]> Git Repo - linux.git/blob - arch/powerpc/platforms/powernv/opal.c
Linux 6.14-rc3
[linux.git] / arch / powerpc / platforms / powernv / opal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerNV OPAL high level interfaces
4  *
5  * Copyright 2011 IBM Corp.
6  */
7
8 #define pr_fmt(fmt)     "opal: " fmt
9
10 #include <linux/printk.h>
11 #include <linux/types.h>
12 #include <linux/of.h>
13 #include <linux/of_fdt.h>
14 #include <linux/of_platform.h>
15 #include <linux/of_address.h>
16 #include <linux/interrupt.h>
17 #include <linux/notifier.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/kobject.h>
21 #include <linux/delay.h>
22 #include <linux/memblock.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/kmsg_dump.h>
26 #include <linux/console.h>
27 #include <linux/sched/debug.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33 #include <asm/imc-pmu.h>
34 #include <asm/bug.h>
35
36 #include "powernv.h"
37
38 #define OPAL_MSG_QUEUE_MAX 16
39
40 struct opal_msg_node {
41         struct list_head        list;
42         struct opal_msg         msg;
43 };
44
45 static DEFINE_SPINLOCK(msg_list_lock);
46 static LIST_HEAD(msg_list);
47
48 /* /sys/firmware/opal */
49 struct kobject *opal_kobj;
50
51 struct opal {
52         u64 base;
53         u64 entry;
54         u64 size;
55 } opal;
56
57 struct mcheck_recoverable_range {
58         u64 start_addr;
59         u64 end_addr;
60         u64 recover_addr;
61 };
62
63 static int msg_list_size;
64
65 static struct mcheck_recoverable_range *mc_recoverable_range;
66 static int mc_recoverable_range_len;
67
68 struct device_node *opal_node;
69 static DEFINE_SPINLOCK(opal_write_lock);
70 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
71 static uint32_t opal_heartbeat;
72 static struct task_struct *kopald_tsk;
73 static struct opal_msg *opal_msg;
74 static u32 opal_msg_size __ro_after_init;
75
76 void __init opal_configure_cores(void)
77 {
78         u64 reinit_flags = 0;
79
80         /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
81          *
82          * It will preserve non volatile GPRs and HSPRG0/1. It will
83          * also restore HIDs and other SPRs to their original value
84          * but it might clobber a bunch.
85          */
86 #ifdef __BIG_ENDIAN__
87         reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
88 #else
89         reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
90 #endif
91
92         /*
93          * POWER9 always support running hash:
94          *  ie. Host hash  supports  hash guests
95          *      Host radix supports  hash/radix guests
96          */
97         if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
98                 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
99                 if (early_radix_enabled())
100                         reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
101         }
102
103         opal_reinit_cpus(reinit_flags);
104
105         /* Restore some bits */
106         if (cur_cpu_spec->cpu_restore)
107                 cur_cpu_spec->cpu_restore();
108 }
109
110 int __init early_init_dt_scan_opal(unsigned long node,
111                                    const char *uname, int depth, void *data)
112 {
113         const void *basep, *entryp, *sizep;
114         int basesz, entrysz, runtimesz;
115
116         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
117                 return 0;
118
119         basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
120         entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
121         sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
122
123         if (!basep || !entryp || !sizep)
124                 return 1;
125
126         opal.base = of_read_number(basep, basesz/4);
127         opal.entry = of_read_number(entryp, entrysz/4);
128         opal.size = of_read_number(sizep, runtimesz/4);
129
130         pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
131                  opal.base, basep, basesz);
132         pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
133                  opal.entry, entryp, entrysz);
134         pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
135                  opal.size, sizep, runtimesz);
136
137         if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
138                 powerpc_firmware_features |= FW_FEATURE_OPAL;
139                 pr_debug("OPAL detected !\n");
140         } else {
141                 panic("OPAL != V3 detected, no longer supported.\n");
142         }
143
144         return 1;
145 }
146
147 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
148                                    const char *uname, int depth, void *data)
149 {
150         int i, psize, size;
151         const __be32 *prop;
152
153         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
154                 return 0;
155
156         prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
157
158         if (!prop)
159                 return 1;
160
161         pr_debug("Found machine check recoverable ranges.\n");
162
163         /*
164          * Calculate number of available entries.
165          *
166          * Each recoverable address range entry is (start address, len,
167          * recovery address), 2 cells each for start and recovery address,
168          * 1 cell for len, totalling 5 cells per entry.
169          */
170         mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
171
172         /* Sanity check */
173         if (!mc_recoverable_range_len)
174                 return 1;
175
176         /* Size required to hold all the entries. */
177         size = mc_recoverable_range_len *
178                         sizeof(struct mcheck_recoverable_range);
179
180         /*
181          * Allocate a buffer to hold the MC recoverable ranges.
