]> Git Repo - linux.git/blob - fs/ext4/file.c
selftests: error out if kernel header files are not yet built
[linux.git] / fs / ext4 / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card ([email protected])
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *      ([email protected])
20  */
21
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57         struct inode *inode = file_inode(iocb->ki_filp);
58         u32 dio_align = ext4_dio_alignment(inode);
59
60         if (dio_align == 0)
61                 return false;
62
63         if (dio_align == 1)
64                 return true;
65
66         return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68
69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71         ssize_t ret;
72         struct inode *inode = file_inode(iocb->ki_filp);
73
74         if (iocb->ki_flags & IOCB_NOWAIT) {
75                 if (!inode_trylock_shared(inode))
76                         return -EAGAIN;
77         } else {
78                 inode_lock_shared(inode);
79         }
80
81         if (!ext4_should_use_dio(iocb, to)) {
82                 inode_unlock_shared(inode);
83                 /*
84                  * Fallback to buffered I/O if the operation being performed on
85                  * the inode is not supported by direct I/O. The IOCB_DIRECT
86                  * flag needs to be cleared here in order to ensure that the
87                  * direct I/O path within generic_file_read_iter() is not
88                  * taken.
89                  */
90                 iocb->ki_flags &= ~IOCB_DIRECT;
91                 return generic_file_read_iter(iocb, to);
92         }
93
94         ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95         inode_unlock_shared(inode);
96
97         file_accessed(iocb->ki_filp);
98         return ret;
99 }
100
101 #ifdef CONFIG_FS_DAX
102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104         struct inode *inode = file_inode(iocb->ki_filp);
105         ssize_t ret;
106
107         if (iocb->ki_flags & IOCB_NOWAIT) {
108                 if (!inode_trylock_shared(inode))
109                         return -EAGAIN;
110         } else {
111                 inode_lock_shared(inode);
112         }
113         /*
114          * Recheck under inode lock - at this point we are sure it cannot
115          * change anymore
116          */
117         if (!IS_DAX(inode)) {
118                 inode_unlock_shared(inode);
119                 /* Fallback to buffered IO in case we cannot support DAX */
120                 return generic_file_read_iter(iocb, to);
121         }
122         ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123         inode_unlock_shared(inode);
124
125         file_accessed(iocb->ki_filp);
126         return ret;
127 }
128 #endif
129
130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132         struct inode *inode = file_inode(iocb->ki_filp);
133
134         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135                 return -EIO;
136
137         if (!iov_iter_count(to))
138                 return 0; /* skip atime */
139
140 #ifdef CONFIG_FS_DAX
141         if (IS_DAX(inode))
142                 return ext4_dax_read_iter(iocb, to);
143 #endif
144         if (iocb->ki_flags & IOCB_DIRECT)
145                 return ext4_dio_read_iter(iocb, to);
146
147         return generic_file_read_iter(iocb, to);
148 }
149
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157         if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158                 ext4_alloc_da_blocks(inode);
159                 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160         }
161         /* if we are the last writer on the inode, drop the block reservation */
162         if ((filp->f_mode & FMODE_WRITE) &&
163                         (atomic_read(&inode->i_writecount) == 1) &&
164                         !EXT4_I(inode)->i_reserved_data_blocks) {
165                 down_write(&EXT4_I(inode)->i_data_sem);
166                 ext4_discard_preallocations(inode, 0);
167                 up_write(&EXT4_I(inode)->i_data_sem);
168         }
169         if (is_dx(inode) && filp->private_data)
170                 ext4_htree_free_dir_info(filp->private_data);
171
172         return 0;
173 }
174
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187         struct super_block *sb = inode->i_sb;
188         unsigned long blockmask = sb->s_blocksize - 1;
189
190         if ((pos | iov_iter_alignment(from)) & blockmask)
191                 return true;
192
193         return false;
194 }
195
196 static bool
197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199         if (offset + len > i_size_read(inode) ||
200             offset + len > EXT4_I(inode)->i_disksize)
201                 return true;
202         return false;
203 }
204
205 /* Is IO overwriting allocated or initialized blocks? */
206 static bool ext4_overwrite_io(struct inode *inode,
207                               loff_t pos, loff_t len, bool *unwritten)
208 {
209         struct ext4_map_blocks map;
210         unsigned int blkbits = inode->i_blkbits;
211         int err, blklen;
212
213         if (pos + len > i_size_read(inode))
214                 return false;
215
216         map.m_lblk = pos >> blkbits;
217         map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
218         blklen = map.m_len;
219
220         err = ext4_map_blocks(NULL, inode, &map, 0);
221         if (err != blklen)
222                 return false;
223         /*
224          * 'err==len' means that all of the blocks have been preallocated,
225          * regardless of whether they have been initialized or not. We need to
226          * check m_flags to distinguish the unwritten extents.
