]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
selftests: error out if kernel header files are not yet built
[linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20         char stat_string[ETH_GSTRING_LEN];
21         int type;
22         int sizeof_stat;
23         int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED  BIT(0)
28         "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34                 .stat_string = str, \
35                 .type = E1000_STATS, \
36                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37                 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39                 .stat_string = str, \
40                 .type = NETDEV_STATS, \
41                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45         E1000_STAT("rx_packets", stats.gprc),
46         E1000_STAT("tx_packets", stats.gptc),
47         E1000_STAT("rx_bytes", stats.gorc),
48         E1000_STAT("tx_bytes", stats.gotc),
49         E1000_STAT("rx_broadcast", stats.bprc),
50         E1000_STAT("tx_broadcast", stats.bptc),
51         E1000_STAT("rx_multicast", stats.mprc),
52         E1000_STAT("tx_multicast", stats.mptc),
53         E1000_NETDEV_STAT("rx_errors", rx_errors),
54         E1000_NETDEV_STAT("tx_errors", tx_errors),
55         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56         E1000_STAT("multicast", stats.mprc),
57         E1000_STAT("collisions", stats.colc),
58         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60         E1000_STAT("rx_crc_errors", stats.crcerrs),
61         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62         E1000_STAT("rx_no_buffer_count", stats.rnbc),
63         E1000_STAT("rx_missed_errors", stats.mpc),
64         E1000_STAT("tx_aborted_errors", stats.ecol),
65         E1000_STAT("tx_carrier_errors", stats.tncrs),
66         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68         E1000_STAT("tx_window_errors", stats.latecol),
69         E1000_STAT("tx_abort_late_coll", stats.latecol),
70         E1000_STAT("tx_deferred_ok", stats.dc),
71         E1000_STAT("tx_single_coll_ok", stats.scc),
72         E1000_STAT("tx_multi_coll_ok", stats.mcc),
73         E1000_STAT("tx_timeout_count", tx_timeout_count),
74         E1000_STAT("tx_restart_queue", restart_queue),
75         E1000_STAT("rx_long_length_errors", stats.roc),
76         E1000_STAT("rx_short_length_errors", stats.ruc),
77         E1000_STAT("rx_align_errors", stats.algnerrc),
78         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82         E1000_STAT("tx_flow_control_xon", stats.xontxc),
83         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84         E1000_STAT("rx_csum_offload_good", hw_csum_good),
85         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86         E1000_STAT("rx_header_split", rx_hdr_split),
87         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88         E1000_STAT("tx_smbus", stats.mgptc),
89         E1000_STAT("rx_smbus", stats.mgprc),
90         E1000_STAT("dropped_smbus", stats.mgpdc),
91         E1000_STAT("rx_dma_failed", rx_dma_failed),
92         E1000_STAT("tx_dma_failed", tx_dma_failed),
93         E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94         E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95         E1000_STAT("corr_ecc_errors", corr_errors),
96         E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97         E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
110 static int e1000_get_link_ksettings(struct net_device *netdev,
111                                     struct ethtool_link_ksettings *cmd)
112 {
113         u32 speed, supported, advertising, lp_advertising, lpa_t;
114         struct e1000_adapter *adapter = netdev_priv(netdev);
115         struct e1000_hw *hw = &adapter->hw;
116
117         if (hw->phy.media_type == e1000_media_type_copper) {
118                 supported = (SUPPORTED_10baseT_Half |
119                              SUPPORTED_10baseT_Full |
120                              SUPPORTED_100baseT_Half |
121                              SUPPORTED_100baseT_Full |
122                              SUPPORTED_1000baseT_Full |
123                              SUPPORTED_Asym_Pause |
124                              SUPPORTED_Autoneg |
125                              SUPPORTED_Pause |
126                              SUPPORTED_TP);
127                 if (hw->phy.type == e1000_phy_ife)
128                         supported &= ~SUPPORTED_1000baseT_Full;
129                 advertising = ADVERTISED_TP;
130
131                 if (hw->mac.autoneg == 1) {
132                         advertising |= ADVERTISED_Autoneg;
133                         /* the e1000 autoneg seems to match ethtool nicely */
134                         advertising |= hw->phy.autoneg_advertised;
135                 }
136
137                 cmd->base.port = PORT_TP;
138                 cmd->base.phy_address = hw->phy.addr;
139         } else {
140                 supported   = (SUPPORTED_1000baseT_Full |
141                                SUPPORTED_FIBRE |
142                                SUPPORTED_Autoneg);
143
144                 advertising = (ADVERTISED_1000baseT_Full |
145                                ADVERTISED_FIBRE |
146                                ADVERTISED_Autoneg);
147
148                 cmd->base.port = PORT_FIBRE;
149         }
150
151         speed = SPEED_UNKNOWN;
152         cmd->base.duplex = DUPLEX_UNKNOWN;
153
154         if (netif_running(netdev)) {
155                 if (netif_carrier_ok(netdev)) {
156                         speed = adapter->link_speed;
157                         cmd->base.duplex = adapter->link_duplex - 1;
158                 }
159         } else if (!pm_runtime_suspended(netdev->dev.parent)) {
160                 u32 status = er32(STATUS);
161
162                 if (status & E1000_STATUS_LU) {
163                         if (status & E1000_STATUS_SPEED_1000)
164                                 speed = SPEED_1000;
165                         else if (status & E1000_STATUS_SPEED_100)
166                                 speed = SPEED_100;
167                         else
168                                 speed = SPEED_10;
169
170                         if (status & E1000_STATUS_FD)
171                                 cmd->base.duplex = DUPLEX_FULL;
172                         else
173                                 cmd->base.duplex = DUPLEX_HALF;
174                 }
175         }
176
177         cmd->base.speed = speed;
178         cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180
181         /* MDI-X => 2; MDI =>1; Invalid =>0 */
182         if ((hw->phy.media_type == e1000_media_type_copper) &&
183             netif_carrier_ok(netdev))
184                 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185                         ETH_TP_MDI_X : ETH_TP_MDI;
186         else
187                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188
189         if (hw->phy.mdix == AUTO_ALL_MODES)
190                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191         else
192                 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193
194         if (hw->phy.media_type != e1000_media_type_copper)
195                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196
197         lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198         lp_advertising = lpa_t |
199         mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200
201         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202                                                 supported);
203         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204                                                 advertising);
205         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206                                                 lp_advertising);
207
208         return 0;
209 }
210
211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213         struct e1000_mac_info *mac = &adapter->hw.mac;
214
215         mac->autoneg = 0;
216
217         /* Make sure dplx is at most 1 bit and lsb of speed is not set
218          * for the switch() below to work
219          */
220         if ((spd & 1) || (dplx & ~1))
221                 goto err_inval;
222
223         /* Fiber NICs only allow 1000 gbps Full duplex */
224         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225             (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226                 goto err_inval;
227         }
228
229         switch (spd + dplx) {
230         case SPEED_10 + DUPLEX_HALF:
231                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232                 break;
233         case SPEED_10 + DUPLEX_FULL:
234                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235                 break;
236         case SPEED_100 + DUPLEX_HALF:
237                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238                 break;
239         case SPEED_100 + DUPLEX_FULL:
240                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241                 break;
242         case SPEED_1000 + DUPLEX_FULL:
243                 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244                         mac->autoneg = 1;
245                         adapter->hw.phy.autoneg_advertised =
246                                 ADVERTISE_1000_FULL;
247                 } else {
248                         mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249                 }
250                 break;
251         case SPEED_1000 + DUPLEX_HALF:  /* not supported */
252         default:
253                 goto err_inval;
254         }
255
256         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257         adapter->hw.phy.mdix = AUTO_ALL_MODES;
258
259         return 0;
260
261 err_inval:
262         e_err("Unsupported Speed/Duplex configuration\n");
263         return -EINVAL;
264 }
265
266 static int e1000_set_link_ksettings(struct net_device *netdev,
267                                     const struct ethtool_link_ksettings *cmd)
268 {
269         struct e1000_adapter *adapter = netdev_priv(netdev);
270         struct e1000_hw *hw = &adapter->hw;
271         int ret_val = 0;
272         u32 advertising;
273
274         ethtool_convert_link_mode_to_legacy_u32(&advertising,
275                                                 cmd->link_modes.advertising);
276
277         pm_runtime_get_sync(netdev->dev.parent);
278
279         /* When SoL/IDER sessions are active, autoneg/speed/duplex
280          * cannot be changed
281          */
282         if (hw->phy.ops.check_reset_block &&
283             hw->phy.ops.check_reset_block(hw)) {
284                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
285                 ret_val = -EINVAL;
286                 goto out;
287         }
288
289         /* MDI setting is only allowed when autoneg enabled because
290          * some hardware doesn't allow MDI setting when speed or
291          * duplex is forced.
