1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
28 struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
33 static inline void sanity_check_pinned_pages(struct page **pages,
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
55 if (!folio_test_anon(folio))
57 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
58 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 /* Either a PTE-mapped or a PMD-mapped THP. */
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
62 !PageAnonExclusive(page), page);
67 * Return the folio with ref appropriately incremented,
68 * or NULL if that failed.
70 static inline struct folio *try_get_folio(struct page *page, int refs)
75 folio = page_folio(page);
76 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
82 * At this point we have a stable reference to the folio; but it
83 * could be that between calling page_folio() and the refcount
84 * increment, the folio was split, in which case we'd end up
85 * holding a reference on a folio that has nothing to do with the page
86 * we were given anymore.
87 * So now that the folio is stable, recheck that the page still
88 * belongs to this folio.
90 if (unlikely(page_folio(page) != folio)) {
91 if (!put_devmap_managed_page_refs(&folio->page, refs))
92 folio_put_refs(folio, refs);
100 * try_grab_folio() - Attempt to get or pin a folio.
101 * @page: pointer to page to be grabbed
102 * @refs: the value to (effectively) add to the folio's refcount
103 * @flags: gup flags: these are the FOLL_* flag values.
105 * "grab" names in this file mean, "look at flags to decide whether to use
106 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
109 * same time. (That's true throughout the get_user_pages*() and
110 * pin_user_pages*() APIs.) Cases:
112 * FOLL_GET: folio's refcount will be incremented by @refs.
114 * FOLL_PIN on large folios: folio's refcount will be incremented by
115 * @refs, and its pincount will be incremented by @refs.
117 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
118 * @refs * GUP_PIN_COUNTING_BIAS.
120 * Return: The folio containing @page (with refcount appropriately
121 * incremented) for success, or NULL upon failure. If neither FOLL_GET
122 * nor FOLL_PIN was set, that's considered failure, and furthermore,
123 * a likely bug in the caller, so a warning is also emitted.
125 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
130 if (flags & FOLL_GET)
131 return try_get_folio(page, refs);
132 else if (flags & FOLL_PIN) {
136 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
137 * right zone, so fail and let the caller fall back to the slow
140 if (unlikely((flags & FOLL_LONGTERM) &&
141 !is_longterm_pinnable_page(page)))
145 * CAUTION: Don't use compound_head() on the page before this
146 * point, the result won't be stable.
148 folio = try_get_folio(page, refs);
153 * When pinning a large folio, use an exact count to track it.
155 * However, be sure to *also* increment the normal folio
156 * refcount field at least once, so that the folio really
157 * is pinned. That's why the refcount from the earlier
158 * try_get_folio() is left intact.
160 if (folio_test_large(folio))
161 atomic_add(refs, &folio->_pincount);
164 refs * (GUP_PIN_COUNTING_BIAS - 1));
166 * Adjust the pincount before re-checking the PTE for changes.
167 * This is essentially a smp_mb() and is paired with a memory
168 * barrier in page_try_share_anon_rmap().
170 smp_mb__after_atomic();
172 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
181 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
183 if (flags & FOLL_PIN) {
184 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
185 if (folio_test_large(folio))
186 atomic_sub(refs, &folio->_pincount);
188 refs *= GUP_PIN_COUNTING_BIAS;
191 if (!put_devmap_managed_page_refs(&folio->page, refs))
192 folio_put_refs(folio, refs);
196 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
197 * @page: pointer to page to be grabbed
198 * @flags: gup flags: these are the FOLL_* flag values.
200 * This might not do anything at all, depending on the flags argument.
202 * "grab" names in this file mean, "look at flags to decide whether to use
203 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
205 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
206 * time. Cases: please see the try_grab_folio() documentation, with
209 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
210 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
212 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
215 int __must_check try_grab_page(struct page *page, unsigned int flags)
217 struct folio *folio = page_folio(page);
219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
225 if (flags & FOLL_GET)
226 folio_ref_inc(folio);
227 else if (flags & FOLL_PIN) {
229 * Similar to try_grab_folio(): be sure to *also*
230 * increment the normal page refcount field at least once,
231 * so that the page really is pinned.
233 if (folio_test_large(folio)) {
234 folio_ref_add(folio, 1);
235 atomic_add(1, &folio->_pincount);
237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
247 * unpin_user_page() - release a dma-pinned page
248 * @page: pointer to page to be released
250 * Pages that were pinned via pin_user_pages*() must be released via either
251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252 * that such pages can be separately tracked and uniquely handled. In
253 * particular, interactions with RDMA and filesystems need special handling.
255 void unpin_user_page(struct page *page)
257 sanity_check_pinned_pages(&page, 1);
258 gup_put_folio(page_folio(page), 1, FOLL_PIN);
260 EXPORT_SYMBOL(unpin_user_page);
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 unsigned long npages, unsigned long i, unsigned int *ntails)
265 struct page *next = nth_page(start, i);
266 struct folio *folio = page_folio(next);
269 if (folio_test_large(folio))
270 nr = min_t(unsigned int, npages - i,
271 folio_nr_pages(folio) - folio_page_idx(folio, next));
277 static inline struct folio *gup_folio_next(struct page **list,
278 unsigned long npages, unsigned long i, unsigned int *ntails)
280 struct folio *folio = page_folio(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (page_folio(list[nr]) != folio)
293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294 * @pages: array of pages to be maybe marked dirty, and definitely released.
295 * @npages: number of pages in the @pages array.
296 * @make_dirty: whether to mark the pages dirty
298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299 * variants called on that page.
301 * For each page in the @pages array, make that page (or its head page, if a
302 * compound page) dirty, if @make_dirty is true, and if the page was previously
303 * listed as clean. In any case, releases all pages using unpin_user_page(),
304 * possibly via unpin_user_pages(), for the non-dirty case.
306 * Please see the unpin_user_page() documentation for details.
308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309 * required, then the caller should a) verify that this is really correct,
310 * because _lock() is usually required, and b) hand code it:
311 * set_page_dirty_lock(), unpin_user_page().
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
322 unpin_user_pages(pages, npages);
326 sanity_check_pinned_pages(pages, npages);
327 for (i = 0; i < npages; i += nr) {
328 folio = gup_folio_next(pages, npages, i, &nr);
330 * Checking PageDirty at this point may race with
331 * clear_page_dirty_for_io(), but that's OK. Two key
334 * 1) This code sees the page as already dirty, so it
335 * skips the call to set_page_dirty(). That could happen
336 * because clear_page_dirty_for_io() called
337 * page_mkclean(), followed by set_page_dirty().
338 * However, now the page is going to get written back,
339 * which meets the original intention of setting it
340 * dirty, so all is well: clear_page_dirty_for_io() goes
341 * on to call TestClearPageDirty(), and write the page
344 * 2) This code sees the page as clean, so it calls
345 * set_page_dirty(). The page stays dirty, despite being
346 * written back, so it gets written back again in the
347 * next writeback cycle. This is harmless.
349 if (!folio_test_dirty(folio)) {
351 folio_mark_dirty(folio);
354 gup_put_folio(folio, nr, FOLL_PIN);
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
361 * gup-pinned page range
363 * @page: the starting page of a range maybe marked dirty, and definitely released.
364 * @npages: number of consecutive pages to release.
365 * @make_dirty: whether to mark the pages dirty
367 * "gup-pinned page range" refers to a range of pages that has had one of the
368 * pin_user_pages() variants called on that page.
370 * For the page ranges defined by [page .. page+npages], make that range (or
371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372 * page range was previously listed as clean.
374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375 * required, then the caller should a) verify that this is really correct,
376 * because _lock() is usually required, and b) hand code it:
377 * set_page_dirty_lock(), unpin_user_page().
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
387 for (i = 0; i < npages; i += nr) {
388 folio = gup_folio_range_next(page, npages, i, &nr);
389 if (make_dirty && !folio_test_dirty(folio)) {
391 folio_mark_dirty(folio);
394 gup_put_folio(folio, nr, FOLL_PIN);
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
406 * Don't perform any sanity checks because we might have raced with
407 * fork() and some anonymous pages might now actually be shared --
408 * which is why we're unpinning after all.
410 for (i = 0; i < npages; i += nr) {
411 folio = gup_folio_next(pages, npages, i, &nr);
412 gup_put_folio(folio, nr, FOLL_PIN);
417 * unpin_user_pages() - release an array of gup-pinned pages.
418 * @pages: array of pages to be marked dirty and released.
419 * @npages: number of pages in the @pages array.
421 * For each page in the @pages array, release the page using unpin_user_page().
423 * Please see the unpin_user_page() documentation for details.
425 void unpin_user_pages(struct page **pages, unsigned long npages)
432 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 * leaving them pinned), but probably not. More likely, gup/pup returned
434 * a hard -ERRNO error to the caller, who erroneously passed it here.
