1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_X86_INSN_H
3 #define _ASM_X86_INSN_H
5 * x86 instruction analysis
7 * Copyright (C) IBM Corporation, 2009
10 #include <asm/byteorder.h>
11 /* insn_attr_t is defined in inat.h */
12 #include <asm/inat.h> /* __ignore_sync_check__ */
14 #if defined(__BYTE_ORDER) ? __BYTE_ORDER == __LITTLE_ENDIAN : defined(__LITTLE_ENDIAN)
21 /* !0 if we've run insn_get_xxx() for this field */
26 static inline void insn_field_set(struct insn_field *p, insn_value_t v,
33 static inline void insn_set_byte(struct insn_field *p, unsigned char n,
47 /* !0 if we've run insn_get_xxx() for this field */
52 static inline void insn_field_set(struct insn_field *p, insn_value_t v,
56 p->little = __cpu_to_le32(v);
60 static inline void insn_set_byte(struct insn_field *p, unsigned char n,
64 p->value = __le32_to_cpu(p->little);
69 struct insn_field prefixes; /*
71 * prefixes.bytes[3]: last prefix
73 struct insn_field rex_prefix; /* REX prefix */
74 struct insn_field vex_prefix; /* VEX prefix */
75 struct insn_field opcode; /*
76 * opcode.bytes[0]: opcode1
77 * opcode.bytes[1]: opcode2
78 * opcode.bytes[2]: opcode3
80 struct insn_field modrm;
81 struct insn_field sib;
82 struct insn_field displacement;
84 struct insn_field immediate;
85 struct insn_field moffset1; /* for 64bit MOV */
86 struct insn_field immediate1; /* for 64bit imm or off16/32 */
89 struct insn_field moffset2; /* for 64bit MOV */
90 struct insn_field immediate2; /* for 64bit imm or seg16 */
93 int emulate_prefix_size;
95 unsigned char opnd_bytes;
96 unsigned char addr_bytes;
100 const insn_byte_t *kaddr; /* kernel address of insn to analyze */
101 const insn_byte_t *end_kaddr; /* kernel address of last insn in buffer */
102 const insn_byte_t *next_byte;
105 #define MAX_INSN_SIZE 15
107 #define X86_MODRM_MOD(modrm) (((modrm) & 0xc0) >> 6)
108 #define X86_MODRM_REG(modrm) (((modrm) & 0x38) >> 3)
109 #define X86_MODRM_RM(modrm) ((modrm) & 0x07)
111 #define X86_SIB_SCALE(sib) (((sib) & 0xc0) >> 6)
112 #define X86_SIB_INDEX(sib) (((sib) & 0x38) >> 3)
113 #define X86_SIB_BASE(sib) ((sib) & 0x07)
115 #define X86_REX2_M(rex) ((rex) & 0x80) /* REX2 M0 */
116 #define X86_REX2_R(rex) ((rex) & 0x40) /* REX2 R4 */
117 #define X86_REX2_X(rex) ((rex) & 0x20) /* REX2 X4 */
118 #define X86_REX2_B(rex) ((rex) & 0x10) /* REX2 B4 */
120 #define X86_REX_W(rex) ((rex) & 8) /* REX or REX2 W */
121 #define X86_REX_R(rex) ((rex) & 4) /* REX or REX2 R3 */
122 #define X86_REX_X(rex) ((rex) & 2) /* REX or REX2 X3 */
123 #define X86_REX_B(rex) ((rex) & 1) /* REX or REX2 B3 */
126 #define X86_VEX_W(vex) ((vex) & 0x80) /* VEX3 Byte2 */
127 #define X86_VEX_R(vex) ((vex) & 0x80) /* VEX2/3 Byte1 */
128 #define X86_VEX_X(vex) ((vex) & 0x40) /* VEX3 Byte1 */
129 #define X86_VEX_B(vex) ((vex) & 0x20) /* VEX3 Byte1 */
130 #define X86_VEX_L(vex) ((vex) & 0x04) /* VEX3 Byte2, VEX2 Byte1 */
132 #define X86_EVEX_M(vex) ((vex) & 0x07) /* EVEX Byte1 */
133 #define X86_VEX3_M(vex) ((vex) & 0x1f) /* VEX3 Byte1 */
134 #define X86_VEX2_M 1 /* VEX2.M always 1 */
135 #define X86_VEX_V(vex) (((vex) & 0x78) >> 3) /* VEX3 Byte2, VEX2 Byte1 */
136 #define X86_VEX_P(vex) ((vex) & 0x03) /* VEX3 Byte2, VEX2 Byte1 */
137 #define X86_VEX_M_MAX 0x1f /* VEX3.M Maximum value */
139 extern void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64);
140 extern int insn_get_prefixes(struct insn *insn);
141 extern int insn_get_opcode(struct insn *insn);
142 extern int insn_get_modrm(struct insn *insn);
143 extern int insn_get_sib(struct insn *insn);
144 extern int insn_get_displacement(struct insn *insn);
145 extern int insn_get_immediate(struct insn *insn);
146 extern int insn_get_length(struct insn *insn);
151 /* Mode is determined by the current kernel build. */
156 extern int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m);
158 #define insn_decode_kernel(_insn, _ptr) insn_decode((_insn), (_ptr), MAX_INSN_SIZE, INSN_MODE_KERN)
160 /* Attribute will be determined after getting ModRM (for opcode groups) */