292          */
293         if (cmd->base.eth_tp_mdix_ctrl) {
294                 if (hw->phy.media_type != e1000_media_type_copper) {
295                         ret_val = -EOPNOTSUPP;
296                         goto out;
297                 }
298
299                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
300                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
301                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
302                         ret_val = -EINVAL;
303                         goto out;
304                 }
305         }
306
307         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308                 usleep_range(1000, 2000);
309
310         if (cmd->base.autoneg == AUTONEG_ENABLE) {
311                 hw->mac.autoneg = 1;
312                 if (hw->phy.media_type == e1000_media_type_fiber)
313                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
314                             ADVERTISED_FIBRE | ADVERTISED_Autoneg;
315                 else
316                         hw->phy.autoneg_advertised = advertising |
317                             ADVERTISED_TP | ADVERTISED_Autoneg;
318                 advertising = hw->phy.autoneg_advertised;
319                 if (adapter->fc_autoneg)
320                         hw->fc.requested_mode = e1000_fc_default;
321         } else {
322                 u32 speed = cmd->base.speed;
323                 /* calling this overrides forced MDI setting */
324                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
325                         ret_val = -EINVAL;
326                         goto out;
327                 }
328         }
329
330         /* MDI-X => 2; MDI => 1; Auto => 3 */
331         if (cmd->base.eth_tp_mdix_ctrl) {
332                 /* fix up the value for auto (3 => 0) as zero is mapped
333                  * internally to auto
334                  */
335                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336                         hw->phy.mdix = AUTO_ALL_MODES;
337                 else
338                         hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
339         }
340
341         /* reset the link */
342         if (netif_running(adapter->netdev)) {
343                 e1000e_down(adapter, true);
344                 e1000e_up(adapter);
345         } else {
346                 e1000e_reset(adapter);
347         }
348
349 out:
350         pm_runtime_put_sync(netdev->dev.parent);
351         clear_bit(__E1000_RESETTING, &adapter->state);
352         return ret_val;
353 }
354
355 static void e1000_get_pauseparam(struct net_device *netdev,
356                                  struct ethtool_pauseparam *pause)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         struct e1000_hw *hw = &adapter->hw;
360
361         pause->autoneg =
362             (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
363
364         if (hw->fc.current_mode == e1000_fc_rx_pause) {
365                 pause->rx_pause = 1;
366         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
367                 pause->tx_pause = 1;
368         } else if (hw->fc.current_mode == e1000_fc_full) {
369                 pause->rx_pause = 1;
370                 pause->tx_pause = 1;
371         }
372 }
373
374 static int e1000_set_pauseparam(struct net_device *netdev,
375                                 struct ethtool_pauseparam *pause)
376 {
377         struct e1000_adapter *adapter = netdev_priv(netdev);
378         struct e1000_hw *hw = &adapter->hw;
379         int retval = 0;
380
381         adapter->fc_autoneg = pause->autoneg;
382
383         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
384                 usleep_range(1000, 2000);
385
386         pm_runtime_get_sync(netdev->dev.parent);
387
388         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
389                 hw->fc.requested_mode = e1000_fc_default;
390                 if (netif_running(adapter->netdev)) {
391                         e1000e_down(adapter, true);
392                         e1000e_up(adapter);
393                 } else {
394                         e1000e_reset(adapter);
395                 }
396         } else {
397                 if (pause->rx_pause && pause->tx_pause)
398                         hw->fc.requested_mode = e1000_fc_full;
399                 else if (pause->rx_pause && !pause->tx_pause)
400                         hw->fc.requested_mode = e1000_fc_rx_pause;
401                 else if (!pause->rx_pause && pause->tx_pause)
402                         hw->fc.requested_mode = e1000_fc_tx_pause;
403                 else if (!pause->rx_pause && !pause->tx_pause)
404                         hw->fc.requested_mode = e1000_fc_none;
405
406                 hw->fc.current_mode = hw->fc.requested_mode;
407
408                 if (hw->phy.media_type == e1000_media_type_fiber) {
409                         retval = hw->mac.ops.setup_link(hw);
410                         /* implicit goto out */
411                 } else {
412                         retval = e1000e_force_mac_fc(hw);
413                         if (retval)
414                                 goto out;
415                         e1000e_set_fc_watermarks(hw);
416                 }
417         }
418
419 out:
420         pm_runtime_put_sync(netdev->dev.parent);
421         clear_bit(__E1000_RESETTING, &adapter->state);
422         return retval;
423 }
424
425 static u32 e1000_get_msglevel(struct net_device *netdev)
426 {
427         struct e1000_adapter *adapter = netdev_priv(netdev);
428         return adapter->msg_enable;
429 }
430
431 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
432 {
433         struct e1000_adapter *adapter = netdev_priv(netdev);
434         adapter->msg_enable = data;
435 }
436
437 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
438 {
439 #define E1000_REGS_LEN 32       /* overestimate */
440         return E1000_REGS_LEN * sizeof(u32);
441 }
442
443 static void e1000_get_regs(struct net_device *netdev,
444                            struct ethtool_regs *regs, void *p)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         struct e1000_hw *hw = &adapter->hw;
448         u32 *regs_buff = p;
449         u16 phy_data;
450
451         pm_runtime_get_sync(netdev->dev.parent);
452
453         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
454
455         regs->version = (1u << 24) |
456                         (adapter->pdev->revision << 16) |
457                         adapter->pdev->device;
458
459         regs_buff[0] = er32(CTRL);
460         regs_buff[1] = er32(STATUS);
461
462         regs_buff[2] = er32(RCTL);
463         regs_buff[3] = er32(RDLEN(0));
464         regs_buff[4] = er32(RDH(0));
465         regs_buff[5] = er32(RDT(0));
466         regs_buff[6] = er32(RDTR);
467
468         regs_buff[7] = er32(TCTL);
469         regs_buff[8] = er32(TDLEN(0));
470         regs_buff[9] = er32(TDH(0));
471         regs_buff[10] = er32(TDT(0));
472         regs_buff[11] = er32(TIDV);
473
474         regs_buff[12] = adapter->hw.phy.type;   /* PHY type (IGP=1, M88=0) */
475
476         /* ethtool doesn't use anything past this point, so all this
477          * code is likely legacy junk for apps that may or may not exist
478          */
479         if (hw->phy.type == e1000_phy_m88) {
480                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
481                 regs_buff[13] = (u32)phy_data; /* cable length */
482                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
483                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
484                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
485                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
486                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
487                 regs_buff[18] = regs_buff[13]; /* cable polarity */
488                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
489                 regs_buff[20] = regs_buff[17]; /* polarity correction */
490                 /* phy receive errors */
491                 regs_buff[22] = adapter->phy_stats.receive_errors;
492                 regs_buff[23] = regs_buff[13]; /* mdix mode */
493         }
494         regs_buff[21] = 0;      /* was idle_errors */
495         e1e_rphy(hw, MII_STAT1000, &phy_data);
496         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
497         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
498
499         pm_runtime_put_sync(netdev->dev.parent);
500 }
501
502 static int e1000_get_eeprom_len(struct net_device *netdev)
503 {
504         struct e1000_adapter *adapter = netdev_priv(netdev);
505         return adapter->hw.nvm.word_size * 2;
506 }
507
508 static int e1000_get_eeprom(struct net_device *netdev,
509                             struct ethtool_eeprom *eeprom, u8 *bytes)
510 {
511         struct e1000_adapter *adapter = netdev_priv(netdev);
512         struct e1000_hw *hw = &adapter->hw;
513         u16 *eeprom_buff;
514         int first_word;
515         int last_word;
516         int ret_val = 0;
517         u16 i;
518
519         if (eeprom->len == 0)
520                 return -EINVAL;
521
522         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
523
524         first_word = eeprom->offset >> 1;
525         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
526
527         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
528                                     GFP_KERNEL);
529         if (!eeprom_buff)
530                 return -ENOMEM;
531
532         pm_runtime_get_sync(netdev->dev.parent);
533
534         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
535                 ret_val = e1000_read_nvm(hw, first_word,
536                                          last_word - first_word + 1,
537                                          eeprom_buff);
538         } else {
539                 for (i = 0; i < last_word - first_word + 1; i++) {
540                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
541                                                  &eeprom_buff[i]);
542                         if (ret_val)
543                                 break;
544                 }
545         }
546
547         pm_runtime_put_sync(netdev->dev.parent);
548
549         if (ret_val) {
550                 /* a read error occurred, throw away the result */
551                 memset(eeprom_buff, 0xff, sizeof(u16) *
552                        (last_word - first_word + 1));
553         } else {
554                 /* Device's eeprom is always little-endian, word addressable */
555                 for (i = 0; i < last_word - first_word + 1; i++)
556                         le16_to_cpus(&eeprom_buff[i]);
557         }
558
559         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
560         kfree(eeprom_buff);
561
562         return ret_val;
563 }
564
565 static int e1000_set_eeprom(struct net_device *netdev,
566                             struct ethtool_eeprom *eeprom, u8 *bytes)
567 {
568         struct e1000_adapter *adapter = netdev_priv(netdev);
569         struct e1000_hw *hw = &adapter->hw;
570         u16 *eeprom_buff;