182          */
183         mc_recoverable_range = memblock_alloc_or_panic(size, __alignof__(u64));
184
185         for (i = 0; i < mc_recoverable_range_len; i++) {
186                 mc_recoverable_range[i].start_addr =
187                                         of_read_number(prop + (i * 5) + 0, 2);
188                 mc_recoverable_range[i].end_addr =
189                                         mc_recoverable_range[i].start_addr +
190                                         of_read_number(prop + (i * 5) + 2, 1);
191                 mc_recoverable_range[i].recover_addr =
192                                         of_read_number(prop + (i * 5) + 3, 2);
193
194                 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
195                                 mc_recoverable_range[i].start_addr,
196                                 mc_recoverable_range[i].end_addr,
197                                 mc_recoverable_range[i].recover_addr);
198         }
199         return 1;
200 }
201
202 static int __init opal_register_exception_handlers(void)
203 {
204 #ifdef __BIG_ENDIAN__
205         u64 glue;
206
207         if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
208                 return -ENODEV;
209
210         /* Hookup some exception handlers except machine check. We use the
211          * fwnmi area at 0x7000 to provide the glue space to OPAL
212          */
213         glue = 0x7000;
214
215         /*
216          * Only ancient OPAL firmware requires this.
217          * Specifically, firmware from FW810.00 (released June 2014)
218          * through FW810.20 (Released October 2014).
219          *
220          * Check if we are running on newer (post Oct 2014) firmware that
221          * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
222          * patch the HMI interrupt and we catch it directly in Linux.
223          *
224          * For older firmware (i.e < FW810.20), we fallback to old behavior and
225          * let OPAL patch the HMI vector and handle it inside OPAL firmware.
226          *
227          * For newer firmware we catch/handle the HMI directly in Linux.
228          */
229         if (!opal_check_token(OPAL_HANDLE_HMI)) {
230                 pr_info("Old firmware detected, OPAL handles HMIs.\n");
231                 opal_register_exception_handler(
232                                 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
233                                 0, glue);
234                 glue += 128;
235         }
236
237         /*
238          * Only applicable to ancient firmware, all modern
239          * (post March 2015/skiboot 5.0) firmware will just return
240          * OPAL_UNSUPPORTED.
241          */
242         opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
243 #endif
244
245         return 0;
246 }
247 machine_early_initcall(powernv, opal_register_exception_handlers);
248
249 static void queue_replay_msg(void *msg)
250 {
251         struct opal_msg_node *msg_node;
252
253         if (msg_list_size < OPAL_MSG_QUEUE_MAX) {
254                 msg_node = kzalloc(sizeof(*msg_node), GFP_ATOMIC);
255                 if (msg_node) {
256                         INIT_LIST_HEAD(&msg_node->list);
257                         memcpy(&msg_node->msg, msg, sizeof(struct opal_msg));
258                         list_add_tail(&msg_node->list, &msg_list);
259                         msg_list_size++;
260                 } else
261                         pr_warn_once("message queue no memory\n");
262
263                 if (msg_list_size >= OPAL_MSG_QUEUE_MAX)
264                         pr_warn_once("message queue full\n");
265         }
266 }
267
268 static void dequeue_replay_msg(enum opal_msg_type msg_type)
269 {
270         struct opal_msg_node *msg_node, *tmp;
271
272         list_for_each_entry_safe(msg_node, tmp, &msg_list, list) {
273                 if (be32_to_cpu(msg_node->msg.msg_type) != msg_type)
274                         continue;
275
276                 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
277                                         msg_type,
278                                         &msg_node->msg);
279
280                 list_del(&msg_node->list);
281                 kfree(msg_node);
282                 msg_list_size--;
283         }
284 }
285
286 /*
287  * Opal message notifier based on message type. Allow subscribers to get
288  * notified for specific messgae type.
289  */
290 int opal_message_notifier_register(enum opal_msg_type msg_type,
291                                         struct notifier_block *nb)
292 {
293         int ret;
294         unsigned long flags;
295
296         if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
297                 pr_warn("%s: Invalid arguments, msg_type:%d\n",
298                         __func__, msg_type);
299                 return -EINVAL;
300         }
301
302         spin_lock_irqsave(&msg_list_lock, flags);
303         ret = atomic_notifier_chain_register(
304                 &opal_msg_notifier_head[msg_type], nb);
305
306         /*
307          * If the registration succeeded, replay any queued messages that came
308          * in prior to the notifier chain registration. msg_list_lock held here
309          * to ensure they're delivered prior to any subsequent messages.
