1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
7 #include "net_driver.h"
10 #include "ef10_regs.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
21 #include "ef10_sriov.h"
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
28 /* Hardware control for EF10 architecture including 'Huntington'. */
30 #define EFX_EF10_DRVGEN_EV 7
37 struct efx_ef10_vlan {
38 struct list_head list;
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
68 /* All VFs use BAR 0/1 for memory */
69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
82 static bool efx_ef10_is_vf(struct efx_nic *efx)
84 return efx->type->is_vf;
87 #ifdef CONFIG_SFC_SRIOV
88 static int efx_ef10_get_vf_index(struct efx_nic *efx)
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
99 if (outlen < sizeof(outbuf))
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
264 unsigned int max_count;
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
295 rc = efx_ef10_get_timer_workarounds(efx);
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
308 rc = efx_ef10_get_sysclk_freq(efx);
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
365 WARN_ON(num_addrs != 1);
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
373 static ssize_t link_control_flag_show(struct device *dev,
374 struct device_attribute *attr,
377 struct efx_nic *efx = dev_get_drvdata(dev);
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
385 static ssize_t primary_flag_show(struct device *dev,
386 struct device_attribute *attr,
389 struct efx_nic *efx = dev_get_drvdata(dev);
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
418 mutex_lock(&nic_data->vlan_lock);
420 vlan = efx_ef10_find_vlan(efx, vid);
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
449 goto fail_filter_add_vlan;
453 mutex_unlock(&nic_data->vlan_lock);
456 fail_filter_add_vlan:
457 list_del(&vlan->list);
461 mutex_unlock(&nic_data->vlan_lock);
465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
478 list_del(&vlan->list);
482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
495 mutex_lock(&nic_data->vlan_lock);
497 vlan = efx_ef10_find_vlan(efx, vid);
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
503 efx_ef10_del_vlan_internal(efx, vlan);
506 mutex_unlock(&nic_data->vlan_lock);
511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
522 static DEVICE_ATTR_RO(link_control_flag);
523 static DEVICE_ATTR_RO(primary_flag);
525 static int efx_ef10_probe(struct efx_nic *efx)
527 struct efx_ef10_nic_data *nic_data;
530 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
533 efx->nic_data = nic_data;
535 /* we assume later that we can copy from this buffer in dwords */
536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
538 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
539 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
543 /* Get the MC's warm boot count. In case it's rebooting right
544 * now, be prepared to retry.
548 rc = efx_ef10_get_warm_boot_count(efx);
555 nic_data->warm_boot_count = rc;
557 /* In case we're recovering from a crash (kexec), we want to
558 * cancel any outstanding request by the previous user of this
559 * function. We send a special message using the least
560 * significant bits of the 'high' (doorbell) register.
562 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
564 rc = efx_mcdi_init(efx);
568 mutex_init(&nic_data->udp_tunnels_lock);
569 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
570 nic_data->udp_tunnels[i].type =
571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
573 /* Reset (most) configuration for this function */
574 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
578 /* Enable event logging */
579 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
583 rc = device_create_file(&efx->pci_dev->dev,
584 &dev_attr_link_control_flag);
588 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
592 rc = efx_get_pf_index(efx, &nic_data->pf_index);
596 rc = efx_ef10_init_datapath_caps(efx);
600 efx_ef10_read_licensed_features(efx);
602 /* We can have one VI for each vi_stride-byte region.
603 * However, until we use TX option descriptors we need up to four
604 * TX queues per channel for different checksumming combinations.
606 if (nic_data->datapath_caps &
607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
608 efx->tx_queues_per_channel = 4;
610 efx->tx_queues_per_channel = 2;
611 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
613 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
617 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
618 efx->max_vis / efx->tx_queues_per_channel);
619 efx->max_tx_channels = efx->max_channels;
620 if (WARN_ON(efx->max_channels == 0)) {
625 efx->rx_packet_len_offset =
626 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
628 if (nic_data->datapath_caps &
629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
630 efx->net_dev->hw_features |= NETIF_F_RXFCS;
632 rc = efx_mcdi_port_get_number(efx);
637 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
641 rc = efx_ef10_get_timer_config(efx);
645 rc = efx_mcdi_mon_probe(efx);
646 if (rc && rc != -EPERM)
649 efx_ptp_defer_probe_with_channel(efx);
651 #ifdef CONFIG_SFC_SRIOV
652 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
653 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
654 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
656 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
659 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
661 INIT_LIST_HEAD(&nic_data->vlan_list);
662 mutex_init(&nic_data->vlan_lock);
664 /* Add unspecified VID to support VLAN filtering being disabled */
665 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
667 goto fail_add_vid_unspec;
669 /* If VLAN filtering is enabled, we need VID 0 to get untagged
670 * traffic. It is added automatically if 8021q module is loaded,
671 * but we can't rely on it since module may be not loaded.
673 rc = efx_ef10_add_vlan(efx, 0);
677 if (nic_data->datapath_caps &
678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
679 efx->mcdi->fn_flags &
680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
681 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
686 efx_ef10_cleanup_vlans(efx);
688 mutex_destroy(&nic_data->vlan_lock);
690 efx_mcdi_mon_remove(efx);
692 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
694 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
696 efx_mcdi_detach(efx);
698 mutex_lock(&nic_data->udp_tunnels_lock);
699 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
700 (void)efx_ef10_set_udp_tnl_ports(efx, true);
701 mutex_unlock(&nic_data->udp_tunnels_lock);
702 mutex_destroy(&nic_data->udp_tunnels_lock);
706 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
709 efx->nic_data = NULL;
715 static void efx_ef10_free_piobufs(struct efx_nic *efx)
717 struct efx_ef10_nic_data *nic_data = efx->nic_data;
718 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
724 for (i = 0; i < nic_data->n_piobufs; i++) {
725 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
726 nic_data->piobuf_handle[i]);
727 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
732 nic_data->n_piobufs = 0;
735 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
737 struct efx_ef10_nic_data *nic_data = efx->nic_data;
738 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
745 for (i = 0; i < n; i++) {
746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
747 outbuf, sizeof(outbuf), &outlen);
749 /* Don't display the MC error if we didn't have space
752 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
753 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
754 0, outbuf, outlen, rc);
757 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
761 nic_data->piobuf_handle[i] =
762 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
763 netif_dbg(efx, probe, efx->net_dev,
764 "allocated PIO buffer %u handle %x\n", i,
765 nic_data->piobuf_handle[i]);
768 nic_data->n_piobufs = i;
770 efx_ef10_free_piobufs(efx);
774 static int efx_ef10_link_piobufs(struct efx_nic *efx)
776 struct efx_ef10_nic_data *nic_data = efx->nic_data;
777 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
778 struct efx_channel *channel;
779 struct efx_tx_queue *tx_queue;
780 unsigned int offset, index;
783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
786 /* Link a buffer to each VI in the write-combining mapping */
787 for (index = 0; index < nic_data->n_piobufs; ++index) {
788 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
789 nic_data->piobuf_handle[index]);
790 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
791 nic_data->pio_write_vi_base + index);
792 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
793 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
796 netif_err(efx, drv, efx->net_dev,
797 "failed to link VI %u to PIO buffer %u (%d)\n",
798 nic_data->pio_write_vi_base + index, index,
802 netif_dbg(efx, probe, efx->net_dev,
803 "linked VI %u to PIO buffer %u\n",
804 nic_data->pio_write_vi_base + index, index);
807 /* Link a buffer to each TX queue */
808 efx_for_each_channel(channel, efx) {
809 /* Extra channels, even those with TXQs (PTP), do not require
812 if (!channel->type->want_pio ||
813 channel->channel >= efx->xdp_channel_offset)
816 efx_for_each_channel_tx_queue(tx_queue, channel) {
817 /* We assign the PIO buffers to queues in
818 * reverse order to allow for the following
821 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
822 tx_queue->channel->channel - 1) *
824 index = offset / nic_data->piobuf_size;
825 offset = offset % nic_data->piobuf_size;
827 /* When the host page size is 4K, the first
828 * host page in the WC mapping may be within
829 * the same VI page as the last TX queue. We
830 * can only link one buffer to each VI.
