1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/iopoll.h>
17 #include <linux/ioport.h>
18 #include <linux/irq.h>
19 #include <linux/module.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_domain.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sh_timer.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
30 #include <asm/platform_early.h>
36 * The CMT comes in 5 different identified flavours, depending not only on the
37 * SoC but also on the particular instance. The following table lists the main
38 * characteristics of those flavours.
40 * 16B 32B 32B-F 48B R-Car Gen2
41 * -----------------------------------------------------------------------------
42 * Channels 2 1/4 1 6 2/8
43 * Control Width 16 16 16 16 32
44 * Counter Width 16 32 32 32/48 32/48
45 * Shared Start/Stop Y Y Y Y N
47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
48 * located in the channel registers block. All other versions have a shared
49 * start/stop register located in the global space.
51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
52 * infers the start/stop bit position in the control register and the channel
53 * registers block address. Some CMT instances have a subset of channels
54 * available, in which case the index in the documentation doesn't match the
55 * "real" index as implemented in hardware. This is for instance the case with
56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
57 * in the documentation but using start/stop bit 5 and having its registers
60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
73 enum sh_cmt_model model;
75 unsigned int channels_mask;
77 unsigned long width; /* 16 or 32 bit version of hardware block */
81 /* callbacks for CMSTR and CMCSR access */
82 u32 (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
86 /* callbacks for CMCNT and CMCOR access */
87 u32 (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
91 struct sh_cmt_channel {
92 struct sh_cmt_device *cmt;
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
97 void __iomem *iostart;
100 unsigned int timer_bit;
103 u32 next_match_value;
106 struct clock_event_device ced;
107 struct clocksource cs;
112 struct sh_cmt_device {
113 struct platform_device *pdev;
115 const struct sh_cmt_info *info;
117 void __iomem *mapbase;
120 unsigned int reg_delay;
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
126 unsigned int hw_channels;
129 bool has_clocksource;
132 #define SH_CMT16_CMCSR_CMF (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
140 #define SH_CMT32_CMCSR_CMF (1 << 15)
141 #define SH_CMT32_CMCSR_OVF (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
143 #define SH_CMT32_CMCSR_STTF (1 << 12)
144 #define SH_CMT32_CMCSR_STPF (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE (1 << 10)
146 #define SH_CMT32_CMCSR_CMS (1 << 9)
147 #define SH_CMT32_CMCSR_CMM (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
160 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
162 return ioread16(base + (offs << 1));
165 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
167 return ioread32(base + (offs << 2));
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
172 iowrite16(value, base + (offs << 1));
175 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
177 iowrite32(value, base + (offs << 2));
180 static const struct sh_cmt_info sh_cmt_info[] = {
182 .model = SH_CMT_16BIT,
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
192 .model = SH_CMT_32BIT,
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
202 .model = SH_CMT_48BIT,
203 .channels_mask = 0x3f,
205 .overflow_bit = SH_CMT32_CMCSR_CMF,
206 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
207 .read_control = sh_cmt_read32,
208 .write_control = sh_cmt_write32,
209 .read_count = sh_cmt_read32,
210 .write_count = sh_cmt_write32,
212 [SH_CMT0_RCAR_GEN2] = {
213 .model = SH_CMT0_RCAR_GEN2,
214 .channels_mask = 0x60,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
223 [SH_CMT1_RCAR_GEN2] = {
224 .model = SH_CMT1_RCAR_GEN2,
225 .channels_mask = 0xff,
227 .overflow_bit = SH_CMT32_CMCSR_CMF,
228 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
229 .read_control = sh_cmt_read32,
230 .write_control = sh_cmt_write32,
231 .read_count = sh_cmt_read32,
232 .write_count = sh_cmt_write32,
236 #define CMCSR 0 /* channel register */
237 #define CMCNT 1 /* channel register */
238 #define CMCOR 2 /* channel register */
240 #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
245 return ch->cmt->info->read_control(ch->iostart, 0);
247 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
252 u32 old_value = sh_cmt_read_cmstr(ch);
254 if (value != old_value) {
256 ch->cmt->info->write_control(ch->iostart, 0, value);
257 udelay(ch->cmt->reg_delay);
259 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
260 udelay(ch->cmt->reg_delay);
265 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
267 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