436 if (WARN_ON(IS_ERR_VALUE(npages)))
439 sanity_check_pinned_pages(pages, npages);
440 for (i = 0; i < npages; i += nr) {
441 folio = gup_folio_next(pages, npages, i, &nr);
442 gup_put_folio(folio, nr, FOLL_PIN);
445 EXPORT_SYMBOL(unpin_user_pages);
448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
450 * cache bouncing on large SMP machines for concurrent pinned gups.
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
454 if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 set_bit(MMF_HAS_PINNED, mm_flags);
459 static struct page *no_page_table(struct vm_area_struct *vma,
463 * When core dumping an enormous anonymous area that nobody
464 * has touched so far, we don't want to allocate unnecessary pages or
465 * page tables. Return error instead of NULL to skip handle_mm_fault,
466 * then get_dump_page() will return NULL to leave a hole in the dump.
467 * But we can only make this optimization where a hole would surely
468 * be zero-filled if handle_mm_fault() actually did handle it.
470 if ((flags & FOLL_DUMP) &&
471 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 return ERR_PTR(-EFAULT);
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 pte_t *pte, unsigned int flags)
479 if (flags & FOLL_TOUCH) {
482 if (flags & FOLL_WRITE)
483 entry = pte_mkdirty(entry);
484 entry = pte_mkyoung(entry);
486 if (!pte_same(*pte, entry)) {
487 set_pte_at(vma->vm_mm, address, pte, entry);
488 update_mmu_cache(vma, address, pte);
492 /* Proper page table entry exists, but no corresponding struct page */
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 struct vm_area_struct *vma,
501 /* If the pte is writable, we can write to the page. */
505 /* Maybe FOLL_FORCE is set to override it? */
506 if (!(flags & FOLL_FORCE))
509 /* But FOLL_FORCE has no effect on shared mappings */
510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
513 /* ... or read-only private ones */
514 if (!(vma->vm_flags & VM_MAYWRITE))
517 /* ... or already writable ones that just need to take a write fault */
518 if (vma->vm_flags & VM_WRITE)
522 * See can_change_pte_writable(): we broke COW and could map the page
523 * writable if we have an exclusive anonymous page ...
525 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
528 /* ... and a write-fault isn't required for other reasons. */
529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
531 return !userfaultfd_pte_wp(vma, pte);
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 unsigned long address, pmd_t *pmd, unsigned int flags,
536 struct dev_pagemap **pgmap)
538 struct mm_struct *mm = vma->vm_mm;
544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 (FOLL_PIN | FOLL_GET)))
547 return ERR_PTR(-EINVAL);
548 if (unlikely(pmd_bad(*pmd)))
549 return no_page_table(vma, flags);
551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
553 if (!pte_present(pte))
555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
558 page = vm_normal_page(vma, address, pte);
561 * We only care about anon pages in can_follow_write_pte() and don't
562 * have to worry about pte_devmap() because they are never anon.
564 if ((flags & FOLL_WRITE) &&
565 !can_follow_write_pte(pte, page, vma, flags)) {
570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 * case since they are only valid while holding the pgmap
576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
578 page = pte_page(pte);
581 } else if (unlikely(!page)) {
582 if (flags & FOLL_DUMP) {
583 /* Avoid special (like zero) pages in core dumps */
584 page = ERR_PTR(-EFAULT);
588 if (is_zero_pfn(pte_pfn(pte))) {
589 page = pte_page(pte);
591 ret = follow_pfn_pte(vma, address, ptep, flags);
597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 page = ERR_PTR(-EMLINK);
602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 !PageAnonExclusive(page), page);
605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 ret = try_grab_page(page, flags);
613 * We need to make the page accessible if and only if we are going
614 * to access its content (the FOLL_PIN case). Please see
615 * Documentation/core-api/pin_user_pages.rst for details.
617 if (flags & FOLL_PIN) {
618 ret = arch_make_page_accessible(page);
620 unpin_user_page(page);
625 if (flags & FOLL_TOUCH) {
626 if ((flags & FOLL_WRITE) &&
627 !pte_dirty(pte) && !PageDirty(page))
628 set_page_dirty(page);
630 * pte_mkyoung() would be more correct here, but atomic care
631 * is needed to avoid losing the dirty bit: it is easier to use
632 * mark_page_accessed().
634 mark_page_accessed(page);
637 pte_unmap_unlock(ptep, ptl);
640 pte_unmap_unlock(ptep, ptl);
643 return no_page_table(vma, flags);
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 unsigned long address, pud_t *pudp,
649 struct follow_page_context *ctx)
654 struct mm_struct *mm = vma->vm_mm;
656 pmd = pmd_offset(pudp, address);
658 * The READ_ONCE() will stabilize the pmdval in a register or
659 * on the stack so that it will stop changing under the code.
661 pmdval = READ_ONCE(*pmd);
662 if (pmd_none(pmdval))
663 return no_page_table(vma, flags);
664 if (!pmd_present(pmdval))
665 return no_page_table(vma, flags);
666 if (pmd_devmap(pmdval)) {
667 ptl = pmd_lock(mm, pmd);
668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
673 if (likely(!pmd_trans_huge(pmdval)))
674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 return no_page_table(vma, flags);
679 ptl = pmd_lock(mm, pmd);
680 if (unlikely(!pmd_present(*pmd))) {
682 return no_page_table(vma, flags);
684 if (unlikely(!pmd_trans_huge(*pmd))) {
686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
688 if (flags & FOLL_SPLIT_PMD) {
690 page = pmd_page(*pmd);
691 if (is_huge_zero_page(page)) {
694 split_huge_pmd(vma, pmd, address);
695 if (pmd_trans_unstable(pmd))
699 split_huge_pmd(vma, pmd, address);
700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 return ret ? ERR_PTR(ret) :
704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
706 page = follow_trans_huge_pmd(vma, address, pmd, flags);
708 ctx->page_mask = HPAGE_PMD_NR - 1;
712 static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 unsigned long address, p4d_t *p4dp,
715 struct follow_page_context *ctx)
720 struct mm_struct *mm = vma->vm_mm;
722 pud = pud_offset(p4dp, address);
724 return no_page_table(vma, flags);
725 if (pud_devmap(*pud)) {
726 ptl = pud_lock(mm, pud);
727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
732 if (unlikely(pud_bad(*pud)))
733 return no_page_table(vma, flags);
735 return follow_pmd_mask(vma, address, pud, flags, ctx);
738 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 unsigned long address, pgd_t *pgdp,
741 struct follow_page_context *ctx)
745 p4d = p4d_offset(pgdp, address);
747 return no_page_table(vma, flags);
748 BUILD_BUG_ON(p4d_huge(*p4d));
749 if (unlikely(p4d_bad(*p4d)))
750 return no_page_table(vma, flags);
752 return follow_pud_mask(vma, address, p4d, flags, ctx);
756 * follow_page_mask - look up a page descriptor from a user-virtual address
757 * @vma: vm_area_struct mapping @address
758 * @address: virtual address to look up
759 * @flags: flags modifying lookup behaviour
760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761 * pointer to output page_mask
763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
768 * When getting an anonymous page and the caller has to trigger unsharing
769 * of a shared anonymous page first, -EMLINK is returned. The caller should
770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771 * relevant with FOLL_PIN and !FOLL_WRITE.
773 * On output, the @ctx->page_mask is set according to the size of the page.
775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
776 * an error pointer if there is a mapping to something not represented
777 * by a page descriptor (see also vm_normal_page()).
779 static struct page *follow_page_mask(struct vm_area_struct *vma,
780 unsigned long address, unsigned int flags,
781 struct follow_page_context *ctx)
785 struct mm_struct *mm = vma->vm_mm;
790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 * special hugetlb page table walking code. This eliminates the
792 * need to check for hugetlb entries in the general walking code.
794 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
797 if (is_vm_hugetlb_page(vma)) {
798 page = hugetlb_follow_page_mask(vma, address, flags);
800 page = no_page_table(vma, flags);
804 pgd = pgd_offset(mm, address);
806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 return no_page_table(vma, flags);
809 return follow_p4d_mask(vma, address, pgd, flags, ctx);
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 unsigned int foll_flags)
815 struct follow_page_context ctx = { NULL };
818 if (vma_is_secretmem(vma))
821 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
824 page = follow_page_mask(vma, address, foll_flags, &ctx);
826 put_dev_pagemap(ctx.pgmap);
830 static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 unsigned int gup_flags, struct vm_area_struct **vma,
841 /* user gate pages are read-only */
842 if (gup_flags & FOLL_WRITE)
844 if (address > TASK_SIZE)
845 pgd = pgd_offset_k(address);
847 pgd = pgd_offset_gate(mm, address);
850 p4d = p4d_offset(pgd, address);
853 pud = pud_offset(p4d, address);
856 pmd = pmd_offset(pud, address);
857 if (!pmd_present(*pmd))
859 VM_BUG_ON(pmd_trans_huge(*pmd));
860 pte = pte_offset_map(pmd, address);
863 *vma = get_gate_vma(mm);
866 *page = vm_normal_page(*vma, address, *pte);
868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
870 *page = pte_page(*pte);
872 ret = try_grab_page(*page, gup_flags);
883 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
884 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
885 * to 0 and -EBUSY returned.
