]> Git Repo - linux.git/blob - arch/powerpc/mm/book3s64/slice.c
Linux 6.14-rc3
[linux.git] / arch / powerpc / mm / book3s64 / slice.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * address space "slices" (meta-segments) support
4  *
5  * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
6  *
7  * Based on hugetlb implementation
8  *
9  * Copyright (C) 2003 David Gibson, IBM Corporation.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/hugetlb.h>
21 #include <linux/sched/mm.h>
22 #include <linux/security.h>
23 #include <asm/mman.h>
24 #include <asm/mmu.h>
25 #include <asm/copro.h>
26 #include <asm/hugetlb.h>
27 #include <asm/mmu_context.h>
28
29 static DEFINE_SPINLOCK(slice_convert_lock);
30
31 #ifdef DEBUG
32 int _slice_debug = 1;
33
34 static void slice_print_mask(const char *label, const struct slice_mask *mask)
35 {
36         if (!_slice_debug)
37                 return;
38         pr_devel("%s low_slice: %*pbl\n", label,
39                         (int)SLICE_NUM_LOW, &mask->low_slices);
40         pr_devel("%s high_slice: %*pbl\n", label,
41                         (int)SLICE_NUM_HIGH, mask->high_slices);
42 }
43
44 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
45
46 #else
47
48 static void slice_print_mask(const char *label, const struct slice_mask *mask) {}
49 #define slice_dbg(fmt...)
50
51 #endif
52
53 static inline notrace bool slice_addr_is_low(unsigned long addr)
54 {
55         u64 tmp = (u64)addr;
56
57         return tmp < SLICE_LOW_TOP;
58 }
59
60 static void slice_range_to_mask(unsigned long start, unsigned long len,
61                                 struct slice_mask *ret)
62 {
63         unsigned long end = start + len - 1;
64
65         ret->low_slices = 0;
66         if (SLICE_NUM_HIGH)
67                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
68
69         if (slice_addr_is_low(start)) {
70                 unsigned long mend = min(end,
71                                          (unsigned long)(SLICE_LOW_TOP - 1));
72
73                 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
74                         - (1u << GET_LOW_SLICE_INDEX(start));
75         }
76
77         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
78                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
79                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
80                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
81
82                 bitmap_set(ret->high_slices, start_index, count);
83         }
84 }
85
86 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
87                               unsigned long len)
88 {
89         struct vm_area_struct *vma;
90
91         if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr)
92                 return 0;
93         vma = find_vma(mm, addr);
94         return (!vma || (addr + len) <= vm_start_gap(vma));
95 }
96
97 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
98 {
99         return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
100                                    1ul << SLICE_LOW_SHIFT);
101 }
102
103 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
104 {
105         unsigned long start = slice << SLICE_HIGH_SHIFT;
106         unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
107
108         /* Hack, so that each addresses is controlled by exactly one
109          * of the high or low area bitmaps, the first high area starts
110          * at 4GB, not 0 */
111         if (start == 0)
112                 start = (unsigned long)SLICE_LOW_TOP;
113
114         return !slice_area_is_free(mm, start, end - start);
115 }
116
117 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
118                                 unsigned long high_limit)
119 {
120         unsigned long i;
121
122         ret->low_slices = 0;
123         if (SLICE_NUM_HIGH)
124                 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
125
126         for (i = 0; i < SLICE_NUM_LOW; i++)
127                 if (!slice_low_has_vma(mm, i))
128                         ret->low_slices |= 1u << i;
129
130         if (slice_addr_is_low(high_limit - 1))
131                 return;
132
133         for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
134                 if (!slice_high_has_vma(mm, i))
135                         __set_bit(i, ret->high_slices);
136 }
137
138 static bool slice_check_range_fits(struct mm_struct *mm,
139                            const struct slice_mask *available,
140                            unsigned long start, unsigned long len)
141 {
142         unsigned long end = start + len - 1;
143         u64 low_slices = 0;
144
145         if (slice_addr_is_low(start)) {
146                 unsigned long mend = min(end,
147                                          (unsigned long)(SLICE_LOW_TOP - 1));
148
149                 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
150                                 - (1u << GET_LOW_SLICE_INDEX(start));
151         }
152         if ((low_slices & available->low_slices) != low_slices)
153                 return false;
154
155         if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) {
156                 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
157                 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
158                 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
159                 unsigned long i;
160
161                 for (i = start_index; i < start_index + count; i++) {
162                         if (!test_bit(i, available->high_slices))
163                                 return false;
164                 }
165         }
166
167         return true;
168 }
169
170 static void slice_flush_segments(void *parm)
171 {
172 #ifdef CONFIG_PPC64
173         struct mm_struct *mm = parm;
174         unsigned long flags;
175
176         if (mm != current->active_mm)
177                 return;
178
179         copy_mm_to_paca(current->active_mm);
180
181         local_irq_save(flags);
182         slb_flush_and_restore_bolted();
183         local_irq_restore(flags);
184 #endif
185 }
186
187 static void slice_convert(struct mm_struct *mm,
188                                 const struct slice_mask *mask, int psize)
189 {
190         int index, mask_index;
191         /* Write the new slice psize bits */
192         unsigned char *hpsizes, *lpsizes;
193         struct slice_mask *psize_mask, *old_mask;
194         unsigned long i, flags;
195         int old_psize;
196
197         slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
198         slice_print_mask(" mask", mask);
199
200         psize_mask = slice_mask_for_size(&mm->context, psize);
201
202         /* We need to use a spinlock here to protect against
203          * concurrent 64k -> 4k demotion ...
