1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * address space "slices" (meta-segments) support
5 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
7 * Based on hugetlb implementation
9 * Copyright (C) 2003 David Gibson, IBM Corporation.
14 #include <linux/kernel.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/hugetlb.h>
21 #include <linux/sched/mm.h>
22 #include <linux/security.h>
25 #include <asm/copro.h>
26 #include <asm/hugetlb.h>
27 #include <asm/mmu_context.h>
29 static DEFINE_SPINLOCK(slice_convert_lock);
34 static void slice_print_mask(const char *label, const struct slice_mask *mask)
38 pr_devel("%s low_slice: %*pbl\n", label,
39 (int)SLICE_NUM_LOW, &mask->low_slices);
40 pr_devel("%s high_slice: %*pbl\n", label,
41 (int)SLICE_NUM_HIGH, mask->high_slices);
44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
49 #define slice_dbg(fmt...)
53 static inline notrace bool slice_addr_is_low(unsigned long addr)
57 return tmp < SLICE_LOW_TOP;
60 static void slice_range_to_mask(unsigned long start, unsigned long len,
61 struct slice_mask *ret)
63 unsigned long end = start + len - 1;
67 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
69 if (slice_addr_is_low(start)) {
70 unsigned long mend = min(end,
71 (unsigned long)(SLICE_LOW_TOP - 1));
73 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
74 - (1u << GET_LOW_SLICE_INDEX(start));
77 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
78 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
79 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
80 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
82 bitmap_set(ret->high_slices, start_index, count);
86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
89 struct vm_area_struct *vma;
91 if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
93 vma = find_vma(mm, addr);
94 return (!vma || (addr + len) <= vm_start_gap(vma));
97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
99 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
100 1ul << SLICE_LOW_SHIFT);
103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
105 unsigned long start = slice << SLICE_HIGH_SHIFT;
106 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
108 /* Hack, so that each addresses is controlled by exactly one
109 * of the high or low area bitmaps, the first high area starts
112 start = (unsigned long)SLICE_LOW_TOP;
114 return !slice_area_is_free(mm, start, end - start);
117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
118 unsigned long high_limit)
124 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
126 for (i = 0; i < SLICE_NUM_LOW; i++)
127 if (!slice_low_has_vma(mm, i))
128 ret->low_slices |= 1u << i;
130 if (slice_addr_is_low(high_limit - 1))
133 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134 if (!slice_high_has_vma(mm, i))
135 __set_bit(i, ret->high_slices);
138 static bool slice_check_range_fits(struct mm_struct *mm,
139 const struct slice_mask *available,
140 unsigned long start, unsigned long len)
142 unsigned long end = start + len - 1;
145 if (slice_addr_is_low(start)) {
146 unsigned long mend = min(end,
147 (unsigned long)(SLICE_LOW_TOP - 1));
149 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
150 - (1u << GET_LOW_SLICE_INDEX(start));
152 if ((low_slices & available->low_slices) != low_slices)
155 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
157 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
158 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
161 for (i = start_index; i < start_index + count; i++) {
162 if (!test_bit(i, available->high_slices))
170 static void slice_flush_segments(void *parm)
173 struct mm_struct *mm = parm;
176 if (mm != current->active_mm)
179 copy_mm_to_paca(current->active_mm);
181 local_irq_save(flags);
182 slb_flush_and_restore_bolted();
183 local_irq_restore(flags);
187 static void slice_convert(struct mm_struct *mm,
188 const struct slice_mask *mask, int psize)
190 int index, mask_index;
191 /* Write the new slice psize bits */
192 unsigned char *hpsizes, *lpsizes;
193 struct slice_mask *psize_mask, *old_mask;
194 unsigned long i, flags;
197 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
198 slice_print_mask(" mask", mask);
200 psize_mask = slice_mask_for_size(&mm->context, psize);
202 /* We need to use a spinlock here to protect against
203 * concurrent 64k -> 4k demotion ...