310          */
311         if (ret == 0)
312                 dequeue_replay_msg(msg_type);
313
314         spin_unlock_irqrestore(&msg_list_lock, flags);
315
316         return ret;
317 }
318 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
319
320 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
321                                      struct notifier_block *nb)
322 {
323         return atomic_notifier_chain_unregister(
324                         &opal_msg_notifier_head[msg_type], nb);
325 }
326 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
327
328 static void opal_message_do_notify(uint32_t msg_type, void *msg)
329 {
330         unsigned long flags;
331         bool queued = false;
332
333         spin_lock_irqsave(&msg_list_lock, flags);
334         if (opal_msg_notifier_head[msg_type].head == NULL) {
335                 /*
336                  * Queue up the msg since no notifiers have registered
337                  * yet for this msg_type.
338                  */
339                 queue_replay_msg(msg);
340                 queued = true;
341         }
342         spin_unlock_irqrestore(&msg_list_lock, flags);
343
344         if (queued)
345                 return;
346
347         /* notify subscribers */
348         atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
349                                         msg_type, msg);
350 }
351
352 static void opal_handle_message(void)
353 {
354         s64 ret;
355         u32 type;
356
357         ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
358         /* No opal message pending. */
359         if (ret == OPAL_RESOURCE)
360                 return;
361
362         /* check for errors. */
363         if (ret) {
364                 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
365                         __func__, ret);
366                 return;
367         }
368
369         type = be32_to_cpu(opal_msg->msg_type);
370
371         /* Sanity check */
372         if (type >= OPAL_MSG_TYPE_MAX) {
373                 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
374                 return;
375         }
376         opal_message_do_notify(type, (void *)opal_msg);
377 }
378
379 static irqreturn_t opal_message_notify(int irq, void *data)
380 {
381         opal_handle_message();
382         return IRQ_HANDLED;
383 }
384
385 static int __init opal_message_init(struct device_node *opal_node)
386 {
387         int ret, i, irq;
388
389         ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
390         if (ret) {
391                 pr_notice("Failed to read opal-msg-size property\n");
392                 opal_msg_size = sizeof(struct opal_msg);
393         }
394
395         opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
396         if (!opal_msg) {
397                 opal_msg_size = sizeof(struct opal_msg);
398                 /* Try to allocate fixed message size */
399                 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
400                 BUG_ON(opal_msg == NULL);
401         }
402
403         for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
404                 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
405
406         irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
407         if (!irq) {
408                 pr_err("%s: Can't register OPAL event irq (%d)\n",
409                        __func__, irq);
410                 return irq;
411         }
412
413         ret = request_irq(irq, opal_message_notify,
414                         IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
415         if (ret) {
416                 pr_err("%s: Can't request OPAL event irq (%d)\n",
417                        __func__, ret);
418                 return ret;
419         }
420
421         return 0;
422 }
423
424 ssize_t opal_get_chars(uint32_t vtermno, u8 *buf, size_t count)
425 {
426         s64 rc;
427         __be64 evt, len;
428
429         if (!opal.entry)
430                 return -ENODEV;
431         opal_poll_events(&evt);
432         if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
433                 return 0;
434         len = cpu_to_be64(count);
435         rc = opal_console_read(vtermno, &len, buf);
436         if (rc == OPAL_SUCCESS)
437                 return be64_to_cpu(len);
438         return 0;
439 }
440
441 static ssize_t __opal_put_chars(uint32_t vtermno, const u8 *data,
442                                 size_t total_len, bool atomic)
443 {
444         unsigned long flags = 0 /* shut up gcc */;
445         ssize_t written;
446         __be64 olen;
447         s64 rc;
448
449         if (!opal.entry)
450                 return -ENODEV;
451
452         if (atomic)
453                 spin_lock_irqsave(&opal_write_lock, flags);
454         rc = opal_console_write_buffer_space(vtermno, &olen);
455         if (rc || be64_to_cpu(olen) < total_len) {
456                 /* Closed -> drop characters */
457                 if (rc)
458                         written = total_len;
459                 else
460                         written = -EAGAIN;
461                 goto out;
462         }
463
464         /* Should not get a partial write here because space is available. */
465         olen = cpu_to_be64(total_len);
466         rc = opal_console_write(vtermno, &olen, data);
467         if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
468                 if (rc == OPAL_BUSY_EVENT)
469                         opal_poll_events(NULL);
470                 written = -EAGAIN;
471                 goto out;
472         }
473
474         /* Closed or other error drop */
475         if (rc != OPAL_SUCCESS) {
476                 written = opal_error_code(rc);
477                 goto out;
478         }
479
480         written = be64_to_cpu(olen);
481         if (written < total_len) {
482                 if (atomic) {
483                         /* Should not happen */
484                         pr_warn("atomic console write returned partial "
485                                 "len=%zu written=%zd\n", total_len, written);
486                 }
487                 if (!written)
488                         written = -EAGAIN;
489         }
490
491 out:
492         if (atomic)
493                 spin_unlock_irqrestore(&opal_write_lock, flags);
494
495         return written;
496 }
497
498 ssize_t opal_put_chars(uint32_t vtermno, const u8 *data, size_t total_len)
499 {
500         return __opal_put_chars(vtermno, data, total_len, false);
501 }
502
503 /*
504  * opal_put_chars_atomic will not perform partial-writes. Data will be
505  * atomically written to the terminal or not at all. This is not strictly
506  * true at the moment because console space can race with OPAL's console
507  * writes.
