]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/e1000/e1000_main.c
selftests: error out if kernel header files are not yet built
[linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23         INTEL_E1000_ETHERNET_DEVICE(0x1000),
24         INTEL_E1000_ETHERNET_DEVICE(0x1001),
25         INTEL_E1000_ETHERNET_DEVICE(0x1004),
26         INTEL_E1000_ETHERNET_DEVICE(0x1008),
27         INTEL_E1000_ETHERNET_DEVICE(0x1009),
28         INTEL_E1000_ETHERNET_DEVICE(0x100C),
29         INTEL_E1000_ETHERNET_DEVICE(0x100D),
30         INTEL_E1000_ETHERNET_DEVICE(0x100E),
31         INTEL_E1000_ETHERNET_DEVICE(0x100F),
32         INTEL_E1000_ETHERNET_DEVICE(0x1010),
33         INTEL_E1000_ETHERNET_DEVICE(0x1011),
34         INTEL_E1000_ETHERNET_DEVICE(0x1012),
35         INTEL_E1000_ETHERNET_DEVICE(0x1013),
36         INTEL_E1000_ETHERNET_DEVICE(0x1014),
37         INTEL_E1000_ETHERNET_DEVICE(0x1015),
38         INTEL_E1000_ETHERNET_DEVICE(0x1016),
39         INTEL_E1000_ETHERNET_DEVICE(0x1017),
40         INTEL_E1000_ETHERNET_DEVICE(0x1018),
41         INTEL_E1000_ETHERNET_DEVICE(0x1019),
42         INTEL_E1000_ETHERNET_DEVICE(0x101A),
43         INTEL_E1000_ETHERNET_DEVICE(0x101D),
44         INTEL_E1000_ETHERNET_DEVICE(0x101E),
45         INTEL_E1000_ETHERNET_DEVICE(0x1026),
46         INTEL_E1000_ETHERNET_DEVICE(0x1027),
47         INTEL_E1000_ETHERNET_DEVICE(0x1028),
48         INTEL_E1000_ETHERNET_DEVICE(0x1075),
49         INTEL_E1000_ETHERNET_DEVICE(0x1076),
50         INTEL_E1000_ETHERNET_DEVICE(0x1077),
51         INTEL_E1000_ETHERNET_DEVICE(0x1078),
52         INTEL_E1000_ETHERNET_DEVICE(0x1079),
53         INTEL_E1000_ETHERNET_DEVICE(0x107A),
54         INTEL_E1000_ETHERNET_DEVICE(0x107B),
55         INTEL_E1000_ETHERNET_DEVICE(0x107C),
56         INTEL_E1000_ETHERNET_DEVICE(0x108A),
57         INTEL_E1000_ETHERNET_DEVICE(0x1099),
58         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60         /* required last entry */
61         {0,}
62 };
63
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75                                     struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77                                     struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79                                     struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81                                     struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98                                 struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100                                 struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106                                     struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111                                struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114                                struct e1000_rx_ring *rx_ring,
115                                int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117                                      struct e1000_rx_ring *rx_ring,
118                                      int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120                                          struct e1000_rx_ring *rx_ring,
121                                          int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125                                    struct e1000_rx_ring *rx_ring,
126                                    int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128                                          struct e1000_rx_ring *rx_ring,
129                                          int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132                            int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139                                        struct sk_buff *skb);
140
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143                             netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145                                      bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147                                  __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149                                   __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152 static int __maybe_unused e1000_suspend(struct device *dev);
153 static int __maybe_unused e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165         "Maximum size of packet that is copied to a new buffer on receive");
166
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168                                                 pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171
172 static const struct pci_error_handlers e1000_err_handler = {
173         .error_detected = e1000_io_error_detected,
174         .slot_reset = e1000_io_slot_reset,
175         .resume = e1000_io_resume,
176 };
177
178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180 static struct pci_driver e1000_driver = {
181         .name     = e1000_driver_name,
182         .id_table = e1000_pci_tbl,
183         .probe    = e1000_probe,
184         .remove   = e1000_remove,
185         .driver = {
186                 .pm = &e1000_pm_ops,
187         },
188         .shutdown = e1000_shutdown,
189         .err_handler = &e1000_err_handler
190 };
191
192 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194 MODULE_LICENSE("GPL v2");
195
196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197 static int debug = -1;
198 module_param(debug, int, 0);
199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201 /**
202  * e1000_get_hw_dev - helper function for getting netdev
203  * @hw: pointer to HW struct
204  *
205  * return device used by hardware layer to print debugging information
206  *
207  **/
208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209 {
210         struct e1000_adapter *adapter = hw->back;
211         return adapter->netdev;
212 }
213
214 /**
215  * e1000_init_module - Driver Registration Routine
216  *
217  * e1000_init_module is the first routine called when the driver is
218  * loaded. All it does is register with the PCI subsystem.
219  **/
220 static int __init e1000_init_module(void)
221 {
222         int ret;
223         pr_info("%s\n", e1000_driver_string);
224
225         pr_info("%s\n", e1000_copyright);
226
227         ret = pci_register_driver(&e1000_driver);
228         if (copybreak != COPYBREAK_DEFAULT) {
229                 if (copybreak == 0)
230                         pr_info("copybreak disabled\n");
231                 else
232                         pr_info("copybreak enabled for "
233                                    "packets <= %u bytes\n", copybreak);
234         }
235         return ret;
236 }
237
238 module_init(e1000_init_module);
239
240 /**
241  * e1000_exit_module - Driver Exit Cleanup Routine
242  *
243  * e1000_exit_module is called just before the driver is removed
244  * from memory.
245  **/
246 static void __exit e1000_exit_module(void)
247 {
248         pci_unregister_driver(&e1000_driver);
249 }
250
251 module_exit(e1000_exit_module);
252
253 static int e1000_request_irq(struct e1000_adapter *adapter)
254 {
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261                           netdev);
262         if (err) {
263                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264         }
265
266         return err;
267 }
268
269 static void e1000_free_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272
273         free_irq(adapter->pdev->irq, netdev);
274 }
275
276 /**
277  * e1000_irq_disable - Mask off interrupt generation on the NIC
278  * @adapter: board private structure
279  **/
280 static void e1000_irq_disable(struct e1000_adapter *adapter)
281 {
282         struct e1000_hw *hw = &adapter->hw;
283
284         ew32(IMC, ~0);
285         E1000_WRITE_FLUSH();
286         synchronize_irq(adapter->pdev->irq);
287 }
288
289 /**
290  * e1000_irq_enable - Enable default interrupt generation settings
291  * @adapter: board private structure
292  **/
293 static void e1000_irq_enable(struct e1000_adapter *adapter)
294 {
295         struct e1000_hw *hw = &adapter->hw;
296
297         ew32(IMS, IMS_ENABLE_MASK);
298         E1000_WRITE_FLUSH();
299 }
300
301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303         struct e1000_hw *hw = &adapter->hw;
304         struct net_device *netdev = adapter->netdev;
305         u16 vid = hw->mng_cookie.vlan_id;
306         u16 old_vid = adapter->mng_vlan_id;
307
308         if (!e1000_vlan_used(adapter))
309                 return;
310
311         if (!test_bit(vid, adapter->active_vlans)) {
312                 if (hw->mng_cookie.status &
313                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314                         e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315                         adapter->mng_vlan_id = vid;
316                 } else {
317                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318                 }
319                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320                     (vid != old_vid) &&
321                     !test_bit(old_vid, adapter->active_vlans))
322                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323                                                old_vid);
324         } else {
325                 adapter->mng_vlan_id = vid;
326         }
327 }
328
329 static void e1000_init_manageability(struct e1000_adapter *adapter)
330 {
331         struct e1000_hw *hw = &adapter->hw;
332
333         if (adapter->en_mng_pt) {
334                 u32 manc = er32(MANC);
335
336                 /* disable hardware interception of ARP */
337                 manc &= ~(E1000_MANC_ARP_EN);
338
339                 ew32(MANC, manc);
340         }
341 }
342
343 static void e1000_release_manageability(struct e1000_adapter *adapter)
344 {
345         struct e1000_hw *hw = &adapter->hw;
346
347         if (adapter->en_mng_pt) {
348                 u32 manc = er32(MANC);
349
350                 /* re-enable hardware interception of ARP */
351                 manc |= E1000_MANC_ARP_EN;
352
353                 ew32(MANC, manc);
354         }
355 }
356
357 /**
358  * e1000_configure - configure the hardware for RX and TX
359  * @adapter: private board structure
360  **/
361 static void e1000_configure(struct e1000_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         int i;
365
366         e1000_set_rx_mode(netdev);
367
368         e1000_restore_vlan(adapter);
369         e1000_init_manageability(adapter);
370
371         e1000_configure_tx(adapter);
372         e1000_setup_rctl(adapter);
373         e1000_configure_rx(adapter);
374         /* call E1000_DESC_UNUSED which always leaves
375          * at least 1 descriptor unused to make sure
376          * next_to_use != next_to_clean
377          */
378         for (i = 0; i < adapter->num_rx_queues; i++) {
379                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380                 adapter->alloc_rx_buf(adapter, ring,
381                                       E1000_DESC_UNUSED(ring));
382         }
383 }
384
385 int e1000_up(struct e1000_adapter *adapter)
386 {
387         struct e1000_hw *hw = &adapter->hw;
388
389         /* hardware has been reset, we need to reload some things */
390         e1000_configure(adapter);
391
392         clear_bit(__E1000_DOWN, &adapter->flags);
393
394         napi_enable(&adapter->napi);
395
396         e1000_irq_enable(adapter);
397
398         netif_wake_queue(adapter->netdev);
399
400         /* fire a link change interrupt to start the watchdog */
401         ew32(ICS, E1000_ICS_LSC);
402         return 0;
403 }
404
405 /**
406  * e1000_power_up_phy - restore link in case the phy was powered down
407  * @adapter: address of board private structure
408  *
409  * The phy may be powered down to save power and turn off link when the
410  * driver is unloaded and wake on lan is not enabled (among others)
411  * *** this routine MUST be followed by a call to e1000_reset ***
412  **/
413 void e1000_power_up_phy(struct e1000_adapter *adapter)
414 {
415         struct e1000_hw *hw = &adapter->hw;
416         u16 mii_reg = 0;
417
418         /* Just clear the power down bit to wake the phy back up */
419         if (hw->media_type == e1000_media_type_copper) {
420                 /* according to the manual, the phy will retain its
421                  * settings across a power-down/up cycle
422                  */
423                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424                 mii_reg &= ~MII_CR_POWER_DOWN;
425                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426         }
427 }
428
429 static void e1000_power_down_phy(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432
433         /* Power down the PHY so no link is implied when interface is down *
434          * The PHY cannot be powered down if any of the following is true *
435          * (a) WoL is enabled
436          * (b) AMT is active
437          * (c) SoL/IDER session is active
438          */
439         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440            hw->media_type == e1000_media_type_copper) {
441                 u16 mii_reg = 0;
442
443                 switch (hw->mac_type) {
444                 case e1000_82540:
445                 case e1000_82545:
446                 case e1000_82545_rev_3:
447                 case e1000_82546:
448                 case e1000_ce4100:
449                 case e1000_82546_rev_3:
450                 case e1000_82541:
451                 case e1000_82541_rev_2:
452                 case e1000_82547:
453                 case e1000_82547_rev_2:
454                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
455                                 goto out;
456                         break;
457                 default:
458                         goto out;
459                 }
460                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461                 mii_reg |= MII_CR_POWER_DOWN;
462                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463                 msleep(1);
464         }
465 out:
466         return;
467 }
468
469 static void e1000_down_and_stop(struct e1000_adapter *adapter)
470 {
471         set_bit(__E1000_DOWN, &adapter->flags);
472
473         cancel_delayed_work_sync(&adapter->watchdog_task);
474
475         /*
476          * Since the watchdog task can reschedule other tasks, we should cancel
477          * it first, otherwise we can run into the situation when a work is
478          * still running after the adapter has been turned down.
479          */
480
481         cancel_delayed_work_sync(&adapter->phy_info_task);
482         cancel_delayed_work_sync(&adapter->fifo_stall_task);
483
484         /* Only kill reset task if adapter is not resetting */
485         if (!test_bit(__E1000_RESETTING, &adapter->flags))
486                 cancel_work_sync(&adapter->reset_task);
487 }
488
489 void e1000_down(struct e1000_adapter *adapter)
490 {
491         struct e1000_hw *hw = &adapter->hw;
492         struct net_device *netdev = adapter->netdev;
493         u32 rctl, tctl;
494
495         /* disable receives in the hardware */
496         rctl = er32(RCTL);
497         ew32(RCTL, rctl & ~E1000_RCTL_EN);
498         /* flush and sleep below */
499
500         netif_tx_disable(netdev);
501
502         /* disable transmits in the hardware */
503         tctl = er32(TCTL);
504         tctl &= ~E1000_TCTL_EN;
505         ew32(TCTL, tctl);
506         /* flush both disables and wait for them to finish */
507         E1000_WRITE_FLUSH();
508         msleep(10);
509
510         /* Set the carrier off after transmits have been disabled in the
511          * hardware, to avoid race conditions with e1000_watchdog() (which
512          * may be running concurrently to us, checking for the carrier
513          * bit to decide whether it should enable transmits again). Such
514          * a race condition would result into transmission being disabled
515          * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516          */
517         netif_carrier_off(netdev);
518
519         napi_disable(&adapter->napi);
520
521         e1000_irq_disable(adapter);
522
523         /* Setting DOWN must be after irq_disable to prevent
524          * a screaming interrupt.  Setting DOWN also prevents
525          * tasks from rescheduling.
526          */
527         e1000_down_and_stop(adapter);
528
529         adapter->link_speed = 0;
530         adapter->link_duplex = 0;
531
532         e1000_reset(adapter);
533         e1000_clean_all_tx_rings(adapter);
534         e1000_clean_all_rx_rings(adapter);
535 }
536
537 void e1000_reinit_locked(struct e1000_adapter *adapter)
538 {
539         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540                 msleep(1);
541
542         /* only run the task if not already down */
543         if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544                 e1000_down(adapter);
545                 e1000_up(adapter);
546         }
547
548         clear_bit(__E1000_RESETTING, &adapter->flags);
549 }
550
551 void e1000_reset(struct e1000_adapter *adapter)
552 {
553         struct e1000_hw *hw = &adapter->hw;
554         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555         bool legacy_pba_adjust = false;
556         u16 hwm;
557
558         /* Repartition Pba for greater than 9k mtu
559          * To take effect CTRL.RST is required.
560          */
561
562         switch (hw->mac_type) {
563         case e1000_82542_rev2_0:
564         case e1000_82542_rev2_1:
565         case e1000_82543:
566         case e1000_82544:
567         case e1000_82540:
568         case e1000_82541:
569         case e1000_82541_rev_2:
570                 legacy_pba_adjust = true;
571                 pba = E1000_PBA_48K;
572                 break;
573         case e1000_82545:
574         case e1000_82545_rev_3:
575         case e1000_82546:
576         case e1000_ce4100:
577         case e1000_82546_rev_3:
578                 pba = E1000_PBA_48K;
579                 break;
580         case e1000_82547:
581         case e1000_82547_rev_2:
582                 legacy_pba_adjust = true;
583                 pba = E1000_PBA_30K;
584                 break;
585         case e1000_undefined:
586         case e1000_num_macs:
587                 break;
588         }
589
590         if (legacy_pba_adjust) {
591                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592                         pba -= 8; /* allocate more FIFO for Tx */
593
594                 if (hw->mac_type == e1000_82547) {
595                         adapter->tx_fifo_head = 0;
596                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597                         adapter->tx_fifo_size =
598                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599                         atomic_set(&adapter->tx_fifo_stall, 0);
600                 }
601         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
602                 /* adjust PBA for jumbo frames */
603                 ew32(PBA, pba);
604
605                 /* To maintain wire speed transmits, the Tx FIFO should be
606                  * large enough to accommodate two full transmit packets,
607                  * rounded up to the next 1KB and expressed in KB.  Likewise,
608                  * the Rx FIFO should be large enough to accommodate at least
609                  * one full receive packet and is similarly rounded up and
610                  * expressed in KB.
611                  */
612                 pba = er32(PBA);
613                 /* upper 16 bits has Tx packet buffer allocation size in KB */
614                 tx_space = pba >> 16;
615                 /* lower 16 bits has Rx packet buffer allocation size in KB */
616                 pba &= 0xffff;
617                 /* the Tx fifo also stores 16 bytes of information about the Tx
618                  * but don't include ethernet FCS because hardware appends it
619                  */
620                 min_tx_space = (hw->max_frame_size +
621                                 sizeof(struct e1000_tx_desc) -
622                                 ETH_FCS_LEN) * 2;
623                 min_tx_space = ALIGN(min_tx_space, 1024);
624                 min_tx_space >>= 10;
625                 /* software strips receive CRC, so leave room for it */
626                 min_rx_space = hw->max_frame_size;
627                 min_rx_space = ALIGN(min_rx_space, 1024);
628                 min_rx_space >>= 10;
629
630                 /* If current Tx allocation is less than the min Tx FIFO size,
631                  * and the min Tx FIFO size is less than the current Rx FIFO
632                  * allocation, take space away from current Rx allocation
633                  */
634                 if (tx_space < min_tx_space &&
635                     ((min_tx_space - tx_space) < pba)) {
636                         pba = pba - (min_tx_space - tx_space);
637
638                         /* PCI/PCIx hardware has PBA alignment constraints */
639                         switch (hw->mac_type) {
640                         case e1000_82545 ... e1000_82546_rev_3:
641                                 pba &= ~(E1000_PBA_8K - 1);
642                                 break;
643                         default:
644                                 break;
645                         }
646
647                         /* if short on Rx space, Rx wins and must trump Tx
648                          * adjustment or use Early Receive if available
649                          */
650                         if (pba < min_rx_space)
651                                 pba = min_rx_space;
652                 }
653         }
654
655         ew32(PBA, pba);
656
657         /* flow control settings:
658          * The high water mark must be low enough to fit one full frame
659          * (or the size used for early receive) above it in the Rx FIFO.
660          * Set it to the lower of:
661          * - 90% of the Rx FIFO size, and
662          * - the full Rx FIFO size minus the early receive size (for parts
663          *   with ERT support assuming ERT set to E1000_ERT_2048), or
664          * - the full Rx FIFO size minus one full frame
665          */
666         hwm = min(((pba << 10) * 9 / 10),
667                   ((pba << 10) - hw->max_frame_size));
668
669         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
670         hw->fc_low_water = hw->fc_high_water - 8;
671         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672         hw->fc_send_xon = 1;
673         hw->fc = hw->original_fc;
674
675         /* Allow time for pending master requests to run */
676         e1000_reset_hw(hw);
677         if (hw->mac_type >= e1000_82544)
678                 ew32(WUC, 0);
679
680         if (e1000_init_hw(hw))
681                 e_dev_err("Hardware Error\n");
682         e1000_update_mng_vlan(adapter);
683
684         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685         if (hw->mac_type >= e1000_82544 &&
686             hw->autoneg == 1 &&
687             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688                 u32 ctrl = er32(CTRL);
689                 /* clear phy power management bit if we are in gig only mode,
690                  * which if enabled will attempt negotiation to 100Mb, which
691                  * can cause a loss of link at power off or driver unload
692                  */
693                 ctrl &= ~E1000_CTRL_SWDPIN3;
694                 ew32(CTRL, ctrl);
695         }
696
697         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700         e1000_reset_adaptive(hw);
701         e1000_phy_get_info(hw, &adapter->phy_info);
702
703         e1000_release_manageability(adapter);
704 }
705
706 /* Dump the eeprom for users having checksum issues */
707 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708 {
709         struct net_device *netdev = adapter->netdev;
710         struct ethtool_eeprom eeprom;
711         const struct ethtool_ops *ops = netdev->ethtool_ops;
712         u8 *data;
713         int i;
714         u16 csum_old, csum_new = 0;
715
716         eeprom.len = ops->get_eeprom_len(netdev);
717         eeprom.offset = 0;
718
719         data = kmalloc(eeprom.len, GFP_KERNEL);
720         if (!data)
721                 return;
722
723         ops->get_eeprom(netdev, &eeprom, data);
724
725         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728                 csum_new += data[i] + (data[i + 1] << 8);
729         csum_new = EEPROM_SUM - csum_new;
730
731         pr_err("/*********************/\n");
732         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733         pr_err("Calculated              : 0x%04x\n", csum_new);
734
735         pr_err("Offset    Values\n");
736         pr_err("========  ======\n");
737         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738
739         pr_err("Include this output when contacting your support provider.\n");
740         pr_err("This is not a software error! Something bad happened to\n");
741         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742         pr_err("result in further problems, possibly loss of data,\n");
743         pr_err("corruption or system hangs!\n");
744         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745         pr_err("which is invalid and requires you to set the proper MAC\n");
746         pr_err("address manually before continuing to enable this network\n");
747         pr_err("device. Please inspect the EEPROM dump and report the\n");
748         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749         pr_err("/*********************/\n");
750
751         kfree(data);
752 }
753
754 /**
755  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756  * @pdev: PCI device information struct
757  *
758  * Return true if an adapter needs ioport resources
759  **/
760 static int e1000_is_need_ioport(struct pci_dev *pdev)
761 {
762         switch (pdev->device) {
763         case E1000_DEV_ID_82540EM:
764         case E1000_DEV_ID_82540EM_LOM:
765         case E1000_DEV_ID_82540EP:
766         case E1000_DEV_ID_82540EP_LOM:
767         case E1000_DEV_ID_82540EP_LP:
768         case E1000_DEV_ID_82541EI:
769         case E1000_DEV_ID_82541EI_MOBILE:
770         case E1000_DEV_ID_82541ER:
771         case E1000_DEV_ID_82541ER_LOM:
772         case E1000_DEV_ID_82541GI:
773         case E1000_DEV_ID_82541GI_LF:
774         case E1000_DEV_ID_82541GI_MOBILE:
775         case E1000_DEV_ID_82544EI_COPPER:
776         case E1000_DEV_ID_82544EI_FIBER:
777         case E1000_DEV_ID_82544GC_COPPER:
778         case E1000_DEV_ID_82544GC_LOM:
779         case E1000_DEV_ID_82545EM_COPPER:
780         case E1000_DEV_ID_82545EM_FIBER:
781         case E1000_DEV_ID_82546EB_COPPER:
782         case E1000_DEV_ID_82546EB_FIBER:
783         case E1000_DEV_ID_82546EB_QUAD_COPPER:
784                 return true;
785         default:
786                 return false;
787         }
788 }
789
790 static netdev_features_t e1000_fix_features(struct net_device *netdev,
791         netdev_features_t features)
792 {
793         /* Since there is no support for separate Rx/Tx vlan accel
794          * enable/disable make sure Tx flag is always in same state as Rx.