832 if (tx_queue->queue == nic_data->pio_write_vi_base) {
836 MCDI_SET_DWORD(inbuf,
837 LINK_PIOBUF_IN_PIOBUF_HANDLE,
838 nic_data->piobuf_handle[index]);
839 MCDI_SET_DWORD(inbuf,
840 LINK_PIOBUF_IN_TXQ_INSTANCE,
842 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
843 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
848 /* This is non-fatal; the TX path just
849 * won't use PIO for this queue
851 netif_err(efx, drv, efx->net_dev,
852 "failed to link VI %u to PIO buffer %u (%d)\n",
853 tx_queue->queue, index, rc);
854 tx_queue->piobuf = NULL;
857 nic_data->pio_write_base +
858 index * efx->vi_stride + offset;
859 tx_queue->piobuf_offset = offset;
860 netif_dbg(efx, probe, efx->net_dev,
861 "linked VI %u to PIO buffer %u offset %x addr %p\n",
862 tx_queue->queue, index,
863 tx_queue->piobuf_offset,
872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
877 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
878 nic_data->pio_write_vi_base + index);
879 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
880 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
886 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
888 struct efx_channel *channel;
889 struct efx_tx_queue *tx_queue;
891 /* All our existing PIO buffers went away */
892 efx_for_each_channel(channel, efx)
893 efx_for_each_channel_tx_queue(tx_queue, channel)
894 tx_queue->piobuf = NULL;
897 #else /* !EFX_USE_PIO */
899 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
901 return n == 0 ? 0 : -ENOBUFS;
904 static int efx_ef10_link_piobufs(struct efx_nic *efx)
909 static void efx_ef10_free_piobufs(struct efx_nic *efx)
913 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
917 #endif /* EFX_USE_PIO */
919 static void efx_ef10_remove(struct efx_nic *efx)
921 struct efx_ef10_nic_data *nic_data = efx->nic_data;
924 #ifdef CONFIG_SFC_SRIOV
925 struct efx_ef10_nic_data *nic_data_pf;
926 struct pci_dev *pci_dev_pf;
927 struct efx_nic *efx_pf;
930 if (efx->pci_dev->is_virtfn) {
931 pci_dev_pf = efx->pci_dev->physfn;
933 efx_pf = pci_get_drvdata(pci_dev_pf);
934 nic_data_pf = efx_pf->nic_data;
935 vf = nic_data_pf->vf + nic_data->vf_index;
938 netif_info(efx, drv, efx->net_dev,
939 "Could not get the PF id from VF\n");
943 efx_ef10_cleanup_vlans(efx);
944 mutex_destroy(&nic_data->vlan_lock);
948 efx_mcdi_mon_remove(efx);
950 efx_mcdi_rx_free_indir_table(efx);
952 if (nic_data->wc_membase)
953 iounmap(nic_data->wc_membase);
955 rc = efx_mcdi_free_vis(efx);
958 if (!nic_data->must_restore_piobufs)
959 efx_ef10_free_piobufs(efx);
961 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
962 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
964 efx_mcdi_detach(efx);
966 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
967 mutex_lock(&nic_data->udp_tunnels_lock);
968 (void)efx_ef10_set_udp_tnl_ports(efx, true);
969 mutex_unlock(&nic_data->udp_tunnels_lock);
971 mutex_destroy(&nic_data->udp_tunnels_lock);
974 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
978 static int efx_ef10_probe_pf(struct efx_nic *efx)
980 return efx_ef10_probe(efx);
983 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
984 u32 *port_flags, u32 *vadaptor_flags,
985 unsigned int *vlan_tags)
987 struct efx_ef10_nic_data *nic_data = efx->nic_data;
988 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
989 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
993 if (nic_data->datapath_caps &
994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
995 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
998 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
999 outbuf, sizeof(outbuf), &outlen);
1003 if (outlen < sizeof(outbuf)) {
1010 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1013 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1022 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1026 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1031 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1033 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1035 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1040 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041 unsigned int port_id, const u8 *mac)
1043 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1045 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1048 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049 sizeof(inbuf), NULL, 0, NULL);
1052 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053 unsigned int port_id, const u8 *mac)
1055 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1057 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1060 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061 sizeof(inbuf), NULL, 0, NULL);
1064 #ifdef CONFIG_SFC_SRIOV
1065 static int efx_ef10_probe_vf(struct efx_nic *efx)
1068 struct pci_dev *pci_dev_pf;
1070 /* If the parent PF has no VF data structure, it doesn't know about this
1071 * VF so fail probe. The VF needs to be re-created. This can happen
1072 * if the PF driver was unloaded while any VF was assigned to a guest
1073 * (using Xen, only).
1075 pci_dev_pf = efx->pci_dev->physfn;
1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1080 if (!nic_data_pf->vf) {
1081 netif_info(efx, drv, efx->net_dev,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1088 rc = efx_ef10_probe(efx);
1092 rc = efx_ef10_get_vf_index(efx);
1096 if (efx->pci_dev->is_virtfn) {
1097 if (efx->pci_dev->physfn) {
1098 struct efx_nic *efx_pf =
1099 pci_get_drvdata(efx->pci_dev->physfn);
1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1103 nic_data_p->vf[nic_data->vf_index].efx = efx;
1104 nic_data_p->vf[nic_data->vf_index].pci_dev =
1107 netif_info(efx, drv, efx->net_dev,
1108 "Could not get the PF id from VF\n");
1114 efx_ef10_remove(efx);
1118 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1124 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125 unsigned int min_vis, unsigned int max_vis)
1127 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130 &nic_data->n_allocated_vis);
1133 /* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1136 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139 efx_separate_tx_channels ? 2 : 1);
1140 unsigned int channel_vis, pio_write_vi_base, max_vis;
1141 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142 unsigned int uc_mem_map_size, wc_mem_map_size;
1143 void __iomem *membase;
1146 channel_vis = max(efx->n_channels,
1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148 efx->tx_queues_per_channel) +
1149 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150 if (efx->max_vis && efx->max_vis < channel_vis) {
1151 netif_dbg(efx, drv, efx->net_dev,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis, efx->max_vis);
1154 channel_vis = efx->max_vis;
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1164 if (efx_piobuf_size != 0 &&
1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166 efx->n_tx_channels) {
1167 unsigned int n_piobufs =
1168 DIV_ROUND_UP(efx->n_tx_channels,
1169 nic_data->piobuf_size / efx_piobuf_size);
1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1173 netif_dbg(efx, probe, efx->net_dev,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc == -EPERM)
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "not permitted to allocate PIO buffers\n");
1179 netif_err(efx, probe, efx->net_dev,
1180 "failed to allocate PIO buffers (%d)\n", rc);
1182 netif_dbg(efx, probe, efx->net_dev,
1183 "allocated %u PIO buffers\n", n_piobufs);
1186 nic_data->n_piobufs = 0;
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1201 if (nic_data->n_piobufs) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207 nic_data->n_piobufs) *
1210 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1212 pio_write_vi_base = 0;
1213 wc_mem_map_size = 0;
1214 max_vis = channel_vis;
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc = efx_mcdi_free_vis(efx);
1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1226 if (nic_data->n_allocated_vis < channel_vis) {
1227 netif_info(efx, drv, efx->net_dev,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1235 efx->max_channels = nic_data->n_allocated_vis;
1236 efx->max_tx_channels =
1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1239 efx_mcdi_free_vis(efx);
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1246 if (nic_data->n_piobufs &&
1247 nic_data->n_allocated_vis <
1248 pio_write_vi_base + nic_data->n_piobufs) {
1249 netif_dbg(efx, probe, efx->net_dev,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data->n_allocated_vis, nic_data->n_piobufs);
1252 efx_ef10_free_piobufs(efx);
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not shrink memory BAR to %x\n",
1263 iounmap(efx->membase);
1264 efx->membase = membase;
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size) {
1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1271 if (!nic_data->wc_membase) {
1272 netif_err(efx, probe, efx->net_dev,
1273 "could not allocate WC mapping of size %x\n",
1277 nic_data->pio_write_vi_base = pio_write_vi_base;
1278 nic_data->pio_write_base =
1279 nic_data->wc_membase +
1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1283 rc = efx_ef10_link_piobufs(efx);
1285 efx_ef10_free_piobufs(efx);
1288 netif_dbg(efx, probe, efx->net_dev,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx->membase_phys, efx->membase, uc_mem_map_size,
1291 nic_data->wc_membase, wc_mem_map_size);
1296 static void efx_ef10_fini_nic(struct efx_nic *efx)
1298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1300 kfree(nic_data->mc_stats);
1301 nic_data->mc_stats = NULL;
1304 static int efx_ef10_init_nic(struct efx_nic *efx)
1306 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1307 struct net_device *net_dev = efx->net_dev;
1308 netdev_features_t tun_feats, tso_feats;
1311 if (nic_data->must_check_datapath_caps) {
1312 rc = efx_ef10_init_datapath_caps(efx);
1315 nic_data->must_check_datapath_caps = false;
1318 if (efx->must_realloc_vis) {
1319 /* We cannot let the number of VIs change now */
1320 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1321 nic_data->n_allocated_vis);
1324 efx->must_realloc_vis = false;
1327 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1329 if (!nic_data->mc_stats)
1332 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1333 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1335 rc = efx_ef10_link_piobufs(efx);
1337 efx_ef10_free_piobufs(efx);
1340 /* Log an error on failure, but this is non-fatal.
1341 * Permission errors are less important - we've presumably
1342 * had the PIO buffer licence removed.
1345 netif_dbg(efx, drv, efx->net_dev,
1346 "not permitted to restore PIO buffers\n");
1348 netif_err(efx, drv, efx->net_dev,
1349 "failed to restore PIO buffers (%d)\n", rc);
1350 nic_data->must_restore_piobufs = false;
1353 /* encap features might change during reset if fw variant changed */
1354 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1355 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1357 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1359 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1360 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1361 tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1363 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1364 /* If this is first nic_init, or if it is a reset and a new fw
1365 * variant has added new features, enable them by default.
1366 * If the features are not new, maintain their current value.
1368 if (!(net_dev->hw_features & tun_feats))
1369 net_dev->features |= tun_feats;
1370 net_dev->hw_enc_features |= tun_feats | tso_feats;
1371 net_dev->hw_features |= tun_feats;
1373 net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1374 net_dev->hw_features &= ~tun_feats;
1375 net_dev->features &= ~tun_feats;
1378 /* don't fail init if RSS setup doesn't work */
1379 rc = efx->type->rx_push_rss_config(efx, false,
1380 efx->rss_context.rx_indir_table, NULL);
1385 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1387 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1388 #ifdef CONFIG_SFC_SRIOV
1392 /* All our allocations have been reset */
1393 efx->must_realloc_vis = true;
1394 efx_mcdi_filter_table_reset_mc_allocations(efx);
1395 nic_data->must_restore_piobufs = true;
1396 efx_ef10_forget_old_piobufs(efx);
1397 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1399 /* Driver-created vswitches and vports must be re-created */
1400 nic_data->must_probe_vswitching = true;
1401 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1402 #ifdef CONFIG_SFC_SRIOV
1404 for (i = 0; i < efx->vf_count; i++)
1405 nic_data->vf[i].vport_id = 0;
1409 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1411 if (reason == RESET_TYPE_MC_FAILURE)
1412 return RESET_TYPE_DATAPATH;
1414 return efx_mcdi_map_reset_reason(reason);
1417 static int efx_ef10_map_reset_flags(u32 *flags)
1420 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1421 ETH_RESET_SHARED_SHIFT),
1422 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1423 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1424 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1425 ETH_RESET_SHARED_SHIFT)
1428 /* We assume for now that our PCI function is permitted to
1432 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1433 *flags &= ~EF10_RESET_MC;
1434 return RESET_TYPE_WORLD;
1437 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1438 *flags &= ~EF10_RESET_PORT;
1439 return RESET_TYPE_ALL;
1442 /* no invisible reset implemented */
1447 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1449 int rc = efx_mcdi_reset(efx, reset_type);
1451 /* Unprivileged functions return -EPERM, but need to return success
1452 * here so that the datapath is brought back up.
1454 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457 /* If it was a port reset, trigger reallocation of MC resources.
1458 * Note that on an MC reset nothing needs to be done now because we'll
1459 * detect the MC reset later and handle it then.
1460 * For an FLR, we never get an MC reset event, but the MC has reset all
1461 * resources assigned to us, so we have to trigger reallocation now.