227          */
228         *unwritten = !(map.m_flags & EXT4_MAP_MAPPED);
229         return true;
230 }
231
232 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
233                                          struct iov_iter *from)
234 {
235         struct inode *inode = file_inode(iocb->ki_filp);
236         ssize_t ret;
237
238         if (unlikely(IS_IMMUTABLE(inode)))
239                 return -EPERM;
240
241         ret = generic_write_checks(iocb, from);
242         if (ret <= 0)
243                 return ret;
244
245         /*
246          * If we have encountered a bitmap-format file, the size limit
247          * is smaller than s_maxbytes, which is for extent-mapped files.
248          */
249         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
250                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
251
252                 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
253                         return -EFBIG;
254                 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
255         }
256
257         return iov_iter_count(from);
258 }
259
260 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
261 {
262         ssize_t ret, count;
263
264         count = ext4_generic_write_checks(iocb, from);
265         if (count <= 0)
266                 return count;
267
268         ret = file_modified(iocb->ki_filp);
269         if (ret)
270                 return ret;
271         return count;
272 }
273
274 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
275                                         struct iov_iter *from)
276 {
277         ssize_t ret;
278         struct inode *inode = file_inode(iocb->ki_filp);
279
280         if (iocb->ki_flags & IOCB_NOWAIT)
281                 return -EOPNOTSUPP;
282
283         inode_lock(inode);
284         ret = ext4_write_checks(iocb, from);
285         if (ret <= 0)
286                 goto out;
287
288         ret = generic_perform_write(iocb, from);
289
290 out:
291         inode_unlock(inode);
292         if (unlikely(ret <= 0))
293                 return ret;
294         return generic_write_sync(iocb, ret);
295 }
296
297 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
298                                            ssize_t written, size_t count)
299 {
300         handle_t *handle;
301         bool truncate = false;
302         u8 blkbits = inode->i_blkbits;
303         ext4_lblk_t written_blk, end_blk;
304         int ret;
305
306         /*
307          * Note that EXT4_I(inode)->i_disksize can get extended up to
308          * inode->i_size while the I/O was running due to writeback of delalloc
309          * blocks. But, the code in ext4_iomap_alloc() is careful to use
310          * zeroed/unwritten extents if this is possible; thus we won't leave
311          * uninitialized blocks in a file even if we didn't succeed in writing
312          * as much as we intended.
313          */
314         WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
315         if (offset + count <= EXT4_I(inode)->i_disksize) {
316                 /*
317                  * We need to ensure that the inode is removed from the orphan
318                  * list if it has been added prematurely, due to writeback of
319                  * delalloc blocks.
320                  */
321                 if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
322                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
323
324                         if (IS_ERR(handle)) {
325                                 ext4_orphan_del(NULL, inode);
326                                 return PTR_ERR(handle);
327                         }
328
329                         ext4_orphan_del(handle, inode);
330                         ext4_journal_stop(handle);
331                 }
332
333                 return written;
334         }
335
336         if (written < 0)
337                 goto truncate;
338
339         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
340         if (IS_ERR(handle)) {
341                 written = PTR_ERR(handle);
342                 goto truncate;
343         }
344
345         if (ext4_update_inode_size(inode, offset + written)) {
346                 ret = ext4_mark_inode_dirty(handle, inode);
347                 if (unlikely(ret)) {
348                         written = ret;
349                         ext4_journal_stop(handle);
350                         goto truncate;
351                 }
352         }
353
354         /*
355          * We may need to truncate allocated but not written blocks beyond EOF.