795          */
796         if (features & NETIF_F_HW_VLAN_CTAG_RX)
797                 features |= NETIF_F_HW_VLAN_CTAG_TX;
798         else
799                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801         return features;
802 }
803
804 static int e1000_set_features(struct net_device *netdev,
805         netdev_features_t features)
806 {
807         struct e1000_adapter *adapter = netdev_priv(netdev);
808         netdev_features_t changed = features ^ netdev->features;
809
810         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811                 e1000_vlan_mode(netdev, features);
812
813         if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814                 return 0;
815
816         netdev->features = features;
817         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819         if (netif_running(netdev))
820                 e1000_reinit_locked(adapter);
821         else
822                 e1000_reset(adapter);
823
824         return 1;
825 }
826
827 static const struct net_device_ops e1000_netdev_ops = {
828         .ndo_open               = e1000_open,
829         .ndo_stop               = e1000_close,
830         .ndo_start_xmit         = e1000_xmit_frame,
831         .ndo_set_rx_mode        = e1000_set_rx_mode,
832         .ndo_set_mac_address    = e1000_set_mac,
833         .ndo_tx_timeout         = e1000_tx_timeout,
834         .ndo_change_mtu         = e1000_change_mtu,
835         .ndo_eth_ioctl          = e1000_ioctl,
836         .ndo_validate_addr      = eth_validate_addr,
837         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
838         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
839 #ifdef CONFIG_NET_POLL_CONTROLLER
840         .ndo_poll_controller    = e1000_netpoll,
841 #endif
842         .ndo_fix_features       = e1000_fix_features,
843         .ndo_set_features       = e1000_set_features,
844 };
845
846 /**
847  * e1000_init_hw_struct - initialize members of hw struct
848  * @adapter: board private struct
849  * @hw: structure used by e1000_hw.c
850  *
851  * Factors out initialization of the e1000_hw struct to its own function
852  * that can be called very early at init (just after struct allocation).
853  * Fields are initialized based on PCI device information and
854  * OS network device settings (MTU size).
855  * Returns negative error codes if MAC type setup fails.
856  */
857 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858                                 struct e1000_hw *hw)
859 {
860         struct pci_dev *pdev = adapter->pdev;
861
862         /* PCI config space info */
863         hw->vendor_id = pdev->vendor;
864         hw->device_id = pdev->device;
865         hw->subsystem_vendor_id = pdev->subsystem_vendor;
866         hw->subsystem_id = pdev->subsystem_device;
867         hw->revision_id = pdev->revision;
868
869         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870
871         hw->max_frame_size = adapter->netdev->mtu +
872                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875         /* identify the MAC */
876         if (e1000_set_mac_type(hw)) {
877                 e_err(probe, "Unknown MAC Type\n");
878                 return -EIO;
879         }
880
881         switch (hw->mac_type) {
882         default:
883                 break;
884         case e1000_82541:
885         case e1000_82547:
886         case e1000_82541_rev_2:
887         case e1000_82547_rev_2:
888                 hw->phy_init_script = 1;
889                 break;
890         }
891
892         e1000_set_media_type(hw);
893         e1000_get_bus_info(hw);
894
895         hw->wait_autoneg_complete = false;
896         hw->tbi_compatibility_en = true;
897         hw->adaptive_ifs = true;
898
899         /* Copper options */
900
901         if (hw->media_type == e1000_media_type_copper) {
902                 hw->mdix = AUTO_ALL_MODES;
903                 hw->disable_polarity_correction = false;
904                 hw->master_slave = E1000_MASTER_SLAVE;
905         }
906
907         return 0;
908 }
909
910 /**
911  * e1000_probe - Device Initialization Routine
912  * @pdev: PCI device information struct
913  * @ent: entry in e1000_pci_tbl
914  *
915  * Returns 0 on success, negative on failure
916  *
917  * e1000_probe initializes an adapter identified by a pci_dev structure.
918  * The OS initialization, configuring of the adapter private structure,
919  * and a hardware reset occur.
920  **/
921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922 {
923         struct net_device *netdev;
924         struct e1000_adapter *adapter = NULL;
925         struct e1000_hw *hw;
926
927         static int cards_found;
928         static int global_quad_port_a; /* global ksp3 port a indication */
929         int i, err, pci_using_dac;
930         u16 eeprom_data = 0;
931         u16 tmp = 0;
932         u16 eeprom_apme_mask = E1000_EEPROM_APME;
933         int bars, need_ioport;
934         bool disable_dev = false;
935
936         /* do not allocate ioport bars when not needed */
937         need_ioport = e1000_is_need_ioport(pdev);
938         if (need_ioport) {
939                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940                 err = pci_enable_device(pdev);
941         } else {
942                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943                 err = pci_enable_device_mem(pdev);
944         }
945         if (err)
946                 return err;
947
948         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949         if (err)
950                 goto err_pci_reg;
951
952         pci_set_master(pdev);
953         err = pci_save_state(pdev);
954         if (err)
955                 goto err_alloc_etherdev;
956
957         err = -ENOMEM;
958         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959         if (!netdev)
960                 goto err_alloc_etherdev;
961
962         SET_NETDEV_DEV(netdev, &pdev->dev);
963
964         pci_set_drvdata(pdev, netdev);
965         adapter = netdev_priv(netdev);
966         adapter->netdev = netdev;
967         adapter->pdev = pdev;
968         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969         adapter->bars = bars;
970         adapter->need_ioport = need_ioport;
971
972         hw = &adapter->hw;
973         hw->back = adapter;
974
975         err = -EIO;
976         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977         if (!hw->hw_addr)
978                 goto err_ioremap;
979
980         if (adapter->need_ioport) {
981                 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982                         if (pci_resource_len(pdev, i) == 0)
983                                 continue;
984                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985                                 hw->io_base = pci_resource_start(pdev, i);
986                                 break;
987                         }
988                 }
989         }
990
991         /* make ready for any if (hw->...) below */
992         err = e1000_init_hw_struct(adapter, hw);
993         if (err)
994                 goto err_sw_init;
995
996         /* there is a workaround being applied below that limits
997          * 64-bit DMA addresses to 64-bit hardware.  There are some
998          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999          */
1000         pci_using_dac = 0;
1001         if ((hw->bus_type == e1000_bus_type_pcix) &&
1002             !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003                 pci_using_dac = 1;
1004         } else {
1005                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006                 if (err) {
1007                         pr_err("No usable DMA config, aborting\n");
1008                         goto err_dma;
1009                 }
1010         }
1011
1012         netdev->netdev_ops = &e1000_netdev_ops;
1013         e1000_set_ethtool_ops(netdev);
1014         netdev->watchdog_timeo = 5 * HZ;
1015         netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1018
1019         adapter->bd_number = cards_found;
1020
1021         /* setup the private structure */
1022
1023         err = e1000_sw_init(adapter);
1024         if (err)
1025                 goto err_sw_init;
1026
1027         err = -EIO;
1028         if (hw->mac_type == e1000_ce4100) {
1029                 hw->ce4100_gbe_mdio_base_virt =
1030                                         ioremap(pci_resource_start(pdev, BAR_1),
1031                                                 pci_resource_len(pdev, BAR_1));
1032
1033                 if (!hw->ce4100_gbe_mdio_base_virt)
1034                         goto err_mdio_ioremap;
1035         }
1036
1037         if (hw->mac_type >= e1000_82543) {
1038                 netdev->hw_features = NETIF_F_SG |
1039                                    NETIF_F_HW_CSUM |
1040                                    NETIF_F_HW_VLAN_CTAG_RX;
1041                 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042                                    NETIF_F_HW_VLAN_CTAG_FILTER;
1043         }
1044
1045         if ((hw->mac_type >= e1000_82544) &&
1046            (hw->mac_type != e1000_82547))
1047                 netdev->hw_features |= NETIF_F_TSO;
1048
1049         netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051         netdev->features |= netdev->hw_features;
1052         netdev->hw_features |= (NETIF_F_RXCSUM |
1053                                 NETIF_F_RXALL |
1054                                 NETIF_F_RXFCS);
1055
1056         if (pci_using_dac) {
1057                 netdev->features |= NETIF_F_HIGHDMA;
1058                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059         }
1060
1061         netdev->vlan_features |= (NETIF_F_TSO |
1062                                   NETIF_F_HW_CSUM |
1063                                   NETIF_F_SG);
1064
1065         /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066         if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067             hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068                 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070         /* MTU range: 46 - 16110 */
1071         netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072         netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076         /* initialize eeprom parameters */
1077         if (e1000_init_eeprom_params(hw)) {
1078                 e_err(probe, "EEPROM initialization failed\n");
1079                 goto err_eeprom;
1080         }
1081
1082         /* before reading the EEPROM, reset the controller to
1083          * put the device in a known good starting state
1084          */
1085
1086         e1000_reset_hw(hw);
1087
1088         /* make sure the EEPROM is good */
1089         if (e1000_validate_eeprom_checksum(hw) < 0) {
1090                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091                 e1000_dump_eeprom(adapter);
1092                 /* set MAC address to all zeroes to invalidate and temporary
1093                  * disable this device for the user. This blocks regular
1094                  * traffic while still permitting ethtool ioctls from reaching
1095                  * the hardware as well as allowing the user to run the
1096                  * interface after manually setting a hw addr using
1097                  * `ip set address`
1098                  */
1099                 memset(hw->mac_addr, 0, netdev->addr_len);
1100         } else {
1101                 /* copy the MAC address out of the EEPROM */
1102                 if (e1000_read_mac_addr(hw))
1103                         e_err(probe, "EEPROM Read Error\n");
1104         }
1105         /* don't block initialization here due to bad MAC address */
1106         eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108         if (!is_valid_ether_addr(netdev->dev_addr))
1109                 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112         INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113         INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114                           e1000_82547_tx_fifo_stall_task);
1115         INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118         e1000_check_options(adapter);
1119
1120         /* Initial Wake on LAN setting
1121          * If APM wake is enabled in the EEPROM,
1122          * enable the ACPI Magic Packet filter
1123          */
1124
1125         switch (hw->mac_type) {
1126         case e1000_82542_rev2_0:
1127         case e1000_82542_rev2_1:
1128         case e1000_82543:
1129                 break;
1130         case e1000_82544:
1131                 e1000_read_eeprom(hw,
1132                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134                 break;
1135         case e1000_82546:
1136         case e1000_82546_rev_3:
1137                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138                         e1000_read_eeprom(hw,
1139                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140                         break;
1141                 }
1142                 fallthrough;
1143         default:
1144                 e1000_read_eeprom(hw,
1145                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146                 break;
1147         }
1148         if (eeprom_data & eeprom_apme_mask)
1149                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151         /* now that we have the eeprom settings, apply the special cases
1152          * where the eeprom may be wrong or the board simply won't support
1153          * wake on lan on a particular port
1154          */
1155         switch (pdev->device) {
1156         case E1000_DEV_ID_82546GB_PCIE:
1157                 adapter->eeprom_wol = 0;
1158                 break;
1159         case E1000_DEV_ID_82546EB_FIBER:
1160         case E1000_DEV_ID_82546GB_FIBER:
1161                 /* Wake events only supported on port A for dual fiber
1162                  * regardless of eeprom setting
1163                  */
1164                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165                         adapter->eeprom_wol = 0;
1166                 break;
1167         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168                 /* if quad port adapter, disable WoL on all but port A */
1169                 if (global_quad_port_a != 0)
1170                         adapter->eeprom_wol = 0;
1171                 else
1172                         adapter->quad_port_a = true;
1173                 /* Reset for multiple quad port adapters */
1174                 if (++global_quad_port_a == 4)
1175                         global_quad_port_a = 0;
1176                 break;
1177         }
1178
1179         /* initialize the wol settings based on the eeprom settings */
1180         adapter->wol = adapter->eeprom_wol;
1181         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183         /* Auto detect PHY address */
1184         if (hw->mac_type == e1000_ce4100) {
1185                 for (i = 0; i < 32; i++) {
1186                         hw->phy_addr = i;
1187                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189                         if (tmp != 0 && tmp != 0xFF)
1190                                 break;
1191                 }
1192
1193                 if (i >= 32)
1194                         goto err_eeprom;
1195         }
1196
1197         /* reset the hardware with the new settings */
1198         e1000_reset(adapter);
1199
1200         strcpy(netdev->name, "eth%d");
1201         err = register_netdev(netdev);
1202         if (err)
1203                 goto err_register;
1204
1205         e1000_vlan_filter_on_off(adapter, false);
1206
1207         /* print bus type/speed/width info */
1208         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215                netdev->dev_addr);
1216
1217         /* carrier off reporting is important to ethtool even BEFORE open */
1218         netif_carrier_off(netdev);
1219
1220         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222         cards_found++;
1223         return 0;
1224
1225 err_register:
1226 err_eeprom:
1227         e1000_phy_hw_reset(hw);
1228
1229         if (hw->flash_address)
1230                 iounmap(hw->flash_address);
1231         kfree(adapter->tx_ring);
1232         kfree(adapter->rx_ring);
1233 err_dma:
1234 err_sw_init:
1235 err_mdio_ioremap:
1236         iounmap(hw->ce4100_gbe_mdio_base_virt);
1237         iounmap(hw->hw_addr);
1238 err_ioremap:
1239         disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240         free_netdev(netdev);
1241 err_alloc_etherdev:
1242         pci_release_selected_regions(pdev, bars);
1243 err_pci_reg:
1244         if (!adapter || disable_dev)
1245                 pci_disable_device(pdev);
1246         return err;
1247 }
1248
1249 /**
1250  * e1000_remove - Device Removal Routine
1251  * @pdev: PCI device information struct
1252  *
1253  * e1000_remove is called by the PCI subsystem to alert the driver
1254  * that it should release a PCI device. That could be caused by a
1255  * Hot-Plug event, or because the driver is going to be removed from
1256  * memory.
1257  **/
1258 static void e1000_remove(struct pci_dev *pdev)
1259 {
1260         struct net_device *netdev = pci_get_drvdata(pdev);
1261         struct e1000_adapter *adapter = netdev_priv(netdev);
1262         struct e1000_hw *hw = &adapter->hw;
1263         bool disable_dev;
1264
1265         e1000_down_and_stop(adapter);
1266         e1000_release_manageability(adapter);
1267
1268         unregister_netdev(netdev);
1269
1270         e1000_phy_hw_reset(hw);
1271
1272         kfree(adapter->tx_ring);
1273         kfree(adapter->rx_ring);
1274
1275         if (hw->mac_type == e1000_ce4100)
1276                 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277         iounmap(hw->hw_addr);
1278         if (hw->flash_address)
1279                 iounmap(hw->flash_address);
1280         pci_release_selected_regions(pdev, adapter->bars);
1281
1282         disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283         free_netdev(netdev);
1284
1285         if (disable_dev)
1286                 pci_disable_device(pdev);
1287 }
1288
1289 /**
1290  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291  * @adapter: board private structure to initialize
1292  *
1293  * e1000_sw_init initializes the Adapter private data structure.
1294  * e1000_init_hw_struct MUST be called before this function
1295  **/
1296 static int e1000_sw_init(struct e1000_adapter *adapter)
1297 {
1298         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300         adapter->num_tx_queues = 1;
1301         adapter->num_rx_queues = 1;
1302
1303         if (e1000_alloc_queues(adapter)) {
1304                 e_err(probe, "Unable to allocate memory for queues\n");
1305                 return -ENOMEM;
1306         }
1307
1308         /* Explicitly disable IRQ since the NIC can be in any state. */
1309         e1000_irq_disable(adapter);
1310
1311         spin_lock_init(&adapter->stats_lock);
1312
1313         set_bit(__E1000_DOWN, &adapter->flags);
1314
1315         return 0;
1316 }
1317
1318 /**
1319  * e1000_alloc_queues - Allocate memory for all rings
1320  * @adapter: board private structure to initialize
1321  *
1322  * We allocate one ring per queue at run-time since we don't know the
1323  * number of queues at compile-time.
1324  **/
1325 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326 {
1327         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329         if (!adapter->tx_ring)
1330                 return -ENOMEM;
1331
1332         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334         if (!adapter->rx_ring) {
1335                 kfree(adapter->tx_ring);
1336                 return -ENOMEM;
1337         }
1338
1339         return E1000_SUCCESS;
1340 }
1341
1342 /**
1343  * e1000_open - Called when a network interface is made active
1344  * @netdev: network interface device structure
1345  *
1346  * Returns 0 on success, negative value on failure
1347  *
1348  * The open entry point is called when a network interface is made
1349  * active by the system (IFF_UP).  At this point all resources needed
1350  * for transmit and receive operations are allocated, the interrupt
1351  * handler is registered with the OS, the watchdog task is started,
1352  * and the stack is notified that the interface is ready.
1353  **/
1354 int e1000_open(struct net_device *netdev)
1355 {
1356         struct e1000_adapter *adapter = netdev_priv(netdev);
1357         struct e1000_hw *hw = &adapter->hw;
1358         int err;
1359
1360         /* disallow open during test */
1361         if (test_bit(__E1000_TESTING, &adapter->flags))
1362                 return -EBUSY;
1363
1364         netif_carrier_off(netdev);
1365
1366         /* allocate transmit descriptors */
1367         err = e1000_setup_all_tx_resources(adapter);
1368         if (err)
1369                 goto err_setup_tx;
1370
1371         /* allocate receive descriptors */
1372         err = e1000_setup_all_rx_resources(adapter);
1373         if (err)
1374                 goto err_setup_rx;
1375
1376         e1000_power_up_phy(adapter);
1377
1378         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379         if ((hw->mng_cookie.status &
1380                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381                 e1000_update_mng_vlan(adapter);
1382         }
1383
1384         /* before we allocate an interrupt, we must be ready to handle it.
1385          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386          * as soon as we call pci_request_irq, so we have to setup our
1387          * clean_rx handler before we do so.
