp_cmd_timeout = 100;
61 module_param(psp_cmd_timeout, int, 0644);
62 MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
63
64 static int psp_probe_timeout = 5;
65 module_param(psp_probe_timeout, int, 0644);
66 MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
67
68 static char *init_ex_path;
69 module_param(init_ex_path, charp, 0444);
70 MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
71
72 static bool psp_init_on_probe = true;
73 module_param(psp_init_on_probe, bool, 0444);
74 MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
75
76 MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
77 MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
78 MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
79 MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
80
81 static bool psp_dead;
82 static int psp_timeout;
83
84 /* Trusted Memory Region (TMR):
85  *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
86  *   to allocate the memory, which will return aligned memory for the specified
87  *   allocation order.
88  *
89  * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
90  */
91 #define SEV_TMR_SIZE            (1024 * 1024)
92 #define SNP_TMR_SIZE            (2 * 1024 * 1024)
93
94 static void *sev_es_tmr;
95 static size_t sev_es_tmr_size = SEV_TMR_SIZE;
96
97 /* INIT_EX NV Storage:
98  *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
99  *   allocator to allocate the memory, which will return aligned memory for the
100  *   specified allocation order.
101  */
102 #define NV_LENGTH (32 * 1024)
103 static void *sev_init_ex_buffer;
104
105 /*
106  * SEV_DATA_RANGE_LIST:
107  *   Array containing range of pages that firmware transitions to HV-fixed
108  *   page state.
109  */
110 static struct sev_data_range_list *snp_range_list;
111
112 static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
113 {
114         struct sev_device *sev = psp_master->sev_data;
115
116         if (sev->api_major > maj)
117                 return true;
118
119         if (sev->api_major == maj && sev->api_minor >= min)
120                 return true;
121
122         return false;
123 }
124
125 static void sev_irq_handler(int irq, void *data, unsigned int status)
126 {
127         struct sev_device *sev = data;
128         int reg;
129
130         /* Check if it is command completion: */
131         if (!(status & SEV_CMD_COMPLETE))
132                 return;
133
134         /* Check if it is SEV command completion: */
135         reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
136         if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
137                 sev->int_rcvd = 1;
138                 wake_up(&sev->int_queue);
139         }
140 }
141
142 static int sev_wait_cmd_ioc(struct sev_device *sev,
143                             unsigned int *reg, unsigned int timeout)
144 {
145         int ret;
146
147         /*
148          * If invoked during panic handling, local interrupts are disabled,
149          * so the PSP command completion interrupt can't be used. Poll for
150          * PSP command completion instead.
151          */
152         if (irqs_disabled()) {
153                 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
154
155                 /* Poll for SEV command completion: */
156                 while (timeout_usecs--) {
157                         *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
158                         if (*reg & PSP_CMDRESP_RESP)
159                                 return 0;
160
161                         udelay(10);
162                 }
163                 return -ETIMEDOUT;
164         }
165
166         ret = wait_event_timeout(sev->int_queue,
167                         sev->int_rcvd, timeout * HZ);
168         if (!ret)
169                 return -ETIMEDOUT;
170
171         *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
172
173         return 0;
174 }
175
176 static int sev_cmd_buffer_len(int cmd)
177 {
178         switch (cmd) {
179         case SEV_CMD_INIT:                      return sizeof(struct sev_data_init);
180         case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
181         case SEV_CMD_SNP_SHUTDOWN_EX:           return sizeof(struct sev_data_snp_shutdown_ex);
182         case SEV_CMD_SNP_INIT_EX:               return sizeof(struct sev_data_snp_init_ex);
183         case SEV_CMD_PLATFORM_STATUS:           return sizeof(struct sev_user_data_status);
184         case SEV_CMD_PEK_CSR:                   return sizeof(struct sev_data_pek_csr);
185         case SEV_CMD_PEK_CERT_IMPORT:           return sizeof(struct sev_data_pek_cert_import);
186         case SEV_CMD_PDH_CERT_EXPORT:           return sizeof(struct sev_data_pdh_cert_export);
187         case SEV_CMD_LAUNCH_START:              return sizeof(struct sev_data_launch_start);
188         case SEV_CMD_LAUNCH_UPDATE_DATA:        return sizeof(struct sev_data_launch_update_data);
189         case SEV_CMD_LAUNCH_UPDATE_VMSA:        return sizeof(struct sev_data_launch_update_vmsa);
190         case SEV_CMD_LAUNCH_FINISH:             return sizeof(struct sev_data_launch_finish);
191         case SEV_CMD_LAUNCH_MEASURE:            return sizeof(struct sev_data_launch_measure);
192         case SEV_CMD_ACTIVATE:                  return sizeof(struct sev_data_activate);
193         case SEV_CMD_DEACTIVATE:                return sizeof(struct sev_data_deactivate);
194         case SEV_CMD_DECOMMISSION:              return sizeof(struct sev_data_decommission);
195         case SEV_CMD_GUEST_STATUS:              return sizeof(struct sev_data_guest_status);
196         case SEV_CMD_DBG_DECRYPT:               return sizeof(struct sev_data_dbg);
197         case SEV_CMD_DBG_ENCRYPT:               return sizeof(struct sev_data_dbg);
198         case SEV_CMD_SEND_START:                return sizeof(struct sev_data_send_start);
199         case SEV_CMD_SEND_UPDATE_DATA:          return sizeof(struct sev_data_send_update_data);
200         case SEV_CMD_SEND_UPDATE_VMSA:          return sizeof(struct sev_data_send_update_vmsa);
201         case SEV_CMD_SEND_FINISH:               return sizeof(struct sev_data_send_finish);
202         case SEV_CMD_RECEIVE_START:             return sizeof(struct sev_data_receive_start);
203         case SEV_CMD_RECEIVE_FINISH:            return sizeof(struct sev_data_receive_finish);
204         case SEV_CMD_RECEIVE_UPDATE_DATA:       return sizeof(struct sev_data_receive_update_data);
205         case SEV_CMD_RECEIVE_UPDATE_VMSA:       return sizeof(struct sev_data_receive_update_vmsa);
206         case SEV_CMD_LAUNCH_UPDATE_SECRET:      return sizeof(struct sev_data_launch_secret);
207         case SEV_CMD_DOWNLOAD_FIRMWARE:         return sizeof(struct sev_data_download_firmware);
208         case SEV_CMD_GET_ID:                    return sizeof(struct sev_data_get_id);
209         case SEV_CMD_ATTESTATION_REPORT:        return sizeof(struct sev_data_attestation_report);
210         case SEV_CMD_SEND_CANCEL:               return sizeof(struct sev_data_send_cancel);
211         case SEV_CMD_SNP_GCTX_CREATE:           return sizeof(struct sev_data_snp_addr);
212         case SEV_CMD_SNP_LAUNCH_START:          return sizeof(struct sev_data_snp_launch_start);
213         case SEV_CMD_SNP_LAUNCH_UPDATE:         return sizeof(struct sev_data_snp_launch_update);
214         case SEV_CMD_SNP_ACTIVATE:              return sizeof(struct sev_data_snp_activate);
215         case SEV_CMD_SNP_DECOMMISSION:          return sizeof(struct sev_data_snp_addr);
216         case SEV_CMD_SNP_PAGE_RECLAIM:          return sizeof(struct sev_data_snp_page_reclaim);
217         case SEV_CMD_SNP_GUEST_STATUS:          return sizeof(struct sev_data_snp_guest_status);
218         case SEV_CMD_SNP_LAUNCH_FINISH:         return sizeof(struct sev_data_snp_launch_finish);
219         case SEV_CMD_SNP_DBG_DECRYPT:           return sizeof(struct sev_data_snp_dbg);
220         case SEV_CMD_SNP_DBG_ENCRYPT:           return sizeof(struct sev_data_snp_dbg);
221         case SEV_CMD_SNP_PAGE_UNSMASH:          return sizeof(struct sev_data_snp_page_unsmash);
222         case SEV_CMD_SNP_PLATFORM_STATUS:       return sizeof(struct sev_data_snp_addr);
223         case SEV_CMD_SNP_GUEST_REQUEST:         return sizeof(struct sev_data_snp_guest_request);
224         case SEV_CMD_SNP_CONFIG:                return sizeof(struct sev_user_data_snp_config);
225         case SEV_CMD_SNP_COMMIT:                return sizeof(struct sev_data_snp_commit);
226         default:                                return 0;
227         }
228
229         return 0;
230 }
231
232 static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
233 {
234         struct file *fp;
235         struct path root;
236         struct cred *cred;
237         const struct cred *old_cred;
238
239         task_lock(&init_task);
240         get_fs_root(init_task.fs, &root);
241         task_unlock(&init_task);
242
243         cred = prepare_creds();
244         if (!cred)
245                 return ERR_PTR(-ENOMEM);
246         cred->fsuid = GLOBAL_ROOT_UID;
247         old_cred = override_creds(cred);
248
249         fp = file_open_root(&root, filename, flags, mode);
250         path_put(&root);
251
252         put_cred(revert_creds(old_cred));
253
254         return fp;
255 }
256
257 static int sev_read_init_ex_file(void)
258 {
259         struct sev_device *sev = psp_master->sev_data;
260         struct file *fp;
261         ssize_t nread;
262
263         lockdep_assert_held(&sev_cmd_mutex);
264
265         if (!sev_init_ex_buffer)
266                 return -EOPNOTSUPP;
267
268         fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
269         if (IS_ERR(fp)) {
270                 int ret = PTR_ERR(fp);
271
272                 if (ret == -ENOENT) {
273                         dev_info(sev->dev,
274                                 "SEV: %s does not exist and will be created later.\n",
275                                 init_ex_path);
276                         ret = 0;
277                 } else {
278                         dev_err(sev->dev,
279                                 "SEV: could not open %s for read, error %d\n",
280                                 init_ex_path, ret);
281                 }
282                 return ret;
283         }
284
285         nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
286         if (nread != NV_LENGTH) {
287                 dev_info(sev->dev,
288                         "SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
289                         NV_LENGTH, nread);
290         }
291
292         dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
293         filp_close(fp, NULL);
294
295         return 0;
296 }
297
298 static int sev_write_init_ex_file(void)
299 {
300         struct sev_device *sev = psp_master->sev_data;
301         struct file *fp;
302         loff_t offset = 0;
303         ssize_t nwrite;
304
305         lockdep_assert_held(&sev_cmd_mutex);
306
307         if (!sev_init_ex_buffer)
308                 return 0;
309
310         fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
311         if (IS_ERR(fp)) {
312                 int ret = PTR_ERR(fp);
313
314                 dev_err(sev->dev,
315                         "SEV: could not open file for write, error %d\n",
316                         ret);
317                 return ret;
318         }
319
320         nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
321         vfs_fsync(fp, 0);
322         filp_close(fp, NULL);
323
324         if (nwrite != NV_LENGTH) {
325                 dev_err(sev->dev,
326                         "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
327                         NV_LENGTH, nwrite);
328                 return -EIO;
329         }
330
331         dev_dbg(sev->dev, "SEV: write successful to NV file\n");
332
333         return 0;
334 }
335
336 static int sev_write_init_ex_file_if_required(int cmd_id)
337 {
338         lockdep_assert_held(&sev_cmd_mutex);
339
340         if (!sev_init_ex_buffer)
341                 return 0;
342
343         /*
344          * Only a few platform commands modify the SPI/NV area, but none of the
345          * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
346          * PEK_CERT_IMPORT, and PDH_GEN do.
