]> Git Repo - linux.git/blob - arch/mips/kvm/mmu.c
Linux 6.14-rc3
[linux.git] / arch / mips / kvm / mmu.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <[email protected]>
10  */
11
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:       Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45         unsigned long *p, *end;
46         unsigned long entry;
47
48 #ifdef __PAGETABLE_PMD_FOLDED
49         entry = (unsigned long)invalid_pte_table;
50 #else
51         entry = (unsigned long)invalid_pmd_table;
52 #endif
53
54         p = (unsigned long *)page;
55         end = p + PTRS_PER_PGD;
56
57         do {
58                 p[0] = entry;
59                 p[1] = entry;
60                 p[2] = entry;
61                 p[3] = entry;
62                 p[4] = entry;
63                 p += 8;
64                 p[-3] = entry;
65                 p[-2] = entry;
66                 p[-1] = entry;
67         } while (p != end);
68 }
69
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:     Pointer to new KVM GPA page directory.
77  *              NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81         pgd_t *ret;
82
83         ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
84         if (ret)
85                 kvm_pgd_init(ret);
86
87         return ret;
88 }
89
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:        Page directory pointer.
93  * @addr:       Address to index page table using.
94  * @cache:      MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:     Pointer to pte_t corresponding to @addr.
101  *              NULL if a page table doesn't exist for @addr and !@cache.
102  *              NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105                                 unsigned long addr)
106 {
107         p4d_t *p4d;
108         pud_t *pud;
109         pmd_t *pmd;
110
111         pgd += pgd_index(addr);
112         if (pgd_none(*pgd)) {
113                 /* Not used on MIPS yet */
114                 BUG();
115                 return NULL;
116         }
117         p4d = p4d_offset(pgd, addr);
118         pud = pud_offset(p4d, addr);
119         if (pud_none(*pud)) {
120                 pmd_t *new_pmd;
121
122                 if (!cache)
123                         return NULL;
124                 new_pmd = kvm_mmu_memory_cache_alloc(cache);
125                 pmd_init(new_pmd);
126                 pud_populate(NULL, pud, new_pmd);
127         }
128         pmd = pmd_offset(pud, addr);
129         if (pmd_none(*pmd)) {
130                 pte_t *new_pte;
131
132                 if (!cache)
133                         return NULL;
134                 new_pte = kvm_mmu_memory_cache_alloc(cache);
135                 clear_page(new_pte);
136                 pmd_populate_kernel(NULL, pmd, new_pte);
137         }
138         return pte_offset_kernel(pmd, addr);
139 }
140
141 /* Caller must hold kvm->mm_lock */
142 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143                                    struct kvm_mmu_memory_cache *cache,
144                                    unsigned long addr)
145 {
146         return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147 }
148
149 /*
150  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151  * Flush a range of guest physical address space from the VM's GPA page tables.