204          */
205         spin_lock_irqsave(&slice_convert_lock, flags);
206
207         lpsizes = mm_ctx_low_slices(&mm->context);
208         for (i = 0; i < SLICE_NUM_LOW; i++) {
209                 if (!(mask->low_slices & (1u << i)))
210                         continue;
211
212                 mask_index = i & 0x1;
213                 index = i >> 1;
214
215                 /* Update the slice_mask */
216                 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf;
217                 old_mask = slice_mask_for_size(&mm->context, old_psize);
218                 old_mask->low_slices &= ~(1u << i);
219                 psize_mask->low_slices |= 1u << i;
220
221                 /* Update the sizes array */
222                 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) |
223                                 (((unsigned long)psize) << (mask_index * 4));
224         }
225
226         hpsizes = mm_ctx_high_slices(&mm->context);
227         for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) {
228                 if (!test_bit(i, mask->high_slices))
229                         continue;
230
231                 mask_index = i & 0x1;
232                 index = i >> 1;
233
234                 /* Update the slice_mask */
235                 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf;
236                 old_mask = slice_mask_for_size(&mm->context, old_psize);
237                 __clear_bit(i, old_mask->high_slices);
238                 __set_bit(i, psize_mask->high_slices);
239
240                 /* Update the sizes array */
241                 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) |
242                                 (((unsigned long)psize) << (mask_index * 4));
243         }
244
245         slice_dbg(" lsps=%lx, hsps=%lx\n",
246                   (unsigned long)mm_ctx_low_slices(&mm->context),
247                   (unsigned long)mm_ctx_high_slices(&mm->context));
248
249         spin_unlock_irqrestore(&slice_convert_lock, flags);
250
251         copro_flush_all_slbs(mm);
252 }
253
254 /*
255  * Compute which slice addr is part of;
256  * set *boundary_addr to the start or end boundary of that slice
257  * (depending on 'end' parameter);
258  * return boolean indicating if the slice is marked as available in the
259  * 'available' slice_mark.
260  */
261 static bool slice_scan_available(unsigned long addr,
262                                  const struct slice_mask *available,
263                                  int end, unsigned long *boundary_addr)
264 {
265         unsigned long slice;
266         if (slice_addr_is_low(addr)) {
267                 slice = GET_LOW_SLICE_INDEX(addr);
268                 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
269                 return !!(available->low_slices & (1u << slice));
270         } else {
271                 slice = GET_HIGH_SLICE_INDEX(addr);
272                 *boundary_addr = (slice + end) ?
273                         ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
274                 return !!test_bit(slice, available->high_slices);
275         }
276 }
277
278 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
279                                               unsigned long addr, unsigned long len,
280                                               const struct slice_mask *available,
281                                               int psize, unsigned long high_limit)
282 {
283         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
284         unsigned long found, next_end;
285         struct vm_unmapped_area_info info = {
286                 .length = len,
287                 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
288         };
289         /*
290          * Check till the allow max value for this mmap request
291          */
292         while (addr < high_limit) {
293                 info.low_limit = addr;
294                 if (!slice_scan_available(addr, available, 1, &addr))
295                         continue;
296
297  next_slice:
298                 /*
299                  * At this point [info.low_limit; addr) covers
300                  * available slices only and ends at a slice boundary.