347          */
348         switch (cmd_id) {
349         case SEV_CMD_FACTORY_RESET:
350         case SEV_CMD_INIT_EX:
351         case SEV_CMD_PDH_GEN:
352         case SEV_CMD_PEK_CERT_IMPORT:
353         case SEV_CMD_PEK_GEN:
354                 break;
355         default:
356                 return 0;
357         }
358
359         return sev_write_init_ex_file();
360 }
361
362 /*
363  * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
364  * needs snp_reclaim_pages(), so a forward declaration is needed.
365  */
366 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
367
368 static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
369 {
370         int ret, err, i;
371
372         paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
373
374         for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
375                 struct sev_data_snp_page_reclaim data = {0};
376
377                 data.paddr = paddr;
378
379                 if (locked)
380                         ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
381                 else
382                         ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
383
384                 if (ret)
385                         goto cleanup;
386
387                 ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
388                 if (ret)
389                         goto cleanup;
390         }
391
392         return 0;
393
394 cleanup:
395         /*
396          * If there was a failure reclaiming the page then it is no longer safe
397          * to release it back to the system; leak it instead.
398          */
399         snp_leak_pages(__phys_to_pfn(paddr), npages - i);
400         return ret;
401 }
402
403 static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
404 {
405         unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
406         int rc, i;
407
408         for (i = 0; i < npages; i++, pfn++) {
409                 rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
410                 if (rc)
411                         goto cleanup;
412         }
413
414         return 0;
415
416 cleanup:
417         /*
418          * Try unrolling the firmware state changes by
419          * reclaiming the pages which were already changed to the
420          * firmware state.
421          */
422         snp_reclaim_pages(paddr, i, locked);
423
424         return rc;
425 }
426
427 static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
428 {
429         unsigned long npages = 1ul << order, paddr;
430         struct sev_device *sev;
431         struct page *page;
432
433         if (!psp_master || !psp_master->sev_data)
434                 return NULL;
435
436         page = alloc_pages(gfp_mask, order);
437         if (!page)
438                 return NULL;
439
440         /* If SEV-SNP is initialized then add the page in RMP table. */
441         sev = psp_master->sev_data;
442         if (!sev->snp_initialized)
443                 return page;
444
445         paddr = __pa((unsigned long)page_address(page));
446         if (rmp_mark_pages_firmware(paddr, npages, false))
447                 return NULL;
448
449         return page;
450 }
451
452 void *snp_alloc_firmware_page(gfp_t gfp_mask)
453 {
454         struct page *page;
455
456         page = __snp_alloc_firmware_pages(gfp_mask, 0);
457
458         return page ? page_address(page) : NULL;
459 }
460 EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
461
462 static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
463 {
464         struct sev_device *sev = psp_master->sev_data;
465         unsigned long paddr, npages = 1ul << order;
466
467         if (!page)
468                 return;
469
470         paddr = __pa((unsigned long)page_address(page));
471         if (sev->snp_initialized &&
472             snp_reclaim_pages(paddr, npages, locked))
473                 return;
474
475         __free_pages(page, order);
476 }
477
478 void snp_free_firmware_page(void *addr)
479 {
480         if (!addr)
481                 return;
482
483         __snp_free_firmware_pages(virt_to_page(addr), 0, false);
484 }
485 EXPORT_SYMBOL_GPL(snp_free_firmware_page);
486
487 static void *sev_fw_alloc(unsigned long len)
488 {
489         struct page *page;
490
491         page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
492         if (!page)
493                 return NULL;
494
495         return page_address(page);
496 }
497
498 /**
499  * struct cmd_buf_desc - descriptors for managing legacy SEV command address
500  * parameters corresponding to buffers that may be written to by firmware.
501  *
502  * @paddr_ptr:  pointer to the address parameter in the command buffer which may
503  *              need to be saved/restored depending on whether a bounce buffer
504  *              is used. In the case of a bounce buffer, the command buffer
505  *              needs to be updated with the address of the new bounce buffer
506  *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
507  *              be NULL if this descriptor is only an end-of-list indicator.
508  *
509  * @paddr_orig: storage for the original address parameter, which can be used to
510  *              restore the original value in @paddr_ptr in cases where it is
511  *              replaced with the address of a bounce buffer.
512  *
513  * @len: length of buffer located at the address originally stored at @paddr_ptr
514  *
515  * @guest_owned: true if the address corresponds to guest-owned pages, in which
516  *               case bounce buffers are not needed.
517  */
518 struct cmd_buf_desc {
519         u64 *paddr_ptr;
520         u64 paddr_orig;
521         u32 len;
522         bool guest_owned;
523 };
524
525 /*
526  * If a legacy SEV command parameter is a memory address, those pages in
527  * turn need to be transitioned to/from firmware-owned before/after
528  * executing the firmware command.
529  *
530  * Additionally, in cases where those pages are not guest-owned, a bounce
531  * buffer is needed in place of the original memory address parameter.
532  *
533  * A set of descriptors are used to keep track of this handling, and
534  * initialized here based on the specific commands being executed.