1463 if ((reset_type == RESET_TYPE_ALL ||
1464 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1465 efx_ef10_table_reset_mc_allocations(efx);
1469 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1470 [EF10_STAT_ ## ext_name] = \
1471 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1472 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1473 [EF10_STAT_ ## int_name] = \
1474 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1475 #define EF10_OTHER_STAT(ext_name) \
1476 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1478 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1479 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1480 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1481 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1482 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1483 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1484 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1485 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1486 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1487 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1488 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1489 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1490 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1491 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1492 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1493 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1494 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1495 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1496 EF10_OTHER_STAT(port_rx_good_bytes),
1497 EF10_OTHER_STAT(port_rx_bad_bytes),
1498 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1499 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1500 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1501 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1502 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1503 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1504 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1505 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1506 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1507 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1508 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1509 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1510 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1511 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1512 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1513 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1514 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1515 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1516 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1517 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1518 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1519 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1520 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1521 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1522 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1523 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1524 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1525 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1526 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1527 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1528 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1529 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1530 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1531 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1532 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1533 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1534 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1535 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1536 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1537 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1538 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1539 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1540 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1541 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1542 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1543 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1544 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1545 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1546 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1547 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1548 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1549 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1550 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1551 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1552 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1553 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1554 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1555 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1558 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1559 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1560 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1561 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1562 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1563 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1564 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1565 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1566 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1567 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1568 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1569 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1570 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1571 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1572 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1573 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1577 (1ULL << EF10_STAT_port_tx_packets) | \
1578 (1ULL << EF10_STAT_port_tx_pause) | \
1579 (1ULL << EF10_STAT_port_tx_unicast) | \
1580 (1ULL << EF10_STAT_port_tx_multicast) | \
1581 (1ULL << EF10_STAT_port_tx_broadcast) | \
1582 (1ULL << EF10_STAT_port_rx_bytes) | \
1584 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1585 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1586 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_packets) | \
1588 (1ULL << EF10_STAT_port_rx_good) | \
1589 (1ULL << EF10_STAT_port_rx_bad) | \
1590 (1ULL << EF10_STAT_port_rx_pause) | \
1591 (1ULL << EF10_STAT_port_rx_control) | \
1592 (1ULL << EF10_STAT_port_rx_unicast) | \
1593 (1ULL << EF10_STAT_port_rx_multicast) | \
1594 (1ULL << EF10_STAT_port_rx_broadcast) | \
1595 (1ULL << EF10_STAT_port_rx_lt64) | \
1596 (1ULL << EF10_STAT_port_rx_64) | \
1597 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1598 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1599 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1600 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1601 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1602 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1603 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1604 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1605 (1ULL << EF10_STAT_port_rx_overflow) | \
1606 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1607 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1608 (1ULL << GENERIC_STAT_rx_noskb_drops))
1610 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1611 * For a 10G/40G switchable port we do not expose these because they might
1612 * not include all the packets they should.
1613 * On 8000 series NICs these statistics are always provided.
1615 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1616 (1ULL << EF10_STAT_port_tx_lt64) | \
1617 (1ULL << EF10_STAT_port_tx_64) | \
1618 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1619 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1620 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1621 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1622 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1623 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1625 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1626 * switchable port we do expose these because the errors will otherwise
1629 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1630 (1ULL << EF10_STAT_port_rx_length_error))
1632 /* These statistics are only provided if the firmware supports the
1633 * capability PM_AND_RXDP_COUNTERS.
1635 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1636 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1637 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1642 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1643 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1644 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1645 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1647 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1649 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1650 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1651 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1652 * These bits are in the second u64 of the raw mask.
1654 #define EF10_FEC_STAT_MASK ( \
1655 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1656 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1657 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1662 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1663 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1664 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1665 * These bits are in the second u64 of the raw mask.
1667 #define EF10_CTPIO_STAT_MASK ( \
1668 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1669 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1670 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1685 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1687 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1688 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1689 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1691 if (!(efx->mcdi->fn_flags &
1692 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1696 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1697 /* 8000 series have everything even at 40G */
1698 if (nic_data->datapath_caps2 &
1699 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1700 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705 if (nic_data->datapath_caps &
1706 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1707 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1712 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1714 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1719 /* Only show vadaptor stats when EVB capability is present */
1720 if (nic_data->datapath_caps &
1721 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1722 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1723 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1727 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1728 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1729 raw_mask[1] |= EF10_FEC_STAT_MASK;
1731 /* CTPIO stats appear in V3. Only show them on devices that actually
1732 * support CTPIO. Although this driver doesn't use CTPIO others might,
1733 * and we may be reporting the stats for the underlying port.
1735 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1736 (nic_data->datapath_caps2 &
1737 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1738 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1740 #if BITS_PER_LONG == 64
1741 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1742 mask[0] = raw_mask[0];
1743 mask[1] = raw_mask[1];
1745 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1746 mask[0] = raw_mask[0] & 0xffffffff;
1747 mask[1] = raw_mask[0] >> 32;
1748 mask[2] = raw_mask[1] & 0xffffffff;
1752 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1754 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1756 efx_ef10_get_stat_mask(efx, mask);
1757 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1761 static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1762 struct ethtool_fec_stats *fec_stats)
1764 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1765 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1766 u64 *stats = nic_data->stats;
1768 efx_ef10_get_stat_mask(efx, mask);
1769 if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1770 fec_stats->corrected_blocks.total =
1771 stats[EF10_STAT_fec_corrected_errors];
1772 if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1773 fec_stats->uncorrectable_blocks.total =
1774 stats[EF10_STAT_fec_uncorrected_errors];
1777 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1778 struct rtnl_link_stats64 *core_stats)
1780 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1781 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1782 u64 *stats = nic_data->stats;
1783 size_t stats_count = 0, index;
1785 efx_ef10_get_stat_mask(efx, mask);
1788 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1789 if (efx_ef10_stat_desc[index].name) {
1790 *full_stats++ = stats[index];
1799 if (nic_data->datapath_caps &
1800 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1801 /* Use vadaptor stats. */
1802 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1803 stats[EF10_STAT_rx_multicast] +
1804 stats[EF10_STAT_rx_broadcast];
1805 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1806 stats[EF10_STAT_tx_multicast] +
1807 stats[EF10_STAT_tx_broadcast];
1808 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1809 stats[EF10_STAT_rx_multicast_bytes] +
1810 stats[EF10_STAT_rx_broadcast_bytes];
1811 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1812 stats[EF10_STAT_tx_multicast_bytes] +
1813 stats[EF10_STAT_tx_broadcast_bytes];
1814 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1815 stats[GENERIC_STAT_rx_noskb_drops];
1816 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1817 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1818 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1819 core_stats->rx_errors = core_stats->rx_crc_errors;
1820 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1822 /* Use port stats. */
1823 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1824 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1825 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1826 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1827 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1828 stats[GENERIC_STAT_rx_nodesc_trunc] +
1829 stats[GENERIC_STAT_rx_noskb_drops];
1830 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1831 core_stats->rx_length_errors =
1832 stats[EF10_STAT_port_rx_gtjumbo] +
1833 stats[EF10_STAT_port_rx_length_error];
1834 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1835 core_stats->rx_frame_errors =
1836 stats[EF10_STAT_port_rx_align_error];
1837 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1838 core_stats->rx_errors = (core_stats->rx_length_errors +
1839 core_stats->rx_crc_errors +
1840 core_stats->rx_frame_errors);
1846 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1847 struct rtnl_link_stats64 *core_stats)
1849 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1850 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1851 u64 *stats = nic_data->stats;
1853 efx_ef10_get_stat_mask(efx, mask);
1855 efx_nic_copy_stats(efx, nic_data->mc_stats);
1856 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1857 mask, stats, nic_data->mc_stats, false);
1859 /* Update derived statistics */
1860 efx_nic_fix_nodesc_drop_stat(efx,
1861 &stats[EF10_STAT_port_rx_nodesc_drops]);
1862 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1863 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1864 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1865 * Here we calculate port_rx_good_bytes.
1867 stats[EF10_STAT_port_rx_good_bytes] =
1868 stats[EF10_STAT_port_rx_bytes] -
1869 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1871 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1872 * MC Firmware are done such that we should not see an increase in
1873 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1874 * does mean that the stat can decrease at times. Here we do not
1875 * update the stat unless it has increased or has gone to zero
1876 * (In the case of the NIC rebooting).
1877 * Please see Bug 33781 for a discussion of why things work this way.
1879 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1880 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1881 efx_update_sw_stats(efx, stats);
1883 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1886 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1887 __must_hold(&efx->stats_lock)
1889 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1890 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1891 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1892 __le64 generation_start, generation_end;
1893 u64 *stats = nic_data->stats;
1894 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1895 struct efx_buffer stats_buf;
1899 spin_unlock_bh(&efx->stats_lock);
1901 efx_ef10_get_stat_mask(efx, mask);
1903 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1905 spin_lock_bh(&efx->stats_lock);
1909 dma_stats = stats_buf.addr;
1910 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1912 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1913 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1914 MAC_STATS_IN_DMA, 1);
1915 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1916 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1918 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1920 spin_lock_bh(&efx->stats_lock);
1922 /* Expect ENOENT if DMA queues have not been set up */
1923 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1924 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1925 sizeof(inbuf), NULL, 0, rc);
1929 generation_end = dma_stats[efx->num_mac_stats - 1];
1930 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1935 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1936 stats, stats_buf.addr, false);
1938 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1939 if (generation_end != generation_start) {
1944 efx_update_sw_stats(efx, stats);
1946 /* releasing a DMA coherent buffer with BH disabled can panic */
1947 spin_unlock_bh(&efx->stats_lock);
1948 efx_nic_free_buffer(efx, &stats_buf);
1949 spin_lock_bh(&efx->stats_lock);
1953 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1954 struct rtnl_link_stats64 *core_stats)
1956 if (efx_ef10_try_update_nic_stats_vf(efx))
1959 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1962 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1963 struct rtnl_link_stats64 *core_stats)
1965 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1967 /* In atomic context, cannot update HW stats. Just update the
1968 * software stats and return so the caller can continue.