301                  * Check if we need to reduce the range, or if we can
302                  * extend it to cover the next available slice.
303                  */
304                 if (addr >= high_limit)
305                         addr = high_limit;
306                 else if (slice_scan_available(addr, available, 1, &next_end)) {
307                         addr = next_end;
308                         goto next_slice;
309                 }
310                 info.high_limit = addr;
311
312                 found = vm_unmapped_area(&info);
313                 if (!(found & ~PAGE_MASK))
314                         return found;
315         }
316
317         return -ENOMEM;
318 }
319
320 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
321                                              unsigned long addr, unsigned long len,
322                                              const struct slice_mask *available,
323                                              int psize, unsigned long high_limit)
324 {
325         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
326         unsigned long found, prev;
327         struct vm_unmapped_area_info info = {
328                 .flags = VM_UNMAPPED_AREA_TOPDOWN,
329                 .length = len,
330                 .align_mask = PAGE_MASK & ((1ul << pshift) - 1),
331         };
332         unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr);
333
334         /*
335          * If we are trying to allocate above DEFAULT_MAP_WINDOW
336          * Add the different to the mmap_base.
337          * Only for that request for which high_limit is above
338          * DEFAULT_MAP_WINDOW we should apply this.
339          */
340         if (high_limit > DEFAULT_MAP_WINDOW)
341                 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW;
342
343         while (addr > min_addr) {
344                 info.high_limit = addr;
345                 if (!slice_scan_available(addr - 1, available, 0, &addr))
346                         continue;
347
348  prev_slice:
349                 /*
350                  * At this point [addr; info.high_limit) covers
351                  * available slices only and starts at a slice boundary.
352                  * Check if we need to reduce the range, or if we can
353                  * extend it to cover the previous available slice.
354                  */
355                 if (addr < min_addr)
356                         addr = min_addr;
357                 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
358                         addr = prev;
359                         goto prev_slice;
360                 }
361                 info.low_limit = addr;
362
363                 found = vm_unmapped_area(&info);
364                 if (!(found & ~PAGE_MASK))
365                         return found;
366         }
367
368         /*
369          * A failed mmap() very likely causes application failure,
370          * so fall back to the bottom-up function here. This scenario
371          * can happen with large stack limits and large mmap()
372          * allocations.
373          */
374         return slice_find_area_bottomup(mm, TASK_UNMAPPED_BASE, len, available, psize, high_limit);
375 }
376
377
378 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
379                                      const struct slice_mask *mask, int psize,
380                                      int topdown, unsigned long high_limit)
381 {
382         if (topdown)
383                 return slice_find_area_topdown(mm, mm->mmap_base, len, mask, psize, high_limit);
384         else
385                 return slice_find_area_bottomup(mm, mm->mmap_base, len, mask, psize, high_limit);
386 }
387
388 static inline void slice_copy_mask(struct slice_mask *dst,
389                                         const struct slice_mask *src)
390 {
391         dst->low_slices = src->low_slices;
392         if (!SLICE_NUM_HIGH)
393                 return;
394         bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
395 }
396
397 static inline void slice_or_mask(struct slice_mask *dst,
398                                         const struct slice_mask *src1,
399                                         const struct slice_mask *src2)
400 {
401         dst->low_slices = src1->low_slices | src2->low_slices;
402         if (!SLICE_NUM_HIGH)
403                 return;
404         bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
405 }
406
407 static inline void slice_andnot_mask(struct slice_mask *dst,
408                                         const struct slice_mask *src1,
409                                         const struct slice_mask *src2)
410 {
411         dst->low_slices = src1->low_slices & ~src2->low_slices;
412         if (!SLICE_NUM_HIGH)
413                 return;
414         bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH);
415 }
416
417 #ifdef CONFIG_PPC_64K_PAGES
418 #define MMU_PAGE_BASE   MMU_PAGE_64K
419 #else
420 #define MMU_PAGE_BASE   MMU_PAGE_4K
421 #endif
422
423 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
424                                       unsigned long flags, unsigned int psize,
425                                       int topdown)
426 {
427         struct slice_mask good_mask;
428         struct slice_mask potential_mask;
429         const struct slice_mask *maskp;
430         const struct slice_mask *compat_maskp = NULL;
431         int fixed = (flags & MAP_FIXED);
432         int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
433         unsigned long page_size = 1UL << pshift;
434         struct mm_struct *mm = current->mm;
435         unsigned long newaddr;
436         unsigned long high_limit;
437
438         high_limit = DEFAULT_MAP_WINDOW;
439         if (addr >= high_limit || (fixed && (addr + len > high_limit)))
440                 high_limit = TASK_SIZE;
441
442         if (len > high_limit)
443                 return -ENOMEM;
444         if (len & (page_size - 1))
445                 return -EINVAL;
446         if (fixed) {
447                 if (addr & (page_size - 1))
448                         return -EINVAL;
449                 if (addr > high_limit - len)
450                         return -ENOMEM;
451         }
452
453         if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) {
454                 /*
455                  * Increasing the slb_addr_limit does not require
456                  * slice mask cache to be recalculated because it should
457                  * be already initialised beyond the old address limit.