1388          */
1389         e1000_configure(adapter);
1390
1391         err = e1000_request_irq(adapter);
1392         if (err)
1393                 goto err_req_irq;
1394
1395         /* From here on the code is the same as e1000_up() */
1396         clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398         napi_enable(&adapter->napi);
1399
1400         e1000_irq_enable(adapter);
1401
1402         netif_start_queue(netdev);
1403
1404         /* fire a link status change interrupt to start the watchdog */
1405         ew32(ICS, E1000_ICS_LSC);
1406
1407         return E1000_SUCCESS;
1408
1409 err_req_irq:
1410         e1000_power_down_phy(adapter);
1411         e1000_free_all_rx_resources(adapter);
1412 err_setup_rx:
1413         e1000_free_all_tx_resources(adapter);
1414 err_setup_tx:
1415         e1000_reset(adapter);
1416
1417         return err;
1418 }
1419
1420 /**
1421  * e1000_close - Disables a network interface
1422  * @netdev: network interface device structure
1423  *
1424  * Returns 0, this is not allowed to fail
1425  *
1426  * The close entry point is called when an interface is de-activated
1427  * by the OS.  The hardware is still under the drivers control, but
1428  * needs to be disabled.  A global MAC reset is issued to stop the
1429  * hardware, and all transmit and receive resources are freed.
1430  **/
1431 int e1000_close(struct net_device *netdev)
1432 {
1433         struct e1000_adapter *adapter = netdev_priv(netdev);
1434         struct e1000_hw *hw = &adapter->hw;
1435         int count = E1000_CHECK_RESET_COUNT;
1436
1437         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438                 usleep_range(10000, 20000);
1439
1440         WARN_ON(count < 0);
1441
1442         /* signal that we're down so that the reset task will no longer run */
1443         set_bit(__E1000_DOWN, &adapter->flags);
1444         clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446         e1000_down(adapter);
1447         e1000_power_down_phy(adapter);
1448         e1000_free_irq(adapter);
1449
1450         e1000_free_all_tx_resources(adapter);
1451         e1000_free_all_rx_resources(adapter);
1452
1453         /* kill manageability vlan ID if supported, but not if a vlan with
1454          * the same ID is registered on the host OS (let 8021q kill it)
1455          */
1456         if ((hw->mng_cookie.status &
1457              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458             !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460                                        adapter->mng_vlan_id);
1461         }
1462
1463         return 0;
1464 }
1465
1466 /**
1467  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468  * @adapter: address of board private structure
1469  * @start: address of beginning of memory
1470  * @len: length of memory
1471  **/
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473                                   unsigned long len)
1474 {
1475         struct e1000_hw *hw = &adapter->hw;
1476         unsigned long begin = (unsigned long)start;
1477         unsigned long end = begin + len;
1478
1479         /* First rev 82545 and 82546 need to not allow any memory
1480          * write location to cross 64k boundary due to errata 23
1481          */
1482         if (hw->mac_type == e1000_82545 ||
1483             hw->mac_type == e1000_ce4100 ||
1484             hw->mac_type == e1000_82546) {
1485                 return ((begin ^ (end - 1)) >> 16) == 0;
1486         }
1487
1488         return true;
1489 }
1490
1491 /**
1492  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493  * @adapter: board private structure
1494  * @txdr:    tx descriptor ring (for a specific queue) to setup
1495  *
1496  * Return 0 on success, negative on failure
1497  **/
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499                                     struct e1000_tx_ring *txdr)
1500 {
1501         struct pci_dev *pdev = adapter->pdev;
1502         int size;
1503
1504         size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505         txdr->buffer_info = vzalloc(size);
1506         if (!txdr->buffer_info)
1507                 return -ENOMEM;
1508
1509         /* round up to nearest 4K */
1510
1511         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512         txdr->size = ALIGN(txdr->size, 4096);
1513
1514         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515                                         GFP_KERNEL);
1516         if (!txdr->desc) {
1517 setup_tx_desc_die:
1518                 vfree(txdr->buffer_info);
1519                 return -ENOMEM;
1520         }
1521
1522         /* Fix for errata 23, can't cross 64kB boundary */
1523         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524                 void *olddesc = txdr->desc;
1525                 dma_addr_t olddma = txdr->dma;
1526                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527                       txdr->size, txdr->desc);
1528                 /* Try again, without freeing the previous */
1529                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530                                                 &txdr->dma, GFP_KERNEL);
1531                 /* Failed allocation, critical failure */
1532                 if (!txdr->desc) {
1533                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534                                           olddma);
1535                         goto setup_tx_desc_die;
1536                 }
1537
1538                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539                         /* give up */
1540                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541                                           txdr->dma);
1542                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543                                           olddma);
1544                         e_err(probe, "Unable to allocate aligned memory "
1545                               "for the transmit descriptor ring\n");
1546                         vfree(txdr->buffer_info);
1547                         return -ENOMEM;
1548                 } else {
1549                         /* Free old allocation, new allocation was successful */
1550                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551                                           olddma);
1552                 }
1553         }
1554         memset(txdr->desc, 0, txdr->size);
1555
1556         txdr->next_to_use = 0;
1557         txdr->next_to_clean = 0;
1558
1559         return 0;
1560 }
1561
1562 /**
1563  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564  *                                (Descriptors) for all queues
1565  * @adapter: board private structure
1566  *
1567  * Return 0 on success, negative on failure
1568  **/
1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570 {
1571         int i, err = 0;
1572
1573         for (i = 0; i < adapter->num_tx_queues; i++) {
1574                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575                 if (err) {
1576                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577                         for (i-- ; i >= 0; i--)
1578                                 e1000_free_tx_resources(adapter,
1579                                                         &adapter->tx_ring[i]);
1580                         break;
1581                 }
1582         }
1583
1584         return err;
1585 }
1586
1587 /**
1588  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589  * @adapter: board private structure
1590  *
1591  * Configure the Tx unit of the MAC after a reset.
1592  **/
1593 static void e1000_configure_tx(struct e1000_adapter *adapter)
1594 {
1595         u64 tdba;
1596         struct e1000_hw *hw = &adapter->hw;
1597         u32 tdlen, tctl, tipg;
1598         u32 ipgr1, ipgr2;
1599
1600         /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602         switch (adapter->num_tx_queues) {
1603         case 1:
1604         default:
1605                 tdba = adapter->tx_ring[0].dma;
1606                 tdlen = adapter->tx_ring[0].count *
1607                         sizeof(struct e1000_tx_desc);
1608                 ew32(TDLEN, tdlen);
1609                 ew32(TDBAH, (tdba >> 32));
1610                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611                 ew32(TDT, 0);
1612                 ew32(TDH, 0);
1613                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614                                            E1000_TDH : E1000_82542_TDH);
1615                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616                                            E1000_TDT : E1000_82542_TDT);
1617                 break;
1618         }
1619
1620         /* Set the default values for the Tx Inter Packet Gap timer */
1621         if ((hw->media_type == e1000_media_type_fiber ||
1622              hw->media_type == e1000_media_type_internal_serdes))
1623                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624         else
1625                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627         switch (hw->mac_type) {
1628         case e1000_82542_rev2_0:
1629         case e1000_82542_rev2_1:
1630                 tipg = DEFAULT_82542_TIPG_IPGT;
1631                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633                 break;
1634         default:
1635                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637                 break;
1638         }
1639         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641         ew32(TIPG, tipg);
1642
1643         /* Set the Tx Interrupt Delay register */
1644
1645         ew32(TIDV, adapter->tx_int_delay);
1646         if (hw->mac_type >= e1000_82540)
1647                 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649         /* Program the Transmit Control Register */
1650
1651         tctl = er32(TCTL);
1652         tctl &= ~E1000_TCTL_CT;
1653         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656         e1000_config_collision_dist(hw);
1657
1658         /* Setup Transmit Descriptor Settings for eop descriptor */
1659         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661         /* only set IDE if we are delaying interrupts using the timers */
1662         if (adapter->tx_int_delay)
1663                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665         if (hw->mac_type < e1000_82543)
1666                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667         else
1668                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670         /* Cache if we're 82544 running in PCI-X because we'll
1671          * need this to apply a workaround later in the send path.
1672          */
1673         if (hw->mac_type == e1000_82544 &&
1674             hw->bus_type == e1000_bus_type_pcix)
1675                 adapter->pcix_82544 = true;
1676
1677         ew32(TCTL, tctl);
1678
1679 }
1680
1681 /**
1682  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683  * @adapter: board private structure
1684  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685  *
1686  * Returns 0 on success, negative on failure
1687  **/
1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689                                     struct e1000_rx_ring *rxdr)
1690 {
1691         struct pci_dev *pdev = adapter->pdev;
1692         int size, desc_len;
1693
1694         size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695         rxdr->buffer_info = vzalloc(size);
1696         if (!rxdr->buffer_info)
1697                 return -ENOMEM;
1698
1699         desc_len = sizeof(struct e1000_rx_desc);
1700
1701         /* Round up to nearest 4K */
1702
1703         rxdr->size = rxdr->count * desc_len;
1704         rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707                                         GFP_KERNEL);
1708         if (!rxdr->desc) {
1709 setup_rx_desc_die:
1710                 vfree(rxdr->buffer_info);
1711                 return -ENOMEM;
1712         }
1713
1714         /* Fix for errata 23, can't cross 64kB boundary */
1715         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716                 void *olddesc = rxdr->desc;
1717                 dma_addr_t olddma = rxdr->dma;
1718                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719                       rxdr->size, rxdr->desc);
1720                 /* Try again, without freeing the previous */
1721                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722                                                 &rxdr->dma, GFP_KERNEL);
1723                 /* Failed allocation, critical failure */
1724                 if (!rxdr->desc) {
1725                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726                                           olddma);
1727                         goto setup_rx_desc_die;
1728                 }
1729
1730                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731                         /* give up */
1732                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733                                           rxdr->dma);
1734                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735                                           olddma);
1736                         e_err(probe, "Unable to allocate aligned memory for "
1737                               "the Rx descriptor ring\n");
1738                         goto setup_rx_desc_die;
1739                 } else {
1740                         /* Free old allocation, new allocation was successful */
1741                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742                                           olddma);
1743                 }
1744         }
1745         memset(rxdr->desc, 0, rxdr->size);
1746
1747         rxdr->next_to_clean = 0;
1748         rxdr->next_to_use = 0;
1749         rxdr->rx_skb_top = NULL;
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756  *                                (Descriptors) for all queues
1757  * @adapter: board private structure
1758  *
1759  * Return 0 on success, negative on failure
1760  **/
1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762 {
1763         int i, err = 0;
1764
1765         for (i = 0; i < adapter->num_rx_queues; i++) {
1766                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767                 if (err) {
1768                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769                         for (i-- ; i >= 0; i--)
1770                                 e1000_free_rx_resources(adapter,
1771                                                         &adapter->rx_ring[i]);
1772                         break;
1773                 }
1774         }
1775
1776         return err;
1777 }
1778
1779 /**
1780  * e1000_setup_rctl - configure the receive control registers
1781  * @adapter: Board private structure
1782  **/
1783 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784 {
1785         struct e1000_hw *hw = &adapter->hw;
1786         u32 rctl;
1787
1788         rctl = er32(RCTL);
1789
1790         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792         rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793                 E1000_RCTL_RDMTS_HALF |
1794                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796         if (hw->tbi_compatibility_on == 1)
1797                 rctl |= E1000_RCTL_SBP;
1798         else
1799                 rctl &= ~E1000_RCTL_SBP;
1800
1801         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802                 rctl &= ~E1000_RCTL_LPE;
1803         else
1804                 rctl |= E1000_RCTL_LPE;
1805
1806         /* Setup buffer sizes */
1807         rctl &= ~E1000_RCTL_SZ_4096;
1808         rctl |= E1000_RCTL_BSEX;
1809         switch (adapter->rx_buffer_len) {
1810         case E1000_RXBUFFER_2048:
1811         default:
1812                 rctl |= E1000_RCTL_SZ_2048;
1813                 rctl &= ~E1000_RCTL_BSEX;
1814                 break;
1815         case E1000_RXBUFFER_4096:
1816                 rctl |= E1000_RCTL_SZ_4096;
1817                 break;
1818         case E1000_RXBUFFER_8192:
1819                 rctl |= E1000_RCTL_SZ_8192;
1820                 break;
1821         case E1000_RXBUFFER_16384:
1822                 rctl |= E1000_RCTL_SZ_16384;
1823                 break;
1824         }
1825
1826         /* This is useful for sniffing bad packets. */
1827         if (adapter->netdev->features & NETIF_F_RXALL) {
1828                 /* UPE and MPE will be handled by normal PROMISC logic
1829                  * in e1000e_set_rx_mode
1830                  */
1831                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836                           E1000_RCTL_DPF | /* Allow filtered pause */
1837                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839                  * and that breaks VLANs.
1840                  */
1841         }
1842
1843         ew32(RCTL, rctl);
1844 }
1845
1846 /**
1847  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848  * @adapter: board private structure
1849  *
1850  * Configure the Rx unit of the MAC after a reset.
1851  **/
1852 static void e1000_configure_rx(struct e1000_adapter *adapter)
1853 {
1854         u64 rdba;
1855         struct e1000_hw *hw = &adapter->hw;
1856         u32 rdlen, rctl, rxcsum;
1857
1858         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859                 rdlen = adapter->rx_ring[0].count *
1860                         sizeof(struct e1000_rx_desc);
1861                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863         } else {
1864                 rdlen = adapter->rx_ring[0].count *
1865                         sizeof(struct e1000_rx_desc);
1866                 adapter->clean_rx = e1000_clean_rx_irq;
1867                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868         }
1869
1870         /* disable receives while setting up the descriptors */
1871         rctl = er32(RCTL);
1872         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874         /* set the Receive Delay Timer Register */
1875         ew32(RDTR, adapter->rx_int_delay);
1876
1877         if (hw->mac_type >= e1000_82540) {
1878                 ew32(RADV, adapter->rx_abs_int_delay);
1879                 if (adapter->itr_setting != 0)
1880                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1881         }
1882
1883         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884          * the Base and Length of the Rx Descriptor Ring
1885          */
1886         switch (adapter->num_rx_queues) {
1887         case 1:
1888         default:
1889                 rdba = adapter->rx_ring[0].dma;
1890                 ew32(RDLEN, rdlen);
1891                 ew32(RDBAH, (rdba >> 32));
1892                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893                 ew32(RDT, 0);
1894                 ew32(RDH, 0);
1895                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896                                            E1000_RDH : E1000_82542_RDH);
1897                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898                                            E1000_RDT : E1000_82542_RDT);
1899                 break;
1900         }
1901
1902         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903         if (hw->mac_type >= e1000_82543) {
1904                 rxcsum = er32(RXCSUM);
1905                 if (adapter->rx_csum)
1906                         rxcsum |= E1000_RXCSUM_TUOFL;
1907                 else
1908                         /* don't need to clear IPPCSE as it defaults to 0 */
1909                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1910                 ew32(RXCSUM, rxcsum);
1911         }
1912
1913         /* Enable Receives */
1914         ew32(RCTL, rctl | E1000_RCTL_EN);
1915 }
1916
1917 /**
1918  * e1000_free_tx_resources - Free Tx Resources per Queue
1919  * @adapter: board private structure
1920  * @tx_ring: Tx descriptor ring for a specific queue
1921  *
1922  * Free all transmit software resources
1923  **/
1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925                                     struct e1000_tx_ring *tx_ring)
1926 {
1927         struct pci_dev *pdev = adapter->pdev;
1928
1929         e1000_clean_tx_ring(adapter, tx_ring);
1930
1931         vfree(tx_ring->buffer_info);
1932         tx_ring->buffer_info = NULL;
1933
1934         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935                           tx_ring->dma);
1936
1937         tx_ring->desc = NULL;
1938 }
1939
1940 /**
1941  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942  * @adapter: board private structure
1943  *
1944  * Free all transmit software resources
1945  **/
1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947 {
1948         int i;
1949
1950         for (i = 0; i < adapter->num_tx_queues; i++)
1951                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952 }
1953
1954 static void
1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956                                  struct e1000_tx_buffer *buffer_info,
1957                                  int budget)
1958 {
1959         if (buffer_info->dma) {
1960                 if (buffer_info->mapped_as_page)
1961                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962                                        buffer_info->length, DMA_TO_DEVICE);
1963                 else
1964                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965                                          buffer_info->length,
1966                                          DMA_TO_DEVICE);
1967                 buffer_info->dma = 0;
1968         }
1969         if (buffer_info->skb) {
1970                 napi_consume_skb(buffer_info->skb, budget);
1971                 buffer_info->skb = NULL;
1972         }
1973         buffer_info->time_stamp = 0;
1974         /* buffer_info must be completely set up in the transmit path */
1975 }
1976
1977 /**
1978  * e1000_clean_tx_ring - Free Tx Buffers
1979  * @adapter: board private structure
1980  * @tx_ring: ring to be cleaned
1981  **/
1982 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983                                 struct e1000_tx_ring *tx_ring)
1984 {
1985         struct e1000_hw *hw = &adapter->hw;
1986         struct e1000_tx_buffer *buffer_info;
1987         unsigned long size;
1988         unsigned int i;
1989
1990         /* Free all the Tx ring sk_buffs */
1991
1992         for (i = 0; i < tx_ring->count; i++) {
1993                 buffer_info = &tx_ring->buffer_info[i];
1994                 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995         }
1996
1997         netdev_reset_queue(adapter->netdev);
1998         size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999         memset(tx_ring->buffer_info, 0, size);
2000
2001         /* Zero out the descriptor ring */
2002
2003         memset(tx_ring->desc, 0, tx_ring->size);
2004
2005         tx_ring->next_to_use = 0;
2006         tx_ring->next_to_clean = 0;
2007         tx_ring->last_tx_tso = false;
2008
2009         writel(0, hw->hw_addr + tx_ring->tdh);
2010         writel(0, hw->hw_addr + tx_ring->tdt);
2011 }
2012
2013 /**
2014  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015  * @adapter: board private structure
2016  **/
2017 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018 {
2019         int i;
2020
2021         for (i = 0; i < adapter->num_tx_queues; i++)
2022                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023 }
2024
2025 /**
2026  * e1000_free_rx_resources - Free Rx Resources
2027  * @adapter: board private structure
2028  * @rx_ring: ring to clean the resources from
2029  *
2030  * Free all receive software resources
2031  **/
2032 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033                                     struct e1000_rx_ring *rx_ring)
2034 {
2035         struct pci_dev *pdev = adapter->pdev;
2036
2037         e1000_clean_rx_ring(adapter, rx_ring);
2038
2039         vfree(rx_ring->buffer_info);
2040         rx_ring->buffer_info = NULL;
2041
2042         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043                           rx_ring->dma);
2044
2045         rx_ring->desc = NULL;
2046 }
2047
2048 /**
2049  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050  * @adapter: board private structure
2051  *
2052  * Free all receive software resources
2053  **/
2054 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055 {
2056         int i;
2057
2058         for (i = 0; i < adapter->num_rx_queues; i++)
2059                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060 }
2061
2062 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064 {
2065         return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067 }
2068
2069 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070 {
2071         unsigned int len = e1000_frag_len(a);
2072         u8 *data = netdev_alloc_frag(len);
2073
2074         if (likely(data))
2075                 data += E1000_HEADROOM;
2076         return data;
2077 }
2078
2079 /**
2080  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081  * @adapter: board private structure
2082  * @rx_ring: ring to free buffers from
2083  **/
2084 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085                                 struct e1000_rx_ring *rx_ring)
2086 {
2087         struct e1000_hw *hw = &adapter->hw;
2088         struct e1000_rx_buffer *buffer_info;
2089         struct pci_dev *pdev = adapter->pdev;
2090         unsigned long size;
2091         unsigned int i;
2092
2093         /* Free all the Rx netfrags */
2094         for (i = 0; i < rx_ring->count; i++) {
2095                 buffer_info = &rx_ring->buffer_info[i];
2096                 if (adapter->clean_rx == e1000_clean_rx_irq) {
2097                         if (buffer_info->dma)
2098                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
2099                                                  adapter->rx_buffer_len,
2100                                                  DMA_FROM_DEVICE);
2101                         if (buffer_info->rxbuf.data) {
2102                                 skb_free_frag(buffer_info->rxbuf.data);
2103                                 buffer_info->rxbuf.data = NULL;
2104                         }
2105                 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106                         if (buffer_info->dma)
2107                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
2108                                                adapter->rx_buffer_len,
2109                                                DMA_FROM_DEVICE);
2110                         if (buffer_info->rxbuf.page) {
2111                                 put_page(buffer_info->rxbuf.page);
2112                                 buffer_info->rxbuf.page = NULL;
2113                         }
2114                 }
2115
2116                 buffer_info->dma = 0;
2117         }
2118
2119         /* there also may be some cached data from a chained receive */
2120         napi_free_frags(&adapter->napi);
2121         rx_ring->rx_skb_top = NULL;
2122
2123         size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124         memset(rx_ring->buffer_info, 0, size);
2125
2126         /* Zero out the descriptor ring */
2127         memset(rx_ring->desc, 0, rx_ring->size);
2128
2129         rx_ring->next_to_clean = 0;
2130         rx_ring->next_to_use = 0;
2131
2132         writel(0, hw->hw_addr + rx_ring->rdh);
2133         writel(0, hw->hw_addr + rx_ring->rdt);
2134 }
2135
2136 /**
2137  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138  * @adapter: board private structure
2139  **/
2140 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141 {
2142         int i;
2143
2144         for (i = 0; i < adapter->num_rx_queues; i++)
2145                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146 }
2147
2148 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149  * and memory write and invalidate disabled for certain operations
2150  */
2151 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152 {
2153         struct e1000_hw *hw = &adapter->hw;
2154         struct net_device *netdev = adapter->netdev;
2155         u32 rctl;
2156
2157         e1000_pci_clear_mwi(hw);
2158
2159         rctl = er32(RCTL);
2160         rctl |= E1000_RCTL_RST;
2161         ew32(RCTL, rctl);
2162         E1000_WRITE_FLUSH();
2163         mdelay(5);
2164
2165         if (netif_running(netdev))
2166                 e1000_clean_all_rx_rings(adapter);
2167 }
2168
2169 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170 {
2171         struct e1000_hw *hw = &adapter->hw;
2172         struct net_device *netdev = adapter->netdev;
2173         u32 rctl;
2174
2175         rctl = er32(RCTL);
2176         rctl &= ~E1000_RCTL_RST;
2177         ew32(RCTL, rctl);
2178         E1000_WRITE_FLUSH();
2179         mdelay(5);
2180
2181         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182                 e1000_pci_set_mwi(hw);
2183
2184         if (netif_running(netdev)) {
2185                 /* No need to loop, because 82542 supports only 1 queue */
2186                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187                 e1000_configure_rx(adapter);
2188                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189         }
2190 }
2191
2192 /**
2193  * e1000_set_mac - Change the Ethernet Address of the NIC
2194  * @netdev: network interface device structure
2195  * @p: pointer to an address structure
2196  *
2197  * Returns 0 on success, negative on failure
2198  **/
2199 static int e1000_set_mac(struct net_device *netdev, void *p)
2200 {
2201         struct e1000_adapter *adapter = netdev_priv(netdev);
2202         struct e1000_hw *hw = &adapter->hw;
2203         struct sockaddr *addr = p;
2204
2205         if (!is_valid_ether_addr(addr->sa_data))
2206                 return -EADDRNOTAVAIL;
2207
2208         /* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210         if (hw->mac_type == e1000_82542_rev2_0)
2211                 e1000_enter_82542_rst(adapter);
2212
2213         eth_hw_addr_set(netdev, addr->sa_data);
2214         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216         e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218         if (hw->mac_type == e1000_82542_rev2_0)
2219                 e1000_leave_82542_rst(adapter);
2220
2221         return 0;
2222 }
2223
2224 /**
2225  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226  * @netdev: network interface device structure
2227  *
2228  * The set_rx_mode entry point is called whenever the unicast or multicast
2229  * address lists or the network interface flags are updated. This routine is
2230  * responsible for configuring the hardware for proper unicast, multicast,
2231  * promiscuous mode, and all-multi behavior.