205 spin_lock_irqsave(&slice_convert_lock, flags);
207 lpsizes = mm_ctx_low_slices(&mm->context);
208 for (i = 0; i < SLICE_NUM_LOW; i++) {
209 if (!(mask->low_slices & (1u << i)))
212 mask_index = i & 0x1;
215 /* Update the slice_mask */
216 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217 old_mask = slice_mask_for_size(&mm->context, old_psize);
218 old_mask->low_slices &= ~(1u << i);
219 psize_mask->low_slices |= 1u << i;
221 /* Update the sizes array */
222 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223 (((unsigned long)psize) << (mask_index * 4));
226 hpsizes = mm_ctx_high_slices(&mm->context);
227 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228 if (!test_bit(i, mask->high_slices))
231 mask_index = i & 0x1;
234 /* Update the slice_mask */
235 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236 old_mask = slice_mask_for_size(&mm->context, old_psize);
237 __clear_bit(i, old_mask->high_slices);
238 __set_bit(i, psize_mask->high_slices);
240 /* Update the sizes array */
241 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242 (((unsigned long)psize) << (mask_index * 4));
245 slice_dbg(" lsps=%lx, hsps=%lx\n",
246 (unsigned long)mm_ctx_low_slices(&mm->context),
247 (unsigned long)mm_ctx_high_slices(&mm->context));
249 spin_unlock_irqrestore(&slice_convert_lock, flags);
251 copro_flush_all_slbs(mm);
255 * Compute which slice addr is part of;
256 * set *boundary_addr to the start or end boundary of that slice
257 * (depending on 'end' parameter);
258 * return boolean indicating if the slice is marked as available in the
259 * 'available' slice_mark.
261 static bool slice_scan_available(unsigned long addr,
262 const struct slice_mask *available,
263 int end, unsigned long *boundary_addr)
266 if (slice_addr_is_low(addr)) {
267 slice = GET_LOW_SLICE_INDEX(addr);
268 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269 return !!(available->low_slices & (1u << slice));
271 slice = GET_HIGH_SLICE_INDEX(addr);
272 *boundary_addr = (slice + end) ?
273 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274 return !!test_bit(slice, available->high_slices);
278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
279 unsigned long addr, unsigned long len,
280 const struct slice_mask *available,
281 int psize, unsigned long high_limit)
283 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284 unsigned long found, next_end;
285 struct vm_unmapped_area_info info = {
287 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
290 * Check till the allow max value for this mmap request
292 while (addr < high_limit) {
293 info.low_limit = addr;
294 if (!slice_scan_available(addr, available, 1, &addr))
299 * At this point [info.low_limit; addr) covers
300 * available slices only and ends at a slice boundary.
301 * Check if we need to reduce the range, or if we can
302 * extend it to cover the next available slice.
304 if (addr >= high_limit)
306 else if (slice_scan_available(addr, available, 1, &next_end)) {
310 info.high_limit = addr;
312 found = vm_unmapped_area(&info);
313 if (!(found & ~PAGE_MASK))
320 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
321 unsigned long addr, unsigned long len,
322 const struct slice_mask *available,
323 int psize, unsigned long high_limit)
325 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
326 unsigned long found, prev;
327 struct vm_unmapped_area_info info = {
328 .flags = VM_UNMAPPED_AREA_TOPDOWN,
330 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
332 unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
335 * If we are trying to allocate above DEFAULT_MAP_WINDOW
336 * Add the different to the mmap_base.
337 * Only for that request for which high_limit is above
338 * DEFAULT_MAP_WINDOW we should apply this.
340 if (high_limit > DEFAULT_MAP_WINDOW)
341 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
343 while (addr > min_addr) {
344 info.high_limit = addr;
345 if (!slice_scan_available(addr - 1, available, 0, &addr))
350 * At this point [addr; info.high_limit) covers
351 * available slices only and starts at a slice boundary.
352 * Check if we need to reduce the range, or if we can
353 * extend it to cover the previous available slice.
357 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
361 info.low_limit = addr;
363 found = vm_unmapped_area(&info);
364 if (!(found & ~PAGE_MASK))
369 * A failed mmap() very likely causes application failure,
370 * so fall back to the bottom-up function here. This scenario
371 * can happen with large stack limits and large mmap()
374 return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit);
378 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
379 const struct slice_mask *mask, int psize,
380 int topdown, unsigned long high_limit)
383 return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit);
385 return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit);
388 static inline void slice_copy_mask(struct slice_mask *dst,
389 const struct slice_mask *src)
391 dst->low_slices = src->low_slices;
394 bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
397 static inline void slice_or_mask(struct slice_mask *dst,
398 const struct slice_mask *src1,
399 const struct slice_mask *src2)
401 dst->low_slices = src1->low_slices | src2->low_slices;
404 bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
407 static inline void slice_andnot_mask(struct slice_mask *dst,
408 const struct slice_mask *src1,
409 const struct slice_mask *src2)
411 dst->low_slices = src1->low_slices & ~src2->low_slices;
414 bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
417 #ifdef CONFIG_PPC_64K_PAGES
418 #define MMU_PAGE_BASE MMU_PAGE_64K
420 #define MMU_PAGE_BASE MMU_PAGE_4K
423 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
424 unsigned long flags, unsigned int psize,
427 struct slice_mask good_mask;
428 struct slice_mask potential_mask;
429 const struct slice_mask *maskp;
430 const struct slice_mask *compat_maskp = NULL;
431 int fixed = (flags & MAP_FIXED);
432 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
433 unsigned long page_size = 1UL << pshift;
434 struct mm_struct *mm = current->mm;
435 unsigned long newaddr;
436 unsigned long high_limit;
438 high_limit = DEFAULT_MAP_WINDOW;
439 if (addr >= high_limit || (fixed && (addr + len > high_limit)))
440 high_limit = TASK_SIZE;
442 if (len > high_limit)
444 if (len & (page_size - 1))
447 if (addr & (page_size - 1))
449 if (addr > high_limit - len)
453 if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
455 * Increasing the slb_addr_limit does not require
456 * slice mask cache to be recalculated because it should
457 * be already initialised beyond the old address limit.