571         void *ptr;
572         int max_len;
573         int first_word;
574         int last_word;
575         int ret_val = 0;
576         u16 i;
577
578         if (eeprom->len == 0)
579                 return -EOPNOTSUPP;
580
581         if (eeprom->magic !=
582             (adapter->pdev->vendor | (adapter->pdev->device << 16)))
583                 return -EFAULT;
584
585         if (adapter->flags & FLAG_READ_ONLY_NVM)
586                 return -EINVAL;
587
588         max_len = hw->nvm.word_size * 2;
589
590         first_word = eeprom->offset >> 1;
591         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
592         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
593         if (!eeprom_buff)
594                 return -ENOMEM;
595
596         ptr = (void *)eeprom_buff;
597
598         pm_runtime_get_sync(netdev->dev.parent);
599
600         if (eeprom->offset & 1) {
601                 /* need read/modify/write of first changed EEPROM word */
602                 /* only the second byte of the word is being modified */
603                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
604                 ptr++;
605         }
606         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
607                 /* need read/modify/write of last changed EEPROM word */
608                 /* only the first byte of the word is being modified */
609                 ret_val = e1000_read_nvm(hw, last_word, 1,
610                                          &eeprom_buff[last_word - first_word]);
611
612         if (ret_val)
613                 goto out;
614
615         /* Device's eeprom is always little-endian, word addressable */
616         for (i = 0; i < last_word - first_word + 1; i++)
617                 le16_to_cpus(&eeprom_buff[i]);
618
619         memcpy(ptr, bytes, eeprom->len);
620
621         for (i = 0; i < last_word - first_word + 1; i++)
622                 cpu_to_le16s(&eeprom_buff[i]);
623
624         ret_val = e1000_write_nvm(hw, first_word,
625                                   last_word - first_word + 1, eeprom_buff);
626
627         if (ret_val)
628                 goto out;
629
630         /* Update the checksum over the first part of the EEPROM if needed
631          * and flush shadow RAM for applicable controllers
632          */
633         if ((first_word <= NVM_CHECKSUM_REG) ||
634             (hw->mac.type == e1000_82583) ||
635             (hw->mac.type == e1000_82574) ||
636             (hw->mac.type == e1000_82573))
637                 ret_val = e1000e_update_nvm_checksum(hw);
638
639 out:
640         pm_runtime_put_sync(netdev->dev.parent);
641         kfree(eeprom_buff);
642         return ret_val;
643 }
644
645 static void e1000_get_drvinfo(struct net_device *netdev,
646                               struct ethtool_drvinfo *drvinfo)
647 {
648         struct e1000_adapter *adapter = netdev_priv(netdev);
649
650         strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
651
652         /* EEPROM image version # is reported as firmware version # for
653          * PCI-E controllers
654          */
655         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
656                  "%d.%d-%d",
657                  (adapter->eeprom_vers & 0xF000) >> 12,
658                  (adapter->eeprom_vers & 0x0FF0) >> 4,
659                  (adapter->eeprom_vers & 0x000F));
660
661         strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
662                 sizeof(drvinfo->bus_info));
663 }
664
665 static void e1000_get_ringparam(struct net_device *netdev,
666                                 struct ethtool_ringparam *ring,
667                                 struct kernel_ethtool_ringparam *kernel_ring,
668                                 struct netlink_ext_ack *extack)
669 {
670         struct e1000_adapter *adapter = netdev_priv(netdev);
671
672         ring->rx_max_pending = E1000_MAX_RXD;
673         ring->tx_max_pending = E1000_MAX_TXD;
674         ring->rx_pending = adapter->rx_ring_count;
675         ring->tx_pending = adapter->tx_ring_count;
676 }
677
678 static int e1000_set_ringparam(struct net_device *netdev,
679                                struct ethtool_ringparam *ring,
680                                struct kernel_ethtool_ringparam *kernel_ring,
681                                struct netlink_ext_ack *extack)
682 {
683         struct e1000_adapter *adapter = netdev_priv(netdev);
684         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
685         int err = 0, size = sizeof(struct e1000_ring);
686         bool set_tx = false, set_rx = false;
687         u16 new_rx_count, new_tx_count;
688
689         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
690                 return -EINVAL;
691
692         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
693                                E1000_MAX_RXD);
694         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
695
696         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
697                                E1000_MAX_TXD);
698         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
699
700         if ((new_tx_count == adapter->tx_ring_count) &&
701             (new_rx_count == adapter->rx_ring_count))
702                 /* nothing to do */
703                 return 0;
704
705         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
706                 usleep_range(1000, 2000);
707
708         if (!netif_running(adapter->netdev)) {
709                 /* Set counts now and allocate resources during open() */
710                 adapter->tx_ring->count = new_tx_count;
711                 adapter->rx_ring->count = new_rx_count;
712                 adapter->tx_ring_count = new_tx_count;
713                 adapter->rx_ring_count = new_rx_count;
714                 goto clear_reset;
715         }
716
717         set_tx = (new_tx_count != adapter->tx_ring_count);
718         set_rx = (new_rx_count != adapter->rx_ring_count);
719
720         /* Allocate temporary storage for ring updates */
721         if (set_tx) {
722                 temp_tx = vmalloc(size);
723                 if (!temp_tx) {
724                         err = -ENOMEM;
725                         goto free_temp;
726                 }
727         }
728         if (set_rx) {
729                 temp_rx = vmalloc(size);
730                 if (!temp_rx) {
731                         err = -ENOMEM;
732                         goto free_temp;
733                 }
734         }
735
736         pm_runtime_get_sync(netdev->dev.parent);
737
738         e1000e_down(adapter, true);
739
740         /* We can't just free everything and then setup again, because the
741          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
742          * structs.  First, attempt to allocate new resources...
743          */
744         if (set_tx) {
745                 memcpy(temp_tx, adapter->tx_ring, size);
746                 temp_tx->count = new_tx_count;
747                 err = e1000e_setup_tx_resources(temp_tx);
748                 if (err)
749                         goto err_setup;
750         }
751         if (set_rx) {
752                 memcpy(temp_rx, adapter->rx_ring, size);
753                 temp_rx->count = new_rx_count;
754                 err = e1000e_setup_rx_resources(temp_rx);
755                 if (err)
756                         goto err_setup_rx;
757         }
758
759         /* ...then free the old resources and copy back any new ring data */
760         if (set_tx) {
761                 e1000e_free_tx_resources(adapter->tx_ring);
762                 memcpy(adapter->tx_ring, temp_tx, size);
763                 adapter->tx_ring_count = new_tx_count;
764         }
765         if (set_rx) {
766                 e1000e_free_rx_resources(adapter->rx_ring);
767                 memcpy(adapter->rx_ring, temp_rx, size);
768                 adapter->rx_ring_count = new_rx_count;
769         }
770
771 err_setup_rx:
772         if (err && set_tx)
773                 e1000e_free_tx_resources(temp_tx);
774 err_setup:
775         e1000e_up(adapter);
776         pm_runtime_put_sync(netdev->dev.parent);
777 free_temp:
778         vfree(temp_tx);
779         vfree(temp_rx);
780 clear_reset:
781         clear_bit(__E1000_RESETTING, &adapter->state);
782         return err;
783 }
784
785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
786                              int reg, int offset, u32 mask, u32 write)
787 {
788         u32 pat, val;
789         static const u32 test[] = {
790                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
791         };
792         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
793                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
794                                       (test[pat] & write));
795                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
796                 if (val != (test[pat] & write & mask)) {
797                         e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
798                               reg + (offset << 2), val,
799                               (test[pat] & write & mask));
800                         *data = reg;
801                         return true;
802                 }
803         }
804         return false;
805 }
806
807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
808                               int reg, u32 mask, u32 write)
809 {
810         u32 val;
811
812         __ew32(&adapter->hw, reg, write & mask);
813         val = __er32(&adapter->hw, reg);
814         if ((write & mask) != (val & mask)) {
815                 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
816                       reg, (val & mask), (write & mask));
817                 *data = reg;
818                 return true;
819         }
820         return false;
821 }
822
823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
824         do {                                                                   \
825                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
826                         return 1;                                              \
827         } while (0)
828 #define REG_PATTERN_TEST(reg, mask, write)                                     \
829         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
830
831 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
832         do {                                                                   \
833                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
834                         return 1;                                              \
835         } while (0)
836
837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
838 {
839         struct e1000_hw *hw = &adapter->hw;
840         struct e1000_mac_info *mac = &adapter->hw.mac;
841         u32 value;
842         u32 before;
843         u32 after;
844         u32 i;
845         u32 toggle;
846         u32 mask;
847         u32 wlock_mac = 0;
848
849         /* The status register is Read Only, so a write should fail.
850          * Some bits that get toggled are ignored.  There are several bits
851          * on newer hardware that are r/w.