2232  **/
2233 static void e1000_set_rx_mode(struct net_device *netdev)
2234 {
2235         struct e1000_adapter *adapter = netdev_priv(netdev);
2236         struct e1000_hw *hw = &adapter->hw;
2237         struct netdev_hw_addr *ha;
2238         bool use_uc = false;
2239         u32 rctl;
2240         u32 hash_value;
2241         int i, rar_entries = E1000_RAR_ENTRIES;
2242         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245         if (!mcarray)
2246                 return;
2247
2248         /* Check for Promiscuous and All Multicast modes */
2249
2250         rctl = er32(RCTL);
2251
2252         if (netdev->flags & IFF_PROMISC) {
2253                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254                 rctl &= ~E1000_RCTL_VFE;
2255         } else {
2256                 if (netdev->flags & IFF_ALLMULTI)
2257                         rctl |= E1000_RCTL_MPE;
2258                 else
2259                         rctl &= ~E1000_RCTL_MPE;
2260                 /* Enable VLAN filter if there is a VLAN */
2261                 if (e1000_vlan_used(adapter))
2262                         rctl |= E1000_RCTL_VFE;
2263         }
2264
2265         if (netdev_uc_count(netdev) > rar_entries - 1) {
2266                 rctl |= E1000_RCTL_UPE;
2267         } else if (!(netdev->flags & IFF_PROMISC)) {
2268                 rctl &= ~E1000_RCTL_UPE;
2269                 use_uc = true;
2270         }
2271
2272         ew32(RCTL, rctl);
2273
2274         /* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276         if (hw->mac_type == e1000_82542_rev2_0)
2277                 e1000_enter_82542_rst(adapter);
2278
2279         /* load the first 14 addresses into the exact filters 1-14. Unicast
2280          * addresses take precedence to avoid disabling unicast filtering
2281          * when possible.
2282          *
2283          * RAR 0 is used for the station MAC address
2284          * if there are not 14 addresses, go ahead and clear the filters
2285          */
2286         i = 1;
2287         if (use_uc)
2288                 netdev_for_each_uc_addr(ha, netdev) {
2289                         if (i == rar_entries)
2290                                 break;
2291                         e1000_rar_set(hw, ha->addr, i++);
2292                 }
2293
2294         netdev_for_each_mc_addr(ha, netdev) {
2295                 if (i == rar_entries) {
2296                         /* load any remaining addresses into the hash table */
2297                         u32 hash_reg, hash_bit, mta;
2298                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299                         hash_reg = (hash_value >> 5) & 0x7F;
2300                         hash_bit = hash_value & 0x1F;
2301                         mta = (1 << hash_bit);
2302                         mcarray[hash_reg] |= mta;
2303                 } else {
2304                         e1000_rar_set(hw, ha->addr, i++);
2305                 }
2306         }
2307
2308         for (; i < rar_entries; i++) {
2309                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310                 E1000_WRITE_FLUSH();
2311                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312                 E1000_WRITE_FLUSH();
2313         }
2314
2315         /* write the hash table completely, write from bottom to avoid
2316          * both stupid write combining chipsets, and flushing each write
2317          */
2318         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319                 /* If we are on an 82544 has an errata where writing odd
2320                  * offsets overwrites the previous even offset, but writing
2321                  * backwards over the range solves the issue by always
2322                  * writing the odd offset first
2323                  */
2324                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325         }
2326         E1000_WRITE_FLUSH();
2327
2328         if (hw->mac_type == e1000_82542_rev2_0)
2329                 e1000_leave_82542_rst(adapter);
2330
2331         kfree(mcarray);
2332 }
2333
2334 /**
2335  * e1000_update_phy_info_task - get phy info
2336  * @work: work struct contained inside adapter struct
2337  *
2338  * Need to wait a few seconds after link up to get diagnostic information from
2339  * the phy
2340  */
2341 static void e1000_update_phy_info_task(struct work_struct *work)
2342 {
2343         struct e1000_adapter *adapter = container_of(work,
2344                                                      struct e1000_adapter,
2345                                                      phy_info_task.work);
2346
2347         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348 }
2349
2350 /**
2351  * e1000_82547_tx_fifo_stall_task - task to complete work
2352  * @work: work struct contained inside adapter struct
2353  **/
2354 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355 {
2356         struct e1000_adapter *adapter = container_of(work,
2357                                                      struct e1000_adapter,
2358                                                      fifo_stall_task.work);
2359         struct e1000_hw *hw = &adapter->hw;
2360         struct net_device *netdev = adapter->netdev;
2361         u32 tctl;
2362
2363         if (atomic_read(&adapter->tx_fifo_stall)) {
2364                 if ((er32(TDT) == er32(TDH)) &&
2365                    (er32(TDFT) == er32(TDFH)) &&
2366                    (er32(TDFTS) == er32(TDFHS))) {
2367                         tctl = er32(TCTL);
2368                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369                         ew32(TDFT, adapter->tx_head_addr);
2370                         ew32(TDFH, adapter->tx_head_addr);
2371                         ew32(TDFTS, adapter->tx_head_addr);
2372                         ew32(TDFHS, adapter->tx_head_addr);
2373                         ew32(TCTL, tctl);
2374                         E1000_WRITE_FLUSH();
2375
2376                         adapter->tx_fifo_head = 0;
2377                         atomic_set(&adapter->tx_fifo_stall, 0);
2378                         netif_wake_queue(netdev);
2379                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381                 }
2382         }
2383 }
2384
2385 bool e1000_has_link(struct e1000_adapter *adapter)
2386 {
2387         struct e1000_hw *hw = &adapter->hw;
2388         bool link_active = false;
2389
2390         /* get_link_status is set on LSC (link status) interrupt or rx
2391          * sequence error interrupt (except on intel ce4100).
2392          * get_link_status will stay false until the
2393          * e1000_check_for_link establishes link for copper adapters
2394          * ONLY
2395          */
2396         switch (hw->media_type) {
2397         case e1000_media_type_copper:
2398                 if (hw->mac_type == e1000_ce4100)
2399                         hw->get_link_status = 1;
2400                 if (hw->get_link_status) {
2401                         e1000_check_for_link(hw);
2402                         link_active = !hw->get_link_status;
2403                 } else {
2404                         link_active = true;
2405                 }
2406                 break;
2407         case e1000_media_type_fiber:
2408                 e1000_check_for_link(hw);
2409                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410                 break;
2411         case e1000_media_type_internal_serdes:
2412                 e1000_check_for_link(hw);
2413                 link_active = hw->serdes_has_link;
2414                 break;
2415         default:
2416                 break;
2417         }
2418
2419         return link_active;
2420 }
2421
2422 /**
2423  * e1000_watchdog - work function
2424  * @work: work struct contained inside adapter struct
2425  **/
2426 static void e1000_watchdog(struct work_struct *work)
2427 {
2428         struct e1000_adapter *adapter = container_of(work,
2429                                                      struct e1000_adapter,
2430                                                      watchdog_task.work);
2431         struct e1000_hw *hw = &adapter->hw;
2432         struct net_device *netdev = adapter->netdev;
2433         struct e1000_tx_ring *txdr = adapter->tx_ring;
2434         u32 link, tctl;
2435
2436         link = e1000_has_link(adapter);
2437         if ((netif_carrier_ok(netdev)) && link)
2438                 goto link_up;
2439
2440         if (link) {
2441                 if (!netif_carrier_ok(netdev)) {
2442                         u32 ctrl;
2443                         /* update snapshot of PHY registers on LSC */
2444                         e1000_get_speed_and_duplex(hw,
2445                                                    &adapter->link_speed,
2446                                                    &adapter->link_duplex);
2447
2448                         ctrl = er32(CTRL);
2449                         pr_info("%s NIC Link is Up %d Mbps %s, "
2450                                 "Flow Control: %s\n",
2451                                 netdev->name,
2452                                 adapter->link_speed,
2453                                 adapter->link_duplex == FULL_DUPLEX ?
2454                                 "Full Duplex" : "Half Duplex",
2455                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460                         /* adjust timeout factor according to speed/duplex */
2461                         adapter->tx_timeout_factor = 1;
2462                         switch (adapter->link_speed) {
2463                         case SPEED_10:
2464                                 adapter->tx_timeout_factor = 16;
2465                                 break;
2466                         case SPEED_100:
2467                                 /* maybe add some timeout factor ? */
2468                                 break;
2469                         }
2470
2471                         /* enable transmits in the hardware */
2472                         tctl = er32(TCTL);
2473                         tctl |= E1000_TCTL_EN;
2474                         ew32(TCTL, tctl);
2475
2476                         netif_carrier_on(netdev);
2477                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2478                                 schedule_delayed_work(&adapter->phy_info_task,
2479                                                       2 * HZ);
2480                         adapter->smartspeed = 0;
2481                 }
2482         } else {
2483                 if (netif_carrier_ok(netdev)) {
2484                         adapter->link_speed = 0;
2485                         adapter->link_duplex = 0;
2486                         pr_info("%s NIC Link is Down\n",
2487                                 netdev->name);
2488                         netif_carrier_off(netdev);
2489
2490                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2491                                 schedule_delayed_work(&adapter->phy_info_task,
2492                                                       2 * HZ);
2493                 }
2494
2495                 e1000_smartspeed(adapter);
2496         }
2497
2498 link_up:
2499         e1000_update_stats(adapter);
2500
2501         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502         adapter->tpt_old = adapter->stats.tpt;
2503         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504         adapter->colc_old = adapter->stats.colc;
2505
2506         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507         adapter->gorcl_old = adapter->stats.gorcl;
2508         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509         adapter->gotcl_old = adapter->stats.gotcl;
2510
2511         e1000_update_adaptive(hw);
2512
2513         if (!netif_carrier_ok(netdev)) {
2514                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515                         /* We've lost link, so the controller stops DMA,
2516                          * but we've got queued Tx work that's never going
2517                          * to get done, so reset controller to flush Tx.
2518                          * (Do the reset outside of interrupt context).
2519                          */
2520                         adapter->tx_timeout_count++;
2521                         schedule_work(&adapter->reset_task);
2522                         /* exit immediately since reset is imminent */
2523                         return;
2524                 }
2525         }
2526
2527         /* Simple mode for Interrupt Throttle Rate (ITR) */
2528         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2530                  * Total asymmetrical Tx or Rx gets ITR=8000;
2531                  * everyone else is between 2000-8000.
2532                  */
2533                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2535                             adapter->gotcl - adapter->gorcl :
2536                             adapter->gorcl - adapter->gotcl) / 10000;
2537                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539                 ew32(ITR, 1000000000 / (itr * 256));
2540         }
2541
2542         /* Cause software interrupt to ensure rx ring is cleaned */
2543         ew32(ICS, E1000_ICS_RXDMT0);
2544
2545         /* Force detection of hung controller every watchdog period */
2546         adapter->detect_tx_hung = true;
2547
2548         /* Reschedule the task */
2549         if (!test_bit(__E1000_DOWN, &adapter->flags))
2550                 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551 }
2552
2553 enum latency_range {
2554         lowest_latency = 0,
2555         low_latency = 1,
2556         bulk_latency = 2,
2557         latency_invalid = 255
2558 };
2559
2560 /**
2561  * e1000_update_itr - update the dynamic ITR value based on statistics
2562  * @adapter: pointer to adapter
2563  * @itr_setting: current adapter->itr
2564  * @packets: the number of packets during this measurement interval
2565  * @bytes: the number of bytes during this measurement interval
2566  *
2567  *      Stores a new ITR value based on packets and byte
2568  *      counts during the last interrupt.  The advantage of per interrupt
2569  *      computation is faster updates and more accurate ITR for the current
2570  *      traffic pattern.  Constants in this function were computed
2571  *      based on theoretical maximum wire speed and thresholds were set based
2572  *      on testing data as well as attempting to minimize response time
2573  *      while increasing bulk throughput.
2574  *      this functionality is controlled by the InterruptThrottleRate module
2575  *      parameter (see e1000_param.c)
2576  **/
2577 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578                                      u16 itr_setting, int packets, int bytes)
2579 {
2580         unsigned int retval = itr_setting;
2581         struct e1000_hw *hw = &adapter->hw;
2582
2583         if (unlikely(hw->mac_type < e1000_82540))
2584                 goto update_itr_done;
2585
2586         if (packets == 0)
2587                 goto update_itr_done;
2588
2589         switch (itr_setting) {
2590         case lowest_latency:
2591                 /* jumbo frames get bulk treatment*/
2592                 if (bytes/packets > 8000)
2593                         retval = bulk_latency;
2594                 else if ((packets < 5) && (bytes > 512))
2595                         retval = low_latency;
2596                 break;
2597         case low_latency:  /* 50 usec aka 20000 ints/s */
2598                 if (bytes > 10000) {
2599                         /* jumbo frames need bulk latency setting */
2600                         if (bytes/packets > 8000)
2601                                 retval = bulk_latency;
2602                         else if ((packets < 10) || ((bytes/packets) > 1200))
2603                                 retval = bulk_latency;
2604                         else if ((packets > 35))
2605                                 retval = lowest_latency;
2606                 } else if (bytes/packets > 2000)
2607                         retval = bulk_latency;
2608                 else if (packets <= 2 && bytes < 512)
2609                         retval = lowest_latency;
2610                 break;
2611         case bulk_latency: /* 250 usec aka 4000 ints/s */
2612                 if (bytes > 25000) {
2613                         if (packets > 35)
2614                                 retval = low_latency;
2615                 } else if (bytes < 6000) {
2616                         retval = low_latency;
2617                 }
2618                 break;
2619         }
2620
2621 update_itr_done:
2622         return retval;
2623 }
2624
2625 static void e1000_set_itr(struct e1000_adapter *adapter)
2626 {
2627         struct e1000_hw *hw = &adapter->hw;
2628         u16 current_itr;
2629         u32 new_itr = adapter->itr;
2630
2631         if (unlikely(hw->mac_type < e1000_82540))
2632                 return;
2633
2634         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635         if (unlikely(adapter->link_speed != SPEED_1000)) {
2636                 new_itr = 4000;
2637                 goto set_itr_now;
2638         }
2639
2640         adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641                                            adapter->total_tx_packets,
2642                                            adapter->total_tx_bytes);
2643         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645                 adapter->tx_itr = low_latency;
2646
2647         adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648                                            adapter->total_rx_packets,
2649                                            adapter->total_rx_bytes);
2650         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652                 adapter->rx_itr = low_latency;
2653
2654         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656         switch (current_itr) {
2657         /* counts and packets in update_itr are dependent on these numbers */
2658         case lowest_latency:
2659                 new_itr = 70000;
2660                 break;
2661         case low_latency:
2662                 new_itr = 20000; /* aka hwitr = ~200 */
2663                 break;
2664         case bulk_latency:
2665                 new_itr = 4000;
2666                 break;
2667         default:
2668                 break;
2669         }
2670
2671 set_itr_now:
2672         if (new_itr != adapter->itr) {
2673                 /* this attempts to bias the interrupt rate towards Bulk
2674                  * by adding intermediate steps when interrupt rate is
2675                  * increasing
2676                  */
2677                 new_itr = new_itr > adapter->itr ?
