1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_VMX_H
3 #define __KVM_X86_VMX_H
5 #include <linux/kvm_host.h>
8 #include <asm/intel_pt.h>
9 #include <asm/perf_event.h>
10 #include <asm/posted_intr.h>
12 #include "capabilities.h"
13 #include "../kvm_cache_regs.h"
17 #include "run_flags.h"
20 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
23 #define MAX_NR_USER_RETURN_MSRS 7
25 #define MAX_NR_USER_RETURN_MSRS 4
28 #define MAX_NR_LOADSTORE_MSRS 8
32 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS];
36 bool load_into_hardware;
41 enum segment_cache_field {
50 #define RTIT_ADDR_RANGE 4
58 u64 addr_a[RTIT_ADDR_RANGE];
59 u64 addr_b[RTIT_ADDR_RANGE];
64 u32 num_address_ranges;
65 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
70 union vmx_exit_reason {
83 u32 bus_lock_detected : 1;
85 u32 smi_pending_mtf : 1;
86 u32 smi_from_vmx_root : 1;
88 u32 failed_vmentry : 1;
94 /* Basic info about guest LBR records. */
95 struct x86_pmu_lbr records;
98 * Emulate LBR feature via passthrough LBR registers when the
99 * per-vcpu guest LBR event is scheduled on the current pcpu.
101 * The records may be inaccurate if the host reclaims the LBR.
103 struct perf_event *event;
105 /* True if LBRs are marked as not intercepted in the MSR bitmap */
106 bool msr_passthrough;
109 extern struct x86_pmu_lbr vmx_lbr_caps;
112 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
113 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
116 /* Has the level1 guest done vmxon? */
121 /* The guest-physical address of the current VMCS L1 keeps for L2 */
124 * Cache of the guest's VMCS, existing outside of guest memory.
125 * Loaded from guest memory during VMPTRLD. Flushed to guest
126 * memory during VMCLEAR and VMPTRLD.
128 struct vmcs12 *cached_vmcs12;
130 * Cache of the guest's shadow VMCS, existing outside of guest
131 * memory. Loaded from guest memory during VM entry. Flushed
132 * to guest memory during VM exit.
134 struct vmcs12 *cached_shadow_vmcs12;
137 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
139 struct gfn_to_hva_cache shadow_vmcs12_cache;
142 * GPA to HVA cache for VMCS12
144 struct gfn_to_hva_cache vmcs12_cache;
147 * Indicates if the shadow vmcs or enlightened vmcs must be updated
148 * with the data held by struct vmcs12.
150 bool need_vmcs12_to_shadow_sync;
154 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
155 * changes in MSR bitmap for L1 or switching to a different L2. Note,
156 * this flag can only be used reliably in conjunction with a paravirt L1
157 * which informs L0 whether any changes to MSR bitmap for L2 were done
160 bool force_msr_bitmap_recalc;
163 * Indicates lazily loaded guest state has not yet been decached from
166 bool need_sync_vmcs02_to_vmcs12_rare;
169 * vmcs02 has been initialized, i.e. state that is constant for
170 * vmcs02 has been written to the backing VMCS. Initialization
171 * is delayed until L1 actually attempts to run a nested VM.
173 bool vmcs02_initialized;
175 bool change_vmcs01_virtual_apic_mode;
176 bool reload_vmcs01_apic_access_page;
177 bool update_vmcs01_cpu_dirty_logging;
178 bool update_vmcs01_apicv_status;
179 bool update_vmcs01_hwapic_isr;
182 * Enlightened VMCS has been enabled. It does not mean that L1 has to
183 * use it. However, VMX features available to L1 will be limited based
184 * on what the enlightened VMCS supports.
186 bool enlightened_vmcs_enabled;
188 /* L2 must run next, and mustn't decide to exit to L1. */
189 bool nested_run_pending;
191 /* Pending MTF VM-exit into L1. */
194 struct loaded_vmcs vmcs02;
197 * Guest pages referred to in the vmcs02 with host-physical
198 * pointers, so we must keep them pinned while L2 runs.
200 struct kvm_host_map apic_access_page_map;
201 struct kvm_host_map virtual_apic_map;
202 struct kvm_host_map pi_desc_map;
204 struct pi_desc *pi_desc;
208 struct hrtimer preemption_timer;
209 u64 preemption_timer_deadline;
210 bool has_preemption_timer_deadline;
211 bool preemption_timer_expired;
214 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
215 * order to propagate the guest's pre-VM-Enter value into vmcs02. For
216 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
217 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
218 * userspace restores MSRs before nested state. If userspace restores
219 * MSRs after nested state, the snapshot holds garbage, but KVM can't
220 * detect that, and the garbage value in vmcs02 will be overwritten by
221 * MSR restoration in any case.