508  */
509 ssize_t opal_put_chars_atomic(uint32_t vtermno, const u8 *data,
510                               size_t total_len)
511 {
512         return __opal_put_chars(vtermno, data, total_len, true);
513 }
514
515 static s64 __opal_flush_console(uint32_t vtermno)
516 {
517         s64 rc;
518
519         if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
520                 __be64 evt;
521
522                 /*
523                  * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
524                  * the console can still be flushed by calling the polling
525                  * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
526                  */
527                 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
528
529                 opal_poll_events(&evt);
530                 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
531                         return OPAL_SUCCESS;
532                 return OPAL_BUSY;
533
534         } else {
535                 rc = opal_console_flush(vtermno);
536                 if (rc == OPAL_BUSY_EVENT) {
537                         opal_poll_events(NULL);
538                         rc = OPAL_BUSY;
539                 }
540                 return rc;
541         }
542
543 }
544
545 /*
546  * opal_flush_console spins until the console is flushed
547  */
548 int opal_flush_console(uint32_t vtermno)
549 {
550         for (;;) {
551                 s64 rc = __opal_flush_console(vtermno);
552
553                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
554                         mdelay(1);
555                         continue;
556                 }
557
558                 return opal_error_code(rc);
559         }
560 }
561
562 /*
563  * opal_flush_chars is an hvc interface that sleeps until the console is
564  * flushed if wait, otherwise it will return -EBUSY if the console has data,
565  * -EAGAIN if it has data and some of it was flushed.
566  */
567 int opal_flush_chars(uint32_t vtermno, bool wait)
568 {
569         for (;;) {
570                 s64 rc = __opal_flush_console(vtermno);
571
572                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
573                         if (wait) {
574                                 msleep(OPAL_BUSY_DELAY_MS);
575                                 continue;
576                         }
577                         if (rc == OPAL_PARTIAL)
578                                 return -EAGAIN;
579                 }
580
581                 return opal_error_code(rc);
582         }
583 }
584
585 static int opal_recover_mce(struct pt_regs *regs,
586                                         struct machine_check_event *evt)
587 {
588         int recovered = 0;
589
590         if (regs_is_unrecoverable(regs)) {
591                 /* If MSR_RI isn't set, we cannot recover */
592                 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
593                 recovered = 0;
594         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
595                 /* Platform corrected itself */
596                 recovered = 1;
597         } else if (evt->severity == MCE_SEV_FATAL) {
598                 /* Fatal machine check */
599                 pr_err("Machine check interrupt is fatal\n");
600                 recovered = 0;
601         }
602
603         if (!recovered && evt->sync_error) {
604                 /*
605                  * Try to kill processes if we get a synchronous machine check
606                  * (e.g., one caused by execution of this instruction). This
607                  * will devolve into a panic if we try to kill init or are in
608                  * an interrupt etc.
609                  *
610                  * TODO: Queue up this address for hwpoisioning later.
611                  * TODO: This is not quite right for d-side machine
612                  *       checks ->nip is not necessarily the important
613                  *       address.
614                  */
615                 if ((user_mode(regs))) {
616                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
617                         recovered = 1;
618                 } else if (die_will_crash()) {
619                         /*
620                          * die() would kill the kernel, so better to go via
621                          * the platform reboot code that will log the
622                          * machine check.
623                          */
624                         recovered = 0;
625                 } else {
626                         die_mce("Machine check", regs, SIGBUS);
627                         recovered = 1;
628                 }
629         }
630
631         return recovered;
632 }
633
634 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
635 {
636         panic_flush_kmsg_start();
637
638         pr_emerg("Hardware platform error: %s\n", msg);
639         if (regs)
640                 show_regs(regs);
641         smp_send_stop();
642
643         panic_flush_kmsg_end();
644
645         /*
646          * Don't bother to shut things down because this will
647          * xstop the system.