356          */
357         written_blk = ALIGN(offset + written, 1 << blkbits);
358         end_blk = ALIGN(offset + count, 1 << blkbits);
359         if (written_blk < end_blk && ext4_can_truncate(inode))
360                 truncate = true;
361
362         /*
363          * Remove the inode from the orphan list if it has been extended and
364          * everything went OK.
365          */
366         if (!truncate && inode->i_nlink)
367                 ext4_orphan_del(handle, inode);
368         ext4_journal_stop(handle);
369
370         if (truncate) {
371 truncate:
372                 ext4_truncate_failed_write(inode);
373                 /*
374                  * If the truncate operation failed early, then the inode may
375                  * still be on the orphan list. In that case, we need to try
376                  * remove the inode from the in-memory linked list.
377                  */
378                 if (inode->i_nlink)
379                         ext4_orphan_del(NULL, inode);
380         }
381
382         return written;
383 }
384
385 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
386                                  int error, unsigned int flags)
387 {
388         loff_t pos = iocb->ki_pos;
389         struct inode *inode = file_inode(iocb->ki_filp);
390
391         if (error)
392                 return error;
393
394         if (size && flags & IOMAP_DIO_UNWRITTEN) {
395                 error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
396                 if (error < 0)
397                         return error;
398         }
399         /*
400          * If we are extending the file, we have to update i_size here before
401          * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
402          * buffered reads could zero out too much from page cache pages. Update
403          * of on-disk size will happen later in ext4_dio_write_iter() where
404          * we have enough information to also perform orphan list handling etc.
405          * Note that we perform all extending writes synchronously under
406          * i_rwsem held exclusively so i_size update is safe here in that case.
407          * If the write was not extending, we cannot see pos > i_size here
408          * because operations reducing i_size like truncate wait for all
409          * outstanding DIO before updating i_size.
410          */
411         pos += size;
412         if (pos > i_size_read(inode))
413                 i_size_write(inode, pos);
414
415         return 0;
416 }
417
418 static const struct iomap_dio_ops ext4_dio_write_ops = {
419         .end_io = ext4_dio_write_end_io,
420 };
421
422 /*
423  * The intention here is to start with shared lock acquired then see if any
424  * condition requires an exclusive inode lock. If yes, then we restart the
425  * whole operation by releasing the shared lock and acquiring exclusive lock.
426  *
427  * - For unaligned_io we never take shared lock as it may cause data corruption
428  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
429  *
430  * - For extending writes case we don't take the shared lock, since it requires
431  *   updating inode i_disksize and/or orphan handling with exclusive lock.
432  *
433  * - shared locking will only be true mostly with overwrites, including
434  *   initialized blocks and unwritten blocks. For overwrite unwritten blocks
435  *   we protect splitting extents by i_data_sem in ext4_inode_info, so we can
436  *   also release exclusive i_rwsem lock.
437  *
438  * - Otherwise we will switch to exclusive i_rwsem lock.
439  */
440 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
441                                      bool *ilock_shared, bool *extend,
442                                      bool *unwritten)
443 {
444         struct file *file = iocb->ki_filp;
445         struct inode *inode = file_inode(file);
446         loff_t offset;
447         size_t count;
448         ssize_t ret;
449
450 restart:
451         ret = ext4_generic_write_checks(iocb, from);
452         if (ret <= 0)
453                 goto out;
454
455         offset = iocb->ki_pos;
456         count = ret;
457         if (ext4_extending_io(inode, offset, count))
458                 *extend = true;
459         /*
460          * Determine whether the IO operation will overwrite allocated
461          * and initialized blocks.