458                  */
459                 mm_ctx_set_slb_addr_limit(&mm->context, high_limit);
460
461                 on_each_cpu(slice_flush_segments, mm, 1);
462         }
463
464         /* Sanity checks */
465         BUG_ON(mm->task_size == 0);
466         BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0);
467         VM_BUG_ON(radix_enabled());
468
469         slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
470         slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
471                   addr, len, flags, topdown);
472
473         /* If hint, make sure it matches our alignment restrictions */
474         if (!fixed && addr) {
475                 addr = ALIGN(addr, page_size);
476                 slice_dbg(" aligned addr=%lx\n", addr);
477                 /* Ignore hint if it's too large or overlaps a VMA */
478                 if (addr > high_limit - len || addr < mmap_min_addr ||
479                     !slice_area_is_free(mm, addr, len))
480                         addr = 0;
481         }
482
483         /* First make up a "good" mask of slices that have the right size
484          * already
485          */
486         maskp = slice_mask_for_size(&mm->context, psize);
487
488         /*
489          * Here "good" means slices that are already the right page size,
490          * "compat" means slices that have a compatible page size (i.e.
491          * 4k in a 64k pagesize kernel), and "free" means slices without
492          * any VMAs.
493          *
494          * If MAP_FIXED:
495          *      check if fits in good | compat => OK
496          *      check if fits in good | compat | free => convert free
497          *      else bad
498          * If have hint:
499          *      check if hint fits in good => OK
500          *      check if hint fits in good | free => convert free
501          * Otherwise:
502          *      search in good, found => OK
503          *      search in good | free, found => convert free
504          *      search in good | compat | free, found => convert free.
505          */
506
507         /*
508          * If we support combo pages, we can allow 64k pages in 4k slices
509          * The mask copies could be avoided in most cases here if we had
510          * a pointer to good mask for the next code to use.
511          */
512         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
513                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
514                 if (fixed)
515                         slice_or_mask(&good_mask, maskp, compat_maskp);
516                 else
517                         slice_copy_mask(&good_mask, maskp);
518         } else {
519                 slice_copy_mask(&good_mask, maskp);
520         }
521
522         slice_print_mask(" good_mask", &good_mask);
523         if (compat_maskp)
524                 slice_print_mask(" compat_mask", compat_maskp);
525
526         /* First check hint if it's valid or if we have MAP_FIXED */
527         if (addr != 0 || fixed) {
528                 /* Check if we fit in the good mask. If we do, we just return,
529                  * nothing else to do
530                  */
531                 if (slice_check_range_fits(mm, &good_mask, addr, len)) {
532                         slice_dbg(" fits good !\n");
533                         newaddr = addr;
534                         goto return_addr;
535                 }
536         } else {
537                 /* Now let's see if we can find something in the existing
538                  * slices for that size
539                  */
540                 newaddr = slice_find_area(mm, len, &good_mask,
541                                           psize, topdown, high_limit);
542                 if (newaddr != -ENOMEM) {
543                         /* Found within the good mask, we don't have to setup,
544                          * we thus return directly
545                          */
546                         slice_dbg(" found area at 0x%lx\n", newaddr);
547                         goto return_addr;
548                 }
549         }
550         /*
551          * We don't fit in the good mask, check what other slices are
552          * empty and thus can be converted
553          */
554         slice_mask_for_free(mm, &potential_mask, high_limit);
555         slice_or_mask(&potential_mask, &potential_mask, &good_mask);
556         slice_print_mask(" potential", &potential_mask);
557
558         if (addr != 0 || fixed) {
559                 if (slice_check_range_fits(mm, &potential_mask, addr, len)) {
560                         slice_dbg(" fits potential !\n");
561                         newaddr = addr;
562                         goto convert;
563                 }
564         }
565
566         /* If we have MAP_FIXED and failed the above steps, then error out */
567         if (fixed)
568                 return -EBUSY;
569
570         slice_dbg(" search...\n");
571
572         /* If we had a hint that didn't work out, see if we can fit
573          * anywhere in the good area.