459 mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
461 on_each_cpu(slice_flush_segments, mm, 1);
465 BUG_ON(mm->task_size == 0);
466 BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
467 VM_BUG_ON(radix_enabled());
469 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
470 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
471 addr, len, flags, topdown);
473 /* If hint, make sure it matches our alignment restrictions */
474 if (!fixed && addr) {
475 addr = ALIGN(addr, page_size);
476 slice_dbg(" aligned addr=%lx\n", addr);
477 /* Ignore hint if it's too large or overlaps a VMA */
478 if (addr > high_limit - len || addr < mmap_min_addr ||
479 !slice_area_is_free(mm, addr, len))
483 /* First make up a "good" mask of slices that have the right size
486 maskp = slice_mask_for_size(&mm->context, psize);
489 * Here "good" means slices that are already the right page size,
490 * "compat" means slices that have a compatible page size (i.e.
491 * 4k in a 64k pagesize kernel), and "free" means slices without
495 * check if fits in good | compat => OK
496 * check if fits in good | compat | free => convert free
499 * check if hint fits in good => OK
500 * check if hint fits in good | free => convert free
502 * search in good, found => OK
503 * search in good | free, found => convert free
504 * search in good | compat | free, found => convert free.
508 * If we support combo pages, we can allow 64k pages in 4k slices
509 * The mask copies could be avoided in most cases here if we had
510 * a pointer to good mask for the next code to use.
512 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
513 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
515 slice_or_mask(&good_mask, maskp, compat_maskp);
517 slice_copy_mask(&good_mask, maskp);
519 slice_copy_mask(&good_mask, maskp);
522 slice_print_mask(" good_mask", &good_mask);
524 slice_print_mask(" compat_mask", compat_maskp);
526 /* First check hint if it's valid or if we have MAP_FIXED */
527 if (addr != 0 || fixed) {
528 /* Check if we fit in the good mask. If we do, we just return,
531 if (slice_check_range_fits(mm, &good_mask, addr, len)) {
532 slice_dbg(" fits good !\n");
537 /* Now let's see if we can find something in the existing
538 * slices for that size
540 newaddr = slice_find_area(mm, len, &good_mask,
541 psize, topdown, high_limit);
542 if (newaddr != -ENOMEM) {
543 /* Found within the good mask, we don't have to setup,
544 * we thus return directly
546 slice_dbg(" found area at 0x%lx\n", newaddr);
551 * We don't fit in the good mask, check what other slices are
552 * empty and thus can be converted
554 slice_mask_for_free(mm, &potential_mask, high_limit);
555 slice_or_mask(&potential_mask, &potential_mask, &good_mask);
556 slice_print_mask(" potential", &potential_mask);
558 if (addr != 0 || fixed) {
559 if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
560 slice_dbg(" fits potential !\n");
566 /* If we have MAP_FIXED and failed the above steps, then error out */
570 slice_dbg(" search...\n");
572 /* If we had a hint that didn't work out, see if we can fit
573 * anywhere in the good area.
576 newaddr = slice_find_area(mm, len, &good_mask,
577 psize, topdown, high_limit);
578 if (newaddr != -ENOMEM) {
579 slice_dbg(" found area at 0x%lx\n", newaddr);
584 /* Now let's see if we can find something in the existing slices
585 * for that size plus free slices
587 newaddr = slice_find_area(mm, len, &potential_mask,
588 psize, topdown, high_limit);
590 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
591 psize == MMU_PAGE_64K) {
592 /* retry the search with 4k-page slices included */
593 slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
594 newaddr = slice_find_area(mm, len, &potential_mask,
595 psize, topdown, high_limit);
598 if (newaddr == -ENOMEM)
601 slice_range_to_mask(newaddr, len, &potential_mask);
602 slice_dbg(" found potential area at 0x%lx\n", newaddr);
603 slice_print_mask(" mask", &potential_mask);
607 * Try to allocate the context before we do slice convert
608 * so that we handle the context allocation failure gracefully.