852          */
853         switch (mac->type) {
854         case e1000_82571:
855         case e1000_82572:
856         case e1000_80003es2lan:
857                 toggle = 0x7FFFF3FF;
858                 break;
859         default:
860                 toggle = 0x7FFFF033;
861                 break;
862         }
863
864         before = er32(STATUS);
865         value = (er32(STATUS) & toggle);
866         ew32(STATUS, toggle);
867         after = er32(STATUS) & toggle;
868         if (value != after) {
869                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
870                       after, value);
871                 *data = 1;
872                 return 1;
873         }
874         /* restore previous status */
875         ew32(STATUS, before);
876
877         if (!(adapter->flags & FLAG_IS_ICH)) {
878                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
879                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
880                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
881                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
882         }
883
884         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
885         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
887         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
888         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
889         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
890         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
891         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
892         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
893         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
894
895         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
896
897         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
898         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
899         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
900
901         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
902         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
903         if (!(adapter->flags & FLAG_IS_ICH))
904                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
905         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
906         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
907         mask = 0x8003FFFF;
908         switch (mac->type) {
909         case e1000_ich10lan:
910         case e1000_pchlan:
911         case e1000_pch2lan:
912         case e1000_pch_lpt:
913         case e1000_pch_spt:
914         case e1000_pch_cnp:
915         case e1000_pch_tgp:
916         case e1000_pch_adp:
917         case e1000_pch_mtp:
918         case e1000_pch_lnp:
919         case e1000_pch_ptp:
920                 mask |= BIT(18);
921                 break;
922         default:
923                 break;
924         }
925
926         if (mac->type >= e1000_pch_lpt)
927                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
928                     E1000_FWSM_WLOCK_MAC_SHIFT;
929
930         for (i = 0; i < mac->rar_entry_count; i++) {
931                 if (mac->type >= e1000_pch_lpt) {
932                         /* Cannot test write-protected SHRAL[n] registers */
933                         if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
934                                 continue;
935
936                         /* SHRAH[9] different than the others */
937                         if (i == 10)
938                                 mask |= BIT(30);
939                         else
940                                 mask &= ~BIT(30);
941                 }
942                 if (mac->type == e1000_pch2lan) {
943                         /* SHRAH[0,1,2] different than previous */
944                         if (i == 1)
945                                 mask &= 0xFFF4FFFF;
946                         /* SHRAH[3] different than SHRAH[0,1,2] */
947                         if (i == 4)
948                                 mask |= BIT(30);
949                         /* RAR[1-6] owned by management engine - skipping */
950                         if (i > 0)
951                                 i += 6;
952                 }
953
954                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
955                                        0xFFFFFFFF);
956                 /* reset index to actual value */
957                 if ((mac->type == e1000_pch2lan) && (i > 6))
958                         i -= 6;
959         }
960
961         for (i = 0; i < mac->mta_reg_count; i++)
962                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
963
964         *data = 0;
965
966         return 0;
967 }
968
969 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
970 {
971         u16 temp;
972         u16 checksum = 0;
973         u16 i;
974
975         *data = 0;
976         /* Read and add up the contents of the EEPROM */
977         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
978                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
979                         *data = 1;
980                         return *data;
981                 }
982                 checksum += temp;
983         }
984
985         /* If Checksum is not Correct return error else test passed */
986         if ((checksum != (u16)NVM_SUM) && !(*data))
987                 *data = 2;
988
989         return *data;
990 }
991
992 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
993 {
994         struct net_device *netdev = (struct net_device *)data;
995         struct e1000_adapter *adapter = netdev_priv(netdev);
996         struct e1000_hw *hw = &adapter->hw;
997
998         adapter->test_icr |= er32(ICR);
999
1000         return IRQ_HANDLED;
1001 }
1002
1003 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1004 {
1005         struct net_device *netdev = adapter->netdev;
1006         struct e1000_hw *hw = &adapter->hw;
1007         u32 mask;
1008         u32 shared_int = 1;
1009         u32 irq = adapter->pdev->irq;
1010         int i;
1011         int ret_val = 0;
1012         int int_mode = E1000E_INT_MODE_LEGACY;
1013
1014         *data = 0;
1015
1016         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1017         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1018                 int_mode = adapter->int_mode;
1019                 e1000e_reset_interrupt_capability(adapter);
1020                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1021                 e1000e_set_interrupt_capability(adapter);
1022         }
1023         /* Hook up test interrupt handler just for this test */
1024         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1025                          netdev)) {
1026                 shared_int = 0;
1027         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1028                                netdev)) {
1029                 *data = 1;
1030                 ret_val = -1;
1031                 goto out;
1032         }
1033         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1034
1035         /* Disable all the interrupts */
1036         ew32(IMC, 0xFFFFFFFF);
1037         e1e_flush();
1038         usleep_range(10000, 11000);
1039
1040         /* Test each interrupt */
1041         for (i = 0; i < 10; i++) {
1042                 /* Interrupt to test */
1043                 mask = BIT(i);
1044
1045                 if (adapter->flags & FLAG_IS_ICH) {
1046                         switch (mask) {
1047                         case E1000_ICR_RXSEQ:
1048                                 continue;
1049                         case 0x00000100:
1050                                 if (adapter->hw.mac.type == e1000_ich8lan ||
1051                                     adapter->hw.mac.type == e1000_ich9lan)
1052                                         continue;
1053                                 break;
1054                         default:
1055                                 break;
1056                         }
1057                 }
1058
1059                 if (!shared_int) {
1060                         /* Disable the interrupt to be reported in
1061                          * the cause register and then force the same
1062                          * interrupt and see if one gets posted.  If
1063                          * an interrupt was posted to the bus, the
1064                          * test failed.
1065                          */
1066                         adapter->test_icr = 0;
1067                         ew32(IMC, mask);
1068                         ew32(ICS, mask);
1069                         e1e_flush();
1070                         usleep_range(10000, 11000);
1071
1072                         if (adapter->test_icr & mask) {
1073                                 *data = 3;
1074                                 break;
1075                         }
1076                 }
1077
1078                 /* Enable the interrupt to be reported in
1079                  * the cause register and then force the same
1080                  * interrupt and see if one gets posted.  If
1081                  * an interrupt was not posted to the bus, the
1082                  * test failed.
1083                  */
1084                 adapter->test_icr = 0;
1085                 ew32(IMS, mask);
1086                 ew32(ICS, mask);
1087                 e1e_flush();
1088                 usleep_range(10000, 11000);
1089
1090                 if (!(adapter->test_icr & mask)) {
1091                         *data = 4;
1092                         break;
1093                 }
1094
1095                 if (!shared_int) {
1096                         /* Disable the other interrupts to be reported in
1097                          * the cause register and then force the other
1098                          * interrupts and see if any get posted.  If
1099                          * an interrupt was posted to the bus, the
1100                          * test failed.
1101                          */
1102                         adapter->test_icr = 0;
1103                         ew32(IMC, ~mask & 0x00007FFF);
1104                         ew32(ICS, ~mask & 0x00007FFF);
1105                         e1e_flush();
1106                         usleep_range(10000, 11000);
1107
1108                         if (adapter->test_icr) {
1109                                 *data = 5;
1110                                 break;
1111                         }
1112                 }
1113         }
1114
1115         /* Disable all the interrupts */
1116         ew32(IMC, 0xFFFFFFFF);
1117         e1e_flush();
1118         usleep_range(10000, 11000);
1119
1120         /* Unhook test interrupt handler */
1121         free_irq(irq, netdev);
1122
1123 out:
1124         if (int_mode == E1000E_INT_MODE_MSIX) {
1125                 e1000e_reset_interrupt_capability(adapter);
1126                 adapter->int_mode = int_mode;
1127                 e1000e_set_interrupt_capability(adapter);
1128         }
1129
1130         return ret_val;
1131 }
1132
1133 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1134 {
1135         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1136         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1137         struct pci_dev *pdev = adapter->pdev;
1138         struct e1000_buffer *buffer_info;
1139         int i;
1140
1141         if (tx_ring->desc && tx_ring->buffer_info) {
1142                 for (i = 0; i < tx_ring->count; i++) {
1143                         buffer_info = &tx_ring->buffer_info[i];
1144
1145                         if (buffer_info->dma)
1146                                 dma_unmap_single(&pdev->dev,
1147                                                  buffer_info->dma,
1148                                                  buffer_info->length,
1149                                                  DMA_TO_DEVICE);
1150                         dev_kfree_skb(buffer_info->skb);
1151                 }
1152         }
1153
1154         if (rx_ring->desc && rx_ring->buffer_info) {
1155                 for (i = 0; i < rx_ring->count; i++) {