535  */
536 static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
537                                            struct cmd_buf_desc *desc_list)
538 {
539         switch (cmd) {
540         case SEV_CMD_PDH_CERT_EXPORT: {
541                 struct sev_data_pdh_cert_export *data = cmd_buf;
542
543                 desc_list[0].paddr_ptr = &data->pdh_cert_address;
544                 desc_list[0].len = data->pdh_cert_len;
545                 desc_list[1].paddr_ptr = &data->cert_chain_address;
546                 desc_list[1].len = data->cert_chain_len;
547                 break;
548         }
549         case SEV_CMD_GET_ID: {
550                 struct sev_data_get_id *data = cmd_buf;
551
552                 desc_list[0].paddr_ptr = &data->address;
553                 desc_list[0].len = data->len;
554                 break;
555         }
556         case SEV_CMD_PEK_CSR: {
557                 struct sev_data_pek_csr *data = cmd_buf;
558
559                 desc_list[0].paddr_ptr = &data->address;
560                 desc_list[0].len = data->len;
561                 break;
562         }
563         case SEV_CMD_LAUNCH_UPDATE_DATA: {
564                 struct sev_data_launch_update_data *data = cmd_buf;
565
566                 desc_list[0].paddr_ptr = &data->address;
567                 desc_list[0].len = data->len;
568                 desc_list[0].guest_owned = true;
569                 break;
570         }
571         case SEV_CMD_LAUNCH_UPDATE_VMSA: {
572                 struct sev_data_launch_update_vmsa *data = cmd_buf;
573
574                 desc_list[0].paddr_ptr = &data->address;
575                 desc_list[0].len = data->len;
576                 desc_list[0].guest_owned = true;
577                 break;
578         }
579         case SEV_CMD_LAUNCH_MEASURE: {
580                 struct sev_data_launch_measure *data = cmd_buf;
581
582                 desc_list[0].paddr_ptr = &data->address;
583                 desc_list[0].len = data->len;
584                 break;
585         }
586         case SEV_CMD_LAUNCH_UPDATE_SECRET: {
587                 struct sev_data_launch_secret *data = cmd_buf;
588
589                 desc_list[0].paddr_ptr = &data->guest_address;
590                 desc_list[0].len = data->guest_len;
591                 desc_list[0].guest_owned = true;
592                 break;
593         }
594         case SEV_CMD_DBG_DECRYPT: {
595                 struct sev_data_dbg *data = cmd_buf;
596
597                 desc_list[0].paddr_ptr = &data->dst_addr;
598                 desc_list[0].len = data->len;
599                 desc_list[0].guest_owned = true;
600                 break;
601         }
602         case SEV_CMD_DBG_ENCRYPT: {
603                 struct sev_data_dbg *data = cmd_buf;
604
605                 desc_list[0].paddr_ptr = &data->dst_addr;
606                 desc_list[0].len = data->len;
607                 desc_list[0].guest_owned = true;
608                 break;
609         }
610         case SEV_CMD_ATTESTATION_REPORT: {
611                 struct sev_data_attestation_report *data = cmd_buf;
612
613                 desc_list[0].paddr_ptr = &data->address;
614                 desc_list[0].len = data->len;
615                 break;
616         }
617         case SEV_CMD_SEND_START: {
618                 struct sev_data_send_start *data = cmd_buf;
619
620                 desc_list[0].paddr_ptr = &data->session_address;
621                 desc_list[0].len = data->session_len;
622                 break;
623         }
624         case SEV_CMD_SEND_UPDATE_DATA: {
625                 struct sev_data_send_update_data *data = cmd_buf;
626
627                 desc_list[0].paddr_ptr = &data->hdr_address;
628                 desc_list[0].len = data->hdr_len;
629                 desc_list[1].paddr_ptr = &data->trans_address;
630                 desc_list[1].len = data->trans_len;
631                 break;
632         }
633         case SEV_CMD_SEND_UPDATE_VMSA: {
634                 struct sev_data_send_update_vmsa *data = cmd_buf;
635
636                 desc_list[0].paddr_ptr = &data->hdr_address;
637                 desc_list[0].len = data->hdr_len;
638                 desc_list[1].paddr_ptr = &data->trans_address;
639                 desc_list[1].len = data->trans_len;
640                 break;
641         }
642         case SEV_CMD_RECEIVE_UPDATE_DATA: {
643                 struct sev_data_receive_update_data *data = cmd_buf;
644
645                 desc_list[0].paddr_ptr = &data->guest_address;
646                 desc_list[0].len = data->guest_len;
647                 desc_list[0].guest_owned = true;
648                 break;
649         }
650         case SEV_CMD_RECEIVE_UPDATE_VMSA: {
651                 struct sev_data_receive_update_vmsa *data = cmd_buf;
652
653                 desc_list[0].paddr_ptr = &data->guest_address;
654                 desc_list[0].len = data->guest_len;
655                 desc_list[0].guest_owned = true;
656                 break;
657         }
658         default:
659                 break;
660         }
661 }
662
663 static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
664 {
665         unsigned int npages;
666
667         if (!desc->len)
668                 return 0;
669
670         /* Allocate a bounce buffer if this isn't a guest owned page. */
671         if (!desc->guest_owned) {
672                 struct page *page;
673
674                 page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
675                 if (!page) {
676                         pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
677                         return -ENOMEM;
678                 }
679
680                 desc->paddr_orig = *desc->paddr_ptr;
681                 *desc->paddr_ptr = __psp_pa(page_to_virt(page));
682         }
683
684         npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
685
686         /* Transition the buffer to firmware-owned. */
687         if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
688                 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
689                 return -EFAULT;
690         }
691
692         return 0;
693 }
694
695 static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
696 {
697         unsigned int npages;
698
699         if (!desc->len)
700                 return 0;
701
702         npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
703
704         /* Transition the buffers back to hypervisor-owned. */
705         if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
706                 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
707                 return -EFAULT;
708         }
709
710         /* Copy data from bounce buffer and then free it. */
711         if (!desc->guest_owned) {
712                 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
713                 void *dst_buf = __va(__sme_clr(desc->paddr_orig));
714
715                 memcpy(dst_buf, bounce_buf, desc->len);
716                 __free_pages(virt_to_page(bounce_buf), get_order(desc->len));
717
718                 /* Restore the original address in the command buffer. */
719                 *desc->paddr_ptr = desc->paddr_orig;
720         }
721
722         return 0;
723 }
724
725 static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
726 {
727         int i;
728
729         snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
730
731         for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
732                 struct cmd_buf_desc *desc = &desc_list[i];
733
734                 if (!desc->paddr_ptr)
735                         break;
736
737                 if (snp_map_cmd_buf_desc(desc))
738                         goto err_unmap;
739         }
740
741         return 0;
742
743 err_unmap:
744         for (i--; i >= 0; i--)
745                 snp_unmap_cmd_buf_desc(&desc_list[i]);
746
747         return -EFAULT;
748 }
749
750 static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
751 {
752         int i, ret = 0;
753
754         for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
755                 struct cmd_buf_desc *desc = &desc_list[i];
756
757                 if (!desc->paddr_ptr)
758                         break;
759
760                 if (snp_unmap_cmd_buf_desc(&desc_list[i]))
761                         ret = -EFAULT;
762         }
763
764         return ret;
765 }
766
767 static bool sev_cmd_buf_writable(int cmd)
768 {
769         switch (cmd) {
770         case SEV_CMD_PLATFORM_STATUS:
771         case SEV_CMD_GUEST_STATUS:
772         case SEV_CMD_LAUNCH_START:
773         case SEV_CMD_RECEIVE_START:
774         case SEV_CMD_LAUNCH_MEASURE:
775         case SEV_CMD_SEND_START:
776         case SEV_CMD_SEND_UPDATE_DATA:
777         case SEV_CMD_SEND_UPDATE_VMSA:
778         case SEV_CMD_PEK_CSR:
779         case SEV_CMD_PDH_CERT_EXPORT:
780         case SEV_CMD_GET_ID:
781         case SEV_CMD_ATTESTATION_REPORT:
782                 return true;
783         default:
784                 return false;
785         }
786 }
787
788 /* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
789 static bool snp_legacy_handling_needed(int cmd)
790 {
791         struct sev_device *sev = psp_master->sev_data;
792
793         return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
794 }
795
796 static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
797 {
798         if (!snp_legacy_handling_needed(cmd))
799                 return 0;
800
801         if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
802                 return -EFAULT;
803
804         /*
805          * Before command execution, the command buffer needs to be put into
806          * the firmware-owned state.
807          */
808         if (sev_cmd_buf_writable(cmd)) {
809                 if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
810                         return -EFAULT;
811         }
812
813         return 0;
814 }
815
816 static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
817 {
818         if (!snp_legacy_handling_needed(cmd))
819                 return 0;
820
821         /*
822          * After command completion, the command buffer needs to be put back
823          * into the hypervisor-owned state.
824          */
825         if (sev_cmd_buf_writable(cmd))
826                 if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
827                         return -EFAULT;
828
829         return 0;
830 }
831
832 static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
833 {
834         struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
835         struct psp_device *psp = psp_master;
836         struct sev_device *sev;
837         unsigned int cmdbuff_hi, cmdbuff_lo;
838         unsigned int phys_lsb, phys_msb;
839         unsigned int reg, ret = 0;
840         void *cmd_buf;
841         int buf_len;
842
843         if (!psp || !psp->sev_data)
844                 return -ENODEV;
845
846         if (psp_dead)
847                 return -EBUSY;
848
849         sev = psp->sev_data;
850
851         buf_len = sev_cmd_buffer_len(cmd);
852         if (WARN_ON_ONCE(!data != !buf_len))
853                 return -EINVAL;
854
855         /*
856          * Copy the incoming data to driver's scratch buffer as __pa() will not
857          * work for some memory, e.g. vmalloc'd addresses, and @data may not be
858          * physically contiguous.
859          */
860         if (data) {
861                 /*
862                  * Commands are generally issued one at a time and require the
863                  * sev_cmd_mutex, but there could be recursive firmware requests
864                  * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
865                  * preparing buffers for another command. This is the only known
866                  * case of nesting in the current code, so exactly one
867                  * additional command buffer is available for that purpose.
868                  */
869                 if (!sev->cmd_buf_active) {
870                         cmd_buf = sev->cmd_buf;
871                         sev->cmd_buf_active = true;
872                 } else if (!sev->cmd_buf_backup_active) {
873                         cmd_buf = sev->cmd_buf_backup;
874                         sev->cmd_buf_backup_active = true;
875                 } else {
876                         dev_err(sev->dev,
877                                 "SEV: too many firmware commands in progress, no command buffers available.\n");
878                         return -EBUSY;
879                 }
880
881                 memcpy(cmd_buf, data, buf_len);
882
883                 /*
884                  * The behavior of the SEV-legacy commands is altered when the
885                  * SNP firmware is in the INIT state.