2678                           min(adapter->itr + (new_itr >> 2), new_itr) :
2679                           new_itr;
2680                 adapter->itr = new_itr;
2681                 ew32(ITR, 1000000000 / (new_itr * 256));
2682         }
2683 }
2684
2685 #define E1000_TX_FLAGS_CSUM             0x00000001
2686 #define E1000_TX_FLAGS_VLAN             0x00000002
2687 #define E1000_TX_FLAGS_TSO              0x00000004
2688 #define E1000_TX_FLAGS_IPV4             0x00000008
2689 #define E1000_TX_FLAGS_NO_FCS           0x00000010
2690 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2691 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2692
2693 static int e1000_tso(struct e1000_adapter *adapter,
2694                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695                      __be16 protocol)
2696 {
2697         struct e1000_context_desc *context_desc;
2698         struct e1000_tx_buffer *buffer_info;
2699         unsigned int i;
2700         u32 cmd_length = 0;
2701         u16 ipcse = 0, tucse, mss;
2702         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704         if (skb_is_gso(skb)) {
2705                 int err;
2706
2707                 err = skb_cow_head(skb, 0);
2708                 if (err < 0)
2709                         return err;
2710
2711                 hdr_len = skb_tcp_all_headers(skb);
2712                 mss = skb_shinfo(skb)->gso_size;
2713                 if (protocol == htons(ETH_P_IP)) {
2714                         struct iphdr *iph = ip_hdr(skb);
2715                         iph->tot_len = 0;
2716                         iph->check = 0;
2717                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718                                                                  iph->daddr, 0,
2719                                                                  IPPROTO_TCP,
2720                                                                  0);
2721                         cmd_length = E1000_TXD_CMD_IP;
2722                         ipcse = skb_transport_offset(skb) - 1;
2723                 } else if (skb_is_gso_v6(skb)) {
2724                         tcp_v6_gso_csum_prep(skb);
2725                         ipcse = 0;
2726                 }
2727                 ipcss = skb_network_offset(skb);
2728                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729                 tucss = skb_transport_offset(skb);
2730                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731                 tucse = 0;
2732
2733                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736                 i = tx_ring->next_to_use;
2737                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738                 buffer_info = &tx_ring->buffer_info[i];
2739
2740                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2741                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2742                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2743                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2744                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2745                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2747                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750                 buffer_info->time_stamp = jiffies;
2751                 buffer_info->next_to_watch = i;
2752
2753                 if (++i == tx_ring->count)
2754                         i = 0;
2755
2756                 tx_ring->next_to_use = i;
2757
2758                 return true;
2759         }
2760         return false;
2761 }
2762
2763 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765                           __be16 protocol)
2766 {
2767         struct e1000_context_desc *context_desc;
2768         struct e1000_tx_buffer *buffer_info;
2769         unsigned int i;
2770         u8 css;
2771         u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773         if (skb->ip_summed != CHECKSUM_PARTIAL)
2774                 return false;
2775
2776         switch (protocol) {
2777         case cpu_to_be16(ETH_P_IP):
2778                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779                         cmd_len |= E1000_TXD_CMD_TCP;
2780                 break;
2781         case cpu_to_be16(ETH_P_IPV6):
2782                 /* XXX not handling all IPV6 headers */
2783                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784                         cmd_len |= E1000_TXD_CMD_TCP;
2785                 break;
2786         default:
2787                 if (unlikely(net_ratelimit()))
2788                         e_warn(drv, "checksum_partial proto=%x!\n",
2789                                skb->protocol);
2790                 break;
2791         }
2792
2793         css = skb_checksum_start_offset(skb);
2794
2795         i = tx_ring->next_to_use;
2796         buffer_info = &tx_ring->buffer_info[i];
2797         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799         context_desc->lower_setup.ip_config = 0;
2800         context_desc->upper_setup.tcp_fields.tucss = css;
2801         context_desc->upper_setup.tcp_fields.tucso =
2802                 css + skb->csum_offset;
2803         context_desc->upper_setup.tcp_fields.tucse = 0;
2804         context_desc->tcp_seg_setup.data = 0;
2805         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807         buffer_info->time_stamp = jiffies;
2808         buffer_info->next_to_watch = i;
2809
2810         if (unlikely(++i == tx_ring->count))
2811                 i = 0;
2812
2813         tx_ring->next_to_use = i;
2814
2815         return true;
2816 }
2817
2818 #define E1000_MAX_TXD_PWR       12
2819 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2820
2821 static int e1000_tx_map(struct e1000_adapter *adapter,
2822                         struct e1000_tx_ring *tx_ring,
2823                         struct sk_buff *skb, unsigned int first,
2824                         unsigned int max_per_txd, unsigned int nr_frags,
2825                         unsigned int mss)
2826 {
2827         struct e1000_hw *hw = &adapter->hw;
2828         struct pci_dev *pdev = adapter->pdev;
2829         struct e1000_tx_buffer *buffer_info;
2830         unsigned int len = skb_headlen(skb);
2831         unsigned int offset = 0, size, count = 0, i;
2832         unsigned int f, bytecount, segs;
2833
2834         i = tx_ring->next_to_use;
2835
2836         while (len) {
2837                 buffer_info = &tx_ring->buffer_info[i];
2838                 size = min(len, max_per_txd);
2839                 /* Workaround for Controller erratum --
2840                  * descriptor for non-tso packet in a linear SKB that follows a
2841                  * tso gets written back prematurely before the data is fully
2842                  * DMA'd to the controller
2843                  */
2844                 if (!skb->data_len && tx_ring->last_tx_tso &&
2845                     !skb_is_gso(skb)) {
2846                         tx_ring->last_tx_tso = false;
2847                         size -= 4;
2848                 }
2849
2850                 /* Workaround for premature desc write-backs
2851                  * in TSO mode.  Append 4-byte sentinel desc
2852                  */
2853                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854                         size -= 4;
2855                 /* work-around for errata 10 and it applies
2856                  * to all controllers in PCI-X mode
2857                  * The fix is to make sure that the first descriptor of a
2858                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859                  */
2860                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861                              (size > 2015) && count == 0))
2862                         size = 2015;
2863
2864                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2865                  * terminating buffers within evenly-aligned dwords.
2866                  */
2867                 if (unlikely(adapter->pcix_82544 &&
2868                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869                    size > 4))
2870                         size -= 4;
2871
2872                 buffer_info->length = size;
2873                 /* set time_stamp *before* dma to help avoid a possible race */
2874                 buffer_info->time_stamp = jiffies;
2875                 buffer_info->mapped_as_page = false;
2876                 buffer_info->dma = dma_map_single(&pdev->dev,
2877                                                   skb->data + offset,
2878                                                   size, DMA_TO_DEVICE);
2879                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880                         goto dma_error;
2881                 buffer_info->next_to_watch = i;
2882
2883                 len -= size;
2884                 offset += size;
2885                 count++;
2886                 if (len) {
2887                         i++;
2888                         if (unlikely(i == tx_ring->count))
2889                                 i = 0;
2890                 }
2891         }
2892
2893         for (f = 0; f < nr_frags; f++) {
2894                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
2896                 len = skb_frag_size(frag);
2897                 offset = 0;
2898
2899                 while (len) {
2900                         unsigned long bufend;
2901                         i++;
2902                         if (unlikely(i == tx_ring->count))
2903                                 i = 0;
2904
2905                         buffer_info = &tx_ring->buffer_info[i];
2906                         size = min(len, max_per_txd);
2907                         /* Workaround for premature desc write-backs
2908                          * in TSO mode.  Append 4-byte sentinel desc
2909                          */
2910                         if (unlikely(mss && f == (nr_frags-1) &&
2911                             size == len && size > 8))
2912                                 size -= 4;
2913                         /* Workaround for potential 82544 hang in PCI-X.
2914                          * Avoid terminating buffers within evenly-aligned
2915                          * dwords.
2916                          */
2917                         bufend = (unsigned long)
2918                                 page_to_phys(skb_frag_page(frag));
2919                         bufend += offset + size - 1;
2920                         if (unlikely(adapter->pcix_82544 &&
2921                                      !(bufend & 4) &&
2922                                      size > 4))
2923                                 size -= 4;
2924
2925                         buffer_info->length = size;
2926                         buffer_info->time_stamp = jiffies;
2927                         buffer_info->mapped_as_page = true;
2928                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929                                                 offset, size, DMA_TO_DEVICE);
2930                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931                                 goto dma_error;
2932                         buffer_info->next_to_watch = i;
2933
2934                         len -= size;
2935                         offset += size;
2936                         count++;
2937                 }
2938         }
2939
2940         segs = skb_shinfo(skb)->gso_segs ?: 1;
2941         /* multiply data chunks by size of headers */
2942         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944         tx_ring->buffer_info[i].skb = skb;
2945         tx_ring->buffer_info[i].segs = segs;
2946         tx_ring->buffer_info[i].bytecount = bytecount;
2947         tx_ring->buffer_info[first].next_to_watch = i;
2948
2949         return count;
2950
2951 dma_error:
2952         dev_err(&pdev->dev, "TX DMA map failed\n");
2953         buffer_info->dma = 0;
2954         if (count)
2955                 count--;
2956
2957         while (count--) {
2958                 if (i == 0)
2959                         i += tx_ring->count;
2960                 i--;
2961                 buffer_info = &tx_ring->buffer_info[i];
2962                 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963         }
2964
2965         return 0;
2966 }
2967
2968 static void e1000_tx_queue(struct e1000_adapter *adapter,
2969                            struct e1000_tx_ring *tx_ring, int tx_flags,
2970                            int count)
2971 {
2972         struct e1000_tx_desc *tx_desc = NULL;
2973         struct e1000_tx_buffer *buffer_info;
2974         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975         unsigned int i;
2976
2977         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979                              E1000_TXD_CMD_TSE;
2980                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984         }
2985
2986         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989         }
2990
2991         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992                 txd_lower |= E1000_TXD_CMD_VLE;
2993                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994         }
2995
2996         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999         i = tx_ring->next_to_use;
3000
3001         while (count--) {
3002                 buffer_info = &tx_ring->buffer_info[i];
3003                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3004                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005                 tx_desc->lower.data =
3006                         cpu_to_le32(txd_lower | buffer_info->length);
3007                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3008                 if (unlikely(++i == tx_ring->count))
3009                         i = 0;
3010         }
3011
3012         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018         /* Force memory writes to complete before letting h/w
3019          * know there are new descriptors to fetch.  (Only
3020          * applicable for weak-ordered memory model archs,
3021          * such as IA-64).
3022          */
3023         dma_wmb();
3024
3025         tx_ring->next_to_use = i;
3026 }
3027
3028 /* 82547 workaround to avoid controller hang in half-duplex environment.
3029  * The workaround is to avoid queuing a large packet that would span
3030  * the internal Tx FIFO ring boundary by notifying the stack to resend
3031  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3032  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3033  * to the beginning of the Tx FIFO.
3034  */
3035
3036 #define E1000_FIFO_HDR                  0x10
3037 #define E1000_82547_PAD_LEN             0x3E0
3038
3039 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040                                        struct sk_buff *skb)
3041 {
3042         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047         if (adapter->link_duplex != HALF_DUPLEX)
3048                 goto no_fifo_stall_required;
3049
3050         if (atomic_read(&adapter->tx_fifo_stall))
3051                 return 1;
3052
3053         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054                 atomic_set(&adapter->tx_fifo_stall, 1);
3055                 return 1;
3056         }
3057
3058 no_fifo_stall_required:
3059         adapter->tx_fifo_head += skb_fifo_len;
3060         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062         return 0;
3063 }
3064
3065 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066 {
3067         struct e1000_adapter *adapter = netdev_priv(netdev);
3068         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070         netif_stop_queue(netdev);
3071         /* Herbert's original patch had:
3072          *  smp_mb__after_netif_stop_queue();
3073          * but since that doesn't exist yet, just open code it.
3074          */
3075         smp_mb();
3076
3077         /* We need to check again in a case another CPU has just
3078          * made room available.
3079          */
3080         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081                 return -EBUSY;
3082
3083         /* A reprieve! */
3084         netif_start_queue(netdev);
3085         ++adapter->restart_queue;
3086         return 0;
3087 }
3088
3089 static int e1000_maybe_stop_tx(struct net_device *netdev,
3090                                struct e1000_tx_ring *tx_ring, int size)
3091 {
3092         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093                 return 0;
3094         return __e1000_maybe_stop_tx(netdev, size);
3095 }
3096
3097 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099                                     struct net_device *netdev)
3100 {
3101         struct e1000_adapter *adapter = netdev_priv(netdev);
3102         struct e1000_hw *hw = &adapter->hw;
3103         struct e1000_tx_ring *tx_ring;
3104         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106         unsigned int tx_flags = 0;
3107         unsigned int len = skb_headlen(skb);
3108         unsigned int nr_frags;
3109         unsigned int mss;
3110         int count = 0;
3111         int tso;
3112         unsigned int f;
3113         __be16 protocol = vlan_get_protocol(skb);
3114
3115         /* This goes back to the question of how to logically map a Tx queue
3116          * to a flow.  Right now, performance is impacted slightly negatively
3117          * if using multiple Tx queues.  If the stack breaks away from a
3118          * single qdisc implementation, we can look at this again.
3119          */
3120         tx_ring = adapter->tx_ring;
3121
3122         /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123          * packets may get corrupted during padding by HW.
3124          * To WA this issue, pad all small packets manually.
3125          */
3126         if (eth_skb_pad(skb))
3127                 return NETDEV_TX_OK;
3128
3129         mss = skb_shinfo(skb)->gso_size;
3130         /* The controller does a simple calculation to
3131          * make sure there is enough room in the FIFO before
3132          * initiating the DMA for each buffer.  The calc is:
3133          * 4 = ceil(buffer len/mss).  To make sure we don't
3134          * overrun the FIFO, adjust the max buffer len if mss
3135          * drops.
3136          */
3137         if (mss) {
3138                 u8 hdr_len;
3139                 max_per_txd = min(mss << 2, max_per_txd);
3140                 max_txd_pwr = fls(max_per_txd) - 1;
3141
3142                 hdr_len = skb_tcp_all_headers(skb);
3143                 if (skb->data_len && hdr_len == len) {
3144                         switch (hw->mac_type) {
3145                         case e1000_82544: {
3146                                 unsigned int pull_size;
3147
3148                                 /* Make sure we have room to chop off 4 bytes,
3149                                  * and that the end alignment will work out to
3150                                  * this hardware's requirements
3151                                  * NOTE: this is a TSO only workaround
3152                                  * if end byte alignment not correct move us
3153                                  * into the next dword
3154                                  */
3155                                 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156                                     & 4)
3157                                         break;
3158                                 pull_size = min((unsigned int)4, skb->data_len);
3159                                 if (!__pskb_pull_tail(skb, pull_size)) {
3160                                         e_err(drv, "__pskb_pull_tail "
3161                                               "failed.\n");
3162                                         dev_kfree_skb_any(skb);
3163                                         return NETDEV_TX_OK;
3164                                 }
3165                                 len = skb_headlen(skb);
3166                                 break;
3167                         }
3168                         default:
3169                                 /* do nothing */
3170                                 break;
3171                         }
3172                 }
3173         }
3174
3175         /* reserve a descriptor for the offload context */
3176         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177                 count++;
3178         count++;
3179
3180         /* Controller Erratum workaround */
3181         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182                 count++;
3183
3184         count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186         if (adapter->pcix_82544)
3187                 count++;
3188
3189         /* work-around for errata 10 and it applies to all controllers
3190          * in PCI-X mode, so add one more descriptor to the count
3191          */
3192         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193                         (len > 2015)))
3194                 count++;
3195
3196         nr_frags = skb_shinfo(skb)->nr_frags;
3197         for (f = 0; f < nr_frags; f++)
3198                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199                                        max_txd_pwr);
3200         if (adapter->pcix_82544)
3201                 count += nr_frags;
3202
3203         /* need: count + 2 desc gap to keep tail from touching
3204          * head, otherwise try next time
3205          */
3206         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207                 return NETDEV_TX_BUSY;
3208
3209         if (unlikely((hw->mac_type == e1000_82547) &&
3210                      (e1000_82547_fifo_workaround(adapter, skb)))) {
3211                 netif_stop_queue(netdev);
3212                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3213                         schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214                 return NETDEV_TX_BUSY;
3215         }
3216
3217         if (skb_vlan_tag_present(skb)) {
3218                 tx_flags |= E1000_TX_FLAGS_VLAN;
3219                 tx_flags |= (skb_vlan_tag_get(skb) <<
3220                              E1000_TX_FLAGS_VLAN_SHIFT);
3221         }
3222
3223         first = tx_ring->next_to_use;
3224
3225         tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226         if (tso < 0) {
3227                 dev_kfree_skb_any(skb);
3228                 return NETDEV_TX_OK;
3229         }
3230
3231         if (likely(tso)) {
3232                 if (likely(hw->mac_type != e1000_82544))
3233                         tx_ring->last_tx_tso = true;
3234                 tx_flags |= E1000_TX_FLAGS_TSO;
3235         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236                 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238         if (protocol == htons(ETH_P_IP))
3239                 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241         if (unlikely(skb->no_fcs))
3242                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245                              nr_frags, mss);
3246
3247         if (count) {
3248                 /* The descriptors needed is higher than other Intel drivers
3249                  * due to a number of workarounds.  The breakdown is below:
3250                  * Data descriptors: MAX_SKB_FRAGS + 1
3251                  * Context Descriptor: 1
3252                  * Keep head from touching tail: 2
3253                  * Workarounds: 3
3254                  */
3255                 int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257                 netdev_sent_queue(netdev, skb->len);
3258                 skb_tx_timestamp(skb);
3259
3260                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262                 /* 82544 potentially requires twice as many data descriptors
3263                  * in order to guarantee buffers don't end on evenly-aligned
3264                  * dwords
3265                  */
3266                 if (adapter->pcix_82544)
3267                         desc_needed += MAX_SKB_FRAGS + 1;
3268
3269                 /* Make sure there is space in the ring for the next send. */
3270                 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272                 if (!netdev_xmit_more() ||
3273                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274                         writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275                 }
3276         } else {
3277                 dev_kfree_skb_any(skb);
3278                 tx_ring->buffer_info[first].time_stamp = 0;
3279                 tx_ring->next_to_use = first;
3280         }
3281
3282         return NETDEV_TX_OK;
3283 }
3284
3285 #define NUM_REGS 38 /* 1 based count */
3286 static void e1000_regdump(struct e1000_adapter *adapter)
3287 {
3288         struct e1000_hw *hw = &adapter->hw;
3289         u32 regs[NUM_REGS];
3290         u32 *regs_buff = regs;
3291         int i = 0;
3292
3293         static const char * const reg_name[] = {
3294                 "CTRL",  "STATUS",
3295                 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296                 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297                 "TIDV", "TXDCTL", "TADV", "TARC0",
3298                 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299                 "TXDCTL1", "TARC1",
3300                 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301                 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302                 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303         };
3304
3305         regs_buff[0]  = er32(CTRL);
3306         regs_buff[1]  = er32(STATUS);
3307
3308         regs_buff[2]  = er32(RCTL);
3309         regs_buff[3]  = er32(RDLEN);
3310         regs_buff[4]  = er32(RDH);
3311         regs_buff[5]  = er32(RDT);
3312         regs_buff[6]  = er32(RDTR);
3313
3314         regs_buff[7]  = er32(TCTL);
3315         regs_buff[8]  = er32(TDBAL);
3316         regs_buff[9]  = er32(TDBAH);
3317         regs_buff[10] = er32(TDLEN);
3318         regs_buff[11] = er32(TDH);
3319         regs_buff[12] = er32(TDT);
3320         regs_buff[13] = er32(TIDV);
3321         regs_buff[14] = er32(TXDCTL);
3322         regs_buff[15] = er32(TADV);
3323         regs_buff[16] = er32(TARC0);
3324
3325         regs_buff[17] = er32(TDBAL1);
3326         regs_buff[18] = er32(TDBAH1);
3327         regs_buff[19] = er32(TDLEN1);
3328         regs_buff[20] = er32(TDH1);
3329         regs_buff[21] = er32(TDT1);
3330         regs_buff[22] = er32(TXDCTL1);
3331         regs_buff[23] = er32(TARC1);
3332         regs_buff[24] = er32(CTRL_EXT);
3333         regs_buff[25] = er32(ERT);
3334         regs_buff[26] = er32(RDBAL0);
3335         regs_buff[27] = er32(RDBAH0);
3336         regs_buff[28] = er32(TDFH);
3337         regs_buff[29] = er32(TDFT);
3338         regs_buff[30] = er32(TDFHS);
3339         regs_buff[31] = er32(TDFTS);
3340         regs_buff[32] = er32(TDFPC);
3341         regs_buff[33] = er32(RDFH);
3342         regs_buff[34] = er32(RDFT);
3343         regs_buff[35] = er32(RDFHS);
3344         regs_buff[36] = er32(RDFTS);
3345         regs_buff[37] = er32(RDFPC);
3346
3347         pr_info("Register dump\n");
3348         for (i = 0; i < NUM_REGS; i++)
3349                 pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3350 }
3351
3352 /*
3353  * e1000_dump: Print registers, tx ring and rx ring
3354  */
3355 static void e1000_dump(struct e1000_adapter *adapter)
3356 {
3357         /* this code doesn't handle multiple rings */
3358         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359         struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360         int i;
3361
3362         if (!netif_msg_hw(adapter))
3363                 return;
3364
3365         /* Print Registers */
3366         e1000_regdump(adapter);
3367
3368         /* transmit dump */
3369         pr_info("TX Desc ring0 dump\n");
3370
3371         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372          *
3373          * Legacy Transmit Descriptor
3374          *   +--------------------------------------------------------------+
3375          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376          *   +--------------------------------------------------------------+
3377          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378          *   +--------------------------------------------------------------+
3379          *   63       48 47        36 35    32 31     24 23    16 15        0
3380          *
3381          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382          *   63      48 47    40 39       32 31             16 15    8 7      0
3383          *   +----------------------------------------------------------------+
3384          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385          *   +----------------------------------------------------------------+
3386          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387          *   +----------------------------------------------------------------+
3388          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389          *
3390          * Extended Data Descriptor (DTYP=0x1)
3391          *   +----------------------------------------------------------------+
3392          * 0 |                     Buffer Address [63:0]                      |
3393          *   +----------------------------------------------------------------+
3394          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395          *   +----------------------------------------------------------------+
3396          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397          */
3398         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400
3401         if (!netif_msg_tx_done(adapter))
3402                 goto rx_ring_summary;
3403
3404         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406                 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407                 struct my_u { __le64 a; __le64 b; };
3408                 struct my_u *u = (struct my_u *)tx_desc;
3409                 const char *type;
3410
3411                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412                         type = "NTC/U";
3413                 else if (i == tx_ring->next_to_use)
3414                         type = "NTU";
3415                 else if (i == tx_ring->next_to_clean)
3416                         type = "NTC";
3417                 else
3418                         type = "";
3419
3420                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421                         ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422                         le64_to_cpu(u->a), le64_to_cpu(u->b),
3423                         (u64)buffer_info->dma, buffer_info->length,
3424                         buffer_info->next_to_watch,
3425                         (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426         }
3427
3428 rx_ring_summary:
3429         /* receive dump */
3430         pr_info("\nRX Desc ring dump\n");
3431
3432         /* Legacy Receive Descriptor Format
3433          *
3434          * +-----------------------------------------------------+
3435          * |                Buffer Address [63:0]                |
3436          * +-----------------------------------------------------+
3437          * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438          * +-----------------------------------------------------+
3439          * 63       48 47    40 39      32 31         16 15      0
3440          */
3441         pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3442
3443         if (!netif_msg_rx_status(adapter))
3444                 goto exit;
3445
3446         for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448                 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449                 struct my_u { __le64 a; __le64 b; };
3450                 struct my_u *u = (struct my_u *)rx_desc;
3451                 const char *type;
3452
3453                 if (i == rx_ring->next_to_use)
3454                         type = "NTU";
3455                 else if (i == rx_ring->next_to_clean)
3456                         type = "NTC";
3457                 else
3458                         type = "";
3459
3460                 pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3461                         i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462                         (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463         } /* for */
3464
3465         /* dump the descriptor caches */
3466         /* rx */
3467         pr_info("Rx descriptor cache in 64bit format\n");
3468         for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469                 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470                         i,
3471                         readl(adapter->hw.hw_addr + i+4),
3472                         readl(adapter->hw.hw_addr + i),
3473                         readl(adapter->hw.hw_addr + i+12),
3474                         readl(adapter->hw.hw_addr + i+8));
3475         }
3476         /* tx */
3477         pr_info("Tx descriptor cache in 64bit format\n");
3478         for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479                 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480                         i,
3481                         readl(adapter->hw.hw_addr + i+4),
3482                         readl(adapter->hw.hw_addr + i),
3483                         readl(adapter->hw.hw_addr + i+12),
3484                         readl(adapter->hw.hw_addr + i+8));
3485         }
3486 exit:
3487         return;
3488 }
3489
3490 /**
3491  * e1000_tx_timeout - Respond to a Tx Hang
3492  * @netdev: network interface device structure
3493  * @txqueue: number of the Tx queue that hung (unused)
3494  **/
3495 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496 {
3497         struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499         /* Do the reset outside of interrupt context */
3500         adapter->tx_timeout_count++;
3501         schedule_work(&adapter->reset_task);
3502 }
3503
3504 static void e1000_reset_task(struct work_struct *work)
3505 {
3506         struct e1000_adapter *adapter =
3507                 container_of(work, struct e1000_adapter, reset_task);
3508
3509         e_err(drv, "Reset adapter\n");
3510         e1000_reinit_locked(adapter);
3511 }
3512
3513 /**
3514  * e1000_change_mtu - Change the Maximum Transfer Unit
3515  * @netdev: network interface device structure
3516  * @new_mtu: new value for maximum frame size
3517  *
3518  * Returns 0 on success, negative on failure
3519  **/
3520 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521 {
3522         struct e1000_adapter *adapter = netdev_priv(netdev);
3523         struct e1000_hw *hw = &adapter->hw;
3524         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526         /* Adapter-specific max frame size limits. */
3527         switch (hw->mac_type) {
3528         case e1000_undefined ... e1000_82542_rev2_1:
3529                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530                         e_err(probe, "Jumbo Frames not supported.\n");
3531                         return -EINVAL;
3532                 }
3533                 break;
3534         default:
3535                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536                 break;
3537         }
3538
3539         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540                 msleep(1);
3541         /* e1000_down has a dependency on max_frame_size */
3542         hw->max_frame_size = max_frame;
3543         if (netif_running(netdev)) {
3544                 /* prevent buffers from being reallocated */
3545                 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546                 e1000_down(adapter);
3547         }
3548
3549         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550          * means we reserve 2 more, this pushes us to allocate from the next
3551          * larger slab size.