1156                         buffer_info = &rx_ring->buffer_info[i];
1157
1158                         if (buffer_info->dma)
1159                                 dma_unmap_single(&pdev->dev,
1160                                                  buffer_info->dma,
1161                                                  2048, DMA_FROM_DEVICE);
1162                         dev_kfree_skb(buffer_info->skb);
1163                 }
1164         }
1165
1166         if (tx_ring->desc) {
1167                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168                                   tx_ring->dma);
1169                 tx_ring->desc = NULL;
1170         }
1171         if (rx_ring->desc) {
1172                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173                                   rx_ring->dma);
1174                 rx_ring->desc = NULL;
1175         }
1176
1177         kfree(tx_ring->buffer_info);
1178         tx_ring->buffer_info = NULL;
1179         kfree(rx_ring->buffer_info);
1180         rx_ring->buffer_info = NULL;
1181 }
1182
1183 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184 {
1185         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187         struct pci_dev *pdev = adapter->pdev;
1188         struct e1000_hw *hw = &adapter->hw;
1189         u32 rctl;
1190         int i;
1191         int ret_val;
1192
1193         /* Setup Tx descriptor ring and Tx buffers */
1194
1195         if (!tx_ring->count)
1196                 tx_ring->count = E1000_DEFAULT_TXD;
1197
1198         tx_ring->buffer_info = kcalloc(tx_ring->count,
1199                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1200         if (!tx_ring->buffer_info) {
1201                 ret_val = 1;
1202                 goto err_nomem;
1203         }
1204
1205         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206         tx_ring->size = ALIGN(tx_ring->size, 4096);
1207         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208                                            &tx_ring->dma, GFP_KERNEL);
1209         if (!tx_ring->desc) {
1210                 ret_val = 2;
1211                 goto err_nomem;
1212         }
1213         tx_ring->next_to_use = 0;
1214         tx_ring->next_to_clean = 0;
1215
1216         ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217         ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219         ew32(TDH(0), 0);
1220         ew32(TDT(0), 0);
1221         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225         for (i = 0; i < tx_ring->count; i++) {
1226                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227                 struct sk_buff *skb;
1228                 unsigned int skb_size = 1024;
1229
1230                 skb = alloc_skb(skb_size, GFP_KERNEL);
1231                 if (!skb) {
1232                         ret_val = 3;
1233                         goto err_nomem;
1234                 }
1235                 skb_put(skb, skb_size);
1236                 tx_ring->buffer_info[i].skb = skb;
1237                 tx_ring->buffer_info[i].length = skb->len;
1238                 tx_ring->buffer_info[i].dma =
1239                     dma_map_single(&pdev->dev, skb->data, skb->len,
1240                                    DMA_TO_DEVICE);
1241                 if (dma_mapping_error(&pdev->dev,
1242                                       tx_ring->buffer_info[i].dma)) {
1243                         ret_val = 4;
1244                         goto err_nomem;
1245                 }
1246                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247                 tx_desc->lower.data = cpu_to_le32(skb->len);
1248                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249                                                    E1000_TXD_CMD_IFCS |
1250                                                    E1000_TXD_CMD_RS);
1251                 tx_desc->upper.data = 0;
1252         }
1253
1254         /* Setup Rx descriptor ring and Rx buffers */
1255
1256         if (!rx_ring->count)
1257                 rx_ring->count = E1000_DEFAULT_RXD;
1258
1259         rx_ring->buffer_info = kcalloc(rx_ring->count,
1260                                        sizeof(struct e1000_buffer), GFP_KERNEL);
1261         if (!rx_ring->buffer_info) {
1262                 ret_val = 5;
1263                 goto err_nomem;
1264         }
1265
1266         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268                                            &rx_ring->dma, GFP_KERNEL);
1269         if (!rx_ring->desc) {
1270                 ret_val = 6;
1271                 goto err_nomem;
1272         }
1273         rx_ring->next_to_use = 0;
1274         rx_ring->next_to_clean = 0;
1275
1276         rctl = er32(RCTL);
1277         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279         ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280         ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281         ew32(RDLEN(0), rx_ring->size);
1282         ew32(RDH(0), 0);
1283         ew32(RDT(0), 0);
1284         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285             E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286             E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289         ew32(RCTL, rctl);
1290
1291         for (i = 0; i < rx_ring->count; i++) {
1292                 union e1000_rx_desc_extended *rx_desc;
1293                 struct sk_buff *skb;
1294
1295                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296                 if (!skb) {
1297                         ret_val = 7;
1298                         goto err_nomem;
1299                 }
1300                 skb_reserve(skb, NET_IP_ALIGN);
1301                 rx_ring->buffer_info[i].skb = skb;
1302                 rx_ring->buffer_info[i].dma =
1303                     dma_map_single(&pdev->dev, skb->data, 2048,
1304                                    DMA_FROM_DEVICE);
1305                 if (dma_mapping_error(&pdev->dev,
1306                                       rx_ring->buffer_info[i].dma)) {
1307                         ret_val = 8;
1308                         goto err_nomem;
1309                 }
1310                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311                 rx_desc->read.buffer_addr =
1312                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1313                 memset(skb->data, 0x00, skb->len);
1314         }
1315
1316         return 0;
1317
1318 err_nomem:
1319         e1000_free_desc_rings(adapter);
1320         return ret_val;
1321 }
1322
1323 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324 {
1325         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326         e1e_wphy(&adapter->hw, 29, 0x001F);
1327         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328         e1e_wphy(&adapter->hw, 29, 0x001A);
1329         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330 }
1331
1332 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333 {
1334         struct e1000_hw *hw = &adapter->hw;
1335         u32 ctrl_reg = 0;
1336         u16 phy_reg = 0;
1337         s32 ret_val = 0;
1338
1339         hw->mac.autoneg = 0;
1340
1341         if (hw->phy.type == e1000_phy_ife) {
1342                 /* force 100, set loopback */
1343                 e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346                 ctrl_reg = er32(CTRL);
1347                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1352
1353                 ew32(CTRL, ctrl_reg);
1354                 e1e_flush();
1355                 usleep_range(500, 1000);
1356
1357                 return 0;
1358         }
1359
1360         /* Specific PHY configuration for loopback */
1361         switch (hw->phy.type) {
1362         case e1000_phy_m88:
1363                 /* Auto-MDI/MDIX Off */
1364                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365                 /* reset to update Auto-MDI/MDIX */
1366                 e1e_wphy(hw, MII_BMCR, 0x9140);
1367                 /* autoneg off */
1368                 e1e_wphy(hw, MII_BMCR, 0x8140);
1369                 break;
1370         case e1000_phy_gg82563:
1371                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372                 break;
1373         case e1000_phy_bm:
1374                 /* Set Default MAC Interface speed to 1GB */
1375                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376                 phy_reg &= ~0x0007;
1377                 phy_reg |= 0x006;
1378                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379                 /* Assert SW reset for above settings to take effect */
1380                 hw->phy.ops.commit(hw);
1381                 usleep_range(1000, 2000);
1382                 /* Force Full Duplex */
1383                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385                 /* Set Link Up (in force link) */
1386                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388                 /* Force Link */
1389                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391                 /* Set Early Link Enable */
1392                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394                 break;
1395         case e1000_phy_82577:
1396         case e1000_phy_82578:
1397                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1398                 ret_val = hw->phy.ops.acquire(hw);
1399                 if (ret_val) {
1400                         e_err("Cannot setup 1Gbps loopback.\n");
1401                         return ret_val;
1402                 }
1403                 e1000_configure_k1_ich8lan(hw, false);
1404                 hw->phy.ops.release(hw);
1405                 break;
1406         case e1000_phy_82579:
1407                 /* Disable PHY energy detect power down */
1408                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410                 /* Disable full chip energy detect */
1411                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413                 /* Enable loopback on the PHY */
1414                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415                 break;
1416         default:
1417                 break;
1418         }
1419
1420         /* force 1000, set loopback */
1421         e1e_wphy(hw, MII_BMCR, 0x4140);
1422         msleep(250);
1423
1424         /* Now set up the MAC to the same speed/duplex as the PHY. */
1425         ctrl_reg = er32(CTRL);
1426         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1431
1432         if (adapter->flags & FLAG_IS_ICH)
1433                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1434
1435         if (hw->phy.media_type == e1000_media_type_copper &&
1436             hw->phy.type == e1000_phy_m88) {
1437                 ctrl_reg |= E1000_CTRL_ILOS;    /* Invert Loss of Signal */
1438         } else {
1439                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1440                  * detected.
1441                  */
1442                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444         }
1445
1446         ew32(CTRL, ctrl_reg);
1447
1448         /* Disable the receiver on the PHY so when a cable is plugged in, the
1449          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450          */
1451         if (hw->phy.type == e1000_phy_m88)
1452                 e1000_phy_disable_receiver(adapter);
1453
1454         usleep_range(500, 1000);
1455
1456         return 0;
1457 }
1458
1459 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460 {
1461         struct e1000_hw *hw = &adapter->hw;
1462         u32 ctrl = er32(CTRL);
1463         int link;
1464
1465         /* special requirements for 82571/82572 fiber adapters */
1466
1467         /* jump through hoops to make sure link is up because serdes
1468          * link is hardwired up
1469          */
1470         ctrl |= E1000_CTRL_SLU;
1471         ew32(CTRL, ctrl);
1472
1473         /* disable autoneg */
1474         ctrl = er32(TXCW);
1475         ctrl &= ~BIT(31);
1476         ew32(TXCW, ctrl);
1477
1478         link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480         if (!link) {