648          */
649         if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
650                                                 == OPAL_UNSUPPORTED) {
651                 pr_emerg("Reboot type %d not supported for %s\n",
652                                 OPAL_REBOOT_PLATFORM_ERROR, msg);
653         }
654
655         /*
656          * We reached here. There can be three possibilities:
657          * 1. We are running on a firmware level that do not support
658          *    opal_cec_reboot2()
659          * 2. We are running on a firmware level that do not support
660          *    OPAL_REBOOT_PLATFORM_ERROR reboot type.
661          * 3. We are running on FSP based system that does not need
662          *    opal to trigger checkstop explicitly for error analysis.
663          *    The FSP PRD component would have already got notified
664          *    about this error through other channels.
665          * 4. We are running on a newer skiboot that by default does
666          *    not cause a checkstop, drops us back to the kernel to
667          *    extract context and state at the time of the error.
668          */
669
670         panic(msg);
671 }
672
673 int opal_machine_check(struct pt_regs *regs)
674 {
675         struct machine_check_event evt;
676
677         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
678                 return 0;
679
680         /* Print things out */
681         if (evt.version != MCE_V1) {
682                 pr_err("Machine Check Exception, Unknown event version %d !\n",
683                        evt.version);
684                 return 0;
685         }
686         machine_check_print_event_info(&evt, user_mode(regs), false);
687
688         if (opal_recover_mce(regs, &evt))
689                 return 1;
690
691         pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
692 }
693
694 /* Early hmi handler called in real mode. */
695 int opal_hmi_exception_early(struct pt_regs *regs)
696 {
697         s64 rc;
698
699         /*
700          * call opal hmi handler. Pass paca address as token.
701          * The return value OPAL_SUCCESS is an indication that there is
702          * an HMI event generated waiting to pull by Linux.
703          */
704         rc = opal_handle_hmi();
705         if (rc == OPAL_SUCCESS) {
706                 local_paca->hmi_event_available = 1;
707                 return 1;
708         }
709         return 0;
710 }
711
712 int opal_hmi_exception_early2(struct pt_regs *regs)
713 {
714         s64 rc;
715         __be64 out_flags;
716
717         /*
718          * call opal hmi handler.
719          * Check 64-bit flag mask to find out if an event was generated,
720          * and whether TB is still valid or not etc.
721          */
722         rc = opal_handle_hmi2(&out_flags);
723         if (rc != OPAL_SUCCESS)
724                 return 0;
725
726         if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
727                 local_paca->hmi_event_available = 1;
728         if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
729                 tb_invalid = true;
730         return 1;
731 }
732
733 /* HMI exception handler called in virtual mode when irqs are next enabled. */
734 int opal_handle_hmi_exception(struct pt_regs *regs)
735 {
736         /*
737          * Check if HMI event is available.
738          * if Yes, then wake kopald to process them.
739          */
740         if (!local_paca->hmi_event_available)
741                 return 0;
742
743         local_paca->hmi_event_available = 0;
744         opal_wake_poller();
745
746         return 1;
747 }
748
749 static uint64_t find_recovery_address(uint64_t nip)
750 {
751         int i;
752
753         for (i = 0; i < mc_recoverable_range_len; i++)
754                 if ((nip >= mc_recoverable_range[i].start_addr) &&
755                     (nip < mc_recoverable_range[i].end_addr))
756                     return mc_recoverable_range[i].recover_addr;
757         return 0;
758 }
759
760 bool opal_mce_check_early_recovery(struct pt_regs *regs)
761 {
762         uint64_t recover_addr = 0;
763
764         if (!opal.base || !opal.size)
765                 goto out;
766
767         if ((regs->nip >= opal.base) &&
768                         (regs->nip < (opal.base + opal.size)))
769                 recover_addr = find_recovery_address(regs->nip);
770
771         /*
772          * Setup regs->nip to rfi into fixup address.