270 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
272 u32 old_value = sh_cmt_read_cmcsr(ch);
274 if (value != old_value) {
275 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
276 udelay(ch->cmt->reg_delay);
280 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
282 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
285 static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
287 /* Tests showed that we need to wait 3 clocks here */
288 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
291 if (ch->cmt->info->model > SH_CMT_16BIT) {
292 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
293 !(reg & SH_CMT32_CMCSR_WRFLG),
294 1, cmcnt_delay, false, ch);
299 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
304 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
306 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
308 if (value != old_value) {
309 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
310 udelay(ch->cmt->reg_delay);
314 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
319 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
321 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
324 v1 = sh_cmt_read_cmcnt(ch);
325 v2 = sh_cmt_read_cmcnt(ch);
326 v3 = sh_cmt_read_cmcnt(ch);
327 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
328 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
329 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
335 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
340 /* start stop register shared by multiple timer channels */
341 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
342 value = sh_cmt_read_cmstr(ch);
345 value |= 1 << ch->timer_bit;
347 value &= ~(1 << ch->timer_bit);
349 sh_cmt_write_cmstr(ch, value);
350 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
353 static int sh_cmt_enable(struct sh_cmt_channel *ch)
357 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
360 ret = clk_enable(ch->cmt->clk);
362 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
367 /* make sure channel is disabled */
368 sh_cmt_start_stop_ch(ch, 0);
370 /* configure channel, periodic mode and maximum timeout */
371 if (ch->cmt->info->width == 16) {
372 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
373 SH_CMT16_CMCSR_CKS512);
375 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
376 SH_CMT32_CMCSR_CMTOUT_IE : 0;
377 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
378 SH_CMT32_CMCSR_CMR_IRQ |
379 SH_CMT32_CMCSR_CKS_RCLK8);
382 sh_cmt_write_cmcor(ch, 0xffffffff);
383 ret = sh_cmt_write_cmcnt(ch, 0);
385 if (ret || sh_cmt_read_cmcnt(ch)) {
386 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
393 sh_cmt_start_stop_ch(ch, 1);
397 clk_disable(ch->cmt->clk);
403 static void sh_cmt_disable(struct sh_cmt_channel *ch)
405 /* disable channel */
406 sh_cmt_start_stop_ch(ch, 0);
408 /* disable interrupts in CMT block */
409 sh_cmt_write_cmcsr(ch, 0);
412 clk_disable(ch->cmt->clk);
414 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
418 #define FLAG_CLOCKEVENT (1 << 0)
419 #define FLAG_CLOCKSOURCE (1 << 1)
420 #define FLAG_REPROGRAM (1 << 2)
421 #define FLAG_SKIPEVENT (1 << 3)
422 #define FLAG_IRQCONTEXT (1 << 4)
424 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
427 u32 value = ch->next_match_value;
433 now = sh_cmt_get_counter(ch, &has_wrapped);
434 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
437 /* we're competing with the interrupt handler.
438 * -> let the interrupt handler reprogram the timer.
439 * -> interrupt number two handles the event.
441 ch->flags |= FLAG_SKIPEVENT;
449 /* reprogram the timer hardware,
450 * but don't save the new match value yet.
452 new_match = now + value + delay;
453 if (new_match > ch->max_match_value)
454 new_match = ch->max_match_value;
456 sh_cmt_write_cmcor(ch, new_match);
458 now = sh_cmt_get_counter(ch, &has_wrapped);
459 if (has_wrapped && (new_match > ch->match_value)) {
460 /* we are changing to a greater match value,
461 * so this wrap must be caused by the counter
462 * matching the old value.
463 * -> first interrupt reprograms the timer.
464 * -> interrupt number two handles the event.
466 ch->flags |= FLAG_SKIPEVENT;
471 /* we are changing to a smaller match value,
472 * so the wrap must be caused by the counter
473 * matching the new value.
474 * -> save programmed match value.
475 * -> let isr handle the event.
477 ch->match_value = new_match;
481 /* be safe: verify hardware settings */
482 if (now < new_match) {
483 /* timer value is below match value, all good.
484 * this makes sure we won't miss any match events.
485 * -> save programmed match value.
486 * -> let isr handle the event.
488 ch->match_value = new_match;
492 /* the counter has reached a value greater
493 * than our new match value. and since the
494 * has_wrapped flag isn't set we must have
495 * programmed a too close event.
496 * -> increase delay and retry.