462          * We need exclusive i_rwsem for changing security info
463          * in file_modified().
464          */
465         if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
466              !ext4_overwrite_io(inode, offset, count, unwritten))) {
467                 if (iocb->ki_flags & IOCB_NOWAIT) {
468                         ret = -EAGAIN;
469                         goto out;
470                 }
471                 inode_unlock_shared(inode);
472                 *ilock_shared = false;
473                 inode_lock(inode);
474                 goto restart;
475         }
476
477         ret = file_modified(file);
478         if (ret < 0)
479                 goto out;
480
481         return count;
482 out:
483         if (*ilock_shared)
484                 inode_unlock_shared(inode);
485         else
486                 inode_unlock(inode);
487         return ret;
488 }
489
490 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
491 {
492         ssize_t ret;
493         handle_t *handle;
494         struct inode *inode = file_inode(iocb->ki_filp);
495         loff_t offset = iocb->ki_pos;
496         size_t count = iov_iter_count(from);
497         const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
498         bool extend = false, unaligned_io = false, unwritten = false;
499         bool ilock_shared = true;
500
501         /*
502          * We initially start with shared inode lock unless it is
503          * unaligned IO which needs exclusive lock anyways.
504          */
505         if (ext4_unaligned_io(inode, from, offset)) {
506                 unaligned_io = true;
507                 ilock_shared = false;
508         }
509         /*
510          * Quick check here without any i_rwsem lock to see if it is extending
511          * IO. A more reliable check is done in ext4_dio_write_checks() with
512          * proper locking in place.
513          */
514         if (offset + count > i_size_read(inode))
515                 ilock_shared = false;
516
517         if (iocb->ki_flags & IOCB_NOWAIT) {
518                 if (ilock_shared) {
519                         if (!inode_trylock_shared(inode))
520                                 return -EAGAIN;
521                 } else {
522                         if (!inode_trylock(inode))
523                                 return -EAGAIN;
524                 }
525         } else {
526                 if (ilock_shared)
527                         inode_lock_shared(inode);
528                 else
529                         inode_lock(inode);
530         }
531
532         /* Fallback to buffered I/O if the inode does not support direct I/O. */
533         if (!ext4_should_use_dio(iocb, from)) {
534                 if (ilock_shared)
535                         inode_unlock_shared(inode);
536                 else
537                         inode_unlock(inode);
538                 return ext4_buffered_write_iter(iocb, from);
539         }
540
541         ret = ext4_dio_write_checks(iocb, from,
542                                     &ilock_shared, &extend, &unwritten);
543         if (ret <= 0)
544                 return ret;
545
546         /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
547         if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
548                 ret = -EAGAIN;
549                 goto out;
550         }
551         /*
552          * Make sure inline data cannot be created anymore since we are going
553          * to allocate blocks for DIO. We know the inode does not have any
554          * inline data now because ext4_dio_supported() checked for that.
555          */
556         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
557
558         offset = iocb->ki_pos;
559         count = ret;
560
561         /*
562          * Unaligned direct IO must be serialized among each other as zeroing
563          * of partial blocks of two competing unaligned IOs can result in data
564          * corruption.
565          *
566          * So we make sure we don't allow any unaligned IO in flight.
567          * For IOs where we need not wait (like unaligned non-AIO DIO),
568          * below inode_dio_wait() may anyway become a no-op, since we start
569          * with exclusive lock.