886                  */
887                 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
888                 if (ret) {
889                         dev_err(sev->dev,
890                                 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
891                                 cmd, ret);
892                         return ret;
893                 }
894         } else {
895                 cmd_buf = sev->cmd_buf;
896         }
897
898         /* Get the physical address of the command buffer */
899         phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
900         phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
901
902         dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
903                 cmd, phys_msb, phys_lsb, psp_timeout);
904
905         print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
906                              buf_len, false);
907
908         iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
909         iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
910
911         sev->int_rcvd = 0;
912
913         reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd);
914
915         /*
916          * If invoked during panic handling, local interrupts are disabled so
917          * the PSP command completion interrupt can't be used.
918          * sev_wait_cmd_ioc() already checks for interrupts disabled and
919          * polls for PSP command completion.  Ensure we do not request an
920          * interrupt from the PSP if irqs disabled.
921          */
922         if (!irqs_disabled())
923                 reg |= SEV_CMDRESP_IOC;
924
925         iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
926
927         /* wait for command completion */
928         ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
929         if (ret) {
930                 if (psp_ret)
931                         *psp_ret = 0;
932
933                 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
934                 psp_dead = true;
935
936                 return ret;
937         }
938
939         psp_timeout = psp_cmd_timeout;
940
941         if (psp_ret)
942                 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
943
944         if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
945                 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
946                         cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
947
948                 /*
949                  * PSP firmware may report additional error information in the
950                  * command buffer registers on error. Print contents of command
951                  * buffer registers if they changed.
952                  */
953                 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
954                 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
955                 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
956                         dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
957                         dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
958                         dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
959                 }
960                 ret = -EIO;
961         } else {
962                 ret = sev_write_init_ex_file_if_required(cmd);
963         }
964
965         /*
966          * Copy potential output from the PSP back to data.  Do this even on
967          * failure in case the caller wants to glean something from the error.
968          */
969         if (data) {
970                 int ret_reclaim;
971                 /*
972                  * Restore the page state after the command completes.
973                  */
974                 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
975                 if (ret_reclaim) {
976                         dev_err(sev->dev,
977                                 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
978                                 cmd, ret_reclaim);
979                         return ret_reclaim;
980                 }
981
982                 memcpy(data, cmd_buf, buf_len);
983
984                 if (sev->cmd_buf_backup_active)
985                         sev->cmd_buf_backup_active = false;
986                 else
987                         sev->cmd_buf_active = false;
988
989                 if (snp_unmap_cmd_buf_desc_list(desc_list))
990                         return -EFAULT;
991         }
992
993         print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
994                              buf_len, false);
995
996         return ret;
997 }
998
999 int sev_do_cmd(int cmd, void *data, int *psp_ret)
1000 {
1001         int rc;
1002
1003         mutex_lock(&sev_cmd_mutex);
1004         rc = __sev_do_cmd_locked(cmd, data, psp_ret);
1005         mutex_unlock(&sev_cmd_mutex);
1006
1007         return rc;
1008 }
1009 EXPORT_SYMBOL_GPL(sev_do_cmd);
1010
1011 static int __sev_init_locked(int *error)
1012 {
1013         struct sev_data_init data;
1014
1015         memset(&data, 0, sizeof(data));
1016         if (sev_es_tmr) {
1017                 /*
1018                  * Do not include the encryption mask on the physical
1019                  * address of the TMR (firmware should clear it anyway).
1020                  */
1021                 data.tmr_address = __pa(sev_es_tmr);
1022
1023                 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1024                 data.tmr_len = sev_es_tmr_size;
1025         }
1026
1027         return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1028 }
1029
1030 static int __sev_init_ex_locked(int *error)
1031 {
1032         struct sev_data_init_ex data;
1033
1034         memset(&data, 0, sizeof(data));
1035         data.length = sizeof(data);
1036         data.nv_address = __psp_pa(sev_init_ex_buffer);
1037         data.nv_len = NV_LENGTH;
1038
1039         if (sev_es_tmr) {
1040                 /*
1041                  * Do not include the encryption mask on the physical
1042                  * address of the TMR (firmware should clear it anyway).
1043                  */
1044                 data.tmr_address = __pa(sev_es_tmr);
1045
1046                 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1047                 data.tmr_len = sev_es_tmr_size;
1048         }
1049
1050         return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1051 }
1052
1053 static inline int __sev_do_init_locked(int *psp_ret)
1054 {
1055         if (sev_init_ex_buffer)
1056                 return __sev_init_ex_locked(psp_ret);
1057         else
1058                 return __sev_init_locked(psp_ret);
1059 }
1060
1061 static void snp_set_hsave_pa(void *arg)
1062 {
1063         wrmsrl(MSR_VM_HSAVE_PA, 0);
1064 }
1065
1066 static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1067 {
1068         struct sev_data_range_list *range_list = arg;
1069         struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1070         size_t size;
1071
1072         /*
1073          * Ensure the list of HV_FIXED pages that will be passed to firmware
1074          * do not exceed the page-sized argument buffer.
1075          */
1076         if ((range_list->num_elements * sizeof(struct sev_data_range) +
1077              sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1078                 return -E2BIG;
1079
1080         switch (rs->desc) {
1081         case E820_TYPE_RESERVED:
1082         case E820_TYPE_PMEM:
1083         case E820_TYPE_ACPI:
1084                 range->base = rs->start & PAGE_MASK;
1085                 size = PAGE_ALIGN((rs->end + 1) - rs->start);
1086                 range->page_count = size >> PAGE_SHIFT;
1087                 range_list->num_elements++;
1088                 break;
1089         default:
1090                 break;
1091         }
1092
1093         return 0;
1094 }
1095
1096 static int __sev_snp_init_locked(int *error)
1097 {
1098         struct psp_device *psp = psp_master;
1099         struct sev_data_snp_init_ex data;
1100         struct sev_device *sev;
1101         void *arg = &data;
1102         int cmd, rc = 0;
1103
1104         if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1105                 return -ENODEV;
1106
1107         sev = psp->sev_data;
1108
1109         if (sev->snp_initialized)
1110                 return 0;
1111
1112         if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1113                 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1114                         SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1115                 return 0;
1116         }
1117
1118         /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1119         on_each_cpu(snp_set_hsave_pa, NULL, 1);
1120
1121         /*
1122          * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1123          * of system physical address ranges to convert into HV-fixed page
1124          * states during the RMP initialization.  For instance, the memory that
1125          * UEFI reserves should be included in the that list. This allows system
1126          * components that occasionally write to memory (e.g. logging to UEFI
1127          * reserved regions) to not fail due to RMP initialization and SNP
1128          * enablement.
1129          *
1130          */
1131         if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1132                 /*
1133                  * Firmware checks that the pages containing the ranges enumerated
1134                  * in the RANGES structure are either in the default page state or in the
1135                  * firmware page state.
1136                  */
1137                 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1138                 if (!snp_range_list) {
1139                         dev_err(sev->dev,
1140                                 "SEV: SNP_INIT_EX range list memory allocation failed\n");
1141                         return -ENOMEM;
1142                 }
1143
1144                 /*
1145                  * Retrieve all reserved memory regions from the e820 memory map
1146                  * to be setup as HV-fixed pages.
1147                  */
1148                 rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1149                                          snp_range_list, snp_filter_reserved_mem_regions);
1150                 if (rc) {
1151                         dev_err(sev->dev,
1152                                 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1153                         return rc;
1154                 }
1155
1156                 memset(&data, 0, sizeof(data));
1157                 data.init_rmp = 1;
1158                 data.list_paddr_en = 1;
1159                 data.list_paddr = __psp_pa(snp_range_list);
1160                 cmd = SEV_CMD_SNP_INIT_EX;
1161         } else {
1162                 cmd = SEV_CMD_SNP_INIT;
1163                 arg = NULL;
1164         }
1165
1166         /*
1167          * The following sequence must be issued before launching the first SNP
1168          * guest to ensure all dirty cache lines are flushed, including from
1169          * updates to the RMP table itself via the RMPUPDATE instruction:
1170          *
1171          * - WBINVD on all running CPUs
1172          * - SEV_CMD_SNP_INIT[_EX] firmware command
1173          * - WBINVD on all running CPUs
1174          * - SEV_CMD_SNP_DF_FLUSH firmware command
1175          */
1176         wbinvd_on_all_cpus();
1177
1178         rc = __sev_do_cmd_locked(cmd, arg, error);
1179         if (rc)
1180                 return rc;
1181
1182         /* Prepare for first SNP guest launch after INIT. */
1183         wbinvd_on_all_cpus();
1184         rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1185         if (rc)
1186                 return rc;
1187
1188         sev->snp_initialized = true;
1189         dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1190
1191         sev_es_tmr_size = SNP_TMR_SIZE;
1192
1193         return rc;
1194 }
1195
1196 static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1197 {
1198         if (sev_es_tmr)
1199                 return;
1200
1201         /* Obtain the TMR memory area for SEV-ES use */
1202         sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1203         if (sev_es_tmr) {
1204                 /* Must flush the cache before giving it to the firmware */
1205                 if (!sev->snp_initialized)
1206                         clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1207         } else {
1208                         dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1209         }
1210 }
1211
1212 /*
1213  * If an init_ex_path is provided allocate a buffer for the file and
1214  * read in the contents. Additionally, if SNP is initialized, convert
1215  * the buffer pages to firmware pages.