152  */
153
154 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155                                    unsigned long end_gpa)
156 {
157         int i_min = pte_index(start_gpa);
158         int i_max = pte_index(end_gpa);
159         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160         int i;
161
162         for (i = i_min; i <= i_max; ++i) {
163                 if (!pte_present(pte[i]))
164                         continue;
165
166                 set_pte(pte + i, __pte(0));
167         }
168         return safe_to_remove;
169 }
170
171 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172                                    unsigned long end_gpa)
173 {
174         pte_t *pte;
175         unsigned long end = ~0ul;
176         int i_min = pmd_index(start_gpa);
177         int i_max = pmd_index(end_gpa);
178         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179         int i;
180
181         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182                 if (!pmd_present(pmd[i]))
183                         continue;
184
185                 pte = pte_offset_kernel(pmd + i, 0);
186                 if (i == i_max)
187                         end = end_gpa;
188
189                 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190                         pmd_clear(pmd + i);
191                         pte_free_kernel(NULL, pte);
192                 } else {
193                         safe_to_remove = false;
194                 }
195         }
196         return safe_to_remove;
197 }
198
199 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200                                    unsigned long end_gpa)
201 {
202         pmd_t *pmd;
203         unsigned long end = ~0ul;
204         int i_min = pud_index(start_gpa);
205         int i_max = pud_index(end_gpa);
206         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207         int i;
208
209         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210                 if (!pud_present(pud[i]))
211                         continue;
212
213                 pmd = pmd_offset(pud + i, 0);
214                 if (i == i_max)
215                         end = end_gpa;
216
217                 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218                         pud_clear(pud + i);
219                         pmd_free(NULL, pmd);
220                 } else {
221                         safe_to_remove = false;
222                 }
223         }
224         return safe_to_remove;
225 }
226
227 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228                                    unsigned long end_gpa)
229 {
230         p4d_t *p4d;
231         pud_t *pud;
232         unsigned long end = ~0ul;
233         int i_min = pgd_index(start_gpa);
234         int i_max = pgd_index(end_gpa);
235         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236         int i;
237
238         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239                 if (!pgd_present(pgd[i]))
240                         continue;
241
242                 p4d = p4d_offset(pgd, 0);
243                 pud = pud_offset(p4d + i, 0);
244                 if (i == i_max)
245                         end = end_gpa;
246
247                 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248                         pgd_clear(pgd + i);
249                         pud_free(NULL, pud);
250                 } else {
251                         safe_to_remove = false;
252                 }
253         }
254         return safe_to_remove;
255 }
256
257 /**
258  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259  * @kvm:        KVM pointer.
260  * @start_gfn:  Guest frame number of first page in GPA range to flush.
261  * @end_gfn:    Guest frame number of last page in GPA range to flush.
262  *
263  * Flushes a range of GPA mappings from the GPA page tables.
264  *
265  * The caller must hold the @kvm->mmu_lock spinlock.
266  *
267  * Returns:     Whether its safe to remove the top level page directory because
268  *              all lower levels have been removed.
269  */
270 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271 {
272         return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273                                       start_gfn << PAGE_SHIFT,
274                                       end_gfn << PAGE_SHIFT);
275 }
276
277 #define BUILD_PTE_RANGE_OP(name, op)                                    \
278 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
279                                  unsigned long end)                     \
280 {                                                                       \
281         int ret = 0;                                                    \
282         int i_min = pte_index(start);                           \
283         int i_max = pte_index(end);                                     \
284         int i;                                                          \
285         pte_t old, new;                                                 \
286                                                                         \
287         for (i = i_min; i <= i_max; ++i) {                              \
288                 if (!pte_present(pte[i]))                               \
289                         continue;                                       \
290                                                                         \
291                 old = pte[i];                                           \
292                 new = op(old);                                          \
293                 if (pte_val(new) == pte_val(old))                       \
294                         continue;                                       \
295                 set_pte(pte + i, new);                                  \
296                 ret = 1;                                                \
297         }                                                               \
298         return ret;                                                     \
299 }                                                                       \
300                                                                         \
301 /* returns true if anything was done */                                 \
302 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
303                                  unsigned long end)                     \
304 {                                                                       \
305         int ret = 0;                                                    \
306         pte_t *pte;                                                     \
307         unsigned long cur_end = ~0ul;                                   \
308         int i_min = pmd_index(start);                           \
309         int i_max = pmd_index(end);                                     \
310         int i;                                                          \
311                                                                         \
312         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
313                 if (!pmd_present(pmd[i]))                               \
314                         continue;                                       \
315                                                                         \
316                 pte = pte_offset_kernel(pmd + i, 0);                            \
317                 if (i == i_max)                                         \