1481                 /* set invert loss of signal */
1482                 ctrl = er32(CTRL);
1483                 ctrl |= E1000_CTRL_ILOS;
1484                 ew32(CTRL, ctrl);
1485         }
1486
1487         /* special write to serdes control register to enable SerDes analog
1488          * loopback
1489          */
1490         ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491         e1e_flush();
1492         usleep_range(10000, 11000);
1493
1494         return 0;
1495 }
1496
1497 /* only call this for fiber/serdes connections to es2lan */
1498 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499 {
1500         struct e1000_hw *hw = &adapter->hw;
1501         u32 ctrlext = er32(CTRL_EXT);
1502         u32 ctrl = er32(CTRL);
1503
1504         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1505          * on mac_type 80003es2lan)
1506          */
1507         adapter->tx_fifo_head = ctrlext;
1508
1509         /* clear the serdes mode bits, putting the device into mac loopback */
1510         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511         ew32(CTRL_EXT, ctrlext);
1512
1513         /* force speed to 1000/FD, link up */
1514         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517         ew32(CTRL, ctrl);
1518
1519         /* set mac loopback */
1520         ctrl = er32(RCTL);
1521         ctrl |= E1000_RCTL_LBM_MAC;
1522         ew32(RCTL, ctrl);
1523
1524         /* set testing mode parameters (no need to reset later) */
1525 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527         ew32(KMRNCTRLSTA,
1528              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530         return 0;
1531 }
1532
1533 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534 {
1535         struct e1000_hw *hw = &adapter->hw;
1536         u32 rctl, fext_nvm11, tarc0;
1537
1538         if (hw->mac.type >= e1000_pch_spt) {
1539                 fext_nvm11 = er32(FEXTNVM11);
1540                 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541                 ew32(FEXTNVM11, fext_nvm11);
1542                 tarc0 = er32(TARC(0));
1543                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1544                 tarc0 &= 0xcfffffff;
1545                 /* set bit 29 (value of MULR requests is now 2) */
1546                 tarc0 |= 0x20000000;
1547                 ew32(TARC(0), tarc0);
1548         }
1549         if (hw->phy.media_type == e1000_media_type_fiber ||
1550             hw->phy.media_type == e1000_media_type_internal_serdes) {
1551                 switch (hw->mac.type) {
1552                 case e1000_80003es2lan:
1553                         return e1000_set_es2lan_mac_loopback(adapter);
1554                 case e1000_82571:
1555                 case e1000_82572:
1556                         return e1000_set_82571_fiber_loopback(adapter);
1557                 default:
1558                         rctl = er32(RCTL);
1559                         rctl |= E1000_RCTL_LBM_TCVR;
1560                         ew32(RCTL, rctl);
1561                         return 0;
1562                 }
1563         } else if (hw->phy.media_type == e1000_media_type_copper) {
1564                 return e1000_integrated_phy_loopback(adapter);
1565         }
1566
1567         return 7;
1568 }
1569
1570 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571 {
1572         struct e1000_hw *hw = &adapter->hw;
1573         u32 rctl, fext_nvm11, tarc0;
1574         u16 phy_reg;
1575
1576         rctl = er32(RCTL);
1577         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578         ew32(RCTL, rctl);
1579
1580         switch (hw->mac.type) {
1581         case e1000_pch_spt:
1582         case e1000_pch_cnp:
1583         case e1000_pch_tgp:
1584         case e1000_pch_adp:
1585         case e1000_pch_mtp:
1586         case e1000_pch_lnp:
1587         case e1000_pch_ptp:
1588                 fext_nvm11 = er32(FEXTNVM11);
1589                 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1590                 ew32(FEXTNVM11, fext_nvm11);
1591                 tarc0 = er32(TARC(0));
1592                 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1593                 /* set bit 29 (value of MULR requests is now 0) */
1594                 tarc0 &= 0xcfffffff;
1595                 ew32(TARC(0), tarc0);
1596                 fallthrough;
1597         case e1000_80003es2lan:
1598                 if (hw->phy.media_type == e1000_media_type_fiber ||
1599                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1600                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1601                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1602                         adapter->tx_fifo_head = 0;
1603                 }
1604                 fallthrough;
1605         case e1000_82571:
1606         case e1000_82572:
1607                 if (hw->phy.media_type == e1000_media_type_fiber ||
1608                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1609                         ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1610                         e1e_flush();
1611                         usleep_range(10000, 11000);
1612                         break;
1613                 }
1614                 fallthrough;
1615         default:
1616                 hw->mac.autoneg = 1;
1617                 if (hw->phy.type == e1000_phy_gg82563)
1618                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1619                 e1e_rphy(hw, MII_BMCR, &phy_reg);
1620                 if (phy_reg & BMCR_LOOPBACK) {
1621                         phy_reg &= ~BMCR_LOOPBACK;
1622                         e1e_wphy(hw, MII_BMCR, phy_reg);
1623                         if (hw->phy.ops.commit)
1624                                 hw->phy.ops.commit(hw);
1625                 }
1626                 break;
1627         }
1628 }
1629
1630 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1631                                       unsigned int frame_size)
1632 {
1633         memset(skb->data, 0xFF, frame_size);
1634         frame_size &= ~1;
1635         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1636         skb->data[frame_size / 2 + 10] = 0xBE;
1637         skb->data[frame_size / 2 + 12] = 0xAF;
1638 }
1639
1640 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1641                                     unsigned int frame_size)
1642 {
1643         frame_size &= ~1;
1644         if (*(skb->data + 3) == 0xFF)
1645                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1646                     (*(skb->data + frame_size / 2 + 12) == 0xAF))
1647                         return 0;
1648         return 13;
1649 }
1650
1651 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1652 {
1653         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1654         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1655         struct pci_dev *pdev = adapter->pdev;
1656         struct e1000_hw *hw = &adapter->hw;
1657         struct e1000_buffer *buffer_info;
1658         int i, j, k, l;
1659         int lc;
1660         int good_cnt;
1661         int ret_val = 0;
1662         unsigned long time;
1663
1664         ew32(RDT(0), rx_ring->count - 1);
1665
1666         /* Calculate the loop count based on the largest descriptor ring
1667          * The idea is to wrap the largest ring a number of times using 64
1668          * send/receive pairs during each loop
1669          */
1670
1671         if (rx_ring->count <= tx_ring->count)
1672                 lc = ((tx_ring->count / 64) * 2) + 1;
1673         else
1674                 lc = ((rx_ring->count / 64) * 2) + 1;
1675
1676         k = 0;
1677         l = 0;
1678         /* loop count loop */
1679         for (j = 0; j <= lc; j++) {
1680                 /* send the packets */
1681                 for (i = 0; i < 64; i++) {
1682                         buffer_info = &tx_ring->buffer_info[k];
1683
1684                         e1000_create_lbtest_frame(buffer_info->skb, 1024);
1685                         dma_sync_single_for_device(&pdev->dev,
1686                                                    buffer_info->dma,
1687                                                    buffer_info->length,
1688                                                    DMA_TO_DEVICE);
1689                         k++;
1690                         if (k == tx_ring->count)
1691                                 k = 0;
1692                 }
1693                 ew32(TDT(0), k);
1694                 e1e_flush();
1695                 msleep(200);
1696                 time = jiffies; /* set the start time for the receive */
1697                 good_cnt = 0;
1698                 /* receive the sent packets */
1699                 do {
1700                         buffer_info = &rx_ring->buffer_info[l];
1701
1702                         dma_sync_single_for_cpu(&pdev->dev,
1703                                                 buffer_info->dma, 2048,
1704                                                 DMA_FROM_DEVICE);
1705
1706                         ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1707                                                            1024);
1708                         if (!ret_val)
1709                                 good_cnt++;
1710                         l++;
1711                         if (l == rx_ring->count)
1712                                 l = 0;
1713                         /* time + 20 msecs (200 msecs on 2.4) is more than
1714                          * enough time to complete the receives, if it's
1715                          * exceeded, break and error off
1716                          */
1717                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1718                 if (good_cnt != 64) {
1719                         ret_val = 13;   /* ret_val is the same as mis-compare */
1720                         break;
1721                 }
1722                 if (time_after(jiffies, time + 20)) {
1723                         ret_val = 14;   /* error code for time out error */
1724                         break;
1725                 }
1726         }
1727         return ret_val;
1728 }
1729
1730 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1731 {
1732         struct e1000_hw *hw = &adapter->hw;
1733
1734         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1735         if (hw->phy.ops.check_reset_block &&
1736             hw->phy.ops.check_reset_block(hw)) {
1737                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1738                 *data = 0;
1739                 goto out;
1740         }
1741
1742         *data = e1000_setup_desc_rings(adapter);
1743         if (*data)
1744                 goto out;
1745
1746         *data = e1000_setup_loopback_test(adapter);
1747         if (*data)
1748                 goto err_loopback;
1749
1750         *data = e1000_run_loopback_test(adapter);
1751         e1000_loopback_cleanup(adapter);
1752
1753 err_loopback:
1754         e1000_free_desc_rings(adapter);
1755 out:
1756         return *data;
1757 }
1758
1759 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1760 {
1761         struct e1000_hw *hw = &adapter->hw;
1762
1763         *data = 0;
1764         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1765                 int i = 0;
1766
1767                 hw->mac.serdes_has_link = false;
1768
1769                 /* On some blade server designs, link establishment
1770                  * could take as long as 2-3 minutes
1771                  */
1772                 do {
1773                         hw->mac.ops.check_for_link(hw);
1774                         if (hw->mac.serdes_has_link)
1775                                 return *data;
1776                         msleep(20);
1777                 } while (i++ < 3750);
1778
1779                 *data = 1;
1780         } else {
1781                 hw->mac.ops.check_for_link(hw);
1782                 if (hw->mac.autoneg)
1783                         /* On some Phy/switch combinations, link establishment
1784                          * can take a few seconds more than expected.