1216  */
1217 static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1218 {
1219         struct page *page;
1220         int rc;
1221
1222         if (!init_ex_path)
1223                 return 0;
1224
1225         if (sev_init_ex_buffer)
1226                 return 0;
1227
1228         page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1229         if (!page) {
1230                 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1231                 return -ENOMEM;
1232         }
1233
1234         sev_init_ex_buffer = page_address(page);
1235
1236         rc = sev_read_init_ex_file();
1237         if (rc)
1238                 return rc;
1239
1240         /* If SEV-SNP is initialized, transition to firmware page. */
1241         if (sev->snp_initialized) {
1242                 unsigned long npages;
1243
1244                 npages = 1UL << get_order(NV_LENGTH);
1245                 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1246                         dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1247                         return -ENOMEM;
1248                 }
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int __sev_platform_init_locked(int *error)
1255 {
1256         int rc, psp_ret = SEV_RET_NO_FW_CALL;
1257         struct sev_device *sev;
1258
1259         if (!psp_master || !psp_master->sev_data)
1260                 return -ENODEV;
1261
1262         sev = psp_master->sev_data;
1263
1264         if (sev->state == SEV_STATE_INIT)
1265                 return 0;
1266
1267         __sev_platform_init_handle_tmr(sev);
1268
1269         rc = __sev_platform_init_handle_init_ex_path(sev);
1270         if (rc)
1271                 return rc;
1272
1273         rc = __sev_do_init_locked(&psp_ret);
1274         if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1275                 /*
1276                  * Initialization command returned an integrity check failure
1277                  * status code, meaning that firmware load and validation of SEV
1278                  * related persistent data has failed. Retrying the
1279                  * initialization function should succeed by replacing the state
1280                  * with a reset state.
1281                  */
1282                 dev_err(sev->dev,
1283 "SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1284                 rc = __sev_do_init_locked(&psp_ret);
1285         }
1286
1287         if (error)
1288                 *error = psp_ret;
1289
1290         if (rc)
1291                 return rc;
1292
1293         sev->state = SEV_STATE_INIT;
1294
1295         /* Prepare for first SEV guest launch after INIT */
1296         wbinvd_on_all_cpus();
1297         rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1298         if (rc)
1299                 return rc;
1300
1301         dev_dbg(sev->dev, "SEV firmware initialized\n");
1302
1303         dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1304                  sev->api_minor, sev->build);
1305
1306         return 0;
1307 }
1308
1309 static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1310 {
1311         struct sev_device *sev;
1312         int rc;
1313
1314         if (!psp_master || !psp_master->sev_data)
1315                 return -ENODEV;
1316
1317         sev = psp_master->sev_data;
1318
1319         if (sev->state == SEV_STATE_INIT)
1320                 return 0;
1321
1322         /*
1323          * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1324          * so perform SEV-SNP initialization at probe time.
1325          */
1326         rc = __sev_snp_init_locked(&args->error);
1327         if (rc && rc != -ENODEV) {
1328                 /*
1329                  * Don't abort the probe if SNP INIT failed,
1330                  * continue to initialize the legacy SEV firmware.
1331                  */
1332                 dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1333                         rc, args->error);
1334         }
1335
1336         /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1337         if (args->probe && !psp_init_on_probe)
1338                 return 0;
1339
1340         return __sev_platform_init_locked(&args->error);
1341 }
1342
1343 int sev_platform_init(struct sev_platform_init_args *args)
1344 {
1345         int rc;
1346
1347         mutex_lock(&sev_cmd_mutex);
1348         rc = _sev_platform_init_locked(args);
1349         mutex_unlock(&sev_cmd_mutex);
1350
1351         return rc;
1352 }
1353 EXPORT_SYMBOL_GPL(sev_platform_init);
1354
1355 static int __sev_platform_shutdown_locked(int *error)
1356 {
1357         struct psp_device *psp = psp_master;
1358         struct sev_device *sev;
1359         int ret;
1360
1361         if (!psp || !psp->sev_data)
1362                 return 0;
1363
1364         sev = psp->sev_data;
1365
1366         if (sev->state == SEV_STATE_UNINIT)
1367                 return 0;
1368
1369         ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1370         if (ret)
1371                 return ret;
1372
1373         sev->state = SEV_STATE_UNINIT;
1374         dev_dbg(sev->dev, "SEV firmware shutdown\n");
1375
1376         return ret;
1377 }
1378
1379 static int sev_get_platform_state(int *state, int *error)
1380 {
1381         struct sev_user_data_status data;
1382         int rc;
1383
1384         rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1385         if (rc)
1386                 return rc;
1387
1388         *state = data.state;
1389         return rc;
1390 }
1391
1392 static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1393 {
1394         int state, rc;
1395
1396         if (!writable)
1397                 return -EPERM;
1398
1399         /*
1400          * The SEV spec requires that FACTORY_RESET must be issued in
1401          * UNINIT state. Before we go further lets check if any guest is
1402          * active.
1403          *
1404          * If FW is in WORKING state then deny the request otherwise issue
1405          * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1406          *
1407          */
1408         rc = sev_get_platform_state(&state, &argp->error);
1409         if (rc)
1410                 return rc;
1411
1412         if (state == SEV_STATE_WORKING)
1413                 return -EBUSY;
1414
1415         if (state == SEV_STATE_INIT) {
1416                 rc = __sev_platform_shutdown_locked(&argp->error);
1417                 if (rc)
1418                         return rc;
1419         }
1420
1421         return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1422 }
1423
1424 static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1425 {
1426         struct sev_user_data_status data;
1427         int ret;
1428
1429         memset(&data, 0, sizeof(data));
1430
1431         ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1432         if (ret)
1433                 return ret;
1434
1435         if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1436                 ret = -EFAULT;
1437
1438         return ret;
1439 }
1440
1441 static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1442 {
1443         struct sev_device *sev = psp_master->sev_data;
1444         int rc;
1445
1446         if (!writable)
1447                 return -EPERM;
1448
1449         if (sev->state == SEV_STATE_UNINIT) {
1450                 rc = __sev_platform_init_locked(&argp->error);
1451                 if (rc)
1452                         return rc;
1453         }
1454
1455         return __sev_do_cmd_locked(cmd, NULL, &argp->error);
1456 }
1457
1458 static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1459 {
1460         struct sev_device *sev = psp_master->sev_data;
1461         struct sev_user_data_pek_csr input;
1462         struct sev_data_pek_csr data;
1463         void __user *input_address;
1464         void *blob = NULL;
1465         int ret;
1466
1467         if (!writable)
1468                 return -EPERM;
1469
1470         if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1471                 return -EFAULT;
1472
1473         memset(&data, 0, sizeof(data));
1474
1475         /* userspace wants to query CSR length */
1476         if (!input.address || !input.length)
1477                 goto cmd;
1478
1479         /* allocate a physically contiguous buffer to store the CSR blob */
1480         input_address = (void __user *)input.address;
1481         if (input.length > SEV_FW_BLOB_MAX_SIZE)
1482                 return -EFAULT;
1483
1484         blob = kzalloc(input.length, GFP_KERNEL);
1485         if (!blob)
1486                 return -ENOMEM;
1487
1488         data.address = __psp_pa(blob);
1489         data.len = input.length;
1490
1491 cmd:
1492         if (sev->state == SEV_STATE_UNINIT) {
1493                 ret = __sev_platform_init_locked(&argp->error);
1494                 if (ret)
1495                         goto e_free_blob;
1496         }
1497
1498         ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1499
1500          /* If we query the CSR length, FW responded with expected data. */
1501         input.length = data.len;
1502
1503         if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1504                 ret = -EFAULT;
1505                 goto e_free_blob;
1506         }
1507
1508         if (blob) {
1509                 if (copy_to_user(input_address, blob, input.length))
1510                         ret = -EFAULT;
1511         }
1512
1513 e_free_blob:
1514         kfree(blob);
1515         return ret;
1516 }
1517
1518 void *psp_copy_user_blob(u64 uaddr, u32 len)
1519 {
1520         if (!uaddr || !len)
1521                 return ERR_PTR(-EINVAL);
1522
1523         /* verify that blob length does not exceed our limit */
1524         if (len > SEV_FW_BLOB_MAX_SIZE)
1525                 return ERR_PTR(-EINVAL);
1526
1527         return memdup_user((void __user *)uaddr, len);
1528 }
1529 EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1530
1531 static int sev_get_api_version(void)
1532 {
1533         struct sev_device *sev = psp_master->sev_data;
1534         struct sev_user_data_status status;
1535         int error = 0, ret;
1536
1537         ret = sev_platform_status(&status, &error);
1538         if (ret) {
1539                 dev_err(sev->dev,
1540                         "SEV: failed to get status. Error: %#x\n", error);
1541                 return 1;
1542         }
1543
1544         sev->api_major = status.api_major;
1545         sev->api_minor = status.api_minor;
1546         sev->build = status.build;
1547         sev->state = status.state;
1548
1549         return 0;
1550 }
1551
1552 static int sev_get_firmware(struct device *dev,
1553                             const struct firmware **firmware)
1554 {
1555         char fw_name_specific[SEV_FW_NAME_SIZE];
1556         char fw_name_subset[SEV_FW_NAME_SIZE];
1557
1558         snprintf(fw_name_specific, sizeof(fw_name_specific),
1559                  "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1560                  boot_cpu_data.x86, boot_cpu_data.x86_model);
1561
1562         snprintf(fw_name_subset, sizeof(fw_name_subset),
1563                  "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1564                  boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1565
1566         /* Check for SEV FW for a particular model.