570          */
571         if (unaligned_io)
572                 inode_dio_wait(inode);
573
574         if (extend) {
575                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
576                 if (IS_ERR(handle)) {
577                         ret = PTR_ERR(handle);
578                         goto out;
579                 }
580
581                 ret = ext4_orphan_add(handle, inode);
582                 if (ret) {
583                         ext4_journal_stop(handle);
584                         goto out;
585                 }
586
587                 ext4_journal_stop(handle);
588         }
589
590         if (ilock_shared && !unwritten)
591                 iomap_ops = &ext4_iomap_overwrite_ops;
592         ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
593                            (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
594                            NULL, 0);
595         if (ret == -ENOTBLK)
596                 ret = 0;
597
598         if (extend)
599                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
600
601 out:
602         if (ilock_shared)
603                 inode_unlock_shared(inode);
604         else
605                 inode_unlock(inode);
606
607         if (ret >= 0 && iov_iter_count(from)) {
608                 ssize_t err;
609                 loff_t endbyte;
610
611                 offset = iocb->ki_pos;
612                 err = ext4_buffered_write_iter(iocb, from);
613                 if (err < 0)
614                         return err;
615
616                 /*
617                  * We need to ensure that the pages within the page cache for
618                  * the range covered by this I/O are written to disk and
619                  * invalidated. This is in attempt to preserve the expected
620                  * direct I/O semantics in the case we fallback to buffered I/O
621                  * to complete off the I/O request.
622                  */
623                 ret += err;
624                 endbyte = offset + err - 1;
625                 err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
626                                                    offset, endbyte);
627                 if (!err)
628                         invalidate_mapping_pages(iocb->ki_filp->f_mapping,
629                                                  offset >> PAGE_SHIFT,
630                                                  endbyte >> PAGE_SHIFT);
631         }
632
633         return ret;
634 }
635
636 #ifdef CONFIG_FS_DAX
637 static ssize_t
638 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
639 {
640         ssize_t ret;
641         size_t count;
642         loff_t offset;
643         handle_t *handle;
644         bool extend = false;
645         struct inode *inode = file_inode(iocb->ki_filp);
646
647         if (iocb->ki_flags & IOCB_NOWAIT) {
648                 if (!inode_trylock(inode))
649                         return -EAGAIN;
650         } else {
651                 inode_lock(inode);
652         }
653
654         ret = ext4_write_checks(iocb, from);
655         if (ret <= 0)
656                 goto out;
657
658         offset = iocb->ki_pos;
659         count = iov_iter_count(from);
660
661         if (offset + count > EXT4_I(inode)->i_disksize) {
662                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
663                 if (IS_ERR(handle)) {
664                         ret = PTR_ERR(handle);
665                         goto out;
666                 }
667
668                 ret = ext4_orphan_add(handle, inode);
669                 if (ret) {
670                         ext4_journal_stop(handle);
671                         goto out;
672                 }
673
674                 extend = true;
675                 ext4_journal_stop(handle);
676         }
677
678         ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
679
680         if (extend)
681                 ret = ext4_handle_inode_extension(inode, offset, ret, count);
682 out:
683         inode_unlock(inode);
684         if (ret > 0)
685                 ret = generic_write_sync(iocb, ret);
686         return ret;
687 }
688 #endif
689
690 static ssize_t
691 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
692 {
693         struct inode *inode = file_inode(iocb->ki_filp);
694
695         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
696                 return -EIO;
697
698 #ifdef CONFIG_FS_DAX
699         if (IS_DAX(inode))
700                 return ext4_dax_write_iter(iocb, from);
701 #endif
702         if (iocb->ki_flags & IOCB_DIRECT)
703                 return ext4_dio_write_iter(iocb, from);
704         else
705                 return ext4_buffered_write_iter(iocb, from);
706 }
707
708 #ifdef CONFIG_FS_DAX
709 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
710                 enum page_entry_size pe_size)
711 {
712         int error = 0;
713         vm_fault_t result;
714         int retries = 0;
715         handle_t *handle = NULL;
716         struct inode *inode = file_inode(vmf->vma->vm_file);
717         struct super_block *sb = inode->i_sb;
718
719         /*
720          * We have to distinguish real writes from writes which will result in a
721          * COW page; COW writes should *not* poke the journal (the file will not
722          * be changed). Doing so would cause unintended failures when mounted
723          * read-only.