1970 efx_update_sw_stats(efx, nic_data->stats);
1971 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1974 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1976 struct efx_nic *efx = channel->efx;
1977 unsigned int mode, usecs;
1978 efx_dword_t timer_cmd;
1980 if (channel->irq_moderation_us) {
1982 usecs = channel->irq_moderation_us;
1988 if (EFX_EF10_WORKAROUND_61265(efx)) {
1989 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1990 unsigned int ns = usecs * 1000;
1992 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1994 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1995 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1996 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1998 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1999 inbuf, sizeof(inbuf), 0, NULL, 0);
2000 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2001 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2003 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2004 EFE_DD_EVQ_IND_TIMER_FLAGS,
2005 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2006 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2007 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2010 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2012 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2013 ERF_DZ_TC_TIMER_VAL, ticks,
2014 ERF_FZ_TC_TMR_REL_VAL, ticks);
2015 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2020 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2021 struct ethtool_wolinfo *wol) {}
2023 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2028 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2032 memset(&wol->sopass, 0, sizeof(wol->sopass));
2035 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2042 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2043 const efx_dword_t *hdr, size_t hdr_len,
2044 const efx_dword_t *sdu, size_t sdu_len)
2046 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2047 u8 *pdu = nic_data->mcdi_buf.addr;
2049 memcpy(pdu, hdr, hdr_len);
2050 memcpy(pdu + hdr_len, sdu, sdu_len);
2053 /* The hardware provides 'low' and 'high' (doorbell) registers
2054 * for passing the 64-bit address of an MCDI request to
2055 * firmware. However the dwords are swapped by firmware. The
2056 * least significant bits of the doorbell are then 0 for all
2057 * MCDI requests due to alignment.
2059 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2061 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2065 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2067 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2068 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2071 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2075 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2076 size_t offset, size_t outlen)
2078 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2079 const u8 *pdu = nic_data->mcdi_buf.addr;
2081 memcpy(outbuf, pdu + offset, outlen);
2084 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2086 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2088 /* All our allocations have been reset */
2089 efx_ef10_table_reset_mc_allocations(efx);
2091 /* The datapath firmware might have been changed */
2092 nic_data->must_check_datapath_caps = true;
2094 /* MAC statistics have been cleared on the NIC; clear the local
2095 * statistic that we update with efx_update_diff_stat().
2097 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2100 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2102 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2105 rc = efx_ef10_get_warm_boot_count(efx);
2107 /* The firmware is presumably in the process of
2108 * rebooting. However, we are supposed to report each
2109 * reboot just once, so we must only do that once we
2110 * can read and store the updated warm boot count.
2115 if (rc == nic_data->warm_boot_count)
2118 nic_data->warm_boot_count = rc;
2119 efx_ef10_mcdi_reboot_detected(efx);
2124 /* Handle an MSI interrupt
2126 * Handle an MSI hardware interrupt. This routine schedules event
2127 * queue processing. No interrupt acknowledgement cycle is necessary.
2128 * Also, we never need to check that the interrupt is for us, since
2129 * MSI interrupts cannot be shared.
2131 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2133 struct efx_msi_context *context = dev_id;
2134 struct efx_nic *efx = context->efx;
2136 netif_vdbg(efx, intr, efx->net_dev,
2137 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2139 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2140 /* Note test interrupts */
2141 if (context->index == efx->irq_level)
2142 efx->last_irq_cpu = raw_smp_processor_id();
2144 /* Schedule processing of the channel */
2145 efx_schedule_channel_irq(efx->channel[context->index]);
2151 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2153 struct efx_nic *efx = dev_id;
2154 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2155 struct efx_channel *channel;
2159 /* Read the ISR which also ACKs the interrupts */
2160 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2161 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2166 if (likely(soft_enabled)) {
2167 /* Note test interrupts */
2168 if (queues & (1U << efx->irq_level))
2169 efx->last_irq_cpu = raw_smp_processor_id();
2171 efx_for_each_channel(channel, efx) {
2173 efx_schedule_channel_irq(channel);
2178 netif_vdbg(efx, intr, efx->net_dev,
2179 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2180 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2185 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2187 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2189 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2193 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2195 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2196 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2197 inbuf, sizeof(inbuf), NULL, 0, NULL);
2200 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2202 /* low two bits of label are what we want for type */
2203 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2204 tx_queue->type = tx_queue->label & 3;
2205 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2206 (tx_queue->ptr_mask + 1) *
2207 sizeof(efx_qword_t),
2211 /* This writes to the TX_DESC_WPTR and also pushes data */
2212 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2213 const efx_qword_t *txd)
2215 unsigned int write_ptr;
2218 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2219 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2220 reg.qword[0] = *txd;
2221 efx_writeo_page(tx_queue->efx, ®,
2222 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2225 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2227 int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2230 struct efx_tx_buffer *buffer;
2231 u16 inner_ipv4_id = 0;
2232 u16 outer_ipv4_id = 0;
2239 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2241 mss = skb_shinfo(skb)->gso_size;
2243 if (unlikely(mss < 4)) {
2244 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2248 if (skb->encapsulation) {
2249 if (!tx_queue->tso_encap)
2252 if (ip->version == 4)
2253 outer_ipv4_id = ntohs(ip->id);
2255 ip = inner_ip_hdr(skb);
2256 tcp = inner_tcp_hdr(skb);
2262 /* 8000-series EF10 hardware requires that IP Total Length be
2263 * greater than or equal to the value it will have in each segment
2264 * (which is at most mss + 208 + TCP header length), but also less
2265 * than (0x10000 - inner_network_header). Otherwise the TCP
2266 * checksum calculation will be broken for encapsulated packets.
2267 * We fill in ip->tot_len with 0xff30, which should satisfy the
2268 * first requirement unless the MSS is ridiculously large (which
2269 * should be impossible as the driver max MTU is 9216); it is
2270 * guaranteed to satisfy the second as we only attempt TSO if
2271 * inner_network_header <= 208.
2273 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2274 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2275 (tcp->doff << 2u) > ip_tot_len);
2277 if (ip->version == 4) {
2278 ip->tot_len = htons(ip_tot_len);
2280 inner_ipv4_id = ntohs(ip->id);
2282 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2285 seqnum = ntohl(tcp->seq);
2287 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2289 buffer->flags = EFX_TX_BUF_OPTION;
2291 buffer->unmap_len = 0;
2292 EFX_POPULATE_QWORD_5(buffer->option,
2293 ESF_DZ_TX_DESC_IS_OPT, 1,
2294 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2295 ESF_DZ_TX_TSO_OPTION_TYPE,
2296 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2297 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2298 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2300 ++tx_queue->insert_count;
2302 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2304 buffer->flags = EFX_TX_BUF_OPTION;
2306 buffer->unmap_len = 0;
2307 EFX_POPULATE_QWORD_5(buffer->option,
2308 ESF_DZ_TX_DESC_IS_OPT, 1,
2309 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2310 ESF_DZ_TX_TSO_OPTION_TYPE,
2311 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2312 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2313 ESF_DZ_TX_TSO_TCP_MSS, mss
2315 ++tx_queue->insert_count;
2320 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2322 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2323 u32 tso_versions = 0;
2325 if (nic_data->datapath_caps &
2326 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2327 tso_versions |= BIT(1);
2328 if (nic_data->datapath_caps2 &
2329 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2330 tso_versions |= BIT(2);
2331 return tso_versions;
2334 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2336 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2337 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2338 struct efx_channel *channel = tx_queue->channel;
2339 struct efx_nic *efx = tx_queue->efx;
2340 struct efx_ef10_nic_data *nic_data;
2344 nic_data = efx->nic_data;
2346 /* Only attempt to enable TX timestamping if we have the license for it,
2347 * otherwise TXQ init will fail
2349 if (!(nic_data->licensed_features &
2350 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2351 tx_queue->timestamping = false;
2352 /* Disable sync events on this channel. */
2353 if (efx->type->ptp_set_ts_sync_events)
2354 efx->type->ptp_set_ts_sync_events(efx, false, false);
2357 /* TSOv2 is a limited resource that can only be configured on a limited
2358 * number of queues. TSO without checksum offload is not really a thing,
2359 * so we only enable it for those queues.
2360 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2363 if (efx_has_cap(efx, TX_TSO_V2)) {
2364 if ((csum_offload || inner_csum) &&
2365 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2366 tx_queue->tso_version = 2;
2367 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2370 } else if (efx_has_cap(efx, TX_TSO)) {
2371 tx_queue->tso_version = 1;
2374 rc = efx_mcdi_tx_init(tx_queue);
2378 /* A previous user of this TX queue might have set us up the
2379 * bomb by writing a descriptor to the TX push collector but
2380 * not the doorbell. (Each collector belongs to a port, not a
2381 * queue or function, so cannot easily be reset.) We must
2382 * attempt to push a no-op descriptor in its place.
2384 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2385 tx_queue->insert_count = 1;
2386 txd = efx_tx_desc(tx_queue, 0);
2387 EFX_POPULATE_QWORD_7(*txd,
2388 ESF_DZ_TX_DESC_IS_OPT, true,
2389 ESF_DZ_TX_OPTION_TYPE,
2390 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2391 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2392 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2393 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2394 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2395 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2396 tx_queue->write_count = 1;
2398 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2399 tx_queue->tso_encap = true;
2402 efx_ef10_push_tx_desc(tx_queue, txd);
2407 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2411 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2412 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2414 unsigned int write_ptr;
2417 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2418 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2419 efx_writed_page(tx_queue->efx, ®,
2420 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2423 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2425 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2426 dma_addr_t dma_addr, unsigned int len)
2428 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2429 /* If we need to break across multiple descriptors we should
2430 * stop at a page boundary. This assumes the length limit is
2431 * greater than the page size.