223 u64 pre_vmenter_debugctl;
224 u64 pre_vmenter_bndcfgs;
226 /* to migrate it to L1 if L2 writes to L1's CR8 directly */
227 int l1_tpr_threshold;
232 struct nested_vmx_msrs msrs;
234 /* SMM related state */
236 /* in VMX operation on SMM entry? */
238 /* in guest mode on SMM entry? */
242 #ifdef CONFIG_KVM_HYPERV
243 gpa_t hv_evmcs_vmptr;
244 struct kvm_host_map hv_evmcs_map;
245 struct hv_enlightened_vmcs *hv_evmcs;
250 struct kvm_vcpu vcpu;
252 u8 x2apic_msr_bitmap_mode;
255 * If true, host state has been stored in vmx->loaded_vmcs for
256 * the CPU registers that only need to be switched when transitioning
257 * to/from the kernel, and the registers have been loaded with guest
258 * values. If false, host state is loaded in the CPU registers
259 * and vmx->loaded_vmcs->host_state is invalid.
261 bool guest_state_loaded;
263 unsigned long exit_qualification;
265 u32 idt_vectoring_info;
269 * User return MSRs are always emulated when enabled in the guest, but
270 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
271 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
272 * be loaded into hardware if those conditions aren't met.
274 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
275 bool guest_uret_msrs_loaded;
277 u64 msr_host_kernel_gs_base;
278 u64 msr_guest_kernel_gs_base;
282 u32 msr_ia32_umwait_control;
285 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
286 * non-nested (L1) guest, it always points to vmcs01. For a nested
287 * guest (L2), it points to a different VMCS.
289 struct loaded_vmcs vmcs01;
290 struct loaded_vmcs *loaded_vmcs;
292 struct msr_autoload {
293 struct vmx_msrs guest;
294 struct vmx_msrs host;
297 struct msr_autostore {
298 struct vmx_msrs guest;
304 struct kvm_segment segs[8];
307 u32 bitmask; /* 4 bits per segment (1 bit per field) */
308 struct kvm_save_segment {
316 bool emulation_required;
318 union vmx_exit_reason exit_reason;
320 /* Posted interrupt descriptor */
321 struct pi_desc pi_desc;
323 /* Used if this vCPU is waiting for PI notification wakeup. */
324 struct list_head pi_wakeup_list;
326 /* Support for a guest hypervisor (nested VMX) */
327 struct nested_vmx nested;
329 /* Dynamic PLE window. */
330 unsigned int ple_window;
331 bool ple_window_dirty;
333 /* Support for PML */
334 #define PML_LOG_NR_ENTRIES 512
335 /* PML is written backwards: this is the first entry written by the CPU */
336 #define PML_HEAD_INDEX (PML_LOG_NR_ENTRIES-1)
340 /* apic deadline value in host tsc */
343 unsigned long host_debugctlmsr;
346 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
347 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
348 * in msr_ia32_feature_control_valid_bits.