887 static int faultin_page(struct vm_area_struct *vma,
888 unsigned long address, unsigned int *flags, bool unshare,
891 unsigned int fault_flags = 0;
894 if (*flags & FOLL_NOFAULT)
896 if (*flags & FOLL_WRITE)
897 fault_flags |= FAULT_FLAG_WRITE;
898 if (*flags & FOLL_REMOTE)
899 fault_flags |= FAULT_FLAG_REMOTE;
900 if (*flags & FOLL_UNLOCKABLE) {
901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
903 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
904 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
905 * That's because some callers may not be prepared to
906 * handle early exits caused by non-fatal signals.
908 if (*flags & FOLL_INTERRUPTIBLE)
909 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
911 if (*flags & FOLL_NOWAIT)
912 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
913 if (*flags & FOLL_TRIED) {
915 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
918 fault_flags |= FAULT_FLAG_TRIED;
921 fault_flags |= FAULT_FLAG_UNSHARE;
922 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
923 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
926 ret = handle_mm_fault(vma, address, fault_flags, NULL);
928 if (ret & VM_FAULT_COMPLETED) {
930 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
931 * mmap lock in the page fault handler. Sanity check this.
933 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
937 * We should do the same as VM_FAULT_RETRY, but let's not
938 * return -EBUSY since that's not reflecting the reality of
939 * what has happened - we've just fully completed a page
940 * fault, with the mmap lock released. Use -EAGAIN to show
941 * that we want to take the mmap lock _again_.
946 if (ret & VM_FAULT_ERROR) {
947 int err = vm_fault_to_errno(ret, *flags);
954 if (ret & VM_FAULT_RETRY) {
955 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
964 * Writing to file-backed mappings which require folio dirty tracking using GUP
965 * is a fundamentally broken operation, as kernel write access to GUP mappings
966 * do not adhere to the semantics expected by a file system.
968 * Consider the following scenario:-
970 * 1. A folio is written to via GUP which write-faults the memory, notifying
971 * the file system and dirtying the folio.
972 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
973 * the PTE being marked read-only.
974 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
976 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
977 * (though it does not have to).
979 * This results in both data being written to a folio without writenotify, and
980 * the folio being dirtied unexpectedly (if the caller decides to do so).
982 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
983 unsigned long gup_flags)
986 * If we aren't pinning then no problematic write can occur. A long term
987 * pin is the most egregious case so this is the case we disallow.
989 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
990 (FOLL_PIN | FOLL_LONGTERM))
994 * If the VMA does not require dirty tracking then no problematic write
997 return !vma_needs_dirty_tracking(vma);
1000 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1002 vm_flags_t vm_flags = vma->vm_flags;
1003 int write = (gup_flags & FOLL_WRITE);
1004 int foreign = (gup_flags & FOLL_REMOTE);
1005 bool vma_anon = vma_is_anonymous(vma);
1007 if (vm_flags & (VM_IO | VM_PFNMAP))
1010 if ((gup_flags & FOLL_ANON) && !vma_anon)
1013 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1016 if (vma_is_secretmem(vma))
1021 !writable_file_mapping_allowed(vma, gup_flags))
1024 if (!(vm_flags & VM_WRITE)) {
1025 if (!(gup_flags & FOLL_FORCE))
1027 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1028 if (is_vm_hugetlb_page(vma))
1031 * We used to let the write,force case do COW in a
1032 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1033 * set a breakpoint in a read-only mapping of an
1034 * executable, without corrupting the file (yet only
1035 * when that file had been opened for writing!).
1036 * Anon pages in shared mappings are surprising: now
1039 if (!is_cow_mapping(vm_flags))
1042 } else if (!(vm_flags & VM_READ)) {
1043 if (!(gup_flags & FOLL_FORCE))
1046 * Is there actually any vma we can reach here which does not
1047 * have VM_MAYREAD set?
1049 if (!(vm_flags & VM_MAYREAD))
1053 * gups are always data accesses, not instruction
1054 * fetches, so execute=false here
1056 if (!arch_vma_access_permitted(vma, write, false, foreign))
1062 * __get_user_pages() - pin user pages in memory
1063 * @mm: mm_struct of target mm
1064 * @start: starting user address
1065 * @nr_pages: number of pages from start to pin
1066 * @gup_flags: flags modifying pin behaviour
1067 * @pages: array that receives pointers to the pages pinned.
1068 * Should be at least nr_pages long. Or NULL, if caller
1069 * only intends to ensure the pages are faulted in.
1070 * @locked: whether we're still with the mmap_lock held
1072 * Returns either number of pages pinned (which may be less than the
1073 * number requested), or an error. Details about the return value:
1075 * -- If nr_pages is 0, returns 0.
1076 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1077 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1078 * pages pinned. Again, this may be less than nr_pages.
1079 * -- 0 return value is possible when the fault would need to be retried.
1081 * The caller is responsible for releasing returned @pages, via put_page().
1083 * Must be called with mmap_lock held. It may be released. See below.
1085 * __get_user_pages walks a process's page tables and takes a reference to
1086 * each struct page that each user address corresponds to at a given
1087 * instant. That is, it takes the page that would be accessed if a user
1088 * thread accesses the given user virtual address at that instant.
1090 * This does not guarantee that the page exists in the user mappings when
1091 * __get_user_pages returns, and there may even be a completely different
1092 * page there in some cases (eg. if mmapped pagecache has been invalidated
1093 * and subsequently re-faulted). However it does guarantee that the page
1094 * won't be freed completely. And mostly callers simply care that the page
1095 * contains data that was valid *at some point in time*. Typically, an IO
1096 * or similar operation cannot guarantee anything stronger anyway because
1097 * locks can't be held over the syscall boundary.
1099 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1100 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1101 * appropriate) must be called after the page is finished with, and
1102 * before put_page is called.
1104 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1105 * be released. If this happens *@locked will be set to 0 on return.
1107 * A caller using such a combination of @gup_flags must therefore hold the
1108 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1109 * it must be held for either reading or writing and will not be released.
1111 * In most cases, get_user_pages or get_user_pages_fast should be used
1112 * instead of __get_user_pages. __get_user_pages should be used only if
1113 * you need some special @gup_flags.
1115 static long __get_user_pages(struct mm_struct *mm,
1116 unsigned long start, unsigned long nr_pages,
1117 unsigned int gup_flags, struct page **pages,
1120 long ret = 0, i = 0;
1121 struct vm_area_struct *vma = NULL;
1122 struct follow_page_context ctx = { NULL };
1127 start = untagged_addr_remote(mm, start);
1129 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1133 unsigned int foll_flags = gup_flags;
1134 unsigned int page_increm;
1136 /* first iteration or cross vma bound */
1137 if (!vma || start >= vma->vm_end) {
1138 vma = find_extend_vma(mm, start);
1139 if (!vma && in_gate_area(mm, start)) {
1140 ret = get_gate_page(mm, start & PAGE_MASK,
1142 pages ? &pages[i] : NULL);
1153 ret = check_vma_flags(vma, gup_flags);
1157 if (is_vm_hugetlb_page(vma)) {
1158 i = follow_hugetlb_page(mm, vma, pages,
1159 &start, &nr_pages, i,
1163 * We've got a VM_FAULT_RETRY
1164 * and we've lost mmap_lock.
1165 * We must stop here.
1167 BUG_ON(gup_flags & FOLL_NOWAIT);
1175 * If we have a pending SIGKILL, don't keep faulting pages and
1176 * potentially allocating memory.
1178 if (fatal_signal_pending(current)) {
1184 page = follow_page_mask(vma, start, foll_flags, &ctx);
1185 if (!page || PTR_ERR(page) == -EMLINK) {
1186 ret = faultin_page(vma, start, &foll_flags,
1187 PTR_ERR(page) == -EMLINK, locked);
1201 } else if (PTR_ERR(page) == -EEXIST) {
1203 * Proper page table entry exists, but no corresponding
1204 * struct page. If the caller expects **pages to be
1205 * filled in, bail out now, because that can't be done
1209 ret = PTR_ERR(page);
1214 } else if (IS_ERR(page)) {
1215 ret = PTR_ERR(page);
1220 flush_anon_page(vma, page, start);
1221 flush_dcache_page(page);
1225 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1226 if (page_increm > nr_pages)
1227 page_increm = nr_pages;
1229 start += page_increm * PAGE_SIZE;
1230 nr_pages -= page_increm;
1234 put_dev_pagemap(ctx.pgmap);
1238 static bool vma_permits_fault(struct vm_area_struct *vma,
1239 unsigned int fault_flags)
1241 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1242 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1243 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1245 if (!(vm_flags & vma->vm_flags))
1249 * The architecture might have a hardware protection
1250 * mechanism other than read/write that can deny access.