2433 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2435 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2436 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2442 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2444 unsigned int old_write_count = tx_queue->write_count;
2445 struct efx_tx_buffer *buffer;
2446 unsigned int write_ptr;
2449 tx_queue->xmit_pending = false;
2450 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2454 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2455 buffer = &tx_queue->buffer[write_ptr];
2456 txd = efx_tx_desc(tx_queue, write_ptr);
2457 ++tx_queue->write_count;
2459 /* Create TX descriptor ring entry */
2460 if (buffer->flags & EFX_TX_BUF_OPTION) {
2461 *txd = buffer->option;
2462 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2463 /* PIO descriptor */
2464 tx_queue->packet_write_count = tx_queue->write_count;
2466 tx_queue->packet_write_count = tx_queue->write_count;
2467 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2468 EFX_POPULATE_QWORD_3(
2471 buffer->flags & EFX_TX_BUF_CONT,
2472 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2473 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2475 } while (tx_queue->write_count != tx_queue->insert_count);
2477 wmb(); /* Ensure descriptors are written before they are fetched */
2479 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2480 txd = efx_tx_desc(tx_queue,
2481 old_write_count & tx_queue->ptr_mask);
2482 efx_ef10_push_tx_desc(tx_queue, txd);
2485 efx_ef10_notify_tx_desc(tx_queue);
2489 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2491 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2492 unsigned int enabled, implemented;
2493 bool want_workaround_26807;
2496 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2497 if (rc == -ENOSYS) {
2498 /* GET_WORKAROUNDS was implemented before this workaround,
2499 * thus it must be unavailable in this firmware.
2501 nic_data->workaround_26807 = false;
2506 want_workaround_26807 =
2507 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2508 nic_data->workaround_26807 =
2509 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2511 if (want_workaround_26807 && !nic_data->workaround_26807) {
2514 rc = efx_mcdi_set_workaround(efx,
2515 MC_CMD_WORKAROUND_BUG26807,
2519 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2520 netif_info(efx, drv, efx->net_dev,
2521 "other functions on NIC have been reset\n");
2523 /* With MCFW v4.6.x and earlier, the
2524 * boot count will have incremented,
2525 * so re-read the warm_boot_count
2526 * value now to ensure this function
2527 * doesn't think it has changed next
2530 rc = efx_ef10_get_warm_boot_count(efx);
2532 nic_data->warm_boot_count = rc;
2536 nic_data->workaround_26807 = true;
2537 } else if (rc == -EPERM) {
2544 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2546 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2547 int rc = efx_ef10_probe_multicast_chaining(efx);
2548 struct efx_mcdi_filter_vlan *vlan;
2552 down_write(&efx->filter_sem);
2553 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2558 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2559 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2566 efx_mcdi_filter_table_remove(efx);
2568 up_write(&efx->filter_sem);
2572 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2574 down_write(&efx->filter_sem);
2575 efx_mcdi_filter_table_remove(efx);
2576 up_write(&efx->filter_sem);
2579 /* This creates an entry in the RX descriptor queue */
2581 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2583 struct efx_rx_buffer *rx_buf;
2586 rxd = efx_rx_desc(rx_queue, index);
2587 rx_buf = efx_rx_buffer(rx_queue, index);
2588 EFX_POPULATE_QWORD_2(*rxd,
2589 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2590 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2593 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2595 struct efx_nic *efx = rx_queue->efx;
2596 unsigned int write_count;
2599 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2600 write_count = rx_queue->added_count & ~7;
2601 if (rx_queue->notified_count == write_count)
2605 efx_ef10_build_rx_desc(
2607 rx_queue->notified_count & rx_queue->ptr_mask);
2608 while (++rx_queue->notified_count != write_count);
2611 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2612 write_count & rx_queue->ptr_mask);
2613 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2614 efx_rx_queue_index(rx_queue));
2617 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2619 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2621 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2622 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2625 EFX_POPULATE_QWORD_2(event,
2626 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2627 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2629 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2631 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2632 * already swapped the data to little-endian order.
2634 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2635 sizeof(efx_qword_t));
2637 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2638 inbuf, sizeof(inbuf), 0,
2639 efx_ef10_rx_defer_refill_complete, 0);
2643 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2644 int rc, efx_dword_t *outbuf,
2645 size_t outlen_actual)
2650 static int efx_ef10_ev_init(struct efx_channel *channel)
2652 struct efx_nic *efx = channel->efx;
2653 struct efx_ef10_nic_data *nic_data;
2654 bool use_v2, cut_thru;
2656 nic_data = efx->nic_data;
2657 use_v2 = nic_data->datapath_caps2 &
2658 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2659 cut_thru = !(nic_data->datapath_caps &
2660 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2661 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2664 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2665 unsigned int rx_queue_label)
2667 struct efx_nic *efx = rx_queue->efx;
2669 netif_info(efx, hw, efx->net_dev,
2670 "rx event arrived on queue %d labeled as queue %u\n",
2671 efx_rx_queue_index(rx_queue), rx_queue_label);
2673 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2677 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2678 unsigned int actual, unsigned int expected)
2680 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2681 struct efx_nic *efx = rx_queue->efx;
2683 netif_info(efx, hw, efx->net_dev,
2684 "dropped %d events (index=%d expected=%d)\n",
2685 dropped, actual, expected);
2687 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2690 /* partially received RX was aborted. clean up. */
2691 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2693 unsigned int rx_desc_ptr;
2695 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2696 "scattered RX aborted (dropping %u buffers)\n",
2697 rx_queue->scatter_n);
2699 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2701 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2702 0, EFX_RX_PKT_DISCARD);
2704 rx_queue->removed_count += rx_queue->scatter_n;
2705 rx_queue->scatter_n = 0;
2706 rx_queue->scatter_len = 0;
2707 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2710 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2711 unsigned int n_packets,
2712 unsigned int rx_encap_hdr,
2713 unsigned int rx_l3_class,
2714 unsigned int rx_l4_class,
2715 const efx_qword_t *event)
2717 struct efx_nic *efx = channel->efx;
2718 bool handled = false;
2720 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2721 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2722 if (!efx->loopback_selftest)
2723 channel->n_rx_eth_crc_err += n_packets;
2724 return EFX_RX_PKT_DISCARD;
2728 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2729 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2730 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2731 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2732 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2733 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2734 netdev_WARN(efx->net_dev,
2735 "invalid class for RX_IPCKSUM_ERR: event="
2737 EFX_QWORD_VAL(*event));
2738 if (!efx->loopback_selftest)
2740 &channel->n_rx_outer_ip_hdr_chksum_err :
2741 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2744 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2745 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2746 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2747 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2748 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2749 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2750 netdev_WARN(efx->net_dev,
2751 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2753 EFX_QWORD_VAL(*event));
2754 if (!efx->loopback_selftest)
2756 &channel->n_rx_outer_tcp_udp_chksum_err :
2757 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2760 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2761 if (unlikely(!rx_encap_hdr))
2762 netdev_WARN(efx->net_dev,
2763 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2765 EFX_QWORD_VAL(*event));
2766 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2767 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2768 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2769 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2770 netdev_WARN(efx->net_dev,
2771 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2773 EFX_QWORD_VAL(*event));
2774 if (!efx->loopback_selftest)
2775 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2778 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2779 if (unlikely(!rx_encap_hdr))
2780 netdev_WARN(efx->net_dev,
2781 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2783 EFX_QWORD_VAL(*event));
2784 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2785 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2786 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2787 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2788 netdev_WARN(efx->net_dev,
2789 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2791 EFX_QWORD_VAL(*event));
2792 if (!efx->loopback_selftest)
2793 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2797 WARN_ON(!handled); /* No error bits were recognised */
2801 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2802 const efx_qword_t *event)
2804 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2805 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2806 unsigned int n_descs, n_packets, i;
2807 struct efx_nic *efx = channel->efx;
2808 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2809 struct efx_rx_queue *rx_queue;
2814 if (unlikely(READ_ONCE(efx->reset_pending)))
2817 /* Basic packet information */
2818 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2819 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2820 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2821 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2822 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2823 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2825 nic_data->datapath_caps &
2826 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2827 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2828 ESE_EZ_ENCAP_HDR_NONE;
2830 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2831 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2833 EFX_QWORD_VAL(*event));
2835 rx_queue = efx_channel_get_rx_queue(channel);
2837 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2838 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2840 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2841 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2843 if (n_descs != rx_queue->scatter_n + 1) {
2844 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2846 /* detect rx abort */
2847 if (unlikely(n_descs == rx_queue->scatter_n)) {
2848 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2849 netdev_WARN(efx->net_dev,
2850 "invalid RX abort: scatter_n=%u event="
2852 rx_queue->scatter_n,
2853 EFX_QWORD_VAL(*event));
2854 efx_ef10_handle_rx_abort(rx_queue);
2858 /* Check that RX completion merging is valid, i.e.
2859 * the current firmware supports it and this is a
2860 * non-scattered packet.
2862 if (!(nic_data->datapath_caps &
2863 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2864 rx_queue->scatter_n != 0 || rx_cont) {
2865 efx_ef10_handle_rx_bad_lbits(
2866 rx_queue, next_ptr_lbits,
2867 (rx_queue->removed_count +
2868 rx_queue->scatter_n + 1) &
2869 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2873 /* Merged completion for multiple non-scattered packets */
2874 rx_queue->scatter_n = 1;
2875 rx_queue->scatter_len = 0;
2876 n_packets = n_descs;
2877 ++channel->n_rx_merge_events;
2878 channel->n_rx_merge_packets += n_packets;
2879 flags |= EFX_RX_PKT_PREFIX_LEN;
2881 ++rx_queue->scatter_n;
2882 rx_queue->scatter_len += rx_bytes;
2888 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2889 ESF_DZ_RX_IPCKSUM_ERR, 1,
2890 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2891 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2892 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2893 EFX_AND_QWORD(errors, *event, errors);
2894 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2895 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2897 rx_l3_class, rx_l4_class,
2900 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2901 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2903 switch (rx_encap_hdr) {
2904 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2905 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2907 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2909 case ESE_EZ_ENCAP_HDR_GRE:
2910 case ESE_EZ_ENCAP_HDR_NONE:
2912 flags |= EFX_RX_PKT_CSUMMED;
2915 netdev_WARN(efx->net_dev,
2916 "unknown encapsulation type: event="
2918 EFX_QWORD_VAL(*event));
2922 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2923 flags |= EFX_RX_PKT_TCP;
2925 channel->irq_mod_score += 2 * n_packets;
2927 /* Handle received packet(s) */
2928 for (i = 0; i < n_packets; i++) {
2929 efx_rx_packet(rx_queue,
2930 rx_queue->removed_count & rx_queue->ptr_mask,
2931 rx_queue->scatter_n, rx_queue->scatter_len,
2933 rx_queue->removed_count += rx_queue->scatter_n;
2936 rx_queue->scatter_n = 0;
2937 rx_queue->scatter_len = 0;
2942 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2946 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2948 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2954 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2956 struct efx_nic *efx = channel->efx;
2957 struct efx_tx_queue *tx_queue;
2958 unsigned int tx_ev_desc_ptr;
2959 unsigned int tx_ev_q_label;
2960 unsigned int tx_ev_type;
2963 if (unlikely(READ_ONCE(efx->reset_pending)))
2966 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2969 /* Get the transmit queue */
2970 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2971 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2973 if (!tx_queue->timestamping) {
2974 /* Transmit completion */
2975 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2976 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2980 /* Transmit timestamps are only available for 8XXX series. They result
2981 * in up to three events per packet. These occur in order, and are:
2982 * - the normal completion event (may be omitted)
2983 * - the low part of the timestamp
2984 * - the high part of the timestamp
2986 * It's possible for multiple completion events to appear before the
2987 * corresponding timestamps. So we can for example get:
2995 * In addition it's also possible for the adjacent completions to be
2996 * merged, so we may not see COMP N above. As such, the completion
2997 * events are not very useful here.