350 u64 msr_ia32_feature_control;
351 u64 msr_ia32_feature_control_valid_bits;
352 /* SGX Launch Control public key hash */
353 u64 msr_ia32_sgxlepubkeyhash[4];
354 u64 msr_ia32_mcu_opt_ctrl;
355 bool disable_fb_clear;
357 struct pt_desc pt_desc;
358 struct lbr_desc lbr_desc;
360 /* Save desired MSR intercept (read: pass-through) state */
361 #define MAX_POSSIBLE_PASSTHROUGH_MSRS 16
363 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
364 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
365 } shadow_msr_intercept;
367 /* ve_info must be page aligned. */
368 struct vmx_ve_information *ve_info;
374 unsigned int tss_addr;
375 bool ept_identity_pagetable_done;
376 gpa_t ept_identity_map_addr;
377 /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
381 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
382 struct loaded_vmcs *buddy);
383 int allocate_vpid(void);
384 void free_vpid(int vpid);
385 void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
386 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
387 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
388 unsigned long fs_base, unsigned long gs_base);
389 int vmx_get_cpl(struct kvm_vcpu *vcpu);
390 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu);
391 bool vmx_emulation_required(struct kvm_vcpu *vcpu);
392 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
393 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
394 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
395 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
396 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
397 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
398 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
399 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
400 void ept_save_pdptrs(struct kvm_vcpu *vcpu);
401 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
402 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
403 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
405 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
406 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
407 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
408 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
409 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
410 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
411 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
412 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
413 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
414 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
415 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
416 void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
417 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
418 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
420 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
421 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
423 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
424 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
426 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
427 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
429 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
431 static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
432 int type, bool value)
435 vmx_enable_intercept_for_msr(vcpu, msr, type);
437 vmx_disable_intercept_for_msr(vcpu, msr, type);
440 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
443 * Note, early Intel manuals have the write-low and read-high bitmap offsets
444 * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and
445 * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and
446 * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and
447 * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always
450 #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \
451 static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \
454 int f = sizeof(unsigned long); \
457 return bitop##_bit(msr, bitmap + base / f); \
458 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \
459 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
460 return (rtype)true; \
462 #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
463 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \
464 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
466 BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
467 BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
468 BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
470 static inline u8 vmx_get_rvi(void)
472 return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
475 #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
476 (VM_ENTRY_LOAD_DEBUG_CONTROLS)
478 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
479 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \
482 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
483 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
485 #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \
486 (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \
487 VM_ENTRY_LOAD_IA32_PAT | \
488 VM_ENTRY_LOAD_IA32_EFER | \
489 VM_ENTRY_LOAD_BNDCFGS | \
490 VM_ENTRY_PT_CONCEAL_PIP | \
491 VM_ENTRY_LOAD_IA32_RTIT_CTL)
493 #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
494 (VM_EXIT_SAVE_DEBUG_CONTROLS | \
495 VM_EXIT_ACK_INTR_ON_EXIT)
497 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
498 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \
499 VM_EXIT_HOST_ADDR_SPACE_SIZE)
501 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
502 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
504 #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \
505 (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \
506 VM_EXIT_SAVE_IA32_PAT | \
507 VM_EXIT_LOAD_IA32_PAT | \
508 VM_EXIT_SAVE_IA32_EFER | \
509 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \
510 VM_EXIT_LOAD_IA32_EFER | \
511 VM_EXIT_CLEAR_BNDCFGS | \
512 VM_EXIT_PT_CONCEAL_PIP | \
513 VM_EXIT_CLEAR_IA32_RTIT_CTL)
515 #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \
516 (PIN_BASED_EXT_INTR_MASK | \
517 PIN_BASED_NMI_EXITING)
518 #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \
519 (PIN_BASED_VIRTUAL_NMIS | \
520 PIN_BASED_POSTED_INTR | \
521 PIN_BASED_VMX_PREEMPTION_TIMER)
523 #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
524 (CPU_BASED_HLT_EXITING | \
525 CPU_BASED_CR3_LOAD_EXITING | \
526 CPU_BASED_CR3_STORE_EXITING | \
527 CPU_BASED_UNCOND_IO_EXITING | \
528 CPU_BASED_MOV_DR_EXITING | \
529 CPU_BASED_USE_TSC_OFFSETTING | \
530 CPU_BASED_MWAIT_EXITING | \
531 CPU_BASED_MONITOR_EXITING | \
532 CPU_BASED_INVLPG_EXITING | \
533 CPU_BASED_RDPMC_EXITING | \
534 CPU_BASED_INTR_WINDOW_EXITING)
537 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
538 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \
539 CPU_BASED_CR8_LOAD_EXITING | \
540 CPU_BASED_CR8_STORE_EXITING)