1252 * gup always represents data access, not instruction
1253 * fetches, so execute=false here:
1255 if (!arch_vma_access_permitted(vma, write, false, foreign))
1262 * fixup_user_fault() - manually resolve a user page fault
1263 * @mm: mm_struct of target mm
1264 * @address: user address
1265 * @fault_flags:flags to pass down to handle_mm_fault()
1266 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1267 * does not allow retry. If NULL, the caller must guarantee
1268 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1270 * This is meant to be called in the specific scenario where for locking reasons
1271 * we try to access user memory in atomic context (within a pagefault_disable()
1272 * section), this returns -EFAULT, and we want to resolve the user fault before
1275 * Typically this is meant to be used by the futex code.
1277 * The main difference with get_user_pages() is that this function will
1278 * unconditionally call handle_mm_fault() which will in turn perform all the
1279 * necessary SW fixup of the dirty and young bits in the PTE, while
1280 * get_user_pages() only guarantees to update these in the struct page.
1282 * This is important for some architectures where those bits also gate the
1283 * access permission to the page because they are maintained in software. On
1284 * such architectures, gup() will not be enough to make a subsequent access
1287 * This function will not return with an unlocked mmap_lock. So it has not the
1288 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1290 int fixup_user_fault(struct mm_struct *mm,
1291 unsigned long address, unsigned int fault_flags,
1294 struct vm_area_struct *vma;
1297 address = untagged_addr_remote(mm, address);
1300 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1303 vma = find_extend_vma(mm, address);
1304 if (!vma || address < vma->vm_start)
1307 if (!vma_permits_fault(vma, fault_flags))
1310 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1311 fatal_signal_pending(current))
1314 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1316 if (ret & VM_FAULT_COMPLETED) {
1318 * NOTE: it's a pity that we need to retake the lock here
1319 * to pair with the unlock() in the callers. Ideally we
1320 * could tell the callers so they do not need to unlock.
1327 if (ret & VM_FAULT_ERROR) {
1328 int err = vm_fault_to_errno(ret, 0);
1335 if (ret & VM_FAULT_RETRY) {
1338 fault_flags |= FAULT_FLAG_TRIED;
1344 EXPORT_SYMBOL_GPL(fixup_user_fault);
1347 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1348 * specified, it'll also respond to generic signals. The caller of GUP
1349 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1351 static bool gup_signal_pending(unsigned int flags)
1353 if (fatal_signal_pending(current))
1356 if (!(flags & FOLL_INTERRUPTIBLE))
1359 return signal_pending(current);
1363 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1364 * the caller. This function may drop the mmap_lock. If it does so, then it will
1365 * set (*locked = 0).
1367 * (*locked == 0) means that the caller expects this function to acquire and
1368 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1369 * the function returns, even though it may have changed temporarily during
1370 * function execution.
1372 * Please note that this function, unlike __get_user_pages(), will not return 0
1373 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1375 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1376 unsigned long start,
1377 unsigned long nr_pages,
1378 struct page **pages,
1382 long ret, pages_done;
1383 bool must_unlock = false;
1386 * The internal caller expects GUP to manage the lock internally and the
1387 * lock must be released when this returns.
1390 if (mmap_read_lock_killable(mm))
1396 mmap_assert_locked(mm);
1398 if (flags & FOLL_PIN)
1399 mm_set_has_pinned_flag(&mm->flags);
1402 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1403 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1404 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1405 * for FOLL_GET, not for the newer FOLL_PIN.
1407 * FOLL_PIN always expects pages to be non-null, but no need to assert
1408 * that here, as any failures will be obvious enough.
1410 if (pages && !(flags & FOLL_PIN))
1415 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1417 if (!(flags & FOLL_UNLOCKABLE)) {
1418 /* VM_FAULT_RETRY couldn't trigger, bypass */
1423 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1426 BUG_ON(ret >= nr_pages);
1437 * VM_FAULT_RETRY didn't trigger or it was a
1445 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1446 * For the prefault case (!pages) we only update counts.
1450 start += ret << PAGE_SHIFT;
1452 /* The lock was temporarily dropped, so we must unlock later */
1457 * Repeat on the address that fired VM_FAULT_RETRY
1458 * with both FAULT_FLAG_ALLOW_RETRY and
1459 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1460 * by fatal signals of even common signals, depending on
1461 * the caller's request. So we need to check it before we
1462 * start trying again otherwise it can loop forever.
1464 if (gup_signal_pending(flags)) {
1466 pages_done = -EINTR;
1470 ret = mmap_read_lock_killable(mm);
1479 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1482 /* Continue to retry until we succeeded */
1500 if (must_unlock && *locked) {
1502 * We either temporarily dropped the lock, or the caller
1503 * requested that we both acquire and drop the lock. Either way,
1504 * we must now unlock, and notify the caller of that state.
1506 mmap_read_unlock(mm);
1513 * populate_vma_page_range() - populate a range of pages in the vma.
1515 * @start: start address
1517 * @locked: whether the mmap_lock is still held
1519 * This takes care of mlocking the pages too if VM_LOCKED is set.
1521 * Return either number of pages pinned in the vma, or a negative error
1524 * vma->vm_mm->mmap_lock must be held.
1526 * If @locked is NULL, it may be held for read or write and will
1529 * If @locked is non-NULL, it must held for read only and may be
1530 * released. If it's released, *@locked will be set to 0.
1532 long populate_vma_page_range(struct vm_area_struct *vma,
1533 unsigned long start, unsigned long end, int *locked)
1535 struct mm_struct *mm = vma->vm_mm;
1536 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1537 int local_locked = 1;
1541 VM_BUG_ON(!PAGE_ALIGNED(start));
1542 VM_BUG_ON(!PAGE_ALIGNED(end));
1543 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1544 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1545 mmap_assert_locked(mm);
1548 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1549 * faultin_page() to break COW, so it has no work to do here.
1551 if (vma->vm_flags & VM_LOCKONFAULT)
1554 gup_flags = FOLL_TOUCH;
1556 * We want to touch writable mappings with a write fault in order
1557 * to break COW, except for shared mappings because these don't COW
1558 * and we would not want to dirty them for nothing.
1560 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1561 gup_flags |= FOLL_WRITE;
1564 * We want mlock to succeed for regions that have any permissions
1565 * other than PROT_NONE.
1567 if (vma_is_accessible(vma))
1568 gup_flags |= FOLL_FORCE;
1571 gup_flags |= FOLL_UNLOCKABLE;
1574 * We made sure addr is within a VMA, so the following will
1575 * not result in a stack expansion that recurses back here.
1577 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1578 NULL, locked ? locked : &local_locked);
1584 * faultin_vma_page_range() - populate (prefault) page tables inside the
1585 * given VMA range readable/writable
1587 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1590 * @start: start address
1592 * @write: whether to prefault readable or writable
1593 * @locked: whether the mmap_lock is still held
1595 * Returns either number of processed pages in the vma, or a negative error
1596 * code on error (see __get_user_pages()).
1598 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1599 * covered by the VMA. If it's released, *@locked will be set to 0.
1601 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1602 unsigned long end, bool write, int *locked)
1604 struct mm_struct *mm = vma->vm_mm;
1605 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1609 VM_BUG_ON(!PAGE_ALIGNED(start));
1610 VM_BUG_ON(!PAGE_ALIGNED(end));
1611 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1612 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1613 mmap_assert_locked(mm);
1616 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1617 * the page dirty with FOLL_WRITE -- which doesn't make a
1618 * difference with !FOLL_FORCE, because the page is writable
1619 * in the page table.
1620 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1622 * !FOLL_FORCE: Require proper access permissions.
1624 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1626 gup_flags |= FOLL_WRITE;
1629 * We want to report -EINVAL instead of -EFAULT for any permission
1630 * problems or incompatible mappings.
1632 if (check_vma_flags(vma, gup_flags))
1635 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1642 * __mm_populate - populate and/or mlock pages within a range of address space.
1644 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1645 * flags. VMAs must be already marked with the desired vm_flags, and
1646 * mmap_lock must not be held.
1648 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1650 struct mm_struct *mm = current->mm;
1651 unsigned long end, nstart, nend;
1652 struct vm_area_struct *vma = NULL;
1658 for (nstart = start; nstart < end; nstart = nend) {
1660 * We want to fault in pages for [nstart; end) address range.
1661 * Find first corresponding VMA.
1666 vma = find_vma_intersection(mm, nstart, end);
1667 } else if (nstart >= vma->vm_end)
1668 vma = find_vma_intersection(mm, vma->vm_end, end);
1673 * Set [nstart; nend) to intersection of desired address
1674 * range with the first VMA. Also, skip undesirable VMA types.
1676 nend = min(end, vma->vm_end);
1677 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1679 if (nstart < vma->vm_start)
1680 nstart = vma->vm_start;
1682 * Now fault in a range of pages. populate_vma_page_range()
1683 * double checks the vma flags, so that it won't mlock pages
1684 * if the vma was already munlocked.