574          */
575         if (addr) {
576                 newaddr = slice_find_area(mm, len, &good_mask,
577                                           psize, topdown, high_limit);
578                 if (newaddr != -ENOMEM) {
579                         slice_dbg(" found area at 0x%lx\n", newaddr);
580                         goto return_addr;
581                 }
582         }
583
584         /* Now let's see if we can find something in the existing slices
585          * for that size plus free slices
586          */
587         newaddr = slice_find_area(mm, len, &potential_mask,
588                                   psize, topdown, high_limit);
589
590         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM &&
591             psize == MMU_PAGE_64K) {
592                 /* retry the search with 4k-page slices included */
593                 slice_or_mask(&potential_mask, &potential_mask, compat_maskp);
594                 newaddr = slice_find_area(mm, len, &potential_mask,
595                                           psize, topdown, high_limit);
596         }
597
598         if (newaddr == -ENOMEM)
599                 return -ENOMEM;
600
601         slice_range_to_mask(newaddr, len, &potential_mask);
602         slice_dbg(" found potential area at 0x%lx\n", newaddr);
603         slice_print_mask(" mask", &potential_mask);
604
605  convert:
606         /*
607          * Try to allocate the context before we do slice convert
608          * so that we handle the context allocation failure gracefully.
609          */
610         if (need_extra_context(mm, newaddr)) {
611                 if (alloc_extended_context(mm, newaddr) < 0)
612                         return -ENOMEM;
613         }
614
615         slice_andnot_mask(&potential_mask, &potential_mask, &good_mask);
616         if (compat_maskp && !fixed)
617                 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp);
618         if (potential_mask.low_slices ||
619                 (SLICE_NUM_HIGH &&
620                  !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) {
621                 slice_convert(mm, &potential_mask, psize);
622                 if (psize > MMU_PAGE_BASE)
623                         on_each_cpu(slice_flush_segments, mm, 1);
624         }
625         return newaddr;
626
627 return_addr:
628         if (need_extra_context(mm, newaddr)) {
629                 if (alloc_extended_context(mm, newaddr) < 0)
630                         return -ENOMEM;
631         }
632         return newaddr;
633 }
634 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
635
636 #ifdef CONFIG_HUGETLB_PAGE
637 static int file_to_psize(struct file *file)
638 {
639         struct hstate *hstate = hstate_file(file);
640
641         return shift_to_mmu_psize(huge_page_shift(hstate));
642 }
643 #else
644 static int file_to_psize(struct file *file)
645 {
646         return 0;
647 }
648 #endif
649
650 unsigned long arch_get_unmapped_area(struct file *filp,
651                                      unsigned long addr,
652                                      unsigned long len,
653                                      unsigned long pgoff,
654                                      unsigned long flags,
655                                      vm_flags_t vm_flags)
656 {
657         unsigned int psize;
658
659         if (radix_enabled())
660                 return generic_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
661
662         if (filp && is_file_hugepages(filp))
663                 psize = file_to_psize(filp);
664         else
665                 psize = mm_ctx_user_psize(&current->mm->context);
666
667         return slice_get_unmapped_area(addr, len, flags, psize, 0);
668 }
669
670 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
671                                              const unsigned long addr0,
672                                              const unsigned long len,
673                                              const unsigned long pgoff,
674                                              const unsigned long flags,
675                                              vm_flags_t vm_flags)
676 {
677         unsigned int psize;
678
679         if (radix_enabled())
680                 return generic_get_unmapped_area_topdown(filp, addr0, len, pgoff, flags, vm_flags);
681
682         if (filp && is_file_hugepages(filp))
683                 psize = file_to_psize(filp);
684         else
685                 psize = mm_ctx_user_psize(&current->mm->context);
686
687         return slice_get_unmapped_area(addr0, len, flags, psize, 1);
688 }
689
690 unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr)
691 {
692         unsigned char *psizes;
693         int index, mask_index;
694
695         VM_BUG_ON(radix_enabled());
696
697         if (slice_addr_is_low(addr)) {
698                 psizes = mm_ctx_low_slices(&mm->context);
699                 index = GET_LOW_SLICE_INDEX(addr);
700         } else {
701                 psizes = mm_ctx_high_slices(&mm->context);
702                 index = GET_HIGH_SLICE_INDEX(addr);
703         }
704         mask_index = index & 0x1;
705         return (psizes[index >> 1] >> (mask_index * 4)) & 0xf;
706 }
707 EXPORT_SYMBOL_GPL(get_slice_psize);
708
709 void slice_init_new_context_exec(struct mm_struct *mm)
710 {
711         unsigned char *hpsizes, *lpsizes;
712         struct slice_mask *mask;
713         unsigned int psize = mmu_virtual_psize;
714
715         slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm);
716
717         /*
718          * In the case of exec, use the default limit. In the
719          * case of fork it is just inherited from the mm being
720          * duplicated.