542 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
543 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
546 #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \
547 (CPU_BASED_RDTSC_EXITING | \
548 CPU_BASED_TPR_SHADOW | \
549 CPU_BASED_USE_IO_BITMAPS | \
550 CPU_BASED_MONITOR_TRAP_FLAG | \
551 CPU_BASED_USE_MSR_BITMAPS | \
552 CPU_BASED_NMI_WINDOW_EXITING | \
553 CPU_BASED_PAUSE_EXITING | \
554 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \
555 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
557 #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
558 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \
559 (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
560 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \
561 SECONDARY_EXEC_WBINVD_EXITING | \
562 SECONDARY_EXEC_ENABLE_VPID | \
563 SECONDARY_EXEC_ENABLE_EPT | \
564 SECONDARY_EXEC_UNRESTRICTED_GUEST | \
565 SECONDARY_EXEC_PAUSE_LOOP_EXITING | \
566 SECONDARY_EXEC_DESC | \
567 SECONDARY_EXEC_ENABLE_RDTSCP | \
568 SECONDARY_EXEC_ENABLE_INVPCID | \
569 SECONDARY_EXEC_APIC_REGISTER_VIRT | \
570 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
571 SECONDARY_EXEC_SHADOW_VMCS | \
572 SECONDARY_EXEC_ENABLE_XSAVES | \
573 SECONDARY_EXEC_RDSEED_EXITING | \
574 SECONDARY_EXEC_RDRAND_EXITING | \
575 SECONDARY_EXEC_ENABLE_PML | \
576 SECONDARY_EXEC_TSC_SCALING | \
577 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \
578 SECONDARY_EXEC_PT_USE_GPA | \
579 SECONDARY_EXEC_PT_CONCEAL_VMX | \
580 SECONDARY_EXEC_ENABLE_VMFUNC | \
581 SECONDARY_EXEC_BUS_LOCK_DETECTION | \
582 SECONDARY_EXEC_NOTIFY_VM_EXITING | \
583 SECONDARY_EXEC_ENCLS_EXITING | \
584 SECONDARY_EXEC_EPT_VIOLATION_VE)
586 #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
587 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \
588 (TERTIARY_EXEC_IPI_VIRT)
590 #define BUILD_CONTROLS_SHADOW(lname, uname, bits) \
591 static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \
593 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
594 vmcs_write##bits(uname, val); \
595 vmx->loaded_vmcs->controls_shadow.lname = val; \
598 static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \
600 return vmcs->controls_shadow.lname; \
602 static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \
604 return __##lname##_controls_get(vmx->loaded_vmcs); \
606 static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \
608 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
609 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
611 static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
613 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
614 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
616 BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
617 BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
618 BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
619 BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
620 BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
621 BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
624 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
625 * cache on demand. Other registers not listed here are synced to
626 * the cache immediately after VM-Exit.
628 #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \
629 (1 << VCPU_REGS_RSP) | \
630 (1 << VCPU_EXREG_RFLAGS) | \
631 (1 << VCPU_EXREG_PDPTR) | \
632 (1 << VCPU_EXREG_SEGMENTS) | \
633 (1 << VCPU_EXREG_CR0) | \
634 (1 << VCPU_EXREG_CR3) | \
635 (1 << VCPU_EXREG_CR4) | \
636 (1 << VCPU_EXREG_EXIT_INFO_1) | \
637 (1 << VCPU_EXREG_EXIT_INFO_2))
639 static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
641 unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
644 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
645 * in order to construct shadow PTEs with the correct protections.
646 * Note! CR0.WP technically can be passed through to the guest if
647 * paging is disabled, but checking CR0.PG would generate a cyclical
648 * dependency of sorts due to forcing the caller to ensure CR0 holds
649 * the correct value prior to determining which CR0 bits can be owned
650 * by L1. Keep it simple and limit the optimization to EPT.
657 static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
659 return container_of(kvm, struct kvm_vmx, kvm);
662 static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
664 return container_of(vcpu, struct vcpu_vmx, vcpu);
667 static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
669 return &to_vmx(vcpu)->lbr_desc;
672 static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
674 return &vcpu_to_lbr_desc(vcpu)->records;
677 static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
679 return !!vcpu_to_lbr_records(vcpu)->nr;
682 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
683 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
684 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
686 static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
688 struct vcpu_vmx *vmx = to_vmx(vcpu);
690 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
691 vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
693 return vmx->exit_qualification;
696 static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
698 struct vcpu_vmx *vmx = to_vmx(vcpu);
700 if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
701 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
703 return vmx->exit_intr_info;
706 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
707 void free_vmcs(struct vmcs *vmcs);
708 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
709 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
710 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
712 static inline struct vmcs *alloc_vmcs(bool shadow)
714 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
718 static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
720 return secondary_exec_controls_get(vmx) &
721 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
724 static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
729 return allow_smaller_maxphyaddr &&
730 cpuid_maxphyaddr(vcpu) < kvm_host.maxphyaddr;
733 static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
735 return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
736 (secondary_exec_controls_get(to_vmx(vcpu)) &
737 SECONDARY_EXEC_UNRESTRICTED_GUEST));
740 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
741 static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
743 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
746 void dump_vmcs(struct kvm_vcpu *vcpu);
748 static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
750 return (vmx_instr_info >> 28) & 0xf;
753 static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
755 return lapic_in_kernel(vcpu) && enable_ipiv;
758 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
760 vmx->segment_cache.bitmask = 0;
763 #endif /* __KVM_X86_VMX_H */