2999 * Each part of the timestamp is itself split across two 16 bit
3000 * fields in the event.
3002 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3004 switch (tx_ev_type) {
3005 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3006 /* Ignore this event - see above. */
3009 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3010 ts_part = efx_ef10_extract_event_ts(event);
3011 tx_queue->completed_timestamp_minor = ts_part;
3014 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3015 ts_part = efx_ef10_extract_event_ts(event);
3016 tx_queue->completed_timestamp_major = ts_part;
3018 efx_xmit_done_single(tx_queue);
3022 netif_err(efx, hw, efx->net_dev,
3023 "channel %d unknown tx event type %d (data "
3024 EFX_QWORD_FMT ")\n",
3025 channel->channel, tx_ev_type,
3026 EFX_QWORD_VAL(*event));
3032 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3034 struct efx_nic *efx = channel->efx;
3037 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3040 case ESE_DZ_DRV_TIMER_EV:
3041 case ESE_DZ_DRV_WAKE_UP_EV:
3043 case ESE_DZ_DRV_START_UP_EV:
3044 /* event queue init complete. ok. */
3047 netif_err(efx, hw, efx->net_dev,
3048 "channel %d unknown driver event type %d"
3049 " (data " EFX_QWORD_FMT ")\n",
3050 channel->channel, subcode,
3051 EFX_QWORD_VAL(*event));
3056 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3059 struct efx_nic *efx = channel->efx;
3062 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3066 channel->event_test_cpu = raw_smp_processor_id();
3068 case EFX_EF10_REFILL:
3069 /* The queue must be empty, so we won't receive any rx
3070 * events, so efx_process_channel() won't refill the
3071 * queue. Refill it here
3073 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3076 netif_err(efx, hw, efx->net_dev,
3077 "channel %d unknown driver event type %u"
3078 " (data " EFX_QWORD_FMT ")\n",
3079 channel->channel, (unsigned) subcode,
3080 EFX_QWORD_VAL(*event));
3084 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3086 struct efx_nic *efx = channel->efx;
3087 efx_qword_t event, *p_event;
3088 unsigned int read_ptr;
3095 read_ptr = channel->eventq_read_ptr;
3098 p_event = efx_event(channel, read_ptr);
3101 if (!efx_event_present(&event))
3104 EFX_SET_QWORD(*p_event);
3108 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3110 netif_vdbg(efx, drv, efx->net_dev,
3111 "processing event on %d " EFX_QWORD_FMT "\n",
3112 channel->channel, EFX_QWORD_VAL(event));
3115 case ESE_DZ_EV_CODE_MCDI_EV:
3116 efx_mcdi_process_event(channel, &event);
3118 case ESE_DZ_EV_CODE_RX_EV:
3119 spent += efx_ef10_handle_rx_event(channel, &event);
3120 if (spent >= quota) {
3121 /* XXX can we split a merged event to
3122 * avoid going over-quota?
3128 case ESE_DZ_EV_CODE_TX_EV:
3129 efx_ef10_handle_tx_event(channel, &event);
3131 case ESE_DZ_EV_CODE_DRIVER_EV:
3132 efx_ef10_handle_driver_event(channel, &event);
3133 if (++spent == quota)
3136 case EFX_EF10_DRVGEN_EV:
3137 efx_ef10_handle_driver_generated_event(channel, &event);
3140 netif_err(efx, hw, efx->net_dev,
3141 "channel %d unknown event type %d"
3142 " (data " EFX_QWORD_FMT ")\n",
3143 channel->channel, ev_code,
3144 EFX_QWORD_VAL(event));
3149 channel->eventq_read_ptr = read_ptr;
3153 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3155 struct efx_nic *efx = channel->efx;
3158 if (EFX_EF10_WORKAROUND_35388(efx)) {
3159 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3160 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3161 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3162 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3164 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3165 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3166 ERF_DD_EVQ_IND_RPTR,
3167 (channel->eventq_read_ptr &
3168 channel->eventq_mask) >>
3169 ERF_DD_EVQ_IND_RPTR_WIDTH);
3170 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3172 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3173 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3174 ERF_DD_EVQ_IND_RPTR,
3175 channel->eventq_read_ptr &
3176 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3177 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3180 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3181 channel->eventq_read_ptr &
3182 channel->eventq_mask);
3183 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3187 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3189 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3190 struct efx_nic *efx = channel->efx;
3194 EFX_POPULATE_QWORD_2(event,
3195 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3196 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3198 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3200 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3201 * already swapped the data to little-endian order.
3203 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3204 sizeof(efx_qword_t));
3206 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3215 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3218 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3220 atomic_set(&efx->active_queues, 0);
3223 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3225 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3226 u8 mac_old[ETH_ALEN];
3229 /* Only reconfigure a PF-created vport */
3230 if (is_zero_ether_addr(nic_data->vport_mac))
3233 efx_device_detach_sync(efx);
3234 efx_net_stop(efx->net_dev);
3235 efx_ef10_filter_table_remove(efx);
3237 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3239 goto restore_filters;
3241 ether_addr_copy(mac_old, nic_data->vport_mac);
3242 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3243 nic_data->vport_mac);
3245 goto restore_vadaptor;
3247 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3248 efx->net_dev->dev_addr);
3250 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3252 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3254 /* Failed to add original MAC, so clear vport_mac */
3255 eth_zero_addr(nic_data->vport_mac);
3261 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3265 rc2 = efx_ef10_filter_table_probe(efx);
3269 rc2 = efx_net_open(efx->net_dev);
3273 efx_device_attach_if_not_resetting(efx);
3278 netif_err(efx, drv, efx->net_dev,
3279 "Failed to restore when changing MAC address - scheduling reset\n");
3280 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3282 return rc ? rc : rc2;
3285 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3287 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3288 bool was_enabled = efx->port_enabled;
3291 #ifdef CONFIG_SFC_SRIOV
3292 /* If this function is a VF and we have access to the parent PF,
3293 * then use the PF control path to attempt to change the VF MAC address.
3295 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3296 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3297 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3300 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3301 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3303 ether_addr_copy(mac, efx->net_dev->dev_addr);
3305 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3309 netif_dbg(efx, drv, efx->net_dev,
3310 "Updating VF mac via PF failed (%d), setting directly\n",
3315 efx_device_detach_sync(efx);
3316 efx_net_stop(efx->net_dev);
3318 mutex_lock(&efx->mac_lock);
3319 efx_ef10_filter_table_remove(efx);
3321 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3322 efx->net_dev->dev_addr);
3323 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3325 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3326 sizeof(inbuf), NULL, 0, NULL);
3328 efx_ef10_filter_table_probe(efx);
3329 mutex_unlock(&efx->mac_lock);
3332 efx_net_open(efx->net_dev);
3333 efx_device_attach_if_not_resetting(efx);
3336 netif_err(efx, drv, efx->net_dev,
3337 "Cannot change MAC address; use sfboot to enable"
3338 " mac-spoofing on this interface\n");
3339 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3340 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3341 * fall-back to the method of changing the MAC address on the
3342 * vport. This only applies to PFs because such versions of
3343 * MCFW do not support VFs.
3345 rc = efx_ef10_vport_set_mac_address(efx);
3347 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3348 sizeof(inbuf), NULL, 0, rc);
3354 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3356 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3358 efx_mcdi_filter_sync_rx_mode(efx);
3360 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3361 return efx_mcdi_set_mtu(efx);
3362 return efx_mcdi_set_mac(efx);
3365 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3367 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3369 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3370 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3374 /* MC BISTs follow a different poll mechanism to phy BISTs.
3375 * The BIST is done in the poll handler on the MC, and the MCDI command
3376 * will block until the BIST is done.
3378 static int efx_ef10_poll_bist(struct efx_nic *efx)
3381 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3385 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3386 outbuf, sizeof(outbuf), &outlen);
3390 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3393 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3395 case MC_CMD_POLL_BIST_PASSED:
3396 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3398 case MC_CMD_POLL_BIST_TIMEOUT:
3399 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3401 case MC_CMD_POLL_BIST_FAILED:
3402 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3405 netif_err(efx, hw, efx->net_dev,
3406 "BIST returned unknown result %u", result);
3411 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3415 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3417 rc = efx_ef10_start_bist(efx, bist_type);
3421 return efx_ef10_poll_bist(efx);
3425 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3429 efx_reset_down(efx, RESET_TYPE_WORLD);
3431 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3432 NULL, 0, NULL, 0, NULL);
3436 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3437 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3439 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3444 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3445 return rc ? rc : rc2;
3448 #ifdef CONFIG_SFC_MTD
3450 struct efx_ef10_nvram_type_info {
3451 u16 type, type_mask;
3456 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3457 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3458 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3459 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3460 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3461 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3462 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3463 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3464 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3465 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3466 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3467 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3468 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3469 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3470 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3471 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3472 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3473 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3474 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3476 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3478 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3479 struct efx_mcdi_mtd_partition *part,
3481 unsigned long *found)
3483 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3484 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3485 const struct efx_ef10_nvram_type_info *info;
3486 size_t size, erase_size, outlen;
3491 for (type_idx = 0; ; type_idx++) {
3492 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3494 info = efx_ef10_nvram_types + type_idx;
3495 if ((type & ~info->type_mask) == info->type)
3498 if (info->port != efx_port_num(efx))
3501 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3505 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3506 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3507 /* Hide protected partitions that don't provide defaults. */
3511 /* Protected partitions are read only. */
3514 /* If we've already exposed a partition of this type, hide this
3515 * duplicate. All operations on MTDs are keyed by the type anyway,
3516 * so we can't act on the duplicate.