1686 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1688 if (ignore_errors) {
1690 continue; /* continue at next VMA */
1694 nend = nstart + ret * PAGE_SIZE;
1698 mmap_read_unlock(mm);
1699 return ret; /* 0 or negative error code */
1701 #else /* CONFIG_MMU */
1702 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1703 unsigned long nr_pages, struct page **pages,
1704 int *locked, unsigned int foll_flags)
1706 struct vm_area_struct *vma;
1707 bool must_unlock = false;
1708 unsigned long vm_flags;
1715 * The internal caller expects GUP to manage the lock internally and the
1716 * lock must be released when this returns.
1719 if (mmap_read_lock_killable(mm))
1725 /* calculate required read or write permissions.
1726 * If FOLL_FORCE is set, we only require the "MAY" flags.
1728 vm_flags = (foll_flags & FOLL_WRITE) ?
1729 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1730 vm_flags &= (foll_flags & FOLL_FORCE) ?
1731 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1733 for (i = 0; i < nr_pages; i++) {
1734 vma = find_vma(mm, start);
1738 /* protect what we can, including chardevs */
1739 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1740 !(vm_flags & vma->vm_flags))
1744 pages[i] = virt_to_page((void *)start);
1749 start = (start + PAGE_SIZE) & PAGE_MASK;
1752 if (must_unlock && *locked) {
1753 mmap_read_unlock(mm);
1757 return i ? : -EFAULT;
1759 #endif /* !CONFIG_MMU */
1762 * fault_in_writeable - fault in userspace address range for writing
1763 * @uaddr: start of address range
1764 * @size: size of address range
1766 * Returns the number of bytes not faulted in (like copy_to_user() and
1767 * copy_from_user()).
1769 size_t fault_in_writeable(char __user *uaddr, size_t size)
1771 char __user *start = uaddr, *end;
1773 if (unlikely(size == 0))
1775 if (!user_write_access_begin(uaddr, size))
1777 if (!PAGE_ALIGNED(uaddr)) {
1778 unsafe_put_user(0, uaddr, out);
1779 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1781 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1782 if (unlikely(end < start))
1784 while (uaddr != end) {
1785 unsafe_put_user(0, uaddr, out);
1790 user_write_access_end();
1791 if (size > uaddr - start)
1792 return size - (uaddr - start);
1795 EXPORT_SYMBOL(fault_in_writeable);
1798 * fault_in_subpage_writeable - fault in an address range for writing
1799 * @uaddr: start of address range
1800 * @size: size of address range
1802 * Fault in a user address range for writing while checking for permissions at
1803 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1804 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1806 * Returns the number of bytes not faulted in (like copy_to_user() and
1807 * copy_from_user()).
1809 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1814 * Attempt faulting in at page granularity first for page table
1815 * permission checking. The arch-specific probe_subpage_writeable()
1816 * functions may not check for this.
1818 faulted_in = size - fault_in_writeable(uaddr, size);
1820 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1822 return size - faulted_in;
1824 EXPORT_SYMBOL(fault_in_subpage_writeable);
1827 * fault_in_safe_writeable - fault in an address range for writing
1828 * @uaddr: start of address range
1829 * @size: length of address range
1831 * Faults in an address range for writing. This is primarily useful when we
1832 * already know that some or all of the pages in the address range aren't in
1835 * Unlike fault_in_writeable(), this function is non-destructive.
1837 * Note that we don't pin or otherwise hold the pages referenced that we fault
1838 * in. There's no guarantee that they'll stay in memory for any duration of
1841 * Returns the number of bytes not faulted in, like copy_to_user() and
1844 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1846 unsigned long start = (unsigned long)uaddr, end;
1847 struct mm_struct *mm = current->mm;
1848 bool unlocked = false;
1850 if (unlikely(size == 0))
1852 end = PAGE_ALIGN(start + size);
1858 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1860 start = (start + PAGE_SIZE) & PAGE_MASK;
1861 } while (start != end);
1862 mmap_read_unlock(mm);
1864 if (size > (unsigned long)uaddr - start)
1865 return size - ((unsigned long)uaddr - start);
1868 EXPORT_SYMBOL(fault_in_safe_writeable);
1871 * fault_in_readable - fault in userspace address range for reading
1872 * @uaddr: start of user address range
1873 * @size: size of user address range
1875 * Returns the number of bytes not faulted in (like copy_to_user() and
1876 * copy_from_user()).
1878 size_t fault_in_readable(const char __user *uaddr, size_t size)
1880 const char __user *start = uaddr, *end;
1883 if (unlikely(size == 0))
1885 if (!user_read_access_begin(uaddr, size))
1887 if (!PAGE_ALIGNED(uaddr)) {
1888 unsafe_get_user(c, uaddr, out);
1889 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1891 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1892 if (unlikely(end < start))
1894 while (uaddr != end) {
1895 unsafe_get_user(c, uaddr, out);
1900 user_read_access_end();
1902 if (size > uaddr - start)
1903 return size - (uaddr - start);
1906 EXPORT_SYMBOL(fault_in_readable);
1909 * get_dump_page() - pin user page in memory while writing it to core dump
1910 * @addr: user address
1912 * Returns struct page pointer of user page pinned for dump,
1913 * to be freed afterwards by put_page().
1915 * Returns NULL on any kind of failure - a hole must then be inserted into
1916 * the corefile, to preserve alignment with its headers; and also returns
1917 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1918 * allowing a hole to be left in the corefile to save disk space.
1920 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1922 #ifdef CONFIG_ELF_CORE
1923 struct page *get_dump_page(unsigned long addr)
1929 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
1930 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1931 return (ret == 1) ? page : NULL;
1933 #endif /* CONFIG_ELF_CORE */
1935 #ifdef CONFIG_MIGRATION
1937 * Returns the number of collected pages. Return value is always >= 0.
1939 static unsigned long collect_longterm_unpinnable_pages(
1940 struct list_head *movable_page_list,
1941 unsigned long nr_pages,
1942 struct page **pages)
1944 unsigned long i, collected = 0;
1945 struct folio *prev_folio = NULL;
1946 bool drain_allow = true;
1948 for (i = 0; i < nr_pages; i++) {
1949 struct folio *folio = page_folio(pages[i]);
1951 if (folio == prev_folio)
1955 if (folio_is_longterm_pinnable(folio))
1960 if (folio_is_device_coherent(folio))
1963 if (folio_test_hugetlb(folio)) {
1964 isolate_hugetlb(folio, movable_page_list);
1968 if (!folio_test_lru(folio) && drain_allow) {
1969 lru_add_drain_all();
1970 drain_allow = false;
1973 if (!folio_isolate_lru(folio))
1976 list_add_tail(&folio->lru, movable_page_list);
1977 node_stat_mod_folio(folio,
1978 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1979 folio_nr_pages(folio));
1986 * Unpins all pages and migrates device coherent pages and movable_page_list.
1987 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1988 * (or partial success).
1990 static int migrate_longterm_unpinnable_pages(
1991 struct list_head *movable_page_list,
1992 unsigned long nr_pages,
1993 struct page **pages)
1998 for (i = 0; i < nr_pages; i++) {
1999 struct folio *folio = page_folio(pages[i]);
2001 if (folio_is_device_coherent(folio)) {
2003 * Migration will fail if the page is pinned, so convert
2004 * the pin on the source page to a normal reference.
2008 gup_put_folio(folio, 1, FOLL_PIN);
2010 if (migrate_device_coherent_page(&folio->page)) {
2019 * We can't migrate pages with unexpected references, so drop
2020 * the reference obtained by __get_user_pages_locked().
2021 * Migrating pages have been added to movable_page_list after
2022 * calling folio_isolate_lru() which takes a reference so the
2023 * page won't be freed if it's migrating.
2025 unpin_user_page(pages[i]);
2029 if (!list_empty(movable_page_list)) {
2030 struct migration_target_control mtc = {
2031 .nid = NUMA_NO_NODE,
2032 .gfp_mask = GFP_USER | __GFP_NOWARN,
2035 if (migrate_pages(movable_page_list, alloc_migration_target,
2036 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2037 MR_LONGTERM_PIN, NULL)) {
2043 putback_movable_pages(movable_page_list);
2048 for (i = 0; i < nr_pages; i++)
2050 unpin_user_page(pages[i]);
2051 putback_movable_pages(movable_page_list);
2057 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2058 * pages in the range are required to be pinned via FOLL_PIN, before calling
2061 * If any pages in the range are not allowed to be pinned, then this routine
2062 * will migrate those pages away, unpin all the pages in the range and return
2063 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2064 * call this routine again.
2066 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2067 * The caller should give up, and propagate the error back up the call stack.
2069 * If everything is OK and all pages in the range are allowed to be pinned, then
2070 * this routine leaves all pages pinned and returns zero for success.