1785                          */
1786                         msleep_interruptible(5000);
1787
1788                 if (!(er32(STATUS) & E1000_STATUS_LU))
1789                         *data = 1;
1790         }
1791         return *data;
1792 }
1793
1794 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1795                                  int sset)
1796 {
1797         switch (sset) {
1798         case ETH_SS_TEST:
1799                 return E1000_TEST_LEN;
1800         case ETH_SS_STATS:
1801                 return E1000_STATS_LEN;
1802         case ETH_SS_PRIV_FLAGS:
1803                 return E1000E_PRIV_FLAGS_STR_LEN;
1804         default:
1805                 return -EOPNOTSUPP;
1806         }
1807 }
1808
1809 static void e1000_diag_test(struct net_device *netdev,
1810                             struct ethtool_test *eth_test, u64 *data)
1811 {
1812         struct e1000_adapter *adapter = netdev_priv(netdev);
1813         u16 autoneg_advertised;
1814         u8 forced_speed_duplex;
1815         u8 autoneg;
1816         bool if_running = netif_running(netdev);
1817
1818         pm_runtime_get_sync(netdev->dev.parent);
1819
1820         set_bit(__E1000_TESTING, &adapter->state);
1821
1822         if (!if_running) {
1823                 /* Get control of and reset hardware */
1824                 if (adapter->flags & FLAG_HAS_AMT)
1825                         e1000e_get_hw_control(adapter);
1826
1827                 e1000e_power_up_phy(adapter);
1828
1829                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1830                 e1000e_reset(adapter);
1831                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1832         }
1833
1834         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1835                 /* Offline tests */
1836
1837                 /* save speed, duplex, autoneg settings */
1838                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1839                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1840                 autoneg = adapter->hw.mac.autoneg;
1841
1842                 e_info("offline testing starting\n");
1843
1844                 if (if_running)
1845                         /* indicate we're in test mode */
1846                         e1000e_close(netdev);
1847
1848                 if (e1000_reg_test(adapter, &data[0]))
1849                         eth_test->flags |= ETH_TEST_FL_FAILED;
1850
1851                 e1000e_reset(adapter);
1852                 if (e1000_eeprom_test(adapter, &data[1]))
1853                         eth_test->flags |= ETH_TEST_FL_FAILED;
1854
1855                 e1000e_reset(adapter);
1856                 if (e1000_intr_test(adapter, &data[2]))
1857                         eth_test->flags |= ETH_TEST_FL_FAILED;
1858
1859                 e1000e_reset(adapter);
1860                 if (e1000_loopback_test(adapter, &data[3]))
1861                         eth_test->flags |= ETH_TEST_FL_FAILED;
1862
1863                 /* force this routine to wait until autoneg complete/timeout */
1864                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1865                 e1000e_reset(adapter);
1866                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1867
1868                 if (e1000_link_test(adapter, &data[4]))
1869                         eth_test->flags |= ETH_TEST_FL_FAILED;
1870
1871                 /* restore speed, duplex, autoneg settings */
1872                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1873                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1874                 adapter->hw.mac.autoneg = autoneg;
1875                 e1000e_reset(adapter);
1876
1877                 clear_bit(__E1000_TESTING, &adapter->state);
1878                 if (if_running)
1879                         e1000e_open(netdev);
1880         } else {
1881                 /* Online tests */
1882
1883                 e_info("online testing starting\n");
1884
1885                 /* register, eeprom, intr and loopback tests not run online */
1886                 data[0] = 0;
1887                 data[1] = 0;
1888                 data[2] = 0;
1889                 data[3] = 0;
1890
1891                 if (e1000_link_test(adapter, &data[4]))
1892                         eth_test->flags |= ETH_TEST_FL_FAILED;
1893
1894                 clear_bit(__E1000_TESTING, &adapter->state);
1895         }
1896
1897         if (!if_running) {
1898                 e1000e_reset(adapter);
1899
1900                 if (adapter->flags & FLAG_HAS_AMT)
1901                         e1000e_release_hw_control(adapter);
1902         }
1903
1904         msleep_interruptible(4 * 1000);
1905
1906         pm_runtime_put_sync(netdev->dev.parent);
1907 }
1908
1909 static void e1000_get_wol(struct net_device *netdev,
1910                           struct ethtool_wolinfo *wol)
1911 {
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913
1914         wol->supported = 0;
1915         wol->wolopts = 0;
1916
1917         if (!(adapter->flags & FLAG_HAS_WOL) ||
1918             !device_can_wakeup(&adapter->pdev->dev))
1919                 return;
1920
1921         wol->supported = WAKE_UCAST | WAKE_MCAST |
1922             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1923
1924         /* apply any specific unsupported masks here */
1925         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1926                 wol->supported &= ~WAKE_UCAST;
1927
1928                 if (adapter->wol & E1000_WUFC_EX)
1929                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1930         }
1931
1932         if (adapter->wol & E1000_WUFC_EX)
1933                 wol->wolopts |= WAKE_UCAST;
1934         if (adapter->wol & E1000_WUFC_MC)
1935                 wol->wolopts |= WAKE_MCAST;
1936         if (adapter->wol & E1000_WUFC_BC)
1937                 wol->wolopts |= WAKE_BCAST;
1938         if (adapter->wol & E1000_WUFC_MAG)
1939                 wol->wolopts |= WAKE_MAGIC;
1940         if (adapter->wol & E1000_WUFC_LNKC)
1941                 wol->wolopts |= WAKE_PHY;
1942 }
1943
1944 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1945 {
1946         struct e1000_adapter *adapter = netdev_priv(netdev);
1947
1948         if (!(adapter->flags & FLAG_HAS_WOL) ||
1949             !device_can_wakeup(&adapter->pdev->dev) ||
1950             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1951                               WAKE_MAGIC | WAKE_PHY)))
1952                 return -EOPNOTSUPP;
1953
1954         /* these settings will always override what we currently have */
1955         adapter->wol = 0;
1956
1957         if (wol->wolopts & WAKE_UCAST)
1958                 adapter->wol |= E1000_WUFC_EX;
1959         if (wol->wolopts & WAKE_MCAST)
1960                 adapter->wol |= E1000_WUFC_MC;
1961         if (wol->wolopts & WAKE_BCAST)
1962                 adapter->wol |= E1000_WUFC_BC;
1963         if (wol->wolopts & WAKE_MAGIC)
1964                 adapter->wol |= E1000_WUFC_MAG;
1965         if (wol->wolopts & WAKE_PHY)
1966                 adapter->wol |= E1000_WUFC_LNKC;
1967
1968         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1969
1970         return 0;
1971 }
1972
1973 static int e1000_set_phys_id(struct net_device *netdev,
1974                              enum ethtool_phys_id_state state)
1975 {
1976         struct e1000_adapter *adapter = netdev_priv(netdev);
1977         struct e1000_hw *hw = &adapter->hw;
1978
1979         switch (state) {
1980         case ETHTOOL_ID_ACTIVE:
1981                 pm_runtime_get_sync(netdev->dev.parent);
1982
1983                 if (!hw->mac.ops.blink_led)
1984                         return 2;       /* cycle on/off twice per second */
1985
1986                 hw->mac.ops.blink_led(hw);
1987                 break;
1988
1989         case ETHTOOL_ID_INACTIVE:
1990                 if (hw->phy.type == e1000_phy_ife)
1991                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1992                 hw->mac.ops.led_off(hw);
1993                 hw->mac.ops.cleanup_led(hw);
1994                 pm_runtime_put_sync(netdev->dev.parent);
1995                 break;
1996
1997         case ETHTOOL_ID_ON:
1998                 hw->mac.ops.led_on(hw);
1999                 break;
2000
2001         case ETHTOOL_ID_OFF:
2002                 hw->mac.ops.led_off(hw);
2003                 break;
2004         }
2005
2006         return 0;
2007 }
2008
2009 static int e1000_get_coalesce(struct net_device *netdev,
2010                               struct ethtool_coalesce *ec,
2011                               struct kernel_ethtool_coalesce *kernel_coal,
2012                               struct netlink_ext_ack *extack)
2013 {
2014         struct e1000_adapter *adapter = netdev_priv(netdev);
2015
2016         if (adapter->itr_setting <= 4)
2017                 ec->rx_coalesce_usecs = adapter->itr_setting;
2018         else
2019                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2020
2021         return 0;
2022 }
2023
2024 static int e1000_set_coalesce(struct net_device *netdev,
2025                               struct ethtool_coalesce *ec,
2026                               struct kernel_ethtool_coalesce *kernel_coal,
2027                               struct netlink_ext_ack *extack)
2028 {
2029         struct e1000_adapter *adapter = netdev_priv(netdev);
2030
2031         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2032             ((ec->rx_coalesce_usecs > 4) &&
2033              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2034             (ec->rx_coalesce_usecs == 2))
2035                 return -EINVAL;
2036
2037         if (ec->rx_coalesce_usecs == 4) {
2038                 adapter->itr_setting = 4;
2039                 adapter->itr = adapter->itr_setting;
2040         } else if (ec->rx_coalesce_usecs <= 3) {
2041                 adapter->itr = 20000;
2042                 adapter->itr_setting = ec->rx_coalesce_usecs;
2043         } else {
2044                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2045                 adapter->itr_setting = adapter->itr & ~3;
2046         }
2047
2048         pm_runtime_get_sync(netdev->dev.parent);
2049
2050         if (adapter->itr_setting != 0)
2051                 e1000e_write_itr(adapter, adapter->itr);
2052         else
2053                 e1000e_write_itr(adapter, 0);
2054
2055         pm_runtime_put_sync(netdev->dev.parent);
2056
2057         return 0;
2058 }
2059
2060 static int e1000_nway_reset(struct net_device *netdev)
2061 {
2062         struct e1000_adapter *adapter = netdev_priv(netdev);
2063
2064         if (!netif_running(netdev))
2065                 return -EAGAIN;
2066
2067         if (!adapter->hw.mac.autoneg)
2068                 return -EINVAL;
2069
2070         pm_runtime_get_sync(netdev->dev.parent);
2071         e1000e_reinit_locked(adapter);
2072         pm_runtime_put_sync(netdev->dev.parent);
2073
2074         return 0;
2075 }
2076
2077 static void e1000_get_ethtool_stats(struct net_device *netdev,
2078                                     struct ethtool_stats __always_unused *stats,
2079                                     u64 *data)
2080 {
2081         struct e1000_adapter *adapter = netdev_priv(netdev);
2082         struct rtnl_link_stats64 net_stats;
2083         int i;
2084         char *p = NULL;
2085
2086         pm_runtime_get_sync(netdev->dev.parent);
2087
2088         dev_get_stats(netdev, &net_stats);
2089
2090         pm_runtime_put_sync(netdev->dev.parent);
2091
2092         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2093                 switch (e1000_gstrings_stats[i].type) {
2094                 case NETDEV_STATS:
2095                         p = (char *)&net_stats +
2096                             e1000_gstrings_stats[i].stat_offset;
2097                         break;
2098                 case E1000_STATS:
2099                         p = (char *)adapter +
2100                             e1000_gstrings_stats[i].stat_offset;
2101                         break;
2102                 default:
2103                         data[i] = 0;
2104                         continue;
2105                 }
2106
2107                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2108                            sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2109         }