721          */
722         mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT);
723         mm_ctx_set_user_psize(&mm->context, psize);
724
725         /*
726          * Set all slice psizes to the default.
727          */
728         lpsizes = mm_ctx_low_slices(&mm->context);
729         memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1);
730
731         hpsizes = mm_ctx_high_slices(&mm->context);
732         memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1);
733
734         /*
735          * Slice mask cache starts zeroed, fill the default size cache.
736          */
737         mask = slice_mask_for_size(&mm->context, psize);
738         mask->low_slices = ~0UL;
739         if (SLICE_NUM_HIGH)
740                 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH);
741 }
742
743 void slice_setup_new_exec(void)
744 {
745         struct mm_struct *mm = current->mm;
746
747         slice_dbg("slice_setup_new_exec(mm=%p)\n", mm);
748
749         if (!is_32bit_task())
750                 return;
751
752         mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW);
753 }
754
755 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
756                            unsigned long len, unsigned int psize)
757 {
758         struct slice_mask mask;
759
760         VM_BUG_ON(radix_enabled());
761
762         slice_range_to_mask(start, len, &mask);
763         slice_convert(mm, &mask, psize);
764 }
765
766 #ifdef CONFIG_HUGETLB_PAGE
767 /*
768  * is_hugepage_only_range() is used by generic code to verify whether
769  * a normal mmap mapping (non hugetlbfs) is valid on a given area.
770  *
771  * until the generic code provides a more generic hook and/or starts
772  * calling arch get_unmapped_area for MAP_FIXED (which our implementation
773  * here knows how to deal with), we hijack it to keep standard mappings
774  * away from us.
775  *
776  * because of that generic code limitation, MAP_FIXED mapping cannot
777  * "convert" back a slice with no VMAs to the standard page size, only
778  * get_unmapped_area() can. It would be possible to fix it here but I
779  * prefer working on fixing the generic code instead.
780  *
781  * WARNING: This will not work if hugetlbfs isn't enabled since the
782  * generic code will redefine that function as 0 in that. This is ok
783  * for now as we only use slices with hugetlbfs enabled. This should
784  * be fixed as the generic code gets fixed.
785  */
786 int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
787                            unsigned long len)
788 {
789         const struct slice_mask *maskp;
790         unsigned int psize = mm_ctx_user_psize(&mm->context);
791
792         VM_BUG_ON(radix_enabled());
793
794         maskp = slice_mask_for_size(&mm->context, psize);
795
796         /* We need to account for 4k slices too */
797         if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) {
798                 const struct slice_mask *compat_maskp;
799                 struct slice_mask available;
800
801                 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K);
802                 slice_or_mask(&available, maskp, compat_maskp);
803                 return !slice_check_range_fits(mm, &available, addr, len);
804         }
805
806         return !slice_check_range_fits(mm, maskp, addr, len);
807 }
808
809 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
810 {
811         /* With radix we don't use slice, so derive it from vma*/
812         if (radix_enabled())
813                 return vma_kernel_pagesize(vma);
814
815         return 1UL << mmu_psize_to_shift(get_slice_psize(vma->vm_mm, vma->vm_start));
816 }
817 #endif
This page took 0.074617 seconds and 4 git commands to generate.