318                         cur_end = end;                                  \
319                                                                         \
320                 ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
321         }                                                               \
322         return ret;                                                     \
323 }                                                                       \
324                                                                         \
325 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
326                                  unsigned long end)                     \
327 {                                                                       \
328         int ret = 0;                                                    \
329         pmd_t *pmd;                                                     \
330         unsigned long cur_end = ~0ul;                                   \
331         int i_min = pud_index(start);                           \
332         int i_max = pud_index(end);                                     \
333         int i;                                                          \
334                                                                         \
335         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
336                 if (!pud_present(pud[i]))                               \
337                         continue;                                       \
338                                                                         \
339                 pmd = pmd_offset(pud + i, 0);                           \
340                 if (i == i_max)                                         \
341                         cur_end = end;                                  \
342                                                                         \
343                 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
344         }                                                               \
345         return ret;                                                     \
346 }                                                                       \
347                                                                         \
348 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
349                                  unsigned long end)                     \
350 {                                                                       \
351         int ret = 0;                                                    \
352         p4d_t *p4d;                                                     \
353         pud_t *pud;                                                     \
354         unsigned long cur_end = ~0ul;                                   \
355         int i_min = pgd_index(start);                                   \
356         int i_max = pgd_index(end);                                     \
357         int i;                                                          \
358                                                                         \
359         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
360                 if (!pgd_present(pgd[i]))                               \
361                         continue;                                       \
362                                                                         \
363                 p4d = p4d_offset(pgd, 0);                               \
364                 pud = pud_offset(p4d + i, 0);                           \
365                 if (i == i_max)                                         \
366                         cur_end = end;                                  \
367                                                                         \
368                 ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
369         }                                                               \
370         return ret;                                                     \
371 }
372
373 /*
374  * kvm_mips_mkclean_gpa_pt.
375  * Mark a range of guest physical address space clean (writes fault) in the VM's
376  * GPA page table to allow dirty page tracking.
377  */
378
379 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380
381 /**
382  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383  * @kvm:        KVM pointer.
384  * @start_gfn:  Guest frame number of first page in GPA range to flush.
385  * @end_gfn:    Guest frame number of last page in GPA range to flush.
386  *
387  * Make a range of GPA mappings clean so that guest writes will fault and
388  * trigger dirty page logging.
389  *
390  * The caller must hold the @kvm->mmu_lock spinlock.
391  *
392  * Returns:     Whether any GPA mappings were modified, which would require
393  *              derived mappings (GVA page tables & TLB enties) to be
394  *              invalidated.
395  */
396 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397 {
398         return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399                                     start_gfn << PAGE_SHIFT,
400                                     end_gfn << PAGE_SHIFT);
401 }
402
403 /**
404  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405  * @kvm:        The KVM pointer
406  * @slot:       The memory slot associated with mask
407  * @gfn_offset: The gfn offset in memory slot
408  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
409  *              slot to be write protected
410  *
411  * Walks bits set in mask write protects the associated pte's. Caller must
412  * acquire @kvm->mmu_lock.
413  */
414 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415                 struct kvm_memory_slot *slot,
416                 gfn_t gfn_offset, unsigned long mask)
417 {
418         gfn_t base_gfn = slot->base_gfn + gfn_offset;
419         gfn_t start = base_gfn +  __ffs(mask);
420         gfn_t end = base_gfn + __fls(mask);
421
422         kvm_mips_mkclean_gpa_pt(kvm, start, end);
423 }
424
425 /*
426  * kvm_mips_mkold_gpa_pt.
427  * Mark a range of guest physical address space old (all accesses fault) in the
428  * VM's GPA page table to allow detection of commonly used pages.
429  */
430
431 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432
433 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434                                  gfn_t end_gfn)
435 {
436         return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437                                   start_gfn << PAGE_SHIFT,
438                                   end_gfn << PAGE_SHIFT);
439 }
440
441 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
442 {
443         kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444         return true;
445 }
446
447 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449         return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
450 }
451
452 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
453 {
454         gpa_t gpa = range->start << PAGE_SHIFT;
455         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
456
457         if (!gpa_pte)
458                 return false;
459         return pte_young(*gpa_pte);
460 }
461
462 /**
463  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
464  * @vcpu:               VCPU pointer.
465  * @gpa:                Guest physical address of fault.
466  * @write_fault:        Whether the fault was due to a write.
467  * @out_entry:          New PTE for @gpa (written on success unless NULL).