2072 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2073 struct page **pages)
2075 unsigned long collected;
2076 LIST_HEAD(movable_page_list);
2078 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2083 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2087 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2088 struct page **pages)
2092 #endif /* CONFIG_MIGRATION */
2095 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2096 * allows us to process the FOLL_LONGTERM flag.
2098 static long __gup_longterm_locked(struct mm_struct *mm,
2099 unsigned long start,
2100 unsigned long nr_pages,
2101 struct page **pages,
2103 unsigned int gup_flags)
2106 long rc, nr_pinned_pages;
2108 if (!(gup_flags & FOLL_LONGTERM))
2109 return __get_user_pages_locked(mm, start, nr_pages, pages,
2112 flags = memalloc_pin_save();
2114 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2117 if (nr_pinned_pages <= 0) {
2118 rc = nr_pinned_pages;
2122 /* FOLL_LONGTERM implies FOLL_PIN */
2123 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2124 } while (rc == -EAGAIN);
2125 memalloc_pin_restore(flags);
2126 return rc ? rc : nr_pinned_pages;
2130 * Check that the given flags are valid for the exported gup/pup interface, and
2131 * update them with the required flags that the caller must have set.
2133 static bool is_valid_gup_args(struct page **pages, int *locked,
2134 unsigned int *gup_flags_p, unsigned int to_set)
2136 unsigned int gup_flags = *gup_flags_p;
2139 * These flags not allowed to be specified externally to the gup
2141 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2142 * - FOLL_REMOTE is internal only and used on follow_page()
2143 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2145 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2146 FOLL_REMOTE | FOLL_FAST_ONLY)))
2149 gup_flags |= to_set;
2151 /* At the external interface locked must be set */
2152 if (WARN_ON_ONCE(*locked != 1))
2155 gup_flags |= FOLL_UNLOCKABLE;
2158 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2159 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2160 (FOLL_PIN | FOLL_GET)))
2163 /* LONGTERM can only be specified when pinning */
2164 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2167 /* Pages input must be given if using GET/PIN */
2168 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2171 /* We want to allow the pgmap to be hot-unplugged at all times */
2172 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2173 (gup_flags & FOLL_PCI_P2PDMA)))
2176 *gup_flags_p = gup_flags;
2182 * get_user_pages_remote() - pin user pages in memory
2183 * @mm: mm_struct of target mm
2184 * @start: starting user address
2185 * @nr_pages: number of pages from start to pin
2186 * @gup_flags: flags modifying lookup behaviour
2187 * @pages: array that receives pointers to the pages pinned.
2188 * Should be at least nr_pages long. Or NULL, if caller
2189 * only intends to ensure the pages are faulted in.
2190 * @locked: pointer to lock flag indicating whether lock is held and
2191 * subsequently whether VM_FAULT_RETRY functionality can be
2192 * utilised. Lock must initially be held.
2194 * Returns either number of pages pinned (which may be less than the
2195 * number requested), or an error. Details about the return value:
2197 * -- If nr_pages is 0, returns 0.
2198 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2199 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2200 * pages pinned. Again, this may be less than nr_pages.
2202 * The caller is responsible for releasing returned @pages, via put_page().
2204 * Must be called with mmap_lock held for read or write.
2206 * get_user_pages_remote walks a process's page tables and takes a reference
2207 * to each struct page that each user address corresponds to at a given
2208 * instant. That is, it takes the page that would be accessed if a user
2209 * thread accesses the given user virtual address at that instant.
2211 * This does not guarantee that the page exists in the user mappings when
2212 * get_user_pages_remote returns, and there may even be a completely different
2213 * page there in some cases (eg. if mmapped pagecache has been invalidated
2214 * and subsequently re-faulted). However it does guarantee that the page
2215 * won't be freed completely. And mostly callers simply care that the page
2216 * contains data that was valid *at some point in time*. Typically, an IO
2217 * or similar operation cannot guarantee anything stronger anyway because
2218 * locks can't be held over the syscall boundary.
2220 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2221 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2222 * be called after the page is finished with, and before put_page is called.
2224 * get_user_pages_remote is typically used for fewer-copy IO operations,
2225 * to get a handle on the memory by some means other than accesses
2226 * via the user virtual addresses. The pages may be submitted for
2227 * DMA to devices or accessed via their kernel linear mapping (via the
2228 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2230 * See also get_user_pages_fast, for performance critical applications.
2232 * get_user_pages_remote should be phased out in favor of
2233 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2234 * should use get_user_pages_remote because it cannot pass
2235 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2237 long get_user_pages_remote(struct mm_struct *mm,
2238 unsigned long start, unsigned long nr_pages,
2239 unsigned int gup_flags, struct page **pages,
2242 int local_locked = 1;
2244 if (!is_valid_gup_args(pages, locked, &gup_flags,
2245 FOLL_TOUCH | FOLL_REMOTE))
2248 return __get_user_pages_locked(mm, start, nr_pages, pages,
2249 locked ? locked : &local_locked,
2252 EXPORT_SYMBOL(get_user_pages_remote);
2254 #else /* CONFIG_MMU */
2255 long get_user_pages_remote(struct mm_struct *mm,
2256 unsigned long start, unsigned long nr_pages,
2257 unsigned int gup_flags, struct page **pages,
2262 #endif /* !CONFIG_MMU */
2265 * get_user_pages() - pin user pages in memory
2266 * @start: starting user address
2267 * @nr_pages: number of pages from start to pin
2268 * @gup_flags: flags modifying lookup behaviour
2269 * @pages: array that receives pointers to the pages pinned.
2270 * Should be at least nr_pages long. Or NULL, if caller
2271 * only intends to ensure the pages are faulted in.
2273 * This is the same as get_user_pages_remote(), just with a less-flexible
2274 * calling convention where we assume that the mm being operated on belongs to
2275 * the current task, and doesn't allow passing of a locked parameter. We also
2276 * obviously don't pass FOLL_REMOTE in here.
2278 long get_user_pages(unsigned long start, unsigned long nr_pages,
2279 unsigned int gup_flags, struct page **pages)
2283 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2286 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2287 &locked, gup_flags);
2289 EXPORT_SYMBOL(get_user_pages);
2292 * get_user_pages_unlocked() is suitable to replace the form:
2294 * mmap_read_lock(mm);
2295 * get_user_pages(mm, ..., pages, NULL);
2296 * mmap_read_unlock(mm);
2300 * get_user_pages_unlocked(mm, ..., pages);
2302 * It is functionally equivalent to get_user_pages_fast so
2303 * get_user_pages_fast should be used instead if specific gup_flags
2304 * (e.g. FOLL_FORCE) are not required.
2306 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2307 struct page **pages, unsigned int gup_flags)
2311 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2312 FOLL_TOUCH | FOLL_UNLOCKABLE))
2315 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2316 &locked, gup_flags);
2318 EXPORT_SYMBOL(get_user_pages_unlocked);
2323 * get_user_pages_fast attempts to pin user pages by walking the page
2324 * tables directly and avoids taking locks. Thus the walker needs to be
2325 * protected from page table pages being freed from under it, and should
2326 * block any THP splits.
2328 * One way to achieve this is to have the walker disable interrupts, and
2329 * rely on IPIs from the TLB flushing code blocking before the page table
2330 * pages are freed. This is unsuitable for architectures that do not need
2331 * to broadcast an IPI when invalidating TLBs.
2333 * Another way to achieve this is to batch up page table containing pages
2334 * belonging to more than one mm_user, then rcu_sched a callback to free those
2335 * pages. Disabling interrupts will allow the fast_gup walker to both block
2336 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2337 * (which is a relatively rare event). The code below adopts this strategy.
2339 * Before activating this code, please be aware that the following assumptions
2340 * are currently made:
2342 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2343 * free pages containing page tables or TLB flushing requires IPI broadcast.
2345 * *) ptes can be read atomically by the architecture.
2347 * *) access_ok is sufficient to validate userspace address ranges.
2349 * The last two assumptions can be relaxed by the addition of helper functions.
2351 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2353 #ifdef CONFIG_HAVE_FAST_GUP
2356 * Used in the GUP-fast path to determine whether a pin is permitted for a
2359 * This call assumes the caller has pinned the folio, that the lowest page table
2360 * level still points to this folio, and that interrupts have been disabled.
2362 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2363 * (see comment describing the writable_file_mapping_allowed() function). We
2364 * therefore try to avoid the most egregious case of a long-term mapping doing
2367 * This function cannot be as thorough as that one as the VMA is not available
2368 * in the fast path, so instead we whitelist known good cases and if in doubt,
2369 * fall back to the slow path.
2371 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2373 struct address_space *mapping;
2374 unsigned long mapping_flags;
2377 * If we aren't pinning then no problematic write can occur. A long term
2378 * pin is the most egregious case so this is the one we disallow.