724          *
725          * We check for VM_SHARED rather than vmf->cow_page since the latter is
726          * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
727          * other sizes, dax_iomap_fault will handle splitting / fallback so that
728          * we eventually come back with a COW page.
729          */
730         bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
731                 (vmf->vma->vm_flags & VM_SHARED);
732         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
733         pfn_t pfn;
734
735         if (write) {
736                 sb_start_pagefault(sb);
737                 file_update_time(vmf->vma->vm_file);
738                 filemap_invalidate_lock_shared(mapping);
739 retry:
740                 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
741                                                EXT4_DATA_TRANS_BLOCKS(sb));
742                 if (IS_ERR(handle)) {
743                         filemap_invalidate_unlock_shared(mapping);
744                         sb_end_pagefault(sb);
745                         return VM_FAULT_SIGBUS;
746                 }
747         } else {
748                 filemap_invalidate_lock_shared(mapping);
749         }
750         result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
751         if (write) {
752                 ext4_journal_stop(handle);
753
754                 if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
755                     ext4_should_retry_alloc(sb, &retries))
756                         goto retry;
757                 /* Handling synchronous page fault? */
758                 if (result & VM_FAULT_NEEDDSYNC)
759                         result = dax_finish_sync_fault(vmf, pe_size, pfn);
760                 filemap_invalidate_unlock_shared(mapping);
761                 sb_end_pagefault(sb);
762         } else {
763                 filemap_invalidate_unlock_shared(mapping);
764         }
765
766         return result;
767 }
768
769 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
770 {
771         return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
772 }
773
774 static const struct vm_operations_struct ext4_dax_vm_ops = {
775         .fault          = ext4_dax_fault,
776         .huge_fault     = ext4_dax_huge_fault,
777         .page_mkwrite   = ext4_dax_fault,
778         .pfn_mkwrite    = ext4_dax_fault,
779 };
780 #else
781 #define ext4_dax_vm_ops ext4_file_vm_ops
782 #endif
783
784 static const struct vm_operations_struct ext4_file_vm_ops = {
785         .fault          = filemap_fault,
786         .map_pages      = filemap_map_pages,
787         .page_mkwrite   = ext4_page_mkwrite,
788 };
789
790 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
791 {
792         struct inode *inode = file->f_mapping->host;
793         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
794         struct dax_device *dax_dev = sbi->s_daxdev;
795
796         if (unlikely(ext4_forced_shutdown(sbi)))
797                 return -EIO;
798
799         /*
800          * We don't support synchronous mappings for non-DAX files and
801          * for DAX files if underneath dax_device is not synchronous.
802          */
803         if (!daxdev_mapping_supported(vma, dax_dev))
804                 return -EOPNOTSUPP;
805
806         file_accessed(file);
807         if (IS_DAX(file_inode(file))) {
808                 vma->vm_ops = &ext4_dax_vm_ops;
809                 vm_flags_set(vma, VM_HUGEPAGE);
810         } else {
811                 vma->vm_ops = &ext4_file_vm_ops;
812         }
813         return 0;
814 }
815
816 static int ext4_sample_last_mounted(struct super_block *sb,
817                                     struct vfsmount *mnt)
818 {
819         struct ext4_sb_info *sbi = EXT4_SB(sb);
820         struct path path;
821         char buf[64], *cp;
822         handle_t *handle;
823         int err;
824
825         if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
826                 return 0;
827
828         if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
829                 return 0;
830
831         ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
832         /*
833          * Sample where the filesystem has been mounted and
834          * store it in the superblock for sysadmin convenience
835          * when trying to sort through large numbers of block
836          * devices or filesystem images.