468  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
469  *                      NULL).
470  *
471  * Perform fast path GPA fault handling, doing all that can be done without
472  * calling into KVM. This handles marking old pages young (for idle page
473  * tracking), and dirtying of clean pages (for dirty page logging).
474  *
475  * Returns:     0 on success, in which case we can update derived mappings and
476  *              resume guest execution.
477  *              -EFAULT on failure due to absent GPA mapping or write to
478  *              read-only page, in which case KVM must be consulted.
479  */
480 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
481                                    bool write_fault,
482                                    pte_t *out_entry, pte_t *out_buddy)
483 {
484         struct kvm *kvm = vcpu->kvm;
485         gfn_t gfn = gpa >> PAGE_SHIFT;
486         pte_t *ptep;
487         int ret = 0;
488
489         spin_lock(&kvm->mmu_lock);
490
491         /* Fast path - just check GPA page table for an existing entry */
492         ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
493         if (!ptep || !pte_present(*ptep)) {
494                 ret = -EFAULT;
495                 goto out;
496         }
497
498         /* Track access to pages marked old */
499         if (!pte_young(*ptep))
500                 set_pte(ptep, pte_mkyoung(*ptep));
501
502         if (write_fault && !pte_dirty(*ptep)) {
503                 if (!pte_write(*ptep)) {
504                         ret = -EFAULT;
505                         goto out;
506                 }
507
508                 /* Track dirtying of writeable pages */
509                 set_pte(ptep, pte_mkdirty(*ptep));
510                 mark_page_dirty(kvm, gfn);
511         }
512
513         if (out_entry)
514                 *out_entry = *ptep;
515         if (out_buddy)
516                 *out_buddy = *ptep_buddy(ptep);
517
518 out:
519         spin_unlock(&kvm->mmu_lock);
520         return ret;
521 }
522
523 /**
524  * kvm_mips_map_page() - Map a guest physical page.
525  * @vcpu:               VCPU pointer.
526  * @gpa:                Guest physical address of fault.
527  * @write_fault:        Whether the fault was due to a write.
528  * @out_entry:          New PTE for @gpa (written on success unless NULL).
529  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
530  *                      NULL).
531  *
532  * Handle GPA faults by creating a new GPA mapping (or updating an existing
533  * one).
534  *
535  * This takes care of marking pages young or dirty (idle/dirty page tracking),
536  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
537  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
538  * caller.
539  *
540  * Returns:     0 on success, in which case the caller may use the @out_entry
541  *              and @out_buddy PTEs to update derived mappings and resume guest
542  *              execution.
543  *              -EFAULT if there is no memory region at @gpa or a write was
544  *              attempted to a read-only memory region. This is usually handled
545  *              as an MMIO access.
546  */
547 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
548                              bool write_fault,
549                              pte_t *out_entry, pte_t *out_buddy)
550 {
551         struct kvm *kvm = vcpu->kvm;
552         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
553         gfn_t gfn = gpa >> PAGE_SHIFT;
554         int srcu_idx, err;
555         kvm_pfn_t pfn;
556         pte_t *ptep, entry;
557         bool writeable;
558         unsigned long prot_bits;
559         unsigned long mmu_seq;
560         struct page *page;
561
562         /* Try the fast path to handle old / clean pages */
563         srcu_idx = srcu_read_lock(&kvm->srcu);
564         err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
565                                       out_buddy);
566         if (!err)
567                 goto out;
568
569         /* We need a minimum of cached pages ready for page table creation */
570         err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
571         if (err)
572                 goto out;
573
574 retry:
575         /*
576          * Used to check for invalidations in progress, of the pfn that is
577          * returned by pfn_to_pfn_prot below.
578          */
579         mmu_seq = kvm->mmu_invalidate_seq;
580         /*
581          * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
582          * in kvm_faultin_pfn() (which calls get_user_pages()), so that we don't
583          * risk the page we get a reference to getting unmapped before we have a
584          * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
585          *
586          * This smp_rmb() pairs with the effective smp_wmb() of the combination
587          * of the pte_unmap_unlock() after the PTE is zapped, and the
588          * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
589          * mmu_invalidate_seq is incremented.