161 static inline void insn_get_attribute(struct insn *insn)
163 insn_get_modrm(insn);
166 /* Instruction uses RIP-relative addressing */
167 extern int insn_rip_relative(struct insn *insn);
169 static inline int insn_is_rex2(struct insn *insn)
171 if (!insn->prefixes.got)
172 insn_get_prefixes(insn);
173 return insn->rex_prefix.nbytes == 2;
176 static inline insn_byte_t insn_rex2_m_bit(struct insn *insn)
178 return X86_REX2_M(insn->rex_prefix.bytes[1]);
181 static inline int insn_is_avx(struct insn *insn)
183 if (!insn->prefixes.got)
184 insn_get_prefixes(insn);
185 return (insn->vex_prefix.value != 0);
188 static inline int insn_is_evex(struct insn *insn)
190 if (!insn->prefixes.got)
191 insn_get_prefixes(insn);
192 return (insn->vex_prefix.nbytes == 4);
195 static inline int insn_has_emulate_prefix(struct insn *insn)
197 return !!insn->emulate_prefix_size;
200 static inline insn_byte_t insn_vex_m_bits(struct insn *insn)
202 if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */
204 else if (insn->vex_prefix.nbytes == 3) /* 3 bytes VEX */
205 return X86_VEX3_M(insn->vex_prefix.bytes[1]);
207 return X86_EVEX_M(insn->vex_prefix.bytes[1]);
210 static inline insn_byte_t insn_vex_p_bits(struct insn *insn)
212 if (insn->vex_prefix.nbytes == 2) /* 2 bytes VEX */
213 return X86_VEX_P(insn->vex_prefix.bytes[1]);
215 return X86_VEX_P(insn->vex_prefix.bytes[2]);
218 static inline insn_byte_t insn_vex_w_bit(struct insn *insn)
220 if (insn->vex_prefix.nbytes < 3)
222 return X86_VEX_W(insn->vex_prefix.bytes[2]);
225 /* Get the last prefix id from last prefix or VEX prefix */
226 static inline int insn_last_prefix_id(struct insn *insn)
228 if (insn_is_avx(insn))
229 return insn_vex_p_bits(insn); /* VEX_p is a SIMD prefix id */
231 if (insn->prefixes.bytes[3])
232 return inat_get_last_prefix_id(insn->prefixes.bytes[3]);
237 /* Offset of each field from kaddr */
238 static inline int insn_offset_rex_prefix(struct insn *insn)
240 return insn->prefixes.nbytes;
242 static inline int insn_offset_vex_prefix(struct insn *insn)
244 return insn_offset_rex_prefix(insn) + insn->rex_prefix.nbytes;
246 static inline int insn_offset_opcode(struct insn *insn)
248 return insn_offset_vex_prefix(insn) + insn->vex_prefix.nbytes;
250 static inline int insn_offset_modrm(struct insn *insn)
252 return insn_offset_opcode(insn) + insn->opcode.nbytes;
254 static inline int insn_offset_sib(struct insn *insn)
256 return insn_offset_modrm(insn) + insn->modrm.nbytes;
258 static inline int insn_offset_displacement(struct insn *insn)
260 return insn_offset_sib(insn) + insn->sib.nbytes;
262 static inline int insn_offset_immediate(struct insn *insn)
264 return insn_offset_displacement(insn) + insn->displacement.nbytes;
268 * for_each_insn_prefix() -- Iterate prefixes in the instruction
269 * @insn: Pointer to struct insn.
270 * @idx: Index storage.
271 * @prefix: Prefix byte.
273 * Iterate prefix bytes of given @insn. Each prefix byte is stored in @prefix
274 * and the index is stored in @idx (note that this @idx is just for a cursor,
276 * Since prefixes.nbytes can be bigger than 4 if some prefixes
277 * are repeated, it cannot be used for looping over the prefixes.
279 #define for_each_insn_prefix(insn, idx, prefix) \
280 for (idx = 0; idx < ARRAY_SIZE(insn->prefixes.bytes) && (prefix = insn->prefixes.bytes[idx]) != 0; idx++)
282 #define POP_SS_OPCODE 0x1f
283 #define MOV_SREG_OPCODE 0x8e
286 * Intel SDM Vol.3A 6.8.3 states;
287 * "Any single-step trap that would be delivered following the MOV to SS
288 * instruction or POP to SS instruction (because EFLAGS.TF is 1) is
290 * This function returns true if @insn is MOV SS or POP SS. On these
291 * instructions, single stepping is suppressed.
293 static inline int insn_masking_exception(struct insn *insn)
295 return insn->opcode.bytes[0] == POP_SS_OPCODE ||
296 (insn->opcode.bytes[0] == MOV_SREG_OPCODE &&
297 X86_MODRM_REG(insn->modrm.bytes[0]) == 2);
300 #endif /* _ASM_X86_INSN_H */