773          */
774         if (recover_addr)
775                 regs_set_return_ip(regs, recover_addr);
776
777 out:
778         return !!recover_addr;
779 }
780
781 static int __init opal_sysfs_init(void)
782 {
783         opal_kobj = kobject_create_and_add("opal", firmware_kobj);
784         if (!opal_kobj) {
785                 pr_warn("kobject_create_and_add opal failed\n");
786                 return -ENOMEM;
787         }
788
789         return 0;
790 }
791
792 static int opal_add_one_export(struct kobject *parent, const char *export_name,
793                                struct device_node *np, const char *prop_name)
794 {
795         struct bin_attribute *attr = NULL;
796         const char *name = NULL;
797         u64 vals[2];
798         int rc;
799
800         rc = of_property_read_u64_array(np, prop_name, &vals[0], 2);
801         if (rc)
802                 goto out;
803
804         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
805         if (!attr) {
806                 rc = -ENOMEM;
807                 goto out;
808         }
809         name = kstrdup(export_name, GFP_KERNEL);
810         if (!name) {
811                 rc = -ENOMEM;
812                 goto out;
813         }
814
815         sysfs_bin_attr_init(attr);
816         attr->attr.name = name;
817         attr->attr.mode = 0400;
818         attr->read_new = sysfs_bin_attr_simple_read;
819         attr->private = __va(vals[0]);
820         attr->size = vals[1];
821
822         rc = sysfs_create_bin_file(parent, attr);
823 out:
824         if (rc) {
825                 kfree(name);
826                 kfree(attr);
827         }
828
829         return rc;
830 }
831
832 static void opal_add_exported_attrs(struct device_node *np,
833                                     struct kobject *kobj)
834 {
835         struct device_node *child;
836         struct property *prop;
837
838         for_each_property_of_node(np, prop) {
839                 int rc;
840
841                 if (!strcmp(prop->name, "name") ||
842                     !strcmp(prop->name, "phandle"))
843                         continue;
844
845                 rc = opal_add_one_export(kobj, prop->name, np, prop->name);
846                 if (rc) {
847                         pr_warn("Unable to add export %pOF/%s, rc = %d!\n",
848                                 np, prop->name, rc);
849                 }
850         }
851
852         for_each_child_of_node(np, child) {
853                 struct kobject *child_kobj;
854
855                 child_kobj = kobject_create_and_add(child->name, kobj);
856                 if (!child_kobj) {
857                         pr_err("Unable to create export dir for %pOF\n", child);
858                         continue;
859                 }
860
861                 opal_add_exported_attrs(child, child_kobj);
862         }
863 }
864
865 /*
866  * opal_export_attrs: creates a sysfs node for each property listed in
867  * the device-tree under /ibm,opal/firmware/exports/
868  * All new sysfs nodes are created under /opal/exports/.
869  * This allows for reserved memory regions (e.g. HDAT) to be read.
870  * The new sysfs nodes are only readable by root.
871  */
872 static void opal_export_attrs(void)
873 {
874         struct device_node *np;
875         struct kobject *kobj;
876         int rc;
877
878         np = of_find_node_by_path("/ibm,opal/firmware/exports");
879         if (!np)
880                 return;
881
882         /* Create new 'exports' directory - /sys/firmware/opal/exports */
883         kobj = kobject_create_and_add("exports", opal_kobj);
884         if (!kobj) {
885                 pr_warn("kobject_create_and_add() of exports failed\n");
886                 of_node_put(np);
887                 return;
888         }
889
890         opal_add_exported_attrs(np, kobj);
891
892         /*
893          * NB: symbol_map existed before the generic export interface so it
894          * lives under the top level opal_kobj.
895          */
896         rc = opal_add_one_export(opal_kobj, "symbol_map",
897                                  np->parent, "symbol-map");
898         if (rc)
899                 pr_warn("Error %d creating OPAL symbols file\n", rc);
900
901         of_node_put(np);
902 }
903
904 static void __init opal_dump_region_init(void)
905 {
906         void *addr;
907         uint64_t size;
908         int rc;
909
910         if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
911                 return;
912
913         /* Register kernel log buffer */
914         addr = log_buf_addr_get();
915         if (addr == NULL)
916                 return;
917
918         size = log_buf_len_get();
919         if (size == 0)
920                 return;
921
922         rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
923                                        __pa(addr), size);
924         /* Don't warn if this is just an older OPAL that doesn't
925          * know about that call
926          */
927         if (rc && rc != OPAL_UNSUPPORTED)
928                 pr_warn("DUMP: Failed to register kernel log buffer. "
929                         "rc = %d\n", rc);
930 }
931
932 static void __init opal_pdev_init(const char *compatible)
933 {
934         struct device_node *np;
935
936         for_each_compatible_node(np, NULL, compatible)
937                 of_platform_device_create(np, NULL, NULL);
938 }
939
940 static void __init opal_imc_init_dev(void)