590          */
591         smp_rmb();
592
593         /* Slow path - ask KVM core whether we can access this GPA */
594         pfn = kvm_faultin_pfn(vcpu, gfn, write_fault, &writeable, &page);
595         if (is_error_noslot_pfn(pfn)) {
596                 err = -EFAULT;
597                 goto out;
598         }
599
600         spin_lock(&kvm->mmu_lock);
601         /* Check if an invalidation has taken place since we got pfn */
602         if (mmu_invalidate_retry(kvm, mmu_seq)) {
603                 /*
604                  * This can happen when mappings are changed asynchronously, but
605                  * also synchronously if a COW is triggered by
606                  * kvm_faultin_pfn().
607                  */
608                 spin_unlock(&kvm->mmu_lock);
609                 kvm_release_page_unused(page);
610                 goto retry;
611         }
612
613         /* Ensure page tables are allocated */
614         ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
615
616         /* Set up the PTE */
617         prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
618         if (writeable) {
619                 prot_bits |= _PAGE_WRITE;
620                 if (write_fault) {
621                         prot_bits |= __WRITEABLE;
622                         mark_page_dirty(kvm, gfn);
623                 }
624         }
625         entry = pfn_pte(pfn, __pgprot(prot_bits));
626
627         /* Write the PTE */
628         set_pte(ptep, entry);
629
630         err = 0;
631         if (out_entry)
632                 *out_entry = *ptep;
633         if (out_buddy)
634                 *out_buddy = *ptep_buddy(ptep);
635
636         kvm_release_faultin_page(kvm, page, false, writeable);
637         spin_unlock(&kvm->mmu_lock);
638 out:
639         srcu_read_unlock(&kvm->srcu, srcu_idx);
640         return err;
641 }
642
643 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
644                                       struct kvm_vcpu *vcpu,
645                                       bool write_fault)
646 {
647         int ret;
648
649         ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
650         if (ret)
651                 return ret;
652
653         /* Invalidate this entry in the TLB */
654         return kvm_vz_host_tlb_inv(vcpu, badvaddr);
655 }
656
657 /**
658  * kvm_mips_migrate_count() - Migrate timer.
659  * @vcpu:       Virtual CPU.
660  *
661  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
662  * if it was running prior to being cancelled.
663  *
664  * Must be called when the VCPU is migrated to a different CPU to ensure that
665  * timer expiry during guest execution interrupts the guest and causes the
666  * interrupt to be delivered in a timely manner.
667  */
668 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
669 {
670         if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
671                 hrtimer_restart(&vcpu->arch.comparecount_timer);
672 }
673
674 /* Restore ASID once we are scheduled back after preemption */
675 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
676 {
677         unsigned long flags;
678
679         kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
680
681         local_irq_save(flags);
682
683         vcpu->cpu = cpu;
684         if (vcpu->arch.last_sched_cpu != cpu) {
685                 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
686                           vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
687                 /*
688                  * Migrate the timer interrupt to the current CPU so that it
689                  * always interrupts the guest and synchronously triggers a
690                  * guest timer interrupt.
691                  */
692                 kvm_mips_migrate_count(vcpu);
693         }
694
695         /* restore guest state to registers */
696         kvm_mips_callbacks->vcpu_load(vcpu, cpu);
697
698         local_irq_restore(flags);
699 }
700
701 /* ASID can change if another task is scheduled during preemption */
702 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
703 {
704         unsigned long flags;
705         int cpu;
706
707         local_irq_save(flags);
708
709         cpu = smp_processor_id();
710         vcpu->arch.last_sched_cpu = cpu;
711         vcpu->cpu = -1;
712
713         /* save guest state in registers */
714         kvm_mips_callbacks->vcpu_put(vcpu, cpu);
715
716         local_irq_restore(flags);
717 }
This page took 0.06959 seconds and 4 git commands to generate.