504 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
510 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
512 if (delta > ch->max_match_value)
513 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
516 ch->next_match_value = delta;
517 sh_cmt_clock_event_program_verify(ch, 0);
520 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
524 raw_spin_lock_irqsave(&ch->lock, flags);
525 __sh_cmt_set_next(ch, delta);
526 raw_spin_unlock_irqrestore(&ch->lock, flags);
529 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
531 struct sh_cmt_channel *ch = dev_id;
534 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
535 ch->cmt->info->clear_bits);
537 /* update clock source counter to begin with if enabled
538 * the wrap flag should be cleared by the timer specific
539 * isr before we end up here.
541 if (ch->flags & FLAG_CLOCKSOURCE)
542 ch->total_cycles += ch->match_value + 1;
544 if (!(ch->flags & FLAG_REPROGRAM))
545 ch->next_match_value = ch->max_match_value;
547 ch->flags |= FLAG_IRQCONTEXT;
549 if (ch->flags & FLAG_CLOCKEVENT) {
550 if (!(ch->flags & FLAG_SKIPEVENT)) {
551 if (clockevent_state_oneshot(&ch->ced)) {
552 ch->next_match_value = ch->max_match_value;
553 ch->flags |= FLAG_REPROGRAM;
556 ch->ced.event_handler(&ch->ced);
560 ch->flags &= ~FLAG_SKIPEVENT;
562 if (ch->flags & FLAG_REPROGRAM) {
563 ch->flags &= ~FLAG_REPROGRAM;
564 sh_cmt_clock_event_program_verify(ch, 1);
566 if (ch->flags & FLAG_CLOCKEVENT)
567 if ((clockevent_state_shutdown(&ch->ced))
568 || (ch->match_value == ch->next_match_value))
569 ch->flags &= ~FLAG_REPROGRAM;
572 ch->flags &= ~FLAG_IRQCONTEXT;
577 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
582 if (flag & FLAG_CLOCKSOURCE)
583 pm_runtime_get_sync(&ch->cmt->pdev->dev);
585 raw_spin_lock_irqsave(&ch->lock, flags);
587 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
588 if (flag & FLAG_CLOCKEVENT)
589 pm_runtime_get_sync(&ch->cmt->pdev->dev);
590 ret = sh_cmt_enable(ch);
597 /* setup timeout if no clockevent */
598 if (ch->cmt->num_channels == 1 &&
599 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
600 __sh_cmt_set_next(ch, ch->max_match_value);
602 raw_spin_unlock_irqrestore(&ch->lock, flags);
607 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
612 raw_spin_lock_irqsave(&ch->lock, flags);
614 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
617 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
619 if (flag & FLAG_CLOCKEVENT)
620 pm_runtime_put(&ch->cmt->pdev->dev);
623 /* adjust the timeout to maximum if only clocksource left */
624 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
625 __sh_cmt_set_next(ch, ch->max_match_value);
627 raw_spin_unlock_irqrestore(&ch->lock, flags);
629 if (flag & FLAG_CLOCKSOURCE)
630 pm_runtime_put(&ch->cmt->pdev->dev);
633 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
635 return container_of(cs, struct sh_cmt_channel, cs);
638 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
640 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
643 if (ch->cmt->num_channels == 1) {
648 raw_spin_lock_irqsave(&ch->lock, flags);
649 value = ch->total_cycles;
650 raw = sh_cmt_get_counter(ch, &has_wrapped);
652 if (unlikely(has_wrapped))
653 raw += ch->match_value + 1;
654 raw_spin_unlock_irqrestore(&ch->lock, flags);
659 return sh_cmt_get_counter(ch, &has_wrapped);
662 static int sh_cmt_clocksource_enable(struct clocksource *cs)
665 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667 WARN_ON(ch->cs_enabled);
669 ch->total_cycles = 0;
671 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673 ch->cs_enabled = true;
678 static void sh_cmt_clocksource_disable(struct clocksource *cs)
680 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
682 WARN_ON(!ch->cs_enabled);
684 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
685 ch->cs_enabled = false;
688 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
690 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
695 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
696 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
699 static void sh_cmt_clocksource_resume(struct clocksource *cs)
701 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
706 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
707 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
710 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
713 struct clocksource *cs = &ch->cs;
717 cs->read = sh_cmt_clocksource_read;
718 cs->enable = sh_cmt_clocksource_enable;
719 cs->disable = sh_cmt_clocksource_disable;
720 cs->suspend = sh_cmt_clocksource_suspend;
721 cs->resume = sh_cmt_clocksource_resume;
722 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
723 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
728 clocksource_register_hz(cs, ch->cmt->rate);