3518 if (__test_and_set_bit(type_idx, found))
3521 part->nvram_type = type;
3523 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3524 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3525 outbuf, sizeof(outbuf), &outlen);
3528 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3530 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3531 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3532 part->fw_subtype = MCDI_DWORD(outbuf,
3533 NVRAM_METADATA_OUT_SUBTYPE);
3535 part->common.dev_type_name = "EF10 NVRAM manager";
3536 part->common.type_name = info->name;
3538 part->common.mtd.type = MTD_NORFLASH;
3539 part->common.mtd.flags = MTD_CAP_NORFLASH;
3540 part->common.mtd.size = size;
3541 part->common.mtd.erasesize = erase_size;
3542 /* sfc_status is read-only */
3544 part->common.mtd.flags |= MTD_NO_ERASE;
3549 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3551 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3552 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3553 struct efx_mcdi_mtd_partition *parts;
3554 size_t outlen, n_parts_total, i, n_parts;
3560 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3561 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3562 outbuf, sizeof(outbuf), &outlen);
3565 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3568 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3570 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3573 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3578 for (i = 0; i < n_parts_total; i++) {
3579 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3581 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3583 if (rc == -EEXIST || rc == -ENODEV)
3595 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3602 #endif /* CONFIG_SFC_MTD */
3604 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3606 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3609 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3612 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3615 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3618 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3619 channel->sync_events_state == SYNC_EVENTS_VALID ||
3620 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3622 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3624 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3625 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3626 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3629 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3630 inbuf, sizeof(inbuf), NULL, 0, NULL);
3633 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3634 SYNC_EVENTS_DISABLED;
3639 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3642 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3645 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3646 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3648 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3649 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3652 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3653 SYNC_EVENTS_DISABLED;
3655 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3656 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3657 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3658 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3659 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3662 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3663 inbuf, sizeof(inbuf), NULL, 0, NULL);
3668 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3671 int (*set)(struct efx_channel *channel, bool temp);
3672 struct efx_channel *channel;
3675 efx_ef10_rx_enable_timestamping :
3676 efx_ef10_rx_disable_timestamping;
3678 channel = efx_ptp_channel(efx);
3680 int rc = set(channel, temp);
3681 if (en && rc != 0) {
3682 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3690 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3691 struct hwtstamp_config *init)
3696 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3697 struct hwtstamp_config *init)
3701 switch (init->rx_filter) {
3702 case HWTSTAMP_FILTER_NONE:
3703 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3704 /* if TX timestamping is still requested then leave PTP on */
3705 return efx_ptp_change_mode(efx,
3706 init->tx_type != HWTSTAMP_TX_OFF, 0);
3707 case HWTSTAMP_FILTER_ALL:
3708 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3709 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3710 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3711 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3712 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3714 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3715 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3716 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3717 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3718 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3719 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3720 case HWTSTAMP_FILTER_NTP_ALL:
3721 init->rx_filter = HWTSTAMP_FILTER_ALL;
3722 rc = efx_ptp_change_mode(efx, true, 0);
3724 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3726 efx_ptp_change_mode(efx, false, 0);
3733 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3734 struct netdev_phys_item_id *ppid)
3736 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3738 if (!is_valid_ether_addr(nic_data->port_id))
3741 ppid->id_len = ETH_ALEN;
3742 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3747 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3749 if (proto != htons(ETH_P_8021Q))
3752 return efx_ef10_add_vlan(efx, vid);
3755 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3757 if (proto != htons(ETH_P_8021Q))
3760 return efx_ef10_del_vlan(efx, vid);
3763 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3764 * ports table, ensuring that any TSO descriptors that were made on a now-
3765 * removed tunnel port will be blown away and won't break things when we try
3766 * to transmit them using the new ports table.
3768 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3770 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3771 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3772 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3773 bool will_reset = false;
3774 size_t num_entries = 0;
3775 size_t inlen, outlen;
3778 efx_dword_t flags_and_num_entries;
3780 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3782 nic_data->udp_tunnels_dirty = false;
3784 if (!(nic_data->datapath_caps &
3785 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3786 efx_device_attach_if_not_resetting(efx);
3790 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3791 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3793 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3794 if (nic_data->udp_tunnels[i].type !=
3795 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3798 EFX_POPULATE_DWORD_2(entry,
3799 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3800 ntohs(nic_data->udp_tunnels[i].port),
3801 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3802 nic_data->udp_tunnels[i].type);
3803 *_MCDI_ARRAY_DWORD(inbuf,
3804 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3805 num_entries++) = entry;
3809 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3810 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3812 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3814 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3815 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3817 EFX_WORD_1, num_entries);
3818 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3819 flags_and_num_entries;
3821 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3823 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3824 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3826 /* Most likely the MC rebooted due to another function also
3827 * setting its tunnel port list. Mark the tunnel port list as
3828 * dirty, so it will be pushed upon coming up from the reboot.
3830 nic_data->udp_tunnels_dirty = true;
3835 /* expected not available on unprivileged functions */
3837 netif_warn(efx, drv, efx->net_dev,
3838 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3839 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3840 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3841 netif_info(efx, drv, efx->net_dev,
3842 "Rebooting MC due to UDP tunnel port list change\n");
3845 /* Delay for the MC reset to complete. This will make
3846 * unloading other functions a bit smoother. This is a
3847 * race, but the other unload will work whichever way
3848 * it goes, this just avoids an unnecessary error
3853 if (!will_reset && !unloading) {
3854 /* The caller will have detached, relying on the MC reset to
3855 * trigger a re-attach. Since there won't be an MC reset, we
3856 * have to do the attach ourselves.
3858 efx_device_attach_if_not_resetting(efx);
3864 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3866 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3869 mutex_lock(&nic_data->udp_tunnels_lock);
3870 if (nic_data->udp_tunnels_dirty) {
3871 /* Make sure all TX are stopped while we modify the table, else
3872 * we might race against an efx_features_check().
3874 efx_device_detach_sync(efx);
3875 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3877 mutex_unlock(&nic_data->udp_tunnels_lock);
3881 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3882 unsigned int table, unsigned int entry,
3883 struct udp_tunnel_info *ti)
3885 struct efx_nic *efx = efx_netdev_priv(dev);
3886 struct efx_ef10_nic_data *nic_data;
3887 int efx_tunnel_type, rc;
3889 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3890 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3892 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3894 nic_data = efx->nic_data;
3895 if (!(nic_data->datapath_caps &
3896 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3899 mutex_lock(&nic_data->udp_tunnels_lock);
3900 /* Make sure all TX are stopped while we add to the table, else we
3901 * might race against an efx_features_check().
3903 efx_device_detach_sync(efx);
3904 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3905 nic_data->udp_tunnels[entry].port = ti->port;
3906 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3907 mutex_unlock(&nic_data->udp_tunnels_lock);
3912 /* Called under the TX lock with the TX queue running, hence no-one can be
3913 * in the middle of updating the UDP tunnels table. However, they could
3914 * have tried and failed the MCDI, in which case they'll have set the dirty
3915 * flag before dropping their locks.
3917 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3919 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3922 if (!(nic_data->datapath_caps &
3923 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3926 if (nic_data->udp_tunnels_dirty)
3927 /* SW table may not match HW state, so just assume we can't
3928 * use any UDP tunnel offloads.
3932 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3933 if (nic_data->udp_tunnels[i].type !=
3934 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3935 nic_data->udp_tunnels[i].port == port)
3941 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3942 unsigned int table, unsigned int entry,
3943 struct udp_tunnel_info *ti)
3945 struct efx_nic *efx = efx_netdev_priv(dev);
3946 struct efx_ef10_nic_data *nic_data;
3949 nic_data = efx->nic_data;
3951 mutex_lock(&nic_data->udp_tunnels_lock);
3952 /* Make sure all TX are stopped while we remove from the table, else we
3953 * might race against an efx_features_check().
3955 efx_device_detach_sync(efx);
3956 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3957 nic_data->udp_tunnels[entry].port = 0;
3958 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3959 mutex_unlock(&nic_data->udp_tunnels_lock);
3964 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3965 .set_port = efx_ef10_udp_tnl_set_port,
3966 .unset_port = efx_ef10_udp_tnl_unset_port,
3967 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3971 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3972 UDP_TUNNEL_TYPE_GENEVE,
3977 /* EF10 may have multiple datapath firmware variants within a
3978 * single version. Report which variants are running.
3980 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3983 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3985 return scnprintf(buf, len, " rx%x tx%x",
3986 nic_data->rx_dpcpu_fw_id,
3987 nic_data->tx_dpcpu_fw_id);
3990 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3994 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3997 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3998 return nic_data->datapath_caps & BIT_ULL(flag);
3999 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4000 return nic_data->datapath_caps2 & BIT_ULL(flag);
4006 static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4008 unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4010 /* There is no difference between PFs and VFs. The side is based on
4011 * the maximum link speed of a given NIC.