941 {
942         struct device_node *np;
943
944         np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
945         if (np)
946                 of_platform_device_create(np, NULL, NULL);
947
948         of_node_put(np);
949 }
950
951 static int kopald(void *unused)
952 {
953         unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
954
955         set_freezable();
956         do {
957                 try_to_freeze();
958
959                 opal_handle_events();
960
961                 set_current_state(TASK_INTERRUPTIBLE);
962                 if (opal_have_pending_events())
963                         __set_current_state(TASK_RUNNING);
964                 else
965                         schedule_timeout(timeout);
966
967         } while (!kthread_should_stop());
968
969         return 0;
970 }
971
972 void opal_wake_poller(void)
973 {
974         if (kopald_tsk)
975                 wake_up_process(kopald_tsk);
976 }
977
978 static void __init opal_init_heartbeat(void)
979 {
980         /* Old firwmware, we assume the HVC heartbeat is sufficient */
981         if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
982                                  &opal_heartbeat) != 0)
983                 opal_heartbeat = 0;
984
985         if (opal_heartbeat)
986                 kopald_tsk = kthread_run(kopald, NULL, "kopald");
987 }
988
989 static int __init opal_init(void)
990 {
991         struct device_node *np, *consoles, *leds;
992         int rc;
993
994         opal_node = of_find_node_by_path("/ibm,opal");
995         if (!opal_node) {
996                 pr_warn("Device node not found\n");
997                 return -ENODEV;
998         }
999
1000         /* Register OPAL consoles if any ports */
1001         consoles = of_find_node_by_path("/ibm,opal/consoles");
1002         if (consoles) {
1003                 for_each_child_of_node(consoles, np) {
1004                         if (!of_node_name_eq(np, "serial"))
1005                                 continue;
1006                         of_platform_device_create(np, NULL, NULL);
1007                 }
1008                 of_node_put(consoles);
1009         }
1010
1011         /* Initialise OPAL messaging system */
1012         opal_message_init(opal_node);
1013
1014         /* Initialise OPAL asynchronous completion interface */
1015         opal_async_comp_init();
1016
1017         /* Initialise OPAL sensor interface */
1018         opal_sensor_init();
1019
1020         /* Initialise OPAL hypervisor maintainence interrupt handling */
1021         opal_hmi_handler_init();
1022
1023         /* Create i2c platform devices */
1024         opal_pdev_init("ibm,opal-i2c");
1025
1026         /* Handle non-volatile memory devices */
1027         opal_pdev_init("pmem-region");
1028
1029         /* Setup a heatbeat thread if requested by OPAL */
1030         opal_init_heartbeat();
1031
1032         /* Detect In-Memory Collection counters and create devices*/
1033         opal_imc_init_dev();
1034
1035         /* Create leds platform devices */
1036         leds = of_find_node_by_path("/ibm,opal/leds");
1037         if (leds) {
1038                 of_platform_device_create(leds, "opal_leds", NULL);
1039                 of_node_put(leds);
1040         }
1041
1042         /* Initialise OPAL message log interface */
1043         opal_msglog_init();
1044
1045         /* Create "opal" kobject under /sys/firmware */
1046         rc = opal_sysfs_init();
1047         if (rc == 0) {
1048                 /* Setup dump region interface */
1049                 opal_dump_region_init();
1050                 /* Setup error log interface */
1051                 rc = opal_elog_init();
1052                 /* Setup code update interface */
1053                 opal_flash_update_init();
1054                 /* Setup platform dump extract interface */
1055                 opal_platform_dump_init();
1056                 /* Setup system parameters interface */
1057                 opal_sys_param_init();
1058                 /* Setup message log sysfs interface. */
1059                 opal_msglog_sysfs_init();
1060                 /* Add all export properties*/
1061                 opal_export_attrs();
1062         }
1063
1064         /* Initialize platform devices: IPMI backend, PRD & flash interface */
1065         opal_pdev_init("ibm,opal-ipmi");
1066         opal_pdev_init("ibm,opal-flash");
1067         opal_pdev_init("ibm,opal-prd");
1068
1069         /* Initialise platform device: oppanel interface */
1070         opal_pdev_init("ibm,opal-oppanel");
1071
1072         /* Initialise OPAL kmsg dumper for flushing console on panic */
1073         opal_kmsg_init();
1074
1075         /* Initialise OPAL powercap interface */
1076         opal_powercap_init();
1077
1078         /* Initialise OPAL Power-Shifting-Ratio interface */
1079         opal_psr_init();
1080
1081         /* Initialise OPAL sensor groups */
1082         opal_sensor_groups_init();
1083
1084         /* Initialise OPAL Power control interface */
1085         opal_power_control_init();
1086
1087         /* Initialize OPAL secure variables */
1088         opal_pdev_init("ibm,secvar-backend");
1089
1090         return 0;
1091 }
1092 machine_subsys_initcall(powernv, opal_init);
1093
1094 void opal_shutdown(void)
1095 {
1096         long rc = OPAL_BUSY;
1097
1098         opal_event_shutdown();
1099
1100         /*