2380 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2381 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2384 /* The folio is pinned, so we can safely access folio fields. */
2386 if (WARN_ON_ONCE(folio_test_slab(folio)))
2389 /* hugetlb mappings do not require dirty-tracking. */
2390 if (folio_test_hugetlb(folio))
2394 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2395 * cannot proceed, which means no actions performed under RCU can
2398 * inodes and thus their mappings are freed under RCU, which means the
2399 * mapping cannot be freed beneath us and thus we can safely dereference
2402 lockdep_assert_irqs_disabled();
2405 * However, there may be operations which _alter_ the mapping, so ensure
2406 * we read it once and only once.
2408 mapping = READ_ONCE(folio->mapping);
2411 * The mapping may have been truncated, in any case we cannot determine
2412 * if this mapping is safe - fall back to slow path to determine how to
2418 /* Anonymous folios pose no problem. */
2419 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2421 return mapping_flags & PAGE_MAPPING_ANON;
2424 * At this point, we know the mapping is non-null and points to an
2425 * address_space object. The only remaining whitelisted file system is
2428 return shmem_mapping(mapping);
2431 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2433 struct page **pages)
2435 while ((*nr) - nr_start) {
2436 struct page *page = pages[--(*nr)];
2438 ClearPageReferenced(page);
2439 if (flags & FOLL_PIN)
2440 unpin_user_page(page);
2446 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2448 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2451 * To pin the page, fast-gup needs to do below in order:
2452 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2454 * For the rest of pgtable operations where pgtable updates can be racy
2455 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2458 * Above will work for all pte-level operations, including THP split.
2460 * For THP collapse, it's a bit more complicated because fast-gup may be
2461 * walking a pgtable page that is being freed (pte is still valid but pmd
2462 * can be cleared already). To avoid race in such condition, we need to
2463 * also check pmd here to make sure pmd doesn't change (corresponds to
2464 * pmdp_collapse_flush() in the THP collapse code path).
2466 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2467 unsigned long end, unsigned int flags,
2468 struct page **pages, int *nr)
2470 struct dev_pagemap *pgmap = NULL;
2471 int nr_start = *nr, ret = 0;
2474 ptem = ptep = pte_offset_map(&pmd, addr);
2476 pte_t pte = ptep_get_lockless(ptep);
2478 struct folio *folio;
2480 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2483 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2486 if (pte_devmap(pte)) {
2487 if (unlikely(flags & FOLL_LONGTERM))
2490 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2491 if (unlikely(!pgmap)) {
2492 undo_dev_pagemap(nr, nr_start, flags, pages);
2495 } else if (pte_special(pte))
2498 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2499 page = pte_page(pte);
2501 folio = try_grab_folio(page, 1, flags);
2505 if (unlikely(page_is_secretmem(page))) {
2506 gup_put_folio(folio, 1, flags);
2510 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2511 unlikely(pte_val(pte) != pte_val(*ptep))) {
2512 gup_put_folio(folio, 1, flags);
2516 if (!folio_fast_pin_allowed(folio, flags)) {
2517 gup_put_folio(folio, 1, flags);
2521 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2522 gup_put_folio(folio, 1, flags);
2527 * We need to make the page accessible if and only if we are
2528 * going to access its content (the FOLL_PIN case). Please
2529 * see Documentation/core-api/pin_user_pages.rst for
2532 if (flags & FOLL_PIN) {
2533 ret = arch_make_page_accessible(page);
2535 gup_put_folio(folio, 1, flags);
2539 folio_set_referenced(folio);
2542 } while (ptep++, addr += PAGE_SIZE, addr != end);
2548 put_dev_pagemap(pgmap);
2555 * If we can't determine whether or not a pte is special, then fail immediately
2556 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2559 * For a futex to be placed on a THP tail page, get_futex_key requires a
2560 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2561 * useful to have gup_huge_pmd even if we can't operate on ptes.
2563 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2564 unsigned long end, unsigned int flags,
2565 struct page **pages, int *nr)
2569 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2571 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2572 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2573 unsigned long end, unsigned int flags,
2574 struct page **pages, int *nr)
2577 struct dev_pagemap *pgmap = NULL;
2580 struct page *page = pfn_to_page(pfn);
2582 pgmap = get_dev_pagemap(pfn, pgmap);
2583 if (unlikely(!pgmap)) {
2584 undo_dev_pagemap(nr, nr_start, flags, pages);
2588 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2589 undo_dev_pagemap(nr, nr_start, flags, pages);
2593 SetPageReferenced(page);
2595 if (unlikely(try_grab_page(page, flags))) {
2596 undo_dev_pagemap(nr, nr_start, flags, pages);
2601 } while (addr += PAGE_SIZE, addr != end);
2603 put_dev_pagemap(pgmap);
2607 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2608 unsigned long end, unsigned int flags,
2609 struct page **pages, int *nr)
2611 unsigned long fault_pfn;
2614 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2615 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2618 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2619 undo_dev_pagemap(nr, nr_start, flags, pages);
2625 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2626 unsigned long end, unsigned int flags,
2627 struct page **pages, int *nr)
2629 unsigned long fault_pfn;
2632 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2633 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2636 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2637 undo_dev_pagemap(nr, nr_start, flags, pages);
2643 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2644 unsigned long end, unsigned int flags,
2645 struct page **pages, int *nr)
2651 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2652 unsigned long end, unsigned int flags,
2653 struct page **pages, int *nr)
2660 static int record_subpages(struct page *page, unsigned long addr,
2661 unsigned long end, struct page **pages)
2665 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2666 pages[nr] = nth_page(page, nr);
2671 #ifdef CONFIG_ARCH_HAS_HUGEPD
2672 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2675 unsigned long __boundary = (addr + sz) & ~(sz-1);
2676 return (__boundary - 1 < end - 1) ? __boundary : end;
2679 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2680 unsigned long end, unsigned int flags,
2681 struct page **pages, int *nr)
2683 unsigned long pte_end;
2685 struct folio *folio;
2689 pte_end = (addr + sz) & ~(sz-1);
2693 pte = huge_ptep_get(ptep);
2695 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2698 /* hugepages are never "special" */
2699 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2701 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2702 refs = record_subpages(page, addr, end, pages + *nr);
2704 folio = try_grab_folio(page, refs, flags);
2708 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2709 gup_put_folio(folio, refs, flags);
2713 if (!folio_fast_pin_allowed(folio, flags)) {
2714 gup_put_folio(folio, refs, flags);
2718 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2719 gup_put_folio(folio, refs, flags);
2724 folio_set_referenced(folio);
2728 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2729 unsigned int pdshift, unsigned long end, unsigned int flags,
2730 struct page **pages, int *nr)
2733 unsigned long sz = 1UL << hugepd_shift(hugepd);
2736 ptep = hugepte_offset(hugepd, addr, pdshift);
2738 next = hugepte_addr_end(addr, end, sz);
2739 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2741 } while (ptep++, addr = next, addr != end);
2746 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2747 unsigned int pdshift, unsigned long end, unsigned int flags,
2748 struct page **pages, int *nr)
2752 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2754 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2755 unsigned long end, unsigned int flags,
2756 struct page **pages, int *nr)
2759 struct folio *folio;
2762 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2765 if (pmd_devmap(orig)) {
2766 if (unlikely(flags & FOLL_LONGTERM))
2768 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2772 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2773 refs = record_subpages(page, addr, end, pages + *nr);
2775 folio = try_grab_folio(page, refs, flags);
2779 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2780 gup_put_folio(folio, refs, flags);
2784 if (!folio_fast_pin_allowed(folio, flags)) {
2785 gup_put_folio(folio, refs, flags);
2788 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2789 gup_put_folio(folio, refs, flags);
2794 folio_set_referenced(folio);
2798 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2799 unsigned long end, unsigned int flags,
2800 struct page **pages, int *nr)
2803 struct folio *folio;
2806 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2809 if (pud_devmap(orig)) {
2810 if (unlikely(flags & FOLL_LONGTERM))
2812 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2816 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2817 refs = record_subpages(page, addr, end, pages + *nr);
2819 folio = try_grab_folio(page, refs, flags);
2823 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2824 gup_put_folio(folio, refs, flags);
2828 if (!folio_fast_pin_allowed(folio, flags)) {
2829 gup_put_folio(folio, refs, flags);
2833 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2834 gup_put_folio(folio, refs, flags);
2839 folio_set_referenced(folio);
2843 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2844 unsigned long end, unsigned int flags,
2845 struct page **pages, int *nr)
2849 struct folio *folio;
2851 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2854 BUILD_BUG_ON(pgd_devmap(orig));
2856 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2857 refs = record_subpages(page, addr, end, pages + *nr);
2859 folio = try_grab_folio(page, refs, flags);
2863 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2864 gup_put_folio(folio, refs, flags);
2868 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2869 gup_put_folio(folio, refs, flags);
2873 if (!folio_fast_pin_allowed(folio, flags)) {
2874 gup_put_folio(folio, refs, flags);
2879 folio_set_referenced(folio);
2883 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2884 unsigned int flags, struct page **pages, int *nr)
2889 pmdp = pmd_offset_lockless(pudp, pud, addr);
2891 pmd_t pmd = pmdp_get_lockless(pmdp);
2893 next = pmd_addr_end(addr, end);
2894 if (!pmd_present(pmd))
2897 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2899 if (pmd_protnone(pmd) &&
2900 !gup_can_follow_protnone(flags))
2903 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2907 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2909 * architecture have different format for hugetlbfs
2910 * pmd format and THP pmd format
2912 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2913 PMD_SHIFT, next, flags, pages, nr))
2915 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2917 } while (pmdp++, addr = next, addr != end);
2922 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2923 unsigned int flags, struct page **pages, int *nr)
2928 pudp = pud_offset_lockless(p4dp, p4d, addr);
2930 pud_t pud = READ_ONCE(*pudp);
2932 next = pud_addr_end(addr, end);
2933 if (unlikely(!pud_present(pud)))
2935 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2936 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2939 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2940 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2941 PUD_SHIFT, next, flags, pages, nr))
2943 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2945 } while (pudp++, addr = next, addr != end);
2950 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2951 unsigned int flags, struct page **pages, int *nr)
2956 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2958 p4d_t p4d = READ_ONCE(*p4dp);
2960 next = p4d_addr_end(addr, end);
2963 BUILD_BUG_ON(p4d_huge(p4d));
2964 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2965 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2966 P4D_SHIFT, next, flags, pages, nr))
2968 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2970 } while (p4dp++, addr = next, addr != end);
2975 static void gup_pgd_range(unsigned long addr, unsigned long end,
2976 unsigned int flags, struct page **pages, int *nr)
2981 pgdp = pgd_offset(current->mm, addr);
2983 pgd_t pgd = READ_ONCE(*pgdp);
2985 next = pgd_addr_end(addr, end);
2988 if (unlikely(pgd_huge(pgd))) {
2989 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2992 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2993 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2994 PGDIR_SHIFT, next, flags, pages, nr))
2996 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2998 } while (pgdp++, addr = next, addr != end);
3001 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3002 unsigned int flags, struct page **pages, int *nr)
3005 #endif /* CONFIG_HAVE_FAST_GUP */
3007 #ifndef gup_fast_permitted
3009 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3010 * we need to fall back to the slow version:
3012 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3018 static unsigned long lockless_pages_from_mm(unsigned long start,
3020 unsigned int gup_flags,
3021 struct page **pages)
3023 unsigned long flags;
3027 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3028 !gup_fast_permitted(start, end))
3031 if (gup_flags & FOLL_PIN) {
3032 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3038 * Disable interrupts. The nested form is used, in order to allow full,
3039 * general purpose use of this routine.