732 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
734 return container_of(ced, struct sh_cmt_channel, ced);
737 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
739 sh_cmt_start(ch, FLAG_CLOCKEVENT);
742 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
744 sh_cmt_set_next(ch, ch->max_match_value);
747 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
749 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
755 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
758 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
760 /* deal with old setting first */
761 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
762 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
764 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
765 ch->index, periodic ? "periodic" : "oneshot");
766 sh_cmt_clock_event_start(ch, periodic);
770 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
772 return sh_cmt_clock_event_set_state(ced, 0);
775 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
777 return sh_cmt_clock_event_set_state(ced, 1);
780 static int sh_cmt_clock_event_next(unsigned long delta,
781 struct clock_event_device *ced)
783 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
785 BUG_ON(!clockevent_state_oneshot(ced));
786 if (likely(ch->flags & FLAG_IRQCONTEXT))
787 ch->next_match_value = delta - 1;
789 sh_cmt_set_next(ch, delta - 1);
794 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
796 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
798 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
799 clk_unprepare(ch->cmt->clk);
802 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
804 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
806 clk_prepare(ch->cmt->clk);
807 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
810 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
813 struct clock_event_device *ced = &ch->ced;
817 irq = platform_get_irq(ch->cmt->pdev, ch->index);
821 ret = request_irq(irq, sh_cmt_interrupt,
822 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
823 dev_name(&ch->cmt->pdev->dev), ch);
825 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
831 ced->features = CLOCK_EVT_FEAT_PERIODIC;
832 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
834 ced->cpumask = cpu_possible_mask;
835 ced->set_next_event = sh_cmt_clock_event_next;
836 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
837 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
838 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
839 ced->suspend = sh_cmt_clock_event_suspend;
840 ced->resume = sh_cmt_clock_event_resume;
842 /* TODO: calculate good shift from rate and counter bit width */
844 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
845 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
846 ced->max_delta_ticks = ch->max_match_value;
847 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
848 ced->min_delta_ticks = 0x1f;
850 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
852 clockevents_register_device(ced);
857 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
858 bool clockevent, bool clocksource)
863 ch->cmt->has_clockevent = true;
864 ret = sh_cmt_register_clockevent(ch, name);
870 ch->cmt->has_clocksource = true;
871 sh_cmt_register_clocksource(ch, name);
877 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
878 unsigned int hwidx, bool clockevent,
879 bool clocksource, struct sh_cmt_device *cmt)
884 /* Skip unused channels. */
885 if (!clockevent && !clocksource)
891 ch->timer_bit = hwidx;
894 * Compute the address of the channel control register block. For the
895 * timers with a per-channel start/stop register, compute its address
898 switch (cmt->info->model) {
900 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
904 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
906 case SH_CMT0_RCAR_GEN2:
907 case SH_CMT1_RCAR_GEN2:
908 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
909 ch->ioctrl = ch->iostart + 0x10;
912 /* Enable the clock supply to the channel */
913 value = ioread32(cmt->mapbase + CMCLKE);
915 iowrite32(value, cmt->mapbase + CMCLKE);
919 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
920 ch->max_match_value = ~0;
922 ch->max_match_value = (1 << cmt->info->width) - 1;
924 ch->match_value = ch->max_match_value;
925 raw_spin_lock_init(&ch->lock);
927 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
928 clockevent, clocksource);
930 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
934 ch->cs_enabled = false;
939 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
941 struct resource *mem;
943 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
945 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
949 cmt->mapbase = ioremap(mem->start, resource_size(mem));
950 if (cmt->mapbase == NULL) {