610 if (need_extra_context(mm, newaddr)) {
611 if (alloc_extended_context(mm, newaddr) < 0)
615 slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
616 if (compat_maskp && !fixed)
617 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
618 if (potential_mask.low_slices ||
620 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
621 slice_convert(mm, &potential_mask, psize);
622 if (psize > MMU_PAGE_BASE)
623 on_each_cpu(slice_flush_segments, mm, 1);
628 if (need_extra_context(mm, newaddr)) {
629 if (alloc_extended_context(mm, newaddr) < 0)
634 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
636 #ifdef CONFIG_HUGETLB_PAGE
637 static int file_to_psize(struct file *file)
639 struct hstate *hstate = hstate_file(file);
641 return shift_to_mmu_psize(huge_page_shift(hstate));
644 static int file_to_psize(struct file *file)
650 unsigned long arch_get_unmapped_area(struct file *filp,
660 return generic_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
662 if (filp && is_file_hugepages(filp))
663 psize = file_to_psize(filp);
665 psize = mm_ctx_user_psize(¤t->mm->context);
667 return slice_get_unmapped_area(addr, len, flags, psize, 0);
670 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
671 const unsigned long addr0,
672 const unsigned long len,
673 const unsigned long pgoff,
674 const unsigned long flags,
680 return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags, vm_flags);
682 if (filp && is_file_hugepages(filp))
683 psize = file_to_psize(filp);
685 psize = mm_ctx_user_psize(¤t->mm->context);
687 return slice_get_unmapped_area(addr0, len, flags, psize, 1);
690 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
692 unsigned char *psizes;
693 int index, mask_index;
695 VM_BUG_ON(radix_enabled());
697 if (slice_addr_is_low(addr)) {
698 psizes = mm_ctx_low_slices(&mm->context);
699 index = GET_LOW_SLICE_INDEX(addr);
701 psizes = mm_ctx_high_slices(&mm->context);
702 index = GET_HIGH_SLICE_INDEX(addr);
704 mask_index = index & 0x1;
705 return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
707 EXPORT_SYMBOL_GPL(get_slice_psize);
709 void slice_init_new_context_exec(struct mm_struct *mm)
711 unsigned char *hpsizes, *lpsizes;
712 struct slice_mask *mask;
713 unsigned int psize = mmu_virtual_psize;
715 slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
718 * In the case of exec, use the default limit. In the
719 * case of fork it is just inherited from the mm being
722 mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
723 mm_ctx_set_user_psize(&mm->context, psize);
726 * Set all slice psizes to the default.
728 lpsizes = mm_ctx_low_slices(&mm->context);
729 memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
731 hpsizes = mm_ctx_high_slices(&mm->context);
732 memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
735 * Slice mask cache starts zeroed, fill the default size cache.
737 mask = slice_mask_for_size(&mm->context, psize);
738 mask->low_slices = ~0UL;
740 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
743 void slice_setup_new_exec(void)
745 struct mm_struct *mm = current->mm;
747 slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
749 if (!is_32bit_task())
752 mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
755 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
756 unsigned long len, unsigned int psize)
758 struct slice_mask mask;
760 VM_BUG_ON(radix_enabled());
762 slice_range_to_mask(start, len, &mask);
763 slice_convert(mm, &mask, psize);
766 #ifdef CONFIG_HUGETLB_PAGE
768 * is_hugepage_only_range() is used by generic code to verify whether
769 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
771 * until the generic code provides a more generic hook and/or starts
772 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
773 * here knows how to deal with), we hijack it to keep standard mappings
776 * because of that generic code limitation, MAP_FIXED mapping cannot
777 * "convert" back a slice with no VMAs to the standard page size, only
778 * get_unmapped_area() can. It would be possible to fix it here but I
779 * prefer working on fixing the generic code instead.
781 * WARNING: This will not work if hugetlbfs isn't enabled since the
782 * generic code will redefine that function as 0 in that. This is ok
783 * for now as we only use slices with hugetlbfs enabled. This should
784 * be fixed as the generic code gets fixed.
786 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
789 const struct slice_mask *maskp;
790 unsigned int psize = mm_ctx_user_psize(&mm->context);
792 VM_BUG_ON(radix_enabled());
794 maskp = slice_mask_for_size(&mm->context, psize);
796 /* We need to account for 4k slices too */
797 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
798 const struct slice_mask *compat_maskp;
799 struct slice_mask available;
801 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
802 slice_or_mask(&available, maskp, compat_maskp);
803 return !slice_check_range_fits(mm, &available, addr, len);
806 return !slice_check_range_fits(mm, maskp, addr, len);
809 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
811 /* With radix we don't use slice, so derive it from vma*/
813 return vma_kernel_pagesize(vma);
815 return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start));