1567          * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1568          *
1569          * or
1570          *
1571          * Check for SEV FW common to a subset of models.
1572          * Ex. amd_sev_fam17h_model0xh.sbin for
1573          *     Family 17h Model 00h -- Family 17h Model 0Fh
1574          *
1575          * or
1576          *
1577          * Fall-back to using generic name: sev.fw
1578          */
1579         if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1580             (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1581             (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1582                 return 0;
1583
1584         return -ENOENT;
1585 }
1586
1587 /* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1588 static int sev_update_firmware(struct device *dev)
1589 {
1590         struct sev_data_download_firmware *data;
1591         const struct firmware *firmware;
1592         int ret, error, order;
1593         struct page *p;
1594         u64 data_size;
1595
1596         if (!sev_version_greater_or_equal(0, 15)) {
1597                 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1598                 return -1;
1599         }
1600
1601         if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1602                 dev_dbg(dev, "No SEV firmware file present\n");
1603                 return -1;
1604         }
1605
1606         /*
1607          * SEV FW expects the physical address given to it to be 32
1608          * byte aligned. Memory allocated has structure placed at the
1609          * beginning followed by the firmware being passed to the SEV
1610          * FW. Allocate enough memory for data structure + alignment
1611          * padding + SEV FW.
1612          */
1613         data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1614
1615         order = get_order(firmware->size + data_size);
1616         p = alloc_pages(GFP_KERNEL, order);
1617         if (!p) {
1618                 ret = -1;
1619                 goto fw_err;
1620         }
1621
1622         /*
1623          * Copy firmware data to a kernel allocated contiguous
1624          * memory region.
1625          */
1626         data = page_address(p);
1627         memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1628
1629         data->address = __psp_pa(page_address(p) + data_size);
1630         data->len = firmware->size;
1631
1632         ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1633
1634         /*
1635          * A quirk for fixing the committed TCB version, when upgrading from
1636          * earlier firmware version than 1.50.
1637          */
1638         if (!ret && !sev_version_greater_or_equal(1, 50))
1639                 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1640
1641         if (ret)
1642                 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1643
1644         __free_pages(p, order);
1645
1646 fw_err:
1647         release_firmware(firmware);
1648
1649         return ret;
1650 }
1651
1652 static int __sev_snp_shutdown_locked(int *error, bool panic)
1653 {
1654         struct psp_device *psp = psp_master;
1655         struct sev_device *sev;
1656         struct sev_data_snp_shutdown_ex data;
1657         int ret;
1658
1659         if (!psp || !psp->sev_data)
1660                 return 0;
1661
1662         sev = psp->sev_data;
1663
1664         if (!sev->snp_initialized)
1665                 return 0;
1666
1667         memset(&data, 0, sizeof(data));
1668         data.len = sizeof(data);
1669         data.iommu_snp_shutdown = 1;
1670
1671         /*
1672          * If invoked during panic handling, local interrupts are disabled
1673          * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1674          * In that case, a wbinvd() is done on remote CPUs via the NMI
1675          * callback, so only a local wbinvd() is needed here.
1676          */
1677         if (!panic)
1678                 wbinvd_on_all_cpus();
1679         else
1680                 wbinvd();
1681
1682         ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1683         /* SHUTDOWN may require DF_FLUSH */
1684         if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1685                 ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1686                 if (ret) {
1687                         dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1688                         return ret;
1689                 }
1690                 /* reissue the shutdown command */
1691                 ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1692                                           error);
1693         }
1694         if (ret) {
1695                 dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1696                 return ret;
1697         }
1698
1699         /*
1700          * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1701          * enforcement by the IOMMU and also transitions all pages
1702          * associated with the IOMMU to the Reclaim state.
1703          * Firmware was transitioning the IOMMU pages to Hypervisor state
1704          * before version 1.53. But, accounting for the number of assigned
1705          * 4kB pages in a 2M page was done incorrectly by not transitioning
1706          * to the Reclaim state. This resulted in RMP #PF when later accessing
1707          * the 2M page containing those pages during kexec boot. Hence, the
1708          * firmware now transitions these pages to Reclaim state and hypervisor
1709          * needs to transition these pages to shared state. SNP Firmware
1710          * version 1.53 and above are needed for kexec boot.
1711          */
1712         ret = amd_iommu_snp_disable();
1713         if (ret) {
1714                 dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1715                 return ret;
1716         }
1717
1718         sev->snp_initialized = false;
1719         dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1720
1721         return ret;
1722 }
1723
1724 static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1725 {
1726         struct sev_device *sev = psp_master->sev_data;
1727         struct sev_user_data_pek_cert_import input;
1728         struct sev_data_pek_cert_import data;
1729         void *pek_blob, *oca_blob;
1730         int ret;
1731
1732         if (!writable)
1733                 return -EPERM;
1734
1735         if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1736                 return -EFAULT;
1737
1738         /* copy PEK certificate blobs from userspace */
1739         pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1740         if (IS_ERR(pek_blob))
1741                 return PTR_ERR(pek_blob);
1742
1743         data.reserved = 0;
1744         data.pek_cert_address = __psp_pa(pek_blob);
1745         data.pek_cert_len = input.pek_cert_len;
1746
1747         /* copy PEK certificate blobs from userspace */
1748         oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1749         if (IS_ERR(oca_blob)) {
1750                 ret = PTR_ERR(oca_blob);
1751                 goto e_free_pek;
1752         }
1753
1754         data.oca_cert_address = __psp_pa(oca_blob);
1755         data.oca_cert_len = input.oca_cert_len;
1756
1757         /* If platform is not in INIT state then transition it to INIT */
1758         if (sev->state != SEV_STATE_INIT) {
1759                 ret = __sev_platform_init_locked(&argp->error);
1760                 if (ret)
1761                         goto e_free_oca;
1762         }
1763
1764         ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1765
1766 e_free_oca:
1767         kfree(oca_blob);
1768 e_free_pek:
1769         kfree(pek_blob);
1770         return ret;
1771 }
1772
1773 static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1774 {
1775         struct sev_user_data_get_id2 input;
1776         struct sev_data_get_id data;
1777         void __user *input_address;
1778         void *id_blob = NULL;
1779         int ret;
1780
1781         /* SEV GET_ID is available from SEV API v0.16 and up */
1782         if (!sev_version_greater_or_equal(0, 16))
1783                 return -ENOTSUPP;
1784
1785         if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1786                 return -EFAULT;
1787
1788         input_address = (void __user *)input.address;
1789
1790         if (input.address && input.length) {
1791                 /*
1792                  * The length of the ID shouldn't be assumed by software since
1793                  * it may change in the future.  The allocation size is limited
1794                  * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1795                  * If the allocation fails, simply return ENOMEM rather than
1796                  * warning in the kernel log.
1797                  */
1798                 id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1799                 if (!id_blob)
1800                         return -ENOMEM;
1801
1802                 data.address = __psp_pa(id_blob);
1803                 data.len = input.length;
1804         } else {
1805                 data.address = 0;
1806                 data.len = 0;
1807         }
1808
1809         ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1810
1811         /*
1812          * Firmware will return the length of the ID value (either the minimum
1813          * required length or the actual length written), return it to the user.
1814          */
1815         input.length = data.len;
1816
1817         if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1818                 ret = -EFAULT;
1819                 goto e_free;
1820         }
1821
1822         if (id_blob) {
1823                 if (copy_to_user(input_address, id_blob, data.len)) {
1824                         ret = -EFAULT;
1825                         goto e_free;
1826                 }
1827         }
1828
1829 e_free:
1830         kfree(id_blob);
1831
1832         return ret;
1833 }
1834
1835 static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1836 {
1837         struct sev_data_get_id *data;
1838         u64 data_size, user_size;
1839         void *id_blob, *mem;
1840         int ret;
1841
1842         /* SEV GET_ID available from SEV API v0.16 and up */
1843         if (!sev_version_greater_or_equal(0, 16))
1844                 return -ENOTSUPP;
1845
1846         /* SEV FW expects the buffer it fills with the ID to be
1847          * 8-byte aligned. Memory allocated should be enough to
1848          * hold data structure + alignment padding + memory
1849          * where SEV FW writes the ID.