3552          * i.e. RXBUFFER_2048 --> size-4096 slab
3553          * however with the new *_jumbo_rx* routines, jumbo receives will use
3554          * fragmented skbs
3555          */
3556
3557         if (max_frame <= E1000_RXBUFFER_2048)
3558                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559         else
3560 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563                 adapter->rx_buffer_len = PAGE_SIZE;
3564 #endif
3565
3566         /* adjust allocation if LPE protects us, and we aren't using SBP */
3567         if (!hw->tbi_compatibility_on &&
3568             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572         netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573                    netdev->mtu, new_mtu);
3574         netdev->mtu = new_mtu;
3575
3576         if (netif_running(netdev))
3577                 e1000_up(adapter);
3578         else
3579                 e1000_reset(adapter);
3580
3581         clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583         return 0;
3584 }
3585
3586 /**
3587  * e1000_update_stats - Update the board statistics counters
3588  * @adapter: board private structure
3589  **/
3590 void e1000_update_stats(struct e1000_adapter *adapter)
3591 {
3592         struct net_device *netdev = adapter->netdev;
3593         struct e1000_hw *hw = &adapter->hw;
3594         struct pci_dev *pdev = adapter->pdev;
3595         unsigned long flags;
3596         u16 phy_tmp;
3597
3598 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600         /* Prevent stats update while adapter is being reset, or if the pci
3601          * connection is down.
3602          */
3603         if (adapter->link_speed == 0)
3604                 return;
3605         if (pci_channel_offline(pdev))
3606                 return;
3607
3608         spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610         /* these counters are modified from e1000_tbi_adjust_stats,
3611          * called from the interrupt context, so they must only
3612          * be written while holding adapter->stats_lock
3613          */
3614
3615         adapter->stats.crcerrs += er32(CRCERRS);
3616         adapter->stats.gprc += er32(GPRC);
3617         adapter->stats.gorcl += er32(GORCL);
3618         adapter->stats.gorch += er32(GORCH);
3619         adapter->stats.bprc += er32(BPRC);
3620         adapter->stats.mprc += er32(MPRC);
3621         adapter->stats.roc += er32(ROC);
3622
3623         adapter->stats.prc64 += er32(PRC64);
3624         adapter->stats.prc127 += er32(PRC127);
3625         adapter->stats.prc255 += er32(PRC255);
3626         adapter->stats.prc511 += er32(PRC511);
3627         adapter->stats.prc1023 += er32(PRC1023);
3628         adapter->stats.prc1522 += er32(PRC1522);
3629
3630         adapter->stats.symerrs += er32(SYMERRS);
3631         adapter->stats.mpc += er32(MPC);
3632         adapter->stats.scc += er32(SCC);
3633         adapter->stats.ecol += er32(ECOL);
3634         adapter->stats.mcc += er32(MCC);
3635         adapter->stats.latecol += er32(LATECOL);
3636         adapter->stats.dc += er32(DC);
3637         adapter->stats.sec += er32(SEC);
3638         adapter->stats.rlec += er32(RLEC);
3639         adapter->stats.xonrxc += er32(XONRXC);
3640         adapter->stats.xontxc += er32(XONTXC);
3641         adapter->stats.xoffrxc += er32(XOFFRXC);
3642         adapter->stats.xofftxc += er32(XOFFTXC);
3643         adapter->stats.fcruc += er32(FCRUC);
3644         adapter->stats.gptc += er32(GPTC);
3645         adapter->stats.gotcl += er32(GOTCL);
3646         adapter->stats.gotch += er32(GOTCH);
3647         adapter->stats.rnbc += er32(RNBC);
3648         adapter->stats.ruc += er32(RUC);
3649         adapter->stats.rfc += er32(RFC);
3650         adapter->stats.rjc += er32(RJC);
3651         adapter->stats.torl += er32(TORL);
3652         adapter->stats.torh += er32(TORH);
3653         adapter->stats.totl += er32(TOTL);
3654         adapter->stats.toth += er32(TOTH);
3655         adapter->stats.tpr += er32(TPR);
3656
3657         adapter->stats.ptc64 += er32(PTC64);
3658         adapter->stats.ptc127 += er32(PTC127);
3659         adapter->stats.ptc255 += er32(PTC255);
3660         adapter->stats.ptc511 += er32(PTC511);
3661         adapter->stats.ptc1023 += er32(PTC1023);
3662         adapter->stats.ptc1522 += er32(PTC1522);
3663
3664         adapter->stats.mptc += er32(MPTC);
3665         adapter->stats.bptc += er32(BPTC);
3666
3667         /* used for adaptive IFS */
3668
3669         hw->tx_packet_delta = er32(TPT);
3670         adapter->stats.tpt += hw->tx_packet_delta;
3671         hw->collision_delta = er32(COLC);
3672         adapter->stats.colc += hw->collision_delta;
3673
3674         if (hw->mac_type >= e1000_82543) {
3675                 adapter->stats.algnerrc += er32(ALGNERRC);
3676                 adapter->stats.rxerrc += er32(RXERRC);
3677                 adapter->stats.tncrs += er32(TNCRS);
3678                 adapter->stats.cexterr += er32(CEXTERR);
3679                 adapter->stats.tsctc += er32(TSCTC);
3680                 adapter->stats.tsctfc += er32(TSCTFC);
3681         }
3682
3683         /* Fill out the OS statistics structure */
3684         netdev->stats.multicast = adapter->stats.mprc;
3685         netdev->stats.collisions = adapter->stats.colc;
3686
3687         /* Rx Errors */
3688
3689         /* RLEC on some newer hardware can be incorrect so build
3690          * our own version based on RUC and ROC
3691          */
3692         netdev->stats.rx_errors = adapter->stats.rxerrc +
3693                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3694                 adapter->stats.ruc + adapter->stats.roc +
3695                 adapter->stats.cexterr;
3696         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702         /* Tx Errors */
3703         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704         netdev->stats.tx_errors = adapter->stats.txerrc;
3705         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706         netdev->stats.tx_window_errors = adapter->stats.latecol;
3707         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708         if (hw->bad_tx_carr_stats_fd &&
3709             adapter->link_duplex == FULL_DUPLEX) {
3710                 netdev->stats.tx_carrier_errors = 0;
3711                 adapter->stats.tncrs = 0;
3712         }
3713
3714         /* Tx Dropped needs to be maintained elsewhere */
3715
3716         /* Phy Stats */
3717         if (hw->media_type == e1000_media_type_copper) {
3718                 if ((adapter->link_speed == SPEED_1000) &&
3719                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721                         adapter->phy_stats.idle_errors += phy_tmp;
3722                 }
3723
3724                 if ((hw->mac_type <= e1000_82546) &&
3725                    (hw->phy_type == e1000_phy_m88) &&
3726                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727                         adapter->phy_stats.receive_errors += phy_tmp;
3728         }
3729
3730         /* Management Stats */
3731         if (hw->has_smbus) {
3732                 adapter->stats.mgptc += er32(MGTPTC);
3733                 adapter->stats.mgprc += er32(MGTPRC);
3734                 adapter->stats.mgpdc += er32(MGTPDC);
3735         }
3736
3737         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738 }
3739
3740 /**
3741  * e1000_intr - Interrupt Handler
3742  * @irq: interrupt number
3743  * @data: pointer to a network interface device structure
3744  **/
3745 static irqreturn_t e1000_intr(int irq, void *data)
3746 {
3747         struct net_device *netdev = data;
3748         struct e1000_adapter *adapter = netdev_priv(netdev);
3749         struct e1000_hw *hw = &adapter->hw;
3750         u32 icr = er32(ICR);
3751
3752         if (unlikely((!icr)))
3753                 return IRQ_NONE;  /* Not our interrupt */
3754
3755         /* we might have caused the interrupt, but the above
3756          * read cleared it, and just in case the driver is
3757          * down there is nothing to do so return handled
3758          */
3759         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760                 return IRQ_HANDLED;
3761
3762         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763                 hw->get_link_status = 1;
3764                 /* guard against interrupt when we're going down */
3765                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766                         schedule_delayed_work(&adapter->watchdog_task, 1);
3767         }
3768
3769         /* disable interrupts, without the synchronize_irq bit */
3770         ew32(IMC, ~0);
3771         E1000_WRITE_FLUSH();
3772
3773         if (likely(napi_schedule_prep(&adapter->napi))) {
3774                 adapter->total_tx_bytes = 0;
3775                 adapter->total_tx_packets = 0;
3776                 adapter->total_rx_bytes = 0;
3777                 adapter->total_rx_packets = 0;
3778                 __napi_schedule(&adapter->napi);
3779         } else {
3780                 /* this really should not happen! if it does it is basically a
3781                  * bug, but not a hard error, so enable ints and continue
3782                  */
3783                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3784                         e1000_irq_enable(adapter);
3785         }
3786
3787         return IRQ_HANDLED;
3788 }
3789
3790 /**
3791  * e1000_clean - NAPI Rx polling callback
3792  * @napi: napi struct containing references to driver info
3793  * @budget: budget given to driver for receive packets
3794  **/
3795 static int e1000_clean(struct napi_struct *napi, int budget)
3796 {
3797         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798                                                      napi);
3799         int tx_clean_complete = 0, work_done = 0;
3800
3801         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805         if (!tx_clean_complete || work_done == budget)
3806                 return budget;
3807
3808         /* Exit the polling mode, but don't re-enable interrupts if stack might
3809          * poll us due to busy-polling
3810          */
3811         if (likely(napi_complete_done(napi, work_done))) {
3812                 if (likely(adapter->itr_setting & 3))
3813                         e1000_set_itr(adapter);
3814                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815                         e1000_irq_enable(adapter);
3816         }
3817
3818         return work_done;
3819 }
3820
3821 /**
3822  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823  * @adapter: board private structure
3824  * @tx_ring: ring to clean
3825  **/
3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827                                struct e1000_tx_ring *tx_ring)
3828 {
3829         struct e1000_hw *hw = &adapter->hw;
3830         struct net_device *netdev = adapter->netdev;
3831         struct e1000_tx_desc *tx_desc, *eop_desc;
3832         struct e1000_tx_buffer *buffer_info;
3833         unsigned int i, eop;
3834         unsigned int count = 0;
3835         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836         unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838         i = tx_ring->next_to_clean;
3839         eop = tx_ring->buffer_info[i].next_to_watch;
3840         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843                (count < tx_ring->count)) {
3844                 bool cleaned = false;
3845                 dma_rmb();      /* read buffer_info after eop_desc */
3846                 for ( ; !cleaned; count++) {
3847                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3848                         buffer_info = &tx_ring->buffer_info[i];
3849                         cleaned = (i == eop);
3850
3851                         if (cleaned) {
3852                                 total_tx_packets += buffer_info->segs;
3853                                 total_tx_bytes += buffer_info->bytecount;
3854                                 if (buffer_info->skb) {
3855                                         bytes_compl += buffer_info->skb->len;
3856                                         pkts_compl++;
3857                                 }
3858
3859                         }
3860                         e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861                                                          64);
3862                         tx_desc->upper.data = 0;
3863
3864                         if (unlikely(++i == tx_ring->count))
3865                                 i = 0;
3866                 }
3867
3868                 eop = tx_ring->buffer_info[i].next_to_watch;
3869                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870         }
3871
3872         /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873          * which will reuse the cleaned buffers.
3874          */
3875         smp_store_release(&tx_ring->next_to_clean, i);
3876
3877         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879 #define TX_WAKE_THRESHOLD 32
3880         if (unlikely(count && netif_carrier_ok(netdev) &&
3881                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882                 /* Make sure that anybody stopping the queue after this
3883                  * sees the new next_to_clean.
3884                  */
3885                 smp_mb();
3886
3887                 if (netif_queue_stopped(netdev) &&
3888                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889                         netif_wake_queue(netdev);
3890                         ++adapter->restart_queue;
3891                 }
3892         }
3893
3894         if (adapter->detect_tx_hung) {
3895                 /* Detect a transmit hang in hardware, this serializes the
3896                  * check with the clearing of time_stamp and movement of i
3897                  */
3898                 adapter->detect_tx_hung = false;
3899                 if (tx_ring->buffer_info[eop].time_stamp &&
3900                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901                                (adapter->tx_timeout_factor * HZ)) &&
3902                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904                         /* detected Tx unit hang */
3905                         e_err(drv, "Detected Tx Unit Hang\n"
3906                               "  Tx Queue             <%lu>\n"
3907                               "  TDH                  <%x>\n"
3908                               "  TDT                  <%x>\n"
3909                               "  next_to_use          <%x>\n"
3910                               "  next_to_clean        <%x>\n"
3911                               "buffer_info[next_to_clean]\n"
3912                               "  time_stamp           <%lx>\n"
3913                               "  next_to_watch        <%x>\n"
3914                               "  jiffies              <%lx>\n"
3915                               "  next_to_watch.status <%x>\n",
3916                                 (unsigned long)(tx_ring - adapter->tx_ring),
3917                                 readl(hw->hw_addr + tx_ring->tdh),
3918                                 readl(hw->hw_addr + tx_ring->tdt),
3919                                 tx_ring->next_to_use,
3920                                 tx_ring->next_to_clean,
3921                                 tx_ring->buffer_info[eop].time_stamp,
3922                                 eop,
3923                                 jiffies,
3924                                 eop_desc->upper.fields.status);
3925                         e1000_dump(adapter);
3926                         netif_stop_queue(netdev);
3927                 }
3928         }
3929         adapter->total_tx_bytes += total_tx_bytes;
3930         adapter->total_tx_packets += total_tx_packets;
3931         netdev->stats.tx_bytes += total_tx_bytes;
3932         netdev->stats.tx_packets += total_tx_packets;
3933         return count < tx_ring->count;
3934 }
3935
3936 /**
3937  * e1000_rx_checksum - Receive Checksum Offload for 82543
3938  * @adapter:     board private structure
3939  * @status_err:  receive descriptor status and error fields
3940  * @csum:        receive descriptor csum field
3941  * @skb:         socket buffer with received data
3942  **/
3943 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944                               u32 csum, struct sk_buff *skb)
3945 {
3946         struct e1000_hw *hw = &adapter->hw;
3947         u16 status = (u16)status_err;
3948         u8 errors = (u8)(status_err >> 24);
3949
3950         skb_checksum_none_assert(skb);
3951
3952         /* 82543 or newer only */
3953         if (unlikely(hw->mac_type < e1000_82543))
3954                 return;
3955         /* Ignore Checksum bit is set */
3956         if (unlikely(status & E1000_RXD_STAT_IXSM))
3957                 return;
3958         /* TCP/UDP checksum error bit is set */
3959         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960                 /* let the stack verify checksum errors */
3961                 adapter->hw_csum_err++;
3962                 return;
3963         }
3964         /* TCP/UDP Checksum has not been calculated */
3965         if (!(status & E1000_RXD_STAT_TCPCS))
3966                 return;
3967
3968         /* It must be a TCP or UDP packet with a valid checksum */
3969         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970                 /* TCP checksum is good */
3971                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972         }
3973         adapter->hw_csum_good++;
3974 }
3975
3976 /**
3977  * e1000_consume_page - helper function for jumbo Rx path
3978  * @bi: software descriptor shadow data
3979  * @skb: skb being modified
3980  * @length: length of data being added
3981  **/
3982 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983                                u16 length)
3984 {
3985         bi->rxbuf.page = NULL;
3986         skb->len += length;
3987         skb->data_len += length;
3988         skb->truesize += PAGE_SIZE;
3989 }
3990
3991 /**
3992  * e1000_receive_skb - helper function to handle rx indications
3993  * @adapter: board private structure
3994  * @status: descriptor status field as written by hardware
3995  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996  * @skb: pointer to sk_buff to be indicated to stack
3997  */
3998 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999                               __le16 vlan, struct sk_buff *skb)
4000 {
4001         skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003         if (status & E1000_RXD_STAT_VP) {
4004                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007         }
4008         napi_gro_receive(&adapter->napi, skb);
4009 }
4010
4011 /**
4012  * e1000_tbi_adjust_stats
4013  * @hw: Struct containing variables accessed by shared code
4014  * @stats: point to stats struct
4015  * @frame_len: The length of the frame in question
4016  * @mac_addr: The Ethernet destination address of the frame in question
4017  *
4018  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019  */
4020 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021                                    struct e1000_hw_stats *stats,
4022                                    u32 frame_len, const u8 *mac_addr)
4023 {
4024         u64 carry_bit;
4025
4026         /* First adjust the frame length. */
4027         frame_len--;
4028         /* We need to adjust the statistics counters, since the hardware
4029          * counters overcount this packet as a CRC error and undercount
4030          * the packet as a good packet
4031          */
4032         /* This packet should not be counted as a CRC error. */
4033         stats->crcerrs--;
4034         /* This packet does count as a Good Packet Received. */
4035         stats->gprc++;
4036
4037         /* Adjust the Good Octets received counters */
4038         carry_bit = 0x80000000 & stats->gorcl;
4039         stats->gorcl += frame_len;
4040         /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041          * Received Count) was one before the addition,
4042          * AND it is zero after, then we lost the carry out,
4043          * need to add one to Gorch (Good Octets Received Count High).