2110 }
2111
2112 static void e1000_get_strings(struct net_device __always_unused *netdev,
2113                               u32 stringset, u8 *data)
2114 {
2115         u8 *p = data;
2116         int i;
2117
2118         switch (stringset) {
2119         case ETH_SS_TEST:
2120                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2121                 break;
2122         case ETH_SS_STATS:
2123                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2124                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2125                                ETH_GSTRING_LEN);
2126                         p += ETH_GSTRING_LEN;
2127                 }
2128                 break;
2129         case ETH_SS_PRIV_FLAGS:
2130                 memcpy(data, e1000e_priv_flags_strings,
2131                        E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2132                 break;
2133         }
2134 }
2135
2136 static int e1000_get_rxnfc(struct net_device *netdev,
2137                            struct ethtool_rxnfc *info,
2138                            u32 __always_unused *rule_locs)
2139 {
2140         info->data = 0;
2141
2142         switch (info->cmd) {
2143         case ETHTOOL_GRXFH: {
2144                 struct e1000_adapter *adapter = netdev_priv(netdev);
2145                 struct e1000_hw *hw = &adapter->hw;
2146                 u32 mrqc;
2147
2148                 pm_runtime_get_sync(netdev->dev.parent);
2149                 mrqc = er32(MRQC);
2150                 pm_runtime_put_sync(netdev->dev.parent);
2151
2152                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2153                         return 0;
2154
2155                 switch (info->flow_type) {
2156                 case TCP_V4_FLOW:
2157                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2158                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2159                         fallthrough;
2160                 case UDP_V4_FLOW:
2161                 case SCTP_V4_FLOW:
2162                 case AH_ESP_V4_FLOW:
2163                 case IPV4_FLOW:
2164                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2165                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2166                         break;
2167                 case TCP_V6_FLOW:
2168                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2169                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2170                         fallthrough;
2171                 case UDP_V6_FLOW:
2172                 case SCTP_V6_FLOW:
2173                 case AH_ESP_V6_FLOW:
2174                 case IPV6_FLOW:
2175                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2176                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2177                         break;
2178                 default:
2179                         break;
2180                 }
2181                 return 0;
2182         }
2183         default:
2184                 return -EOPNOTSUPP;
2185         }
2186 }
2187
2188 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2189 {
2190         struct e1000_adapter *adapter = netdev_priv(netdev);
2191         struct e1000_hw *hw = &adapter->hw;
2192         u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2193         u32 ret_val;
2194
2195         if (!(adapter->flags2 & FLAG2_HAS_EEE))
2196                 return -EOPNOTSUPP;
2197
2198         switch (hw->phy.type) {
2199         case e1000_phy_82579:
2200                 cap_addr = I82579_EEE_CAPABILITY;
2201                 lpa_addr = I82579_EEE_LP_ABILITY;
2202                 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2203                 break;
2204         case e1000_phy_i217:
2205                 cap_addr = I217_EEE_CAPABILITY;
2206                 lpa_addr = I217_EEE_LP_ABILITY;
2207                 pcs_stat_addr = I217_EEE_PCS_STATUS;
2208                 break;
2209         default:
2210                 return -EOPNOTSUPP;
2211         }
2212
2213         pm_runtime_get_sync(netdev->dev.parent);
2214
2215         ret_val = hw->phy.ops.acquire(hw);
2216         if (ret_val) {
2217                 pm_runtime_put_sync(netdev->dev.parent);
2218                 return -EBUSY;
2219         }
2220
2221         /* EEE Capability */
2222         ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2223         if (ret_val)
2224                 goto release;
2225         edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2226
2227         /* EEE Advertised */
2228         edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2229
2230         /* EEE Link Partner Advertised */
2231         ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2232         if (ret_val)
2233                 goto release;
2234         edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2235
2236         /* EEE PCS Status */
2237         ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2238         if (ret_val)
2239                 goto release;
2240         if (hw->phy.type == e1000_phy_82579)
2241                 phy_data <<= 8;
2242
2243         /* Result of the EEE auto negotiation - there is no register that
2244          * has the status of the EEE negotiation so do a best-guess based
2245          * on whether Tx or Rx LPI indications have been received.
2246          */
2247         if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2248                 edata->eee_active = true;
2249
2250         edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2251         edata->tx_lpi_enabled = true;
2252         edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2253
2254 release:
2255         hw->phy.ops.release(hw);
2256         if (ret_val)
2257                 ret_val = -ENODATA;
2258
2259         pm_runtime_put_sync(netdev->dev.parent);
2260
2261         return ret_val;
2262 }
2263
2264 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2265 {
2266         struct e1000_adapter *adapter = netdev_priv(netdev);
2267         struct e1000_hw *hw = &adapter->hw;
2268         struct ethtool_eee eee_curr;
2269         s32 ret_val;
2270
2271         ret_val = e1000e_get_eee(netdev, &eee_curr);
2272         if (ret_val)
2273                 return ret_val;
2274
2275         if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2276                 e_err("Setting EEE tx-lpi is not supported\n");
2277                 return -EINVAL;
2278         }
2279
2280         if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2281                 e_err("Setting EEE Tx LPI timer is not supported\n");
2282                 return -EINVAL;
2283         }
2284
2285         if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2286                 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2287                 return -EINVAL;
2288         }
2289
2290         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2291
2292         hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2293
2294         pm_runtime_get_sync(netdev->dev.parent);
2295
2296         /* reset the link */
2297         if (netif_running(netdev))
2298                 e1000e_reinit_locked(adapter);
2299         else
2300                 e1000e_reset(adapter);
2301
2302         pm_runtime_put_sync(netdev->dev.parent);
2303
2304         return 0;
2305 }
2306
2307 static int e1000e_get_ts_info(struct net_device *netdev,
2308                               struct ethtool_ts_info *info)
2309 {
2310         struct e1000_adapter *adapter = netdev_priv(netdev);
2311
2312         ethtool_op_get_ts_info(netdev, info);
2313
2314         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2315                 return 0;
2316
2317         info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2318                                   SOF_TIMESTAMPING_RX_HARDWARE |
2319                                   SOF_TIMESTAMPING_RAW_HARDWARE);
2320
2321         info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2322
2323         info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2324                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2325                             BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2326                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2327                             BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2328                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2329                             BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2330                             BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2331                             BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2332                             BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2333                             BIT(HWTSTAMP_FILTER_ALL));
2334
2335         if (adapter->ptp_clock)
2336                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2337
2338         return 0;
2339 }
2340
2341 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2342 {
2343         struct e1000_adapter *adapter = netdev_priv(netdev);
2344         u32 priv_flags = 0;
2345
2346         if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2347                 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2348
2349         return priv_flags;
2350 }
2351
2352 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2353 {
2354         struct e1000_adapter *adapter = netdev_priv(netdev);
2355         unsigned int flags2 = adapter->flags2;
2356
2357         flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2358         if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2359                 struct e1000_hw *hw = &adapter->hw;
2360
2361                 if (hw->mac.type < e1000_pch_cnp)
2362                         return -EINVAL;
2363                 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2364         }
2365
2366         if (flags2 != adapter->flags2)
2367                 adapter->flags2 = flags2;
2368
2369         return 0;
2370 }
2371
2372 static const struct ethtool_ops e1000_ethtool_ops = {
2373         .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2374         .get_drvinfo            = e1000_get_drvinfo,
2375         .get_regs_len           = e1000_get_regs_len,
2376         .get_regs               = e1000_get_regs,
2377         .get_wol                = e1000_get_wol,
2378         .set_wol                = e1000_set_wol,
2379         .get_msglevel           = e1000_get_msglevel,
2380         .set_msglevel           = e1000_set_msglevel,
2381         .nway_reset             = e1000_nway_reset,
2382         .get_link               = ethtool_op_get_link,
2383         .get_eeprom_len         = e1000_get_eeprom_len,
2384         .get_eeprom             = e1000_get_eeprom,
2385         .set_eeprom             = e1000_set_eeprom,
2386         .get_ringparam          = e1000_get_ringparam,
2387         .set_ringparam          = e1000_set_ringparam,
2388         .get_pauseparam         = e1000_get_pauseparam,
2389         .set_pauseparam         = e1000_set_pauseparam,
2390         .self_test              = e1000_diag_test,
2391         .get_strings            = e1000_get_strings,
2392         .set_phys_id            = e1000_set_phys_id,
2393         .get_ethtool_stats      = e1000_get_ethtool_stats,
2394         .get_sset_count         = e1000e_get_sset_count,
2395         .get_coalesce           = e1000_get_coalesce,
2396         .set_coalesce           = e1000_set_coalesce,
2397         .get_rxnfc              = e1000_get_rxnfc,
2398         .get_ts_info            = e1000e_get_ts_info,
2399         .get_eee                = e1000e_get_eee,
2400         .set_eee                = e1000e_set_eee,
2401         .get_link_ksettings     = e1000_get_link_ksettings,
2402         .set_link_ksettings     = e1000_set_link_ksettings,
2403         .get_priv_flags         = e1000e_get_priv_flags,
2404         .set_priv_flags         = e1000e_set_priv_flags,
2405 };
2406
2407 void e1000e_set_ethtool_ops(struct net_device *netdev)
2408 {
2409         netdev->ethtool_ops = &e1000_ethtool_ops;
2410 }
This page took 0.180351 seconds and 4 git commands to generate.