3041 * With interrupts disabled, we block page table pages from being freed
3042 * from under us. See struct mmu_table_batch comments in
3043 * include/asm-generic/tlb.h for more details.
3045 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3046 * that come from THPs splitting.
3048 local_irq_save(flags);
3049 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3050 local_irq_restore(flags);
3053 * When pinning pages for DMA there could be a concurrent write protect
3054 * from fork() via copy_page_range(), in this case always fail fast GUP.
3056 if (gup_flags & FOLL_PIN) {
3057 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3058 unpin_user_pages_lockless(pages, nr_pinned);
3061 sanity_check_pinned_pages(pages, nr_pinned);
3067 static int internal_get_user_pages_fast(unsigned long start,
3068 unsigned long nr_pages,
3069 unsigned int gup_flags,
3070 struct page **pages)
3072 unsigned long len, end;
3073 unsigned long nr_pinned;
3077 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3078 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3079 FOLL_FAST_ONLY | FOLL_NOFAULT |
3083 if (gup_flags & FOLL_PIN)
3084 mm_set_has_pinned_flag(¤t->mm->flags);
3086 if (!(gup_flags & FOLL_FAST_ONLY))
3087 might_lock_read(¤t->mm->mmap_lock);
3089 start = untagged_addr(start) & PAGE_MASK;
3090 len = nr_pages << PAGE_SHIFT;
3091 if (check_add_overflow(start, len, &end))
3093 if (end > TASK_SIZE_MAX)
3095 if (unlikely(!access_ok((void __user *)start, len)))
3098 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3099 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3102 /* Slow path: try to get the remaining pages with get_user_pages */
3103 start += nr_pinned << PAGE_SHIFT;
3105 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3107 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3110 * The caller has to unpin the pages we already pinned so
3111 * returning -errno is not an option
3117 return ret + nr_pinned;
3121 * get_user_pages_fast_only() - pin user pages in memory
3122 * @start: starting user address
3123 * @nr_pages: number of pages from start to pin
3124 * @gup_flags: flags modifying pin behaviour
3125 * @pages: array that receives pointers to the pages pinned.
3126 * Should be at least nr_pages long.
3128 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3131 * If the architecture does not support this function, simply return with no
3134 * Careful, careful! COW breaking can go either way, so a non-write
3135 * access can get ambiguous page results. If you call this function without
3136 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3138 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3139 unsigned int gup_flags, struct page **pages)
3142 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3143 * because gup fast is always a "pin with a +1 page refcount" request.
3145 * FOLL_FAST_ONLY is required in order to match the API description of
3146 * this routine: no fall back to regular ("slow") GUP.
3148 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3149 FOLL_GET | FOLL_FAST_ONLY))
3152 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3154 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3157 * get_user_pages_fast() - pin user pages in memory
3158 * @start: starting user address
3159 * @nr_pages: number of pages from start to pin
3160 * @gup_flags: flags modifying pin behaviour
3161 * @pages: array that receives pointers to the pages pinned.
3162 * Should be at least nr_pages long.
3164 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3165 * If not successful, it will fall back to taking the lock and
3166 * calling get_user_pages().
3168 * Returns number of pages pinned. This may be fewer than the number requested.
3169 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3172 int get_user_pages_fast(unsigned long start, int nr_pages,
3173 unsigned int gup_flags, struct page **pages)
3176 * The caller may or may not have explicitly set FOLL_GET; either way is
3177 * OK. However, internally (within mm/gup.c), gup fast variants must set
3178 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3181 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3183 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3185 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3188 * pin_user_pages_fast() - pin user pages in memory without taking locks
3190 * @start: starting user address
3191 * @nr_pages: number of pages from start to pin
3192 * @gup_flags: flags modifying pin behaviour
3193 * @pages: array that receives pointers to the pages pinned.
3194 * Should be at least nr_pages long.
3196 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3197 * get_user_pages_fast() for documentation on the function arguments, because
3198 * the arguments here are identical.
3200 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3201 * see Documentation/core-api/pin_user_pages.rst for further details.
3203 int pin_user_pages_fast(unsigned long start, int nr_pages,
3204 unsigned int gup_flags, struct page **pages)
3206 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3208 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3210 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3213 * pin_user_pages_remote() - pin pages of a remote process
3215 * @mm: mm_struct of target mm
3216 * @start: starting user address
3217 * @nr_pages: number of pages from start to pin
3218 * @gup_flags: flags modifying lookup behaviour
3219 * @pages: array that receives pointers to the pages pinned.
3220 * Should be at least nr_pages long.
3221 * @locked: pointer to lock flag indicating whether lock is held and
3222 * subsequently whether VM_FAULT_RETRY functionality can be
3223 * utilised. Lock must initially be held.
3225 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3226 * get_user_pages_remote() for documentation on the function arguments, because
3227 * the arguments here are identical.
3229 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3230 * see Documentation/core-api/pin_user_pages.rst for details.
3232 long pin_user_pages_remote(struct mm_struct *mm,
3233 unsigned long start, unsigned long nr_pages,
3234 unsigned int gup_flags, struct page **pages,
3237 int local_locked = 1;
3239 if (!is_valid_gup_args(pages, locked, &gup_flags,
3240 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3242 return __gup_longterm_locked(mm, start, nr_pages, pages,
3243 locked ? locked : &local_locked,
3246 EXPORT_SYMBOL(pin_user_pages_remote);
3249 * pin_user_pages() - pin user pages in memory for use by other devices
3251 * @start: starting user address
3252 * @nr_pages: number of pages from start to pin
3253 * @gup_flags: flags modifying lookup behaviour
3254 * @pages: array that receives pointers to the pages pinned.
3255 * Should be at least nr_pages long.
3257 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3260 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3261 * see Documentation/core-api/pin_user_pages.rst for details.
3263 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3264 unsigned int gup_flags, struct page **pages)
3268 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3270 return __gup_longterm_locked(current->mm, start, nr_pages,
3271 pages, &locked, gup_flags);
3273 EXPORT_SYMBOL(pin_user_pages);
3276 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3277 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3278 * FOLL_PIN and rejects FOLL_GET.
3280 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3281 struct page **pages, unsigned int gup_flags)
3285 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3286 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3289 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3290 &locked, gup_flags);
3292 EXPORT_SYMBOL(pin_user_pages_unlocked);