4044          * This could be simplified if all environments supported
4045          * 64-bit integers.
4046          */
4047         if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048                 stats->gorch++;
4049         /* Is this a broadcast or multicast?  Check broadcast first,
4050          * since the test for a multicast frame will test positive on
4051          * a broadcast frame.
4052          */
4053         if (is_broadcast_ether_addr(mac_addr))
4054                 stats->bprc++;
4055         else if (is_multicast_ether_addr(mac_addr))
4056                 stats->mprc++;
4057
4058         if (frame_len == hw->max_frame_size) {
4059                 /* In this case, the hardware has overcounted the number of
4060                  * oversize frames.
4061                  */
4062                 if (stats->roc > 0)
4063                         stats->roc--;
4064         }
4065
4066         /* Adjust the bin counters when the extra byte put the frame in the
4067          * wrong bin. Remember that the frame_len was adjusted above.
4068          */
4069         if (frame_len == 64) {
4070                 stats->prc64++;
4071                 stats->prc127--;
4072         } else if (frame_len == 127) {
4073                 stats->prc127++;
4074                 stats->prc255--;
4075         } else if (frame_len == 255) {
4076                 stats->prc255++;
4077                 stats->prc511--;
4078         } else if (frame_len == 511) {
4079                 stats->prc511++;
4080                 stats->prc1023--;
4081         } else if (frame_len == 1023) {
4082                 stats->prc1023++;
4083                 stats->prc1522--;
4084         } else if (frame_len == 1522) {
4085                 stats->prc1522++;
4086         }
4087 }
4088
4089 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090                                     u8 status, u8 errors,
4091                                     u32 length, const u8 *data)
4092 {
4093         struct e1000_hw *hw = &adapter->hw;
4094         u8 last_byte = *(data + length - 1);
4095
4096         if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097                 unsigned long irq_flags;
4098
4099                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100                 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103                 return true;
4104         }
4105
4106         return false;
4107 }
4108
4109 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110                                           unsigned int bufsz)
4111 {
4112         struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114         if (unlikely(!skb))
4115                 adapter->alloc_rx_buff_failed++;
4116         return skb;
4117 }
4118
4119 /**
4120  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121  * @adapter: board private structure
4122  * @rx_ring: ring to clean
4123  * @work_done: amount of napi work completed this call
4124  * @work_to_do: max amount of work allowed for this call to do
4125  *
4126  * the return value indicates whether actual cleaning was done, there
4127  * is no guarantee that everything was cleaned
4128  */
4129 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130                                      struct e1000_rx_ring *rx_ring,
4131                                      int *work_done, int work_to_do)
4132 {
4133         struct net_device *netdev = adapter->netdev;
4134         struct pci_dev *pdev = adapter->pdev;
4135         struct e1000_rx_desc *rx_desc, *next_rxd;
4136         struct e1000_rx_buffer *buffer_info, *next_buffer;
4137         u32 length;
4138         unsigned int i;
4139         int cleaned_count = 0;
4140         bool cleaned = false;
4141         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143         i = rx_ring->next_to_clean;
4144         rx_desc = E1000_RX_DESC(*rx_ring, i);
4145         buffer_info = &rx_ring->buffer_info[i];
4146
4147         while (rx_desc->status & E1000_RXD_STAT_DD) {
4148                 struct sk_buff *skb;
4149                 u8 status;
4150
4151                 if (*work_done >= work_to_do)
4152                         break;
4153                 (*work_done)++;
4154                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156                 status = rx_desc->status;
4157
4158                 if (++i == rx_ring->count)
4159                         i = 0;
4160
4161                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162                 prefetch(next_rxd);
4163
4164                 next_buffer = &rx_ring->buffer_info[i];
4165
4166                 cleaned = true;
4167                 cleaned_count++;
4168                 dma_unmap_page(&pdev->dev, buffer_info->dma,
4169                                adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170                 buffer_info->dma = 0;
4171
4172                 length = le16_to_cpu(rx_desc->length);
4173
4174                 /* errors is only valid for DD + EOP descriptors */
4175                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177                         u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179                         if (e1000_tbi_should_accept(adapter, status,
4180                                                     rx_desc->errors,
4181                                                     length, mapped)) {
4182                                 length--;
4183                         } else if (netdev->features & NETIF_F_RXALL) {
4184                                 goto process_skb;
4185                         } else {
4186                                 /* an error means any chain goes out the window
4187                                  * too
4188                                  */
4189                                 dev_kfree_skb(rx_ring->rx_skb_top);
4190                                 rx_ring->rx_skb_top = NULL;
4191                                 goto next_desc;
4192                         }
4193                 }
4194
4195 #define rxtop rx_ring->rx_skb_top
4196 process_skb:
4197                 if (!(status & E1000_RXD_STAT_EOP)) {
4198                         /* this descriptor is only the beginning (or middle) */
4199                         if (!rxtop) {
4200                                 /* this is the beginning of a chain */
4201                                 rxtop = napi_get_frags(&adapter->napi);
4202                                 if (!rxtop)
4203                                         break;
4204
4205                                 skb_fill_page_desc(rxtop, 0,
4206                                                    buffer_info->rxbuf.page,
4207                                                    0, length);
4208                         } else {
4209                                 /* this is the middle of a chain */
4210                                 skb_fill_page_desc(rxtop,
4211                                     skb_shinfo(rxtop)->nr_frags,
4212                                     buffer_info->rxbuf.page, 0, length);
4213                         }
4214                         e1000_consume_page(buffer_info, rxtop, length);
4215                         goto next_desc;
4216                 } else {
4217                         if (rxtop) {
4218                                 /* end of the chain */
4219                                 skb_fill_page_desc(rxtop,
4220                                     skb_shinfo(rxtop)->nr_frags,
4221                                     buffer_info->rxbuf.page, 0, length);
4222                                 skb = rxtop;
4223                                 rxtop = NULL;
4224                                 e1000_consume_page(buffer_info, skb, length);
4225                         } else {
4226                                 struct page *p;
4227                                 /* no chain, got EOP, this buf is the packet
4228                                  * copybreak to save the put_page/alloc_page
4229                                  */
4230                                 p = buffer_info->rxbuf.page;
4231                                 if (length <= copybreak) {
4232                                         if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233                                                 length -= 4;
4234                                         skb = e1000_alloc_rx_skb(adapter,
4235                                                                  length);
4236                                         if (!skb)
4237                                                 break;
4238
4239                                         memcpy(skb_tail_pointer(skb),
4240                                                page_address(p), length);
4241
4242                                         /* re-use the page, so don't erase
4243                                          * buffer_info->rxbuf.page
4244                                          */
4245                                         skb_put(skb, length);
4246                                         e1000_rx_checksum(adapter,
4247                                                           status | rx_desc->errors << 24,
4248                                                           le16_to_cpu(rx_desc->csum), skb);
4249
4250                                         total_rx_bytes += skb->len;
4251                                         total_rx_packets++;
4252
4253                                         e1000_receive_skb(adapter, status,
4254                                                           rx_desc->special, skb);
4255                                         goto next_desc;
4256                                 } else {
4257                                         skb = napi_get_frags(&adapter->napi);
4258                                         if (!skb) {
4259                                                 adapter->alloc_rx_buff_failed++;
4260                                                 break;
4261                                         }
4262                                         skb_fill_page_desc(skb, 0, p, 0,
4263                                                            length);
4264                                         e1000_consume_page(buffer_info, skb,
4265                                                            length);
4266                                 }
4267                         }
4268                 }
4269
4270                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271                 e1000_rx_checksum(adapter,
4272                                   (u32)(status) |
4273                                   ((u32)(rx_desc->errors) << 24),
4274                                   le16_to_cpu(rx_desc->csum), skb);
4275
4276                 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278                         pskb_trim(skb, skb->len - 4);
4279                 total_rx_packets++;
4280
4281                 if (status & E1000_RXD_STAT_VP) {
4282                         __le16 vlan = rx_desc->special;
4283                         u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286                 }
4287
4288                 napi_gro_frags(&adapter->napi);
4289
4290 next_desc:
4291                 rx_desc->status = 0;
4292
4293                 /* return some buffers to hardware, one at a time is too slow */
4294                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296                         cleaned_count = 0;
4297                 }
4298
4299                 /* use prefetched values */
4300                 rx_desc = next_rxd;
4301                 buffer_info = next_buffer;
4302         }
4303         rx_ring->next_to_clean = i;
4304
4305         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306         if (cleaned_count)
4307                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309         adapter->total_rx_packets += total_rx_packets;
4310         adapter->total_rx_bytes += total_rx_bytes;
4311         netdev->stats.rx_bytes += total_rx_bytes;
4312         netdev->stats.rx_packets += total_rx_packets;
4313         return cleaned;
4314 }
4315
4316 /* this should improve performance for small packets with large amounts
4317  * of reassembly being done in the stack
4318  */
4319 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320                                        struct e1000_rx_buffer *buffer_info,
4321                                        u32 length, const void *data)
4322 {
4323         struct sk_buff *skb;
4324
4325         if (length > copybreak)
4326                 return NULL;
4327
4328         skb = e1000_alloc_rx_skb(adapter, length);
4329         if (!skb)
4330                 return NULL;
4331
4332         dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333                                 length, DMA_FROM_DEVICE);
4334
4335         skb_put_data(skb, data, length);
4336
4337         return skb;
4338 }
4339
4340 /**
4341  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342  * @adapter: board private structure
4343  * @rx_ring: ring to clean
4344  * @work_done: amount of napi work completed this call
4345  * @work_to_do: max amount of work allowed for this call to do
4346  */
4347 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348                                struct e1000_rx_ring *rx_ring,
4349                                int *work_done, int work_to_do)
4350 {
4351         struct net_device *netdev = adapter->netdev;
4352         struct pci_dev *pdev = adapter->pdev;
4353         struct e1000_rx_desc *rx_desc, *next_rxd;
4354         struct e1000_rx_buffer *buffer_info, *next_buffer;
4355         u32 length;
4356         unsigned int i;
4357         int cleaned_count = 0;
4358         bool cleaned = false;
4359         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361         i = rx_ring->next_to_clean;
4362         rx_desc = E1000_RX_DESC(*rx_ring, i);
4363         buffer_info = &rx_ring->buffer_info[i];
4364
4365         while (rx_desc->status & E1000_RXD_STAT_DD) {
4366                 struct sk_buff *skb;
4367                 u8 *data;
4368                 u8 status;
4369
4370                 if (*work_done >= work_to_do)
4371                         break;
4372                 (*work_done)++;
4373                 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375                 status = rx_desc->status;
4376                 length = le16_to_cpu(rx_desc->length);
4377
4378                 data = buffer_info->rxbuf.data;
4379                 prefetch(data);
4380                 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381                 if (!skb) {
4382                         unsigned int frag_len = e1000_frag_len(adapter);
4383
4384                         skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385                         if (!skb) {
4386                                 adapter->alloc_rx_buff_failed++;
4387                                 break;
4388                         }
4389
4390                         skb_reserve(skb, E1000_HEADROOM);
4391                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4392                                          adapter->rx_buffer_len,
4393                                          DMA_FROM_DEVICE);
4394                         buffer_info->dma = 0;
4395                         buffer_info->rxbuf.data = NULL;
4396                 }
4397
4398                 if (++i == rx_ring->count)
4399                         i = 0;
4400
4401                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4402                 prefetch(next_rxd);
4403
4404                 next_buffer = &rx_ring->buffer_info[i];
4405
4406                 cleaned = true;
4407                 cleaned_count++;
4408
4409                 /* !EOP means multiple descriptors were used to store a single
4410                  * packet, if thats the case we need to toss it.  In fact, we
4411                  * to toss every packet with the EOP bit clear and the next
4412                  * frame that _does_ have the EOP bit set, as it is by
4413                  * definition only a frame fragment
4414                  */
4415                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416                         adapter->discarding = true;
4417
4418                 if (adapter->discarding) {
4419                         /* All receives must fit into a single buffer */
4420                         netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421                         dev_kfree_skb(skb);
4422                         if (status & E1000_RXD_STAT_EOP)
4423                                 adapter->discarding = false;
4424                         goto next_desc;
4425                 }
4426
4427                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428                         if (e1000_tbi_should_accept(adapter, status,
4429                                                     rx_desc->errors,
4430                                                     length, data)) {
4431                                 length--;
4432                         } else if (netdev->features & NETIF_F_RXALL) {
4433                                 goto process_skb;
4434                         } else {
4435                                 dev_kfree_skb(skb);
4436                                 goto next_desc;
4437                         }
4438                 }
4439
4440 process_skb:
4441                 total_rx_bytes += (length - 4); /* don't count FCS */
4442                 total_rx_packets++;
4443
4444                 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445                         /* adjust length to remove Ethernet CRC, this must be
4446                          * done after the TBI_ACCEPT workaround above
4447                          */
4448                         length -= 4;
4449
4450                 if (buffer_info->rxbuf.data == NULL)
4451                         skb_put(skb, length);
4452                 else /* copybreak skb */
4453                         skb_trim(skb, length);
4454
4455                 /* Receive Checksum Offload */
4456                 e1000_rx_checksum(adapter,
4457                                   (u32)(status) |
4458                                   ((u32)(rx_desc->errors) << 24),
4459                                   le16_to_cpu(rx_desc->csum), skb);
4460
4461                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463 next_desc:
4464                 rx_desc->status = 0;
4465
4466                 /* return some buffers to hardware, one at a time is too slow */
4467                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469                         cleaned_count = 0;
4470                 }
4471
4472                 /* use prefetched values */
4473                 rx_desc = next_rxd;
4474                 buffer_info = next_buffer;
4475         }
4476         rx_ring->next_to_clean = i;
4477
4478         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479         if (cleaned_count)
4480                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482         adapter->total_rx_packets += total_rx_packets;
4483         adapter->total_rx_bytes += total_rx_bytes;
4484         netdev->stats.rx_bytes += total_rx_bytes;
4485         netdev->stats.rx_packets += total_rx_packets;
4486         return cleaned;
4487 }
4488
4489 /**
4490  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491  * @adapter: address of board private structure
4492  * @rx_ring: pointer to receive ring structure
4493  * @cleaned_count: number of buffers to allocate this pass
4494  **/
4495 static void
4496 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4498 {
4499         struct pci_dev *pdev = adapter->pdev;
4500         struct e1000_rx_desc *rx_desc;
4501         struct e1000_rx_buffer *buffer_info;
4502         unsigned int i;
4503
4504         i = rx_ring->next_to_use;
4505         buffer_info = &rx_ring->buffer_info[i];
4506
4507         while (cleaned_count--) {
4508                 /* allocate a new page if necessary */
4509                 if (!buffer_info->rxbuf.page) {
4510                         buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511                         if (unlikely(!buffer_info->rxbuf.page)) {
4512                                 adapter->alloc_rx_buff_failed++;
4513                                 break;
4514                         }
4515                 }
4516
4517                 if (!buffer_info->dma) {
4518                         buffer_info->dma = dma_map_page(&pdev->dev,
4519                                                         buffer_info->rxbuf.page, 0,
4520                                                         adapter->rx_buffer_len,
4521                                                         DMA_FROM_DEVICE);
4522                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523                                 put_page(buffer_info->rxbuf.page);
4524                                 buffer_info->rxbuf.page = NULL;
4525                                 buffer_info->dma = 0;
4526                                 adapter->alloc_rx_buff_failed++;
4527                                 break;
4528                         }
4529                 }
4530
4531                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4532                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534                 if (unlikely(++i == rx_ring->count))
4535                         i = 0;
4536                 buffer_info = &rx_ring->buffer_info[i];
4537         }
4538
4539         if (likely(rx_ring->next_to_use != i)) {
4540                 rx_ring->next_to_use = i;
4541                 if (unlikely(i-- == 0))
4542                         i = (rx_ring->count - 1);
4543
4544                 /* Force memory writes to complete before letting h/w
4545                  * know there are new descriptors to fetch.  (Only
4546                  * applicable for weak-ordered memory model archs,
4547                  * such as IA-64).
4548                  */
4549                 dma_wmb();
4550                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551         }
4552 }
4553
4554 /**
4555  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556  * @adapter: address of board private structure
4557  * @rx_ring: pointer to ring struct
4558  * @cleaned_count: number of new Rx buffers to try to allocate
4559  **/
4560 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561                                    struct e1000_rx_ring *rx_ring,
4562                                    int cleaned_count)
4563 {
4564         struct e1000_hw *hw = &adapter->hw;
4565         struct pci_dev *pdev = adapter->pdev;
4566         struct e1000_rx_desc *rx_desc;
4567         struct e1000_rx_buffer *buffer_info;
4568         unsigned int i;
4569         unsigned int bufsz = adapter->rx_buffer_len;
4570
4571         i = rx_ring->next_to_use;
4572         buffer_info = &rx_ring->buffer_info[i];
4573
4574         while (cleaned_count--) {
4575                 void *data;
4576
4577                 if (buffer_info->rxbuf.data)
4578                         goto skip;
4579
4580                 data = e1000_alloc_frag(adapter);
4581                 if (!data) {
4582                         /* Better luck next round */
4583                         adapter->alloc_rx_buff_failed++;
4584                         break;
4585                 }
4586
4587                 /* Fix for errata 23, can't cross 64kB boundary */
4588                 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589                         void *olddata = data;
4590                         e_err(rx_err, "skb align check failed: %u bytes at "
4591                               "%p\n", bufsz, data);
4592                         /* Try again, without freeing the previous */
4593                         data = e1000_alloc_frag(adapter);
4594                         /* Failed allocation, critical failure */
4595                         if (!data) {
4596                                 skb_free_frag(olddata);
4597                                 adapter->alloc_rx_buff_failed++;
4598                                 break;
4599                         }
4600
4601                         if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602                                 /* give up */
4603                                 skb_free_frag(data);
4604                                 skb_free_frag(olddata);
4605                                 adapter->alloc_rx_buff_failed++;
4606                                 break;
4607                         }
4608
4609                         /* Use new allocation */
4610                         skb_free_frag(olddata);
4611                 }
4612                 buffer_info->dma = dma_map_single(&pdev->dev,
4613                                                   data,
4614                                                   adapter->rx_buffer_len,
4615                                                   DMA_FROM_DEVICE);
4616                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617                         skb_free_frag(data);
4618                         buffer_info->dma = 0;
4619                         adapter->alloc_rx_buff_failed++;
4620                         break;
4621                 }
4622
4623                 /* XXX if it was allocated cleanly it will never map to a
4624                  * boundary crossing
4625                  */
4626
4627                 /* Fix for errata 23, can't cross 64kB boundary */
4628                 if (!e1000_check_64k_bound(adapter,
4629                                         (void *)(unsigned long)buffer_info->dma,
4630                                         adapter->rx_buffer_len)) {
4631                         e_err(rx_err, "dma align check failed: %u bytes at "
4632                               "%p\n", adapter->rx_buffer_len,
4633                               (void *)(unsigned long)buffer_info->dma);
4634
4635                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4636                                          adapter->rx_buffer_len,
4637                                          DMA_FROM_DEVICE);
4638
4639                         skb_free_frag(data);
4640                         buffer_info->rxbuf.data = NULL;
4641                         buffer_info->dma = 0;
4642
4643                         adapter->alloc_rx_buff_failed++;
4644                         break;
4645                 }
4646                 buffer_info->rxbuf.data = data;
4647  skip:
4648                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4649                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651                 if (unlikely(++i == rx_ring->count))
4652                         i = 0;
4653                 buffer_info = &rx_ring->buffer_info[i];
4654         }
4655
4656         if (likely(rx_ring->next_to_use != i)) {
4657                 rx_ring->next_to_use = i;
4658                 if (unlikely(i-- == 0))
4659                         i = (rx_ring->count - 1);
4660
4661                 /* Force memory writes to complete before letting h/w
4662                  * know there are new descriptors to fetch.  (Only
4663                  * applicable for weak-ordered memory model archs,
4664                  * such as IA-64).