1101          * Then sync with OPAL which ensure anything that can
1102          * potentially write to our memory has completed such
1103          * as an ongoing dump retrieval
1104          */
1105         while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
1106                 rc = opal_sync_host_reboot();
1107                 if (rc == OPAL_BUSY)
1108                         opal_poll_events(NULL);
1109                 else
1110                         mdelay(10);
1111         }
1112
1113         /* Unregister memory dump region */
1114         if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
1115                 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
1116 }
1117
1118 /* Export this so that test modules can use it */
1119 EXPORT_SYMBOL_GPL(opal_invalid_call);
1120 EXPORT_SYMBOL_GPL(opal_xscom_read);
1121 EXPORT_SYMBOL_GPL(opal_xscom_write);
1122 EXPORT_SYMBOL_GPL(opal_ipmi_send);
1123 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
1124 EXPORT_SYMBOL_GPL(opal_flash_read);
1125 EXPORT_SYMBOL_GPL(opal_flash_write);
1126 EXPORT_SYMBOL_GPL(opal_flash_erase);
1127 EXPORT_SYMBOL_GPL(opal_prd_msg);
1128 EXPORT_SYMBOL_GPL(opal_check_token);
1129
1130 /* Convert a region of vmalloc memory to an opal sg list */
1131 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1132                                              unsigned long vmalloc_size)
1133 {
1134         struct opal_sg_list *sg, *first = NULL;
1135         unsigned long i = 0;
1136
1137         sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1138         if (!sg)
1139                 goto nomem;
1140
1141         first = sg;
1142
1143         while (vmalloc_size > 0) {
1144                 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1145                 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1146
1147                 sg->entry[i].data = cpu_to_be64(data);
1148                 sg->entry[i].length = cpu_to_be64(length);
1149                 i++;
1150
1151                 if (i >= SG_ENTRIES_PER_NODE) {
1152                         struct opal_sg_list *next;
1153
1154                         next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1155                         if (!next)
1156                                 goto nomem;
1157
1158                         sg->length = cpu_to_be64(
1159                                         i * sizeof(struct opal_sg_entry) + 16);
1160                         i = 0;
1161                         sg->next = cpu_to_be64(__pa(next));
1162                         sg = next;
1163                 }
1164
1165                 vmalloc_addr += length;
1166                 vmalloc_size -= length;
1167         }
1168
1169         sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1170
1171         return first;
1172
1173 nomem:
1174         pr_err("%s : Failed to allocate memory\n", __func__);
1175         opal_free_sg_list(first);
1176         return NULL;
1177 }
1178
1179 void opal_free_sg_list(struct opal_sg_list *sg)
1180 {
1181         while (sg) {
1182                 uint64_t next = be64_to_cpu(sg->next);
1183
1184                 kfree(sg);
1185
1186                 if (next)
1187                         sg = __va(next);
1188                 else
1189                         sg = NULL;
1190         }
1191 }
1192
1193 int opal_error_code(int rc)
1194 {
1195         switch (rc) {
1196         case OPAL_SUCCESS:              return 0;
1197
1198         case OPAL_PARAMETER:            return -EINVAL;
1199         case OPAL_ASYNC_COMPLETION:     return -EINPROGRESS;
1200         case OPAL_BUSY:
1201         case OPAL_BUSY_EVENT:           return -EBUSY;
1202         case OPAL_NO_MEM:               return -ENOMEM;
1203         case OPAL_PERMISSION:           return -EPERM;
1204
1205         case OPAL_UNSUPPORTED:          return -EIO;
1206         case OPAL_HARDWARE:             return -EIO;
1207         case OPAL_INTERNAL_ERROR:       return -EIO;
1208         case OPAL_TIMEOUT:              return -ETIMEDOUT;
1209         default:
1210                 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1211                 return -EIO;
1212         }
1213 }
1214
1215 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1216 {
1217         int rc;
1218
1219         if (firmware_has_feature(FW_FEATURE_OPAL)) {
1220                 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1221                 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1222                         pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1223         }
1224 }
1225
1226 EXPORT_SYMBOL_GPL(opal_poll_events);
1227 EXPORT_SYMBOL_GPL(opal_rtc_read);
1228 EXPORT_SYMBOL_GPL(opal_rtc_write);
1229 EXPORT_SYMBOL_GPL(opal_tpo_read);
1230 EXPORT_SYMBOL_GPL(opal_tpo_write);
1231 EXPORT_SYMBOL_GPL(opal_i2c_request);
1232 /* Export these symbols for PowerNV LED class driver */
1233 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1234 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1235 /* Export this symbol for PowerNV Operator Panel class driver */
1236 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1237 /* Export this for KVM */
1238 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1239 EXPORT_SYMBOL_GPL(opal_int_eoi);
1240 EXPORT_SYMBOL_GPL(opal_error_code);
1241 /* Export the below symbol for NX compression */
1242 EXPORT_SYMBOL(opal_nx_coproc_init);
This page took 0.096567 seconds and 4 git commands to generate.