837          */
838         memset(buf, 0, sizeof(buf));
839         path.mnt = mnt;
840         path.dentry = mnt->mnt_root;
841         cp = d_path(&path, buf, sizeof(buf));
842         err = 0;
843         if (IS_ERR(cp))
844                 goto out;
845
846         handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
847         err = PTR_ERR(handle);
848         if (IS_ERR(handle))
849                 goto out;
850         BUFFER_TRACE(sbi->s_sbh, "get_write_access");
851         err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
852                                             EXT4_JTR_NONE);
853         if (err)
854                 goto out_journal;
855         lock_buffer(sbi->s_sbh);
856         strncpy(sbi->s_es->s_last_mounted, cp,
857                 sizeof(sbi->s_es->s_last_mounted));
858         ext4_superblock_csum_set(sb);
859         unlock_buffer(sbi->s_sbh);
860         ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
861 out_journal:
862         ext4_journal_stop(handle);
863 out:
864         sb_end_intwrite(sb);
865         return err;
866 }
867
868 static int ext4_file_open(struct inode *inode, struct file *filp)
869 {
870         int ret;
871
872         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
873                 return -EIO;
874
875         ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
876         if (ret)
877                 return ret;
878
879         ret = fscrypt_file_open(inode, filp);
880         if (ret)
881                 return ret;
882
883         ret = fsverity_file_open(inode, filp);
884         if (ret)
885                 return ret;
886
887         /*
888          * Set up the jbd2_inode if we are opening the inode for
889          * writing and the journal is present
890          */
891         if (filp->f_mode & FMODE_WRITE) {
892                 ret = ext4_inode_attach_jinode(inode);
893                 if (ret < 0)
894                         return ret;
895         }
896
897         filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC |
898                         FMODE_DIO_PARALLEL_WRITE;
899         return dquot_file_open(inode, filp);
900 }
901
902 /*
903  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
904  * by calling generic_file_llseek_size() with the appropriate maxbytes
905  * value for each.
906  */
907 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
908 {
909         struct inode *inode = file->f_mapping->host;
910         loff_t maxbytes;
911
912         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
913                 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
914         else
915                 maxbytes = inode->i_sb->s_maxbytes;
916
917         switch (whence) {
918         default:
919                 return generic_file_llseek_size(file, offset, whence,
920                                                 maxbytes, i_size_read(inode));
921         case SEEK_HOLE:
922                 inode_lock_shared(inode);
923                 offset = iomap_seek_hole(inode, offset,
924                                          &ext4_iomap_report_ops);
925                 inode_unlock_shared(inode);
926                 break;
927         case SEEK_DATA:
928                 inode_lock_shared(inode);
929                 offset = iomap_seek_data(inode, offset,
930                                          &ext4_iomap_report_ops);
931                 inode_unlock_shared(inode);
932                 break;
933         }
934
935         if (offset < 0)
936                 return offset;
937         return vfs_setpos(file, offset, maxbytes);
938 }
939
940 const struct file_operations ext4_file_operations = {
941         .llseek         = ext4_llseek,
942         .read_iter      = ext4_file_read_iter,
943         .write_iter     = ext4_file_write_iter,
944         .iopoll         = iocb_bio_iopoll,
945         .unlocked_ioctl = ext4_ioctl,
946 #ifdef CONFIG_COMPAT
947         .compat_ioctl   = ext4_compat_ioctl,
948 #endif
949         .mmap           = ext4_file_mmap,
950         .mmap_supported_flags = MAP_SYNC,
951         .open           = ext4_file_open,
952         .release        = ext4_release_file,
953         .fsync          = ext4_sync_file,
954         .get_unmapped_area = thp_get_unmapped_area,
955         .splice_read    = generic_file_splice_read,
956         .splice_write   = iter_file_splice_write,
957         .fallocate      = ext4_fallocate,
958 };
959
960 const struct inode_operations ext4_file_inode_operations = {
961         .setattr        = ext4_setattr,
962         .getattr        = ext4_file_getattr,
963         .listxattr      = ext4_listxattr,
964         .get_inode_acl  = ext4_get_acl,
965         .set_acl        = ext4_set_acl,
966         .fiemap         = ext4_fiemap,
967         .fileattr_get   = ext4_fileattr_get,
968         .fileattr_set   = ext4_fileattr_set,
969 };
970
This page took 0.08591 seconds and 4 git commands to generate.