4665                  */
4666                 dma_wmb();
4667                 writel(i, hw->hw_addr + rx_ring->rdt);
4668         }
4669 }
4670
4671 /**
4672  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673  * @adapter: address of board private structure
4674  **/
4675 static void e1000_smartspeed(struct e1000_adapter *adapter)
4676 {
4677         struct e1000_hw *hw = &adapter->hw;
4678         u16 phy_status;
4679         u16 phy_ctrl;
4680
4681         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683                 return;
4684
4685         if (adapter->smartspeed == 0) {
4686                 /* If Master/Slave config fault is asserted twice,
4687                  * we assume back-to-back
4688                  */
4689                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691                         return;
4692                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694                         return;
4695                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699                                             phy_ctrl);
4700                         adapter->smartspeed++;
4701                         if (!e1000_phy_setup_autoneg(hw) &&
4702                            !e1000_read_phy_reg(hw, PHY_CTRL,
4703                                                &phy_ctrl)) {
4704                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705                                              MII_CR_RESTART_AUTO_NEG);
4706                                 e1000_write_phy_reg(hw, PHY_CTRL,
4707                                                     phy_ctrl);
4708                         }
4709                 }
4710                 return;
4711         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712                 /* If still no link, perhaps using 2/3 pair cable */
4713                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714                 phy_ctrl |= CR_1000T_MS_ENABLE;
4715                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716                 if (!e1000_phy_setup_autoneg(hw) &&
4717                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719                                      MII_CR_RESTART_AUTO_NEG);
4720                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721                 }
4722         }
4723         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725                 adapter->smartspeed = 0;
4726 }
4727
4728 /**
4729  * e1000_ioctl - handle ioctl calls
4730  * @netdev: pointer to our netdev
4731  * @ifr: pointer to interface request structure
4732  * @cmd: ioctl data
4733  **/
4734 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735 {
4736         switch (cmd) {
4737         case SIOCGMIIPHY:
4738         case SIOCGMIIREG:
4739         case SIOCSMIIREG:
4740                 return e1000_mii_ioctl(netdev, ifr, cmd);
4741         default:
4742                 return -EOPNOTSUPP;
4743         }
4744 }
4745
4746 /**
4747  * e1000_mii_ioctl -
4748  * @netdev: pointer to our netdev
4749  * @ifr: pointer to interface request structure
4750  * @cmd: ioctl data
4751  **/
4752 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753                            int cmd)
4754 {
4755         struct e1000_adapter *adapter = netdev_priv(netdev);
4756         struct e1000_hw *hw = &adapter->hw;
4757         struct mii_ioctl_data *data = if_mii(ifr);
4758         int retval;
4759         u16 mii_reg;
4760         unsigned long flags;
4761
4762         if (hw->media_type != e1000_media_type_copper)
4763                 return -EOPNOTSUPP;
4764
4765         switch (cmd) {
4766         case SIOCGMIIPHY:
4767                 data->phy_id = hw->phy_addr;
4768                 break;
4769         case SIOCGMIIREG:
4770                 spin_lock_irqsave(&adapter->stats_lock, flags);
4771                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772                                    &data->val_out)) {
4773                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774                         return -EIO;
4775                 }
4776                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777                 break;
4778         case SIOCSMIIREG:
4779                 if (data->reg_num & ~(0x1F))
4780                         return -EFAULT;
4781                 mii_reg = data->val_in;
4782                 spin_lock_irqsave(&adapter->stats_lock, flags);
4783                 if (e1000_write_phy_reg(hw, data->reg_num,
4784                                         mii_reg)) {
4785                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786                         return -EIO;
4787                 }
4788                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789                 if (hw->media_type == e1000_media_type_copper) {
4790                         switch (data->reg_num) {
4791                         case PHY_CTRL:
4792                                 if (mii_reg & MII_CR_POWER_DOWN)
4793                                         break;
4794                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795                                         hw->autoneg = 1;
4796                                         hw->autoneg_advertised = 0x2F;
4797                                 } else {
4798                                         u32 speed;
4799                                         if (mii_reg & 0x40)
4800                                                 speed = SPEED_1000;
4801                                         else if (mii_reg & 0x2000)
4802                                                 speed = SPEED_100;
4803                                         else
4804                                                 speed = SPEED_10;
4805                                         retval = e1000_set_spd_dplx(
4806                                                 adapter, speed,
4807                                                 ((mii_reg & 0x100)
4808                                                  ? DUPLEX_FULL :
4809                                                  DUPLEX_HALF));
4810                                         if (retval)
4811                                                 return retval;
4812                                 }
4813                                 if (netif_running(adapter->netdev))
4814                                         e1000_reinit_locked(adapter);
4815                                 else
4816                                         e1000_reset(adapter);
4817                                 break;
4818                         case M88E1000_PHY_SPEC_CTRL:
4819                         case M88E1000_EXT_PHY_SPEC_CTRL:
4820                                 if (e1000_phy_reset(hw))
4821                                         return -EIO;
4822                                 break;
4823                         }
4824                 } else {
4825                         switch (data->reg_num) {
4826                         case PHY_CTRL:
4827                                 if (mii_reg & MII_CR_POWER_DOWN)
4828                                         break;
4829                                 if (netif_running(adapter->netdev))
4830                                         e1000_reinit_locked(adapter);
4831                                 else
4832                                         e1000_reset(adapter);
4833                                 break;
4834                         }
4835                 }
4836                 break;
4837         default:
4838                 return -EOPNOTSUPP;
4839         }
4840         return E1000_SUCCESS;
4841 }
4842
4843 void e1000_pci_set_mwi(struct e1000_hw *hw)
4844 {
4845         struct e1000_adapter *adapter = hw->back;
4846         int ret_val = pci_set_mwi(adapter->pdev);
4847
4848         if (ret_val)
4849                 e_err(probe, "Error in setting MWI\n");
4850 }
4851
4852 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853 {
4854         struct e1000_adapter *adapter = hw->back;
4855
4856         pci_clear_mwi(adapter->pdev);
4857 }
4858
4859 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860 {
4861         struct e1000_adapter *adapter = hw->back;
4862         return pcix_get_mmrbc(adapter->pdev);
4863 }
4864
4865 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866 {
4867         struct e1000_adapter *adapter = hw->back;
4868         pcix_set_mmrbc(adapter->pdev, mmrbc);
4869 }
4870
4871 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872 {
4873         outl(value, port);
4874 }
4875
4876 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877 {
4878         u16 vid;
4879
4880         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881                 return true;
4882         return false;
4883 }
4884
4885 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886                               netdev_features_t features)
4887 {
4888         struct e1000_hw *hw = &adapter->hw;
4889         u32 ctrl;
4890
4891         ctrl = er32(CTRL);
4892         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893                 /* enable VLAN tag insert/strip */
4894                 ctrl |= E1000_CTRL_VME;
4895         } else {
4896                 /* disable VLAN tag insert/strip */
4897                 ctrl &= ~E1000_CTRL_VME;
4898         }
4899         ew32(CTRL, ctrl);
4900 }
4901 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902                                      bool filter_on)
4903 {
4904         struct e1000_hw *hw = &adapter->hw;
4905         u32 rctl;
4906
4907         if (!test_bit(__E1000_DOWN, &adapter->flags))
4908                 e1000_irq_disable(adapter);
4909
4910         __e1000_vlan_mode(adapter, adapter->netdev->features);
4911         if (filter_on) {
4912                 /* enable VLAN receive filtering */
4913                 rctl = er32(RCTL);
4914                 rctl &= ~E1000_RCTL_CFIEN;
4915                 if (!(adapter->netdev->flags & IFF_PROMISC))
4916                         rctl |= E1000_RCTL_VFE;
4917                 ew32(RCTL, rctl);
4918                 e1000_update_mng_vlan(adapter);
4919         } else {
4920                 /* disable VLAN receive filtering */
4921                 rctl = er32(RCTL);
4922                 rctl &= ~E1000_RCTL_VFE;
4923                 ew32(RCTL, rctl);
4924         }
4925
4926         if (!test_bit(__E1000_DOWN, &adapter->flags))
4927                 e1000_irq_enable(adapter);
4928 }
4929
4930 static void e1000_vlan_mode(struct net_device *netdev,
4931                             netdev_features_t features)
4932 {
4933         struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935         if (!test_bit(__E1000_DOWN, &adapter->flags))
4936                 e1000_irq_disable(adapter);
4937
4938         __e1000_vlan_mode(adapter, features);
4939
4940         if (!test_bit(__E1000_DOWN, &adapter->flags))
4941                 e1000_irq_enable(adapter);
4942 }
4943
4944 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945                                  __be16 proto, u16 vid)
4946 {
4947         struct e1000_adapter *adapter = netdev_priv(netdev);
4948         struct e1000_hw *hw = &adapter->hw;
4949         u32 vfta, index;
4950
4951         if ((hw->mng_cookie.status &
4952              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953             (vid == adapter->mng_vlan_id))
4954                 return 0;
4955
4956         if (!e1000_vlan_used(adapter))
4957                 e1000_vlan_filter_on_off(adapter, true);
4958
4959         /* add VID to filter table */
4960         index = (vid >> 5) & 0x7F;
4961         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962         vfta |= (1 << (vid & 0x1F));
4963         e1000_write_vfta(hw, index, vfta);
4964
4965         set_bit(vid, adapter->active_vlans);
4966
4967         return 0;
4968 }
4969
4970 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971                                   __be16 proto, u16 vid)
4972 {
4973         struct e1000_adapter *adapter = netdev_priv(netdev);
4974         struct e1000_hw *hw = &adapter->hw;
4975         u32 vfta, index;
4976
4977         if (!test_bit(__E1000_DOWN, &adapter->flags))
4978                 e1000_irq_disable(adapter);
4979         if (!test_bit(__E1000_DOWN, &adapter->flags))
4980                 e1000_irq_enable(adapter);
4981
4982         /* remove VID from filter table */
4983         index = (vid >> 5) & 0x7F;
4984         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985         vfta &= ~(1 << (vid & 0x1F));
4986         e1000_write_vfta(hw, index, vfta);
4987
4988         clear_bit(vid, adapter->active_vlans);
4989
4990         if (!e1000_vlan_used(adapter))
4991                 e1000_vlan_filter_on_off(adapter, false);
4992
4993         return 0;
4994 }
4995
4996 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997 {
4998         u16 vid;
4999
5000         if (!e1000_vlan_used(adapter))
5001                 return;
5002
5003         e1000_vlan_filter_on_off(adapter, true);
5004         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005                 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006 }
5007
5008 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009 {
5010         struct e1000_hw *hw = &adapter->hw;
5011
5012         hw->autoneg = 0;
5013
5014         /* Make sure dplx is at most 1 bit and lsb of speed is not set
5015          * for the switch() below to work
5016          */
5017         if ((spd & 1) || (dplx & ~1))
5018                 goto err_inval;
5019
5020         /* Fiber NICs only allow 1000 gbps Full duplex */
5021         if ((hw->media_type == e1000_media_type_fiber) &&
5022             spd != SPEED_1000 &&
5023             dplx != DUPLEX_FULL)
5024                 goto err_inval;
5025
5026         switch (spd + dplx) {
5027         case SPEED_10 + DUPLEX_HALF:
5028                 hw->forced_speed_duplex = e1000_10_half;
5029                 break;
5030         case SPEED_10 + DUPLEX_FULL:
5031                 hw->forced_speed_duplex = e1000_10_full;
5032                 break;
5033         case SPEED_100 + DUPLEX_HALF:
5034                 hw->forced_speed_duplex = e1000_100_half;
5035                 break;
5036         case SPEED_100 + DUPLEX_FULL:
5037                 hw->forced_speed_duplex = e1000_100_full;
5038                 break;
5039         case SPEED_1000 + DUPLEX_FULL:
5040                 hw->autoneg = 1;
5041                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042                 break;
5043         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044         default:
5045                 goto err_inval;
5046         }
5047
5048         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049         hw->mdix = AUTO_ALL_MODES;
5050
5051         return 0;
5052
5053 err_inval:
5054         e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055         return -EINVAL;
5056 }
5057
5058 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059 {
5060         struct net_device *netdev = pci_get_drvdata(pdev);
5061         struct e1000_adapter *adapter = netdev_priv(netdev);
5062         struct e1000_hw *hw = &adapter->hw;
5063         u32 ctrl, ctrl_ext, rctl, status;
5064         u32 wufc = adapter->wol;
5065
5066         netif_device_detach(netdev);
5067
5068         if (netif_running(netdev)) {
5069                 int count = E1000_CHECK_RESET_COUNT;
5070
5071                 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072                         usleep_range(10000, 20000);
5073
5074                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075                 e1000_down(adapter);
5076         }
5077
5078         status = er32(STATUS);
5079         if (status & E1000_STATUS_LU)
5080                 wufc &= ~E1000_WUFC_LNKC;
5081
5082         if (wufc) {
5083                 e1000_setup_rctl(adapter);
5084                 e1000_set_rx_mode(netdev);
5085
5086                 rctl = er32(RCTL);
5087
5088                 /* turn on all-multi mode if wake on multicast is enabled */
5089                 if (wufc & E1000_WUFC_MC)
5090                         rctl |= E1000_RCTL_MPE;
5091
5092                 /* enable receives in the hardware */
5093                 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095                 if (hw->mac_type >= e1000_82540) {
5096                         ctrl = er32(CTRL);
5097                         /* advertise wake from D3Cold */
5098                         #define E1000_CTRL_ADVD3WUC 0x00100000
5099                         /* phy power management enable */
5100                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101                         ctrl |= E1000_CTRL_ADVD3WUC |
5102                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5103                         ew32(CTRL, ctrl);
5104                 }
5105
5106                 if (hw->media_type == e1000_media_type_fiber ||
5107                     hw->media_type == e1000_media_type_internal_serdes) {
5108                         /* keep the laser running in D3 */
5109                         ctrl_ext = er32(CTRL_EXT);
5110                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111                         ew32(CTRL_EXT, ctrl_ext);
5112                 }
5113
5114                 ew32(WUC, E1000_WUC_PME_EN);
5115                 ew32(WUFC, wufc);
5116         } else {
5117                 ew32(WUC, 0);
5118                 ew32(WUFC, 0);
5119         }
5120
5121         e1000_release_manageability(adapter);
5122
5123         *enable_wake = !!wufc;
5124
5125         /* make sure adapter isn't asleep if manageability is enabled */
5126         if (adapter->en_mng_pt)
5127                 *enable_wake = true;
5128
5129         if (netif_running(netdev))
5130                 e1000_free_irq(adapter);
5131
5132         if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133                 pci_disable_device(pdev);
5134
5135         return 0;
5136 }
5137
5138 static int __maybe_unused e1000_suspend(struct device *dev)
5139 {
5140         int retval;
5141         struct pci_dev *pdev = to_pci_dev(dev);
5142         bool wake;
5143
5144         retval = __e1000_shutdown(pdev, &wake);
5145         device_set_wakeup_enable(dev, wake);
5146
5147         return retval;
5148 }
5149
5150 static int __maybe_unused e1000_resume(struct device *dev)
5151 {
5152         struct pci_dev *pdev = to_pci_dev(dev);
5153         struct net_device *netdev = pci_get_drvdata(pdev);
5154         struct e1000_adapter *adapter = netdev_priv(netdev);
5155         struct e1000_hw *hw = &adapter->hw;
5156         u32 err;
5157
5158         if (adapter->need_ioport)
5159                 err = pci_enable_device(pdev);
5160         else
5161                 err = pci_enable_device_mem(pdev);
5162         if (err) {
5163                 pr_err("Cannot enable PCI device from suspend\n");
5164                 return err;
5165         }
5166
5167         /* flush memory to make sure state is correct */
5168         smp_mb__before_atomic();
5169         clear_bit(__E1000_DISABLED, &adapter->flags);
5170         pci_set_master(pdev);
5171
5172         pci_enable_wake(pdev, PCI_D3hot, 0);
5173         pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175         if (netif_running(netdev)) {
5176                 err = e1000_request_irq(adapter);
5177                 if (err)
5178                         return err;
5179         }
5180
5181         e1000_power_up_phy(adapter);
5182         e1000_reset(adapter);
5183         ew32(WUS, ~0);
5184
5185         e1000_init_manageability(adapter);
5186
5187         if (netif_running(netdev))
5188                 e1000_up(adapter);
5189
5190         netif_device_attach(netdev);
5191
5192         return 0;
5193 }
5194
5195 static void e1000_shutdown(struct pci_dev *pdev)
5196 {
5197         bool wake;
5198
5199         __e1000_shutdown(pdev, &wake);
5200
5201         if (system_state == SYSTEM_POWER_OFF) {
5202                 pci_wake_from_d3(pdev, wake);
5203                 pci_set_power_state(pdev, PCI_D3hot);
5204         }
5205 }
5206
5207 #ifdef CONFIG_NET_POLL_CONTROLLER
5208 /* Polling 'interrupt' - used by things like netconsole to send skbs
5209  * without having to re-enable interrupts. It's not called while
5210  * the interrupt routine is executing.
5211  */
5212 static void e1000_netpoll(struct net_device *netdev)
5213 {
5214         struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216         if (disable_hardirq(adapter->pdev->irq))
5217                 e1000_intr(adapter->pdev->irq, netdev);
5218         enable_irq(adapter->pdev->irq);
5219 }
5220 #endif
5221
5222 /**
5223  * e1000_io_error_detected - called when PCI error is detected
5224  * @pdev: Pointer to PCI device
5225  * @state: The current pci connection state
5226  *
5227  * This function is called after a PCI bus error affecting
5228  * this device has been detected.
5229  */
5230 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231                                                 pci_channel_state_t state)
5232 {
5233         struct net_device *netdev = pci_get_drvdata(pdev);
5234         struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236         netif_device_detach(netdev);
5237
5238         if (state == pci_channel_io_perm_failure)
5239                 return PCI_ERS_RESULT_DISCONNECT;
5240
5241         if (netif_running(netdev))
5242                 e1000_down(adapter);
5243
5244         if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245                 pci_disable_device(pdev);
5246
5247         /* Request a slot reset. */
5248         return PCI_ERS_RESULT_NEED_RESET;
5249 }
5250
5251 /**
5252  * e1000_io_slot_reset - called after the pci bus has been reset.
5253  * @pdev: Pointer to PCI device
5254  *
5255  * Restart the card from scratch, as if from a cold-boot. Implementation
5256  * resembles the first-half of the e1000_resume routine.
5257  */
5258 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259 {
5260         struct net_device *netdev = pci_get_drvdata(pdev);
5261         struct e1000_adapter *adapter = netdev_priv(netdev);
5262         struct e1000_hw *hw = &adapter->hw;
5263         int err;
5264
5265         if (adapter->need_ioport)
5266                 err = pci_enable_device(pdev);
5267         else
5268                 err = pci_enable_device_mem(pdev);
5269         if (err) {
5270                 pr_err("Cannot re-enable PCI device after reset.\n");
5271                 return PCI_ERS_RESULT_DISCONNECT;
5272         }
5273
5274         /* flush memory to make sure state is correct */
5275         smp_mb__before_atomic();
5276         clear_bit(__E1000_DISABLED, &adapter->flags);
5277         pci_set_master(pdev);
5278
5279         pci_enable_wake(pdev, PCI_D3hot, 0);
5280         pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282         e1000_reset(adapter);
5283         ew32(WUS, ~0);
5284
5285         return PCI_ERS_RESULT_RECOVERED;
5286 }
5287
5288 /**
5289  * e1000_io_resume - called when traffic can start flowing again.
5290  * @pdev: Pointer to PCI device
5291  *
5292  * This callback is called when the error recovery driver tells us that
5293  * its OK to resume normal operation. Implementation resembles the
5294  * second-half of the e1000_resume routine.
5295  */
5296 static void e1000_io_resume(struct pci_dev *pdev)
5297 {
5298         struct net_device *netdev = pci_get_drvdata(pdev);
5299         struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301         e1000_init_manageability(adapter);
5302
5303         if (netif_running(netdev)) {
5304                 if (e1000_up(adapter)) {
5305                         pr_info("can't bring device back up after reset\n");
5306                         return;
5307                 }
5308         }
5309
5310         netif_device_attach(netdev);
5311 }
5312
5313 /* e1000_main.c */
This page took 0.359929 seconds and 4 git commands to generate.