951 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
958 static const struct platform_device_id sh_cmt_id_table[] = {
959 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
960 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
963 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
965 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
967 /* deprecated, preserved for backward compatibility */
968 .compatible = "renesas,cmt-48",
969 .data = &sh_cmt_info[SH_CMT_48BIT]
972 /* deprecated, preserved for backward compatibility */
973 .compatible = "renesas,cmt-48-gen2",
974 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
977 .compatible = "renesas,r8a7740-cmt1",
978 .data = &sh_cmt_info[SH_CMT_48BIT]
981 .compatible = "renesas,sh73a0-cmt1",
982 .data = &sh_cmt_info[SH_CMT_48BIT]
985 .compatible = "renesas,rcar-gen2-cmt0",
986 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
989 .compatible = "renesas,rcar-gen2-cmt1",
990 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
993 .compatible = "renesas,rcar-gen3-cmt0",
994 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
997 .compatible = "renesas,rcar-gen3-cmt1",
998 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1001 .compatible = "renesas,rcar-gen4-cmt0",
1002 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1005 .compatible = "renesas,rcar-gen4-cmt1",
1006 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1010 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1012 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1014 unsigned int mask, i;
1019 raw_spin_lock_init(&cmt->lock);
1021 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022 cmt->info = of_device_get_match_data(&pdev->dev);
1023 cmt->hw_channels = cmt->info->channels_mask;
1024 } else if (pdev->dev.platform_data) {
1025 struct sh_timer_config *cfg = pdev->dev.platform_data;
1026 const struct platform_device_id *id = pdev->id_entry;
1028 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029 cmt->hw_channels = cfg->channels_mask;
1031 dev_err(&cmt->pdev->dev, "missing platform data\n");
1035 /* Get hold of clock. */
1036 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037 if (IS_ERR(cmt->clk)) {
1038 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039 return PTR_ERR(cmt->clk);
1042 ret = clk_prepare(cmt->clk);
1046 /* Determine clock rate. */
1047 ret = clk_enable(cmt->clk);
1049 goto err_clk_unprepare;
1051 rate = clk_get_rate(cmt->clk);
1054 goto err_clk_disable;
1057 /* We shall wait 2 input clks after register writes */
1058 if (cmt->info->model >= SH_CMT_48BIT)
1059 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1062 /* Map the memory resource(s). */
1063 ret = sh_cmt_map_memory(cmt);
1065 goto err_clk_disable;
1067 /* Allocate and setup the channels. */
1068 cmt->num_channels = hweight8(cmt->hw_channels);
1069 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1071 if (cmt->channels == NULL) {
1077 * Use the first channel as a clock event device and the second channel
1078 * as a clock source. If only one channel is available use it for both.
1080 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081 unsigned int hwidx = ffs(mask) - 1;
1082 bool clocksource = i == 1 || cmt->num_channels == 1;
1083 bool clockevent = i == 0;
1085 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086 clockevent, clocksource, cmt);
1090 mask &= ~(1 << hwidx);
1093 clk_disable(cmt->clk);
1095 platform_set_drvdata(pdev, cmt);
1100 kfree(cmt->channels);
1101 iounmap(cmt->mapbase);
1103 clk_disable(cmt->clk);
1105 clk_unprepare(cmt->clk);
1111 static int sh_cmt_probe(struct platform_device *pdev)
1113 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1116 if (!is_sh_early_platform_device(pdev)) {
1117 pm_runtime_set_active(&pdev->dev);
1118 pm_runtime_enable(&pdev->dev);
1122 dev_info(&pdev->dev, "kept as earlytimer\n");
1126 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1130 ret = sh_cmt_setup(cmt, pdev);
1133 pm_runtime_idle(&pdev->dev);
1136 if (is_sh_early_platform_device(pdev))
1140 if (cmt->has_clockevent || cmt->has_clocksource)
1141 pm_runtime_irq_safe(&pdev->dev);
1143 pm_runtime_idle(&pdev->dev);
1148 static struct platform_driver sh_cmt_device_driver = {
1149 .probe = sh_cmt_probe,
1152 .of_match_table = of_match_ptr(sh_cmt_of_table),
1153 .suppress_bind_attrs = true,
1155 .id_table = sh_cmt_id_table,
1158 static int __init sh_cmt_init(void)
1160 return platform_driver_register(&sh_cmt_device_driver);
1163 static void __exit sh_cmt_exit(void)
1165 platform_driver_unregister(&sh_cmt_device_driver);
1168 #ifdef CONFIG_SUPERH
1169 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1172 subsys_initcall(sh_cmt_init);
1173 module_exit(sh_cmt_exit);
1175 MODULE_AUTHOR("Magnus Damm");
1176 MODULE_DESCRIPTION("SuperH CMT Timer Driver");