4013 switch (efx->pci_dev->device & 0xfff) {
4014 case 0x0903: /* Farmingdale can do up to 10G */
4016 case 0x0923: /* Greenport can do up to 40G */
4017 case 0x0a03: /* Medford can do up to 40G */
4020 default: /* Medford2 can do up to 100G */
4024 if (IS_ENABLED(CONFIG_PPC64))
4030 #define EF10_OFFLOAD_FEATURES \
4031 (NETIF_F_IP_CSUM | \
4032 NETIF_F_HW_VLAN_CTAG_FILTER | \
4033 NETIF_F_IPV6_CSUM | \
4040 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4042 .mem_bar = efx_ef10_vf_mem_bar,
4043 .mem_map_size = efx_ef10_mem_map_size,
4044 .probe = efx_ef10_probe_vf,
4045 .remove = efx_ef10_remove,
4046 .dimension_resources = efx_ef10_dimension_resources,
4047 .init = efx_ef10_init_nic,
4048 .fini = efx_ef10_fini_nic,
4049 .map_reset_reason = efx_ef10_map_reset_reason,
4050 .map_reset_flags = efx_ef10_map_reset_flags,
4051 .reset = efx_ef10_reset,
4052 .probe_port = efx_mcdi_port_probe,
4053 .remove_port = efx_mcdi_port_remove,
4054 .fini_dmaq = efx_fini_dmaq,
4055 .prepare_flr = efx_ef10_prepare_flr,
4056 .finish_flr = efx_port_dummy_op_void,
4057 .describe_stats = efx_ef10_describe_stats,
4058 .update_stats = efx_ef10_update_stats_vf,
4059 .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4060 .start_stats = efx_port_dummy_op_void,
4061 .pull_stats = efx_port_dummy_op_void,
4062 .stop_stats = efx_port_dummy_op_void,
4063 .push_irq_moderation = efx_ef10_push_irq_moderation,
4064 .reconfigure_mac = efx_ef10_mac_reconfigure,
4065 .check_mac_fault = efx_mcdi_mac_check_fault,
4066 .reconfigure_port = efx_mcdi_port_reconfigure,
4067 .get_wol = efx_ef10_get_wol_vf,
4068 .set_wol = efx_ef10_set_wol_vf,
4069 .resume_wol = efx_port_dummy_op_void,
4070 .mcdi_request = efx_ef10_mcdi_request,
4071 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4072 .mcdi_read_response = efx_ef10_mcdi_read_response,
4073 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4074 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4075 .irq_enable_master = efx_port_dummy_op_void,
4076 .irq_test_generate = efx_ef10_irq_test_generate,
4077 .irq_disable_non_ev = efx_port_dummy_op_void,
4078 .irq_handle_msi = efx_ef10_msi_interrupt,
4079 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4080 .tx_probe = efx_ef10_tx_probe,
4081 .tx_init = efx_ef10_tx_init,
4082 .tx_remove = efx_mcdi_tx_remove,
4083 .tx_write = efx_ef10_tx_write,
4084 .tx_limit_len = efx_ef10_tx_limit_len,
4085 .tx_enqueue = __efx_enqueue_skb,
4086 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4087 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4088 .rx_probe = efx_mcdi_rx_probe,
4089 .rx_init = efx_mcdi_rx_init,
4090 .rx_remove = efx_mcdi_rx_remove,
4091 .rx_write = efx_ef10_rx_write,
4092 .rx_defer_refill = efx_ef10_rx_defer_refill,
4093 .rx_packet = __efx_rx_packet,
4094 .ev_probe = efx_mcdi_ev_probe,
4095 .ev_init = efx_ef10_ev_init,
4096 .ev_fini = efx_mcdi_ev_fini,
4097 .ev_remove = efx_mcdi_ev_remove,
4098 .ev_process = efx_ef10_ev_process,
4099 .ev_read_ack = efx_ef10_ev_read_ack,
4100 .ev_test_generate = efx_ef10_ev_test_generate,
4101 .filter_table_probe = efx_ef10_filter_table_probe,
4102 .filter_table_restore = efx_mcdi_filter_table_restore,
4103 .filter_table_remove = efx_ef10_filter_table_remove,
4104 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4105 .filter_insert = efx_mcdi_filter_insert,
4106 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4107 .filter_get_safe = efx_mcdi_filter_get_safe,
4108 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4109 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4110 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4111 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4112 #ifdef CONFIG_RFS_ACCEL
4113 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4115 #ifdef CONFIG_SFC_MTD
4116 .mtd_probe = efx_port_dummy_op_int,
4118 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4119 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4120 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4121 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4122 #ifdef CONFIG_SFC_SRIOV
4123 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4124 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4125 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4127 .get_mac_address = efx_ef10_get_mac_address_vf,
4128 .set_mac_address = efx_ef10_set_mac_address,
4130 .get_phys_port_id = efx_ef10_get_phys_port_id,
4131 .revision = EFX_REV_HUNT_A0,
4132 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4133 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4134 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4135 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4136 .can_rx_scatter = true,
4137 .always_rx_scatter = true,
4138 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4139 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4140 .offload_features = EF10_OFFLOAD_FEATURES,
4142 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4143 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4144 1 << HWTSTAMP_FILTER_ALL,
4145 .rx_hash_key_size = 40,
4146 .check_caps = ef10_check_caps,
4147 .print_additional_fwver = efx_ef10_print_additional_fwver,
4148 .sensor_event = efx_mcdi_sensor_event,
4149 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4152 const struct efx_nic_type efx_hunt_a0_nic_type = {
4154 .mem_bar = efx_ef10_pf_mem_bar,
4155 .mem_map_size = efx_ef10_mem_map_size,
4156 .probe = efx_ef10_probe_pf,
4157 .remove = efx_ef10_remove,
4158 .dimension_resources = efx_ef10_dimension_resources,
4159 .init = efx_ef10_init_nic,
4160 .fini = efx_ef10_fini_nic,
4161 .map_reset_reason = efx_ef10_map_reset_reason,
4162 .map_reset_flags = efx_ef10_map_reset_flags,
4163 .reset = efx_ef10_reset,
4164 .probe_port = efx_mcdi_port_probe,
4165 .remove_port = efx_mcdi_port_remove,
4166 .fini_dmaq = efx_fini_dmaq,
4167 .prepare_flr = efx_ef10_prepare_flr,
4168 .finish_flr = efx_port_dummy_op_void,
4169 .describe_stats = efx_ef10_describe_stats,
4170 .update_stats = efx_ef10_update_stats_pf,
4171 .start_stats = efx_mcdi_mac_start_stats,
4172 .pull_stats = efx_mcdi_mac_pull_stats,
4173 .stop_stats = efx_mcdi_mac_stop_stats,
4174 .push_irq_moderation = efx_ef10_push_irq_moderation,
4175 .reconfigure_mac = efx_ef10_mac_reconfigure,
4176 .check_mac_fault = efx_mcdi_mac_check_fault,
4177 .reconfigure_port = efx_mcdi_port_reconfigure,
4178 .get_wol = efx_ef10_get_wol,
4179 .set_wol = efx_ef10_set_wol,
4180 .resume_wol = efx_port_dummy_op_void,
4181 .get_fec_stats = efx_ef10_get_fec_stats,
4182 .test_chip = efx_ef10_test_chip,
4183 .test_nvram = efx_mcdi_nvram_test_all,
4184 .mcdi_request = efx_ef10_mcdi_request,
4185 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4186 .mcdi_read_response = efx_ef10_mcdi_read_response,
4187 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4188 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4189 .irq_enable_master = efx_port_dummy_op_void,
4190 .irq_test_generate = efx_ef10_irq_test_generate,
4191 .irq_disable_non_ev = efx_port_dummy_op_void,
4192 .irq_handle_msi = efx_ef10_msi_interrupt,
4193 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4194 .tx_probe = efx_ef10_tx_probe,
4195 .tx_init = efx_ef10_tx_init,
4196 .tx_remove = efx_mcdi_tx_remove,
4197 .tx_write = efx_ef10_tx_write,
4198 .tx_limit_len = efx_ef10_tx_limit_len,
4199 .tx_enqueue = __efx_enqueue_skb,
4200 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4201 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4202 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4203 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4204 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4205 .rx_probe = efx_mcdi_rx_probe,
4206 .rx_init = efx_mcdi_rx_init,
4207 .rx_remove = efx_mcdi_rx_remove,
4208 .rx_write = efx_ef10_rx_write,
4209 .rx_defer_refill = efx_ef10_rx_defer_refill,
4210 .rx_packet = __efx_rx_packet,
4211 .ev_probe = efx_mcdi_ev_probe,
4212 .ev_init = efx_ef10_ev_init,
4213 .ev_fini = efx_mcdi_ev_fini,
4214 .ev_remove = efx_mcdi_ev_remove,
4215 .ev_process = efx_ef10_ev_process,
4216 .ev_read_ack = efx_ef10_ev_read_ack,
4217 .ev_test_generate = efx_ef10_ev_test_generate,
4218 .filter_table_probe = efx_ef10_filter_table_probe,
4219 .filter_table_restore = efx_mcdi_filter_table_restore,
4220 .filter_table_remove = efx_ef10_filter_table_remove,
4221 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4222 .filter_insert = efx_mcdi_filter_insert,
4223 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4224 .filter_get_safe = efx_mcdi_filter_get_safe,
4225 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4226 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4227 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4228 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4229 #ifdef CONFIG_RFS_ACCEL
4230 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4232 #ifdef CONFIG_SFC_MTD
4233 .mtd_probe = efx_ef10_mtd_probe,
4234 .mtd_rename = efx_mcdi_mtd_rename,
4235 .mtd_read = efx_mcdi_mtd_read,
4236 .mtd_erase = efx_mcdi_mtd_erase,
4237 .mtd_write = efx_mcdi_mtd_write,
4238 .mtd_sync = efx_mcdi_mtd_sync,
4240 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4241 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4242 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4243 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4244 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4245 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4246 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4247 #ifdef CONFIG_SFC_SRIOV
4248 .sriov_configure = efx_ef10_sriov_configure,
4249 .sriov_init = efx_ef10_sriov_init,
4250 .sriov_fini = efx_ef10_sriov_fini,
4251 .sriov_wanted = efx_ef10_sriov_wanted,
4252 .sriov_reset = efx_ef10_sriov_reset,
4253 .sriov_flr = efx_ef10_sriov_flr,
4254 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4255 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4256 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4257 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4258 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4259 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4260 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4261 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4263 .get_mac_address = efx_ef10_get_mac_address_pf,
4264 .set_mac_address = efx_ef10_set_mac_address,
4265 .tso_versions = efx_ef10_tso_versions,
4267 .get_phys_port_id = efx_ef10_get_phys_port_id,
4268 .revision = EFX_REV_HUNT_A0,
4269 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4270 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4271 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4272 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4273 .can_rx_scatter = true,
4274 .always_rx_scatter = true,
4275 .option_descriptors = true,
4276 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4277 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4278 .offload_features = EF10_OFFLOAD_FEATURES,
4280 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4281 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4282 1 << HWTSTAMP_FILTER_ALL,
4283 .rx_hash_key_size = 40,
4284 .check_caps = ef10_check_caps,
4285 .print_additional_fwver = efx_ef10_print_additional_fwver,
4286 .sensor_event = efx_mcdi_sensor_event,
4287 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,