1850          */
1851         data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1852         user_size = sizeof(struct sev_user_data_get_id);
1853
1854         mem = kzalloc(data_size + user_size, GFP_KERNEL);
1855         if (!mem)
1856                 return -ENOMEM;
1857
1858         data = mem;
1859         id_blob = mem + data_size;
1860
1861         data->address = __psp_pa(id_blob);
1862         data->len = user_size;
1863
1864         ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1865         if (!ret) {
1866                 if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1867                         ret = -EFAULT;
1868         }
1869
1870         kfree(mem);
1871
1872         return ret;
1873 }
1874
1875 static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1876 {
1877         struct sev_device *sev = psp_master->sev_data;
1878         struct sev_user_data_pdh_cert_export input;
1879         void *pdh_blob = NULL, *cert_blob = NULL;
1880         struct sev_data_pdh_cert_export data;
1881         void __user *input_cert_chain_address;
1882         void __user *input_pdh_cert_address;
1883         int ret;
1884
1885         /* If platform is not in INIT state then transition it to INIT. */
1886         if (sev->state != SEV_STATE_INIT) {
1887                 if (!writable)
1888                         return -EPERM;
1889
1890                 ret = __sev_platform_init_locked(&argp->error);
1891                 if (ret)
1892                         return ret;
1893         }
1894
1895         if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1896                 return -EFAULT;
1897
1898         memset(&data, 0, sizeof(data));
1899
1900         /* Userspace wants to query the certificate length. */
1901         if (!input.pdh_cert_address ||
1902             !input.pdh_cert_len ||
1903             !input.cert_chain_address)
1904                 goto cmd;
1905
1906         input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1907         input_cert_chain_address = (void __user *)input.cert_chain_address;
1908
1909         /* Allocate a physically contiguous buffer to store the PDH blob. */
1910         if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1911                 return -EFAULT;
1912
1913         /* Allocate a physically contiguous buffer to store the cert chain blob. */
1914         if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1915                 return -EFAULT;
1916
1917         pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1918         if (!pdh_blob)
1919                 return -ENOMEM;
1920
1921         data.pdh_cert_address = __psp_pa(pdh_blob);
1922         data.pdh_cert_len = input.pdh_cert_len;
1923
1924         cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1925         if (!cert_blob) {
1926                 ret = -ENOMEM;
1927                 goto e_free_pdh;
1928         }
1929
1930         data.cert_chain_address = __psp_pa(cert_blob);
1931         data.cert_chain_len = input.cert_chain_len;
1932
1933 cmd:
1934         ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1935
1936         /* If we query the length, FW responded with expected data. */
1937         input.cert_chain_len = data.cert_chain_len;
1938         input.pdh_cert_len = data.pdh_cert_len;
1939
1940         if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1941                 ret = -EFAULT;
1942                 goto e_free_cert;
1943         }
1944
1945         if (pdh_blob) {
1946                 if (copy_to_user(input_pdh_cert_address,
1947                                  pdh_blob, input.pdh_cert_len)) {
1948                         ret = -EFAULT;
1949                         goto e_free_cert;
1950                 }
1951         }
1952
1953         if (cert_blob) {
1954                 if (copy_to_user(input_cert_chain_address,
1955                                  cert_blob, input.cert_chain_len))
1956                         ret = -EFAULT;
1957         }
1958
1959 e_free_cert:
1960         kfree(cert_blob);
1961 e_free_pdh:
1962         kfree(pdh_blob);
1963         return ret;
1964 }
1965
1966 static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1967 {
1968         struct sev_device *sev = psp_master->sev_data;
1969         struct sev_data_snp_addr buf;
1970         struct page *status_page;
1971         void *data;
1972         int ret;
1973
1974         if (!sev->snp_initialized || !argp->data)
1975                 return -EINVAL;
1976
1977         status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1978         if (!status_page)
1979                 return -ENOMEM;
1980
1981         data = page_address(status_page);
1982
1983         /*
1984          * Firmware expects status page to be in firmware-owned state, otherwise
1985          * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1986          */
1987         if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
1988                 ret = -EFAULT;
1989                 goto cleanup;
1990         }
1991
1992         buf.address = __psp_pa(data);
1993         ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
1994
1995         /*
1996          * Status page will be transitioned to Reclaim state upon success, or
1997          * left in Firmware state in failure. Use snp_reclaim_pages() to
1998          * transition either case back to Hypervisor-owned state.
1999          */
2000         if (snp_reclaim_pages(__pa(data), 1, true))
2001                 return -EFAULT;
2002
2003         if (ret)
2004                 goto cleanup;
2005
2006         if (copy_to_user((void __user *)argp->data, data,
2007                          sizeof(struct sev_user_data_snp_status)))
2008                 ret = -EFAULT;
2009
2010 cleanup:
2011         __free_pages(status_page, 0);
2012         return ret;
2013 }
2014
2015 static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2016 {
2017         struct sev_device *sev = psp_master->sev_data;
2018         struct sev_data_snp_commit buf;
2019
2020         if (!sev->snp_initialized)
2021                 return -EINVAL;
2022
2023         buf.len = sizeof(buf);
2024
2025         return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2026 }
2027
2028 static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2029 {
2030         struct sev_device *sev = psp_master->sev_data;
2031         struct sev_user_data_snp_config config;
2032
2033         if (!sev->snp_initialized || !argp->data)
2034                 return -EINVAL;
2035
2036         if (!writable)
2037                 return -EPERM;
2038
2039         if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2040                 return -EFAULT;
2041
2042         return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2043 }
2044
2045 static int sev_ioctl_do_snp_vlek_load(struct sev_issue_cmd *argp, bool writable)
2046 {
2047         struct sev_device *sev = psp_master->sev_data;
2048         struct sev_user_data_snp_vlek_load input;
2049         void *blob;
2050         int ret;
2051
2052         if (!sev->snp_initialized || !argp->data)
2053                 return -EINVAL;
2054
2055         if (!writable)
2056                 return -EPERM;
2057
2058         if (copy_from_user(&input, u64_to_user_ptr(argp->data), sizeof(input)))
2059                 return -EFAULT;
2060
2061         if (input.len != sizeof(input) || input.vlek_wrapped_version != 0)
2062                 return -EINVAL;
2063
2064         blob = psp_copy_user_blob(input.vlek_wrapped_address,
2065                                   sizeof(struct sev_user_data_snp_wrapped_vlek_hashstick));
2066         if (IS_ERR(blob))
2067                 return PTR_ERR(blob);
2068
2069         input.vlek_wrapped_address = __psp_pa(blob);
2070
2071         ret = __sev_do_cmd_locked(SEV_CMD_SNP_VLEK_LOAD, &input, &argp->error);
2072
2073         kfree(blob);
2074
2075         return ret;
2076 }
2077
2078 static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2079 {
2080         void __user *argp = (void __user *)arg;
2081         struct sev_issue_cmd input;
2082         int ret = -EFAULT;
2083         bool writable = file->f_mode & FMODE_WRITE;
2084
2085         if (!psp_master || !psp_master->sev_data)
2086                 return -ENODEV;
2087
2088         if (ioctl != SEV_ISSUE_CMD)
2089                 return -EINVAL;
2090
2091         if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2092                 return -EFAULT;
2093
2094         if (input.cmd > SEV_MAX)
2095                 return -EINVAL;
2096
2097         mutex_lock(&sev_cmd_mutex);
2098
2099         switch (input.cmd) {
2100
2101         case SEV_FACTORY_RESET:
2102                 ret = sev_ioctl_do_reset(&input, writable);
2103                 break;
2104         case SEV_PLATFORM_STATUS:
2105                 ret = sev_ioctl_do_platform_status(&input);
2106                 break;
2107         case SEV_PEK_GEN:
2108                 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2109                 break;
2110         case SEV_PDH_GEN:
2111                 ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2112                 break;
2113         case SEV_PEK_CSR:
2114                 ret = sev_ioctl_do_pek_csr(&input, writable);
2115                 break;
2116         case SEV_PEK_CERT_IMPORT:
2117                 ret = sev_ioctl_do_pek_import(&input, writable);
2118                 break;
2119         case SEV_PDH_CERT_EXPORT:
2120                 ret = sev_ioctl_do_pdh_export(&input, writable);
2121                 break;
2122         case SEV_GET_ID:
2123                 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2124                 ret = sev_ioctl_do_get_id(&input);
2125                 break;
2126         case SEV_GET_ID2:
2127                 ret = sev_ioctl_do_get_id2(&input);
2128                 break;
2129         case SNP_PLATFORM_STATUS:
2130                 ret = sev_ioctl_do_snp_platform_status(&input);
2131                 break;
2132         case SNP_COMMIT:
2133                 ret = sev_ioctl_do_snp_commit(&input);
2134                 break;
2135         case SNP_SET_CONFIG:
2136                 ret = sev_ioctl_do_snp_set_config(&input, writable);
2137                 break;
2138         case SNP_VLEK_LOAD:
2139                 ret = sev_ioctl_do_snp_vlek_load(&input, writable);
2140                 break;
2141         default:
2142                 ret = -EINVAL;
2143                 goto out;
2144         }
2145
2146         if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2147                 ret = -EFAULT;
2148 out:
2149         mutex_unlock(&sev_cmd_mutex);
2150
2151         return ret;
2152 }
2153
2154 static const struct file_operations sev_fops = {
2155         .owner  = THIS_MODULE,
2156         .unlocked_ioctl = sev_ioctl,
2157 };
2158
2159 int sev_platform_status(struct sev_user_data_status *data, int *error)
2160 {
2161         return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2162 }
2163 EXPORT_SYMBOL_GPL(sev_platform_status);
2164
2165 int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2166 {
2167         return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2168 }
2169 EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2170
2171 int sev_guest_activate(struct sev_data_activate *data, int *error)
2172 {
2173         return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2174 }
2175 EXPORT_SYMBOL_GPL(sev_guest_activate);
2176
2177 int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2178 {
2179         return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2180 }
2181 EXPORT_SYMBOL_GPL(sev_guest_decommission);
2182
2183 int sev_guest_df_flush(int *error)
2184 {
2185         return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2186 }
2187 EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2188
2189 static void sev_exit(struct kref *ref)
2190 {
2191         misc_deregister(&misc_dev->misc);
2192         kfree(misc_dev);
2193         misc_dev = NULL;
2194 }
2195
2196 static int sev_misc_init(struct sev_device *sev)
2197 {
2198         struct device *dev = sev->dev;
2199         int ret;
2200
2201         /*
2202          * SEV feature support can be detected on multiple devices but the SEV
2203          * FW commands must be issued on the master. During probe, we do not
2204          * know the master hence we create /dev/sev on the first device probe.
2205          * sev_do_cmd() finds the right master device to which to issue the
2206          * command to the firmware.
2207          */
2208         if (!misc_dev) {
2209                 struct miscdevice *misc;
2210
2211                 misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2212                 if (!misc_dev)
2213                         return -ENOMEM;
2214
2215                 misc = &misc_dev->misc;
2216                 misc->minor = MISC_DYNAMIC_MINOR;
2217                 misc->name = DEVICE_NAME;
2218                 misc->fops = &sev_fops;
2219
2220                 ret = misc_register(misc);
2221                 if (ret)
2222                         return ret;
2223
2224                 kref_init(&misc_dev->refcount);
2225         } else {
2226                 kref_get(&misc_dev->refcount);
2227         }
2228
2229         init_waitqueue_head(&sev->int_queue);
2230         sev->misc = misc_dev;
2231         dev_dbg(dev, "registered SEV device\n");
2232
2233         return 0;
2234 }
2235
2236 int sev_dev_init(struct psp_device *psp)
2237 {
2238         struct device *dev = psp->dev;
2239         struct sev_device *sev;
2240         int ret = -ENOMEM;
2241
2242         if (!boot_cpu_has(X86_FEATURE_SEV)) {
2243                 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2244                 return 0;
2245         }
2246
2247         sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2248         if (!sev)
2249                 goto e_err;
2250
2251         sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2252         if (!sev->cmd_buf)
2253                 goto e_sev;
2254
2255         sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2256
2257         psp->sev_data = sev;
2258
2259         sev->dev = dev;
2260         sev->psp = psp;
2261
2262         sev->io_regs = psp->io_regs;
2263
2264         sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2265         if (!sev->vdata) {
2266                 ret = -ENODEV;
2267                 dev_err(dev, "sev: missing driver data\n");
2268                 goto e_buf;
2269         }
2270
2271         psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2272
2273         ret = sev_misc_init(sev);
2274         if (ret)
2275                 goto e_irq;
2276
2277         dev_notice(dev, "sev enabled\n");
2278
2279         return 0;
2280
2281 e_irq:
2282         psp_clear_sev_irq_handler(psp);
2283 e_buf:
2284         devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2285 e_sev:
2286         devm_kfree(dev, sev);
2287 e_err:
2288         psp->sev_data = NULL;
2289
2290         dev_notice(dev, "sev initialization failed\n");
2291
2292         return ret;
2293 }
2294
2295 static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2296 {
2297         int error;
2298
2299         __sev_platform_shutdown_locked(NULL);
2300
2301         if (sev_es_tmr) {
2302                 /*
2303                  * The TMR area was encrypted, flush it from the cache.
2304                  *
2305                  * If invoked during panic handling, local interrupts are
2306                  * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2307                  * can't be used. In that case, wbinvd() is done on remote CPUs
2308                  * via the NMI callback, and done for this CPU later during
2309                  * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2310                  */
2311                 if (!panic)
2312                         wbinvd_on_all_cpus();
2313
2314                 __snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2315                                           get_order(sev_es_tmr_size),
2316                                           true);
2317                 sev_es_tmr = NULL;
2318         }
2319
2320         if (sev_init_ex_buffer) {
2321                 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2322                                           get_order(NV_LENGTH),
2323                                           true);
2324                 sev_init_ex_buffer = NULL;
2325         }
2326
2327         if (snp_range_list) {
2328                 kfree(snp_range_list);
2329                 snp_range_list = NULL;
2330         }
2331
2332         __sev_snp_shutdown_locked(&error, panic);
2333 }
2334
2335 static void sev_firmware_shutdown(struct sev_device *sev)
2336 {
2337         mutex_lock(&sev_cmd_mutex);
2338         __sev_firmware_shutdown(sev, false);
2339         mutex_unlock(&sev_cmd_mutex);
2340 }
2341
2342 void sev_dev_destroy(struct psp_device *psp)
2343 {
2344         struct sev_device *sev = psp->sev_data;
2345
2346         if (!sev)
2347                 return;
2348
2349         sev_firmware_shutdown(sev);
2350
2351         if (sev->misc)
2352                 kref_put(&misc_dev->refcount, sev_exit);
2353
2354         psp_clear_sev_irq_handler(psp);
2355 }
2356
2357 static int snp_shutdown_on_panic(struct notifier_block *nb,
2358                                  unsigned long reason, void *arg)
2359 {
2360         struct sev_device *sev = psp_master->sev_data;
2361
2362         /*
2363          * If sev_cmd_mutex is already acquired, then it's likely
2364          * another PSP command is in flight and issuing a shutdown
2365          * would fail in unexpected ways. Rather than create even
2366          * more confusion during a panic, just bail out here.
2367          */
2368         if (mutex_is_locked(&sev_cmd_mutex))
2369                 return NOTIFY_DONE;
2370
2371         __sev_firmware_shutdown(sev, true);
2372
2373         return NOTIFY_DONE;
2374 }
2375
2376 static struct notifier_block snp_panic_notifier = {
2377         .notifier_call = snp_shutdown_on_panic,
2378 };
2379
2380 int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2381                                 void *data, int *error)
2382 {
2383         if (!filep || filep->f_op != &sev_fops)
2384                 return -EBADF;
2385
2386         return sev_do_cmd(cmd, data, error);
2387 }
2388 EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2389
2390 void sev_pci_init(void)
2391 {
2392         struct sev_device *sev = psp_master->sev_data;
2393         struct sev_platform_init_args args = {0};
2394         u8 api_major, api_minor, build;
2395         int rc;
2396
2397         if (!sev)
2398                 return;
2399
2400         psp_timeout = psp_probe_timeout;
2401
2402         if (sev_get_api_version())
2403                 goto err;
2404
2405         api_major = sev->api_major;
2406         api_minor = sev->api_minor;
2407         build     = sev->build;
2408
2409         if (sev_update_firmware(sev->dev) == 0)
2410                 sev_get_api_version();
2411
2412         if (api_major != sev->api_major || api_minor != sev->api_minor ||
2413             build != sev->build)
2414                 dev_info(sev->dev, "SEV firmware updated from %d.%d.%d to %d.%d.%d\n",
2415                          api_major, api_minor, build,
2416                          sev->api_major, sev->api_minor, sev->build);
2417
2418         /* Initialize the platform */
2419         args.probe = true;
2420         rc = sev_platform_init(&args);
2421         if (rc)
2422                 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2423                         args.error, rc);
2424
2425         dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2426                 "-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2427
2428         atomic_notifier_chain_register(&panic_notifier_list,
2429                                        &snp_panic_notifier);
2430         return;
2431
2432 err:
2433         sev_dev_destroy(psp_master);
2434
2435         psp_master->sev_data = NULL;
2436 }
2437
2438 void sev_pci_exit(void)
2439 {
2440         struct sev_device *sev = psp_master->sev_data;
2441
2442         if (!sev)
2443                 return;
2444
2445         sev_firmware_shutdown(sev);
2446
2447         atomic_notifier_chain_unregister(&panic_notifier_list,
2448                                          &snp_panic_notifier);
2449 }
This page took 0.17069 seconds and 4 git commands to generate.