]> Git Repo - linux.git/blob - drivers/net/ethernet/intel/igc/igc_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16
17 #include <net/ipv6.h>
18
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23
24 #define DRV_SUMMARY     "Intel(R) 2.5G Ethernet Linux Driver"
25
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27
28 #define IGC_XDP_PASS            0
29 #define IGC_XDP_CONSUMED        BIT(0)
30 #define IGC_XDP_TX              BIT(1)
31 #define IGC_XDP_REDIRECT        BIT(2)
32
33 static int debug = -1;
34
35 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44         "Copyright(c) 2018 Intel Corporation.";
45
46 static const struct igc_info *igc_info_tbl[] = {
47         [board_base] = &igc_base_info,
48 };
49
50 static const struct pci_device_id igc_pci_tbl[] = {
51         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66         { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67         /* required last entry */
68         {0, }
69 };
70
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72
73 enum latency_range {
74         lowest_latency = 0,
75         low_latency = 1,
76         bulk_latency = 2,
77         latency_invalid = 255
78 };
79
80 void igc_reset(struct igc_adapter *adapter)
81 {
82         struct net_device *dev = adapter->netdev;
83         struct igc_hw *hw = &adapter->hw;
84         struct igc_fc_info *fc = &hw->fc;
85         u32 pba, hwm;
86
87         /* Repartition PBA for greater than 9k MTU if required */
88         pba = IGC_PBA_34K;
89
90         /* flow control settings
91          * The high water mark must be low enough to fit one full frame
92          * after transmitting the pause frame.  As such we must have enough
93          * space to allow for us to complete our current transmit and then
94          * receive the frame that is in progress from the link partner.
95          * Set it to:
96          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97          */
98         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99
100         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
101         fc->low_water = fc->high_water - 16;
102         fc->pause_time = 0xFFFF;
103         fc->send_xon = 1;
104         fc->current_mode = fc->requested_mode;
105
106         hw->mac.ops.reset_hw(hw);
107
108         if (hw->mac.ops.init_hw(hw))
109                 netdev_err(dev, "Error on hardware initialization\n");
110
111         /* Re-establish EEE setting */
112         igc_set_eee_i225(hw, true, true, true);
113
114         if (!netif_running(adapter->netdev))
115                 igc_power_down_phy_copper_base(&adapter->hw);
116
117         /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118         wr32(IGC_VET, ETH_P_8021Q);
119
120         /* Re-enable PTP, where applicable. */
121         igc_ptp_reset(adapter);
122
123         /* Re-enable TSN offloading, where applicable. */
124         igc_tsn_reset(adapter);
125
126         igc_get_phy_info(hw);
127 }
128
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135         igc_reset_phy(&adapter->hw);
136
137         igc_power_up_phy_copper(&adapter->hw);
138
139         igc_setup_link(&adapter->hw);
140 }
141
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152         struct igc_hw *hw = &adapter->hw;
153         u32 ctrl_ext;
154
155         if (!pci_device_is_present(adapter->pdev))
156                 return;
157
158         /* Let firmware take over control of h/w */
159         ctrl_ext = rd32(IGC_CTRL_EXT);
160         wr32(IGC_CTRL_EXT,
161              ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174         struct igc_hw *hw = &adapter->hw;
175         u32 ctrl_ext;
176
177         /* Let firmware know the driver has taken over */
178         ctrl_ext = rd32(IGC_CTRL_EXT);
179         wr32(IGC_CTRL_EXT,
180              ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182
183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185         dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186                          dma_unmap_len(buf, len), DMA_TO_DEVICE);
187
188         dma_unmap_len_set(buf, len, 0);
189 }
190
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197         u16 i = tx_ring->next_to_clean;
198         struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199         u32 xsk_frames = 0;
200
201         while (i != tx_ring->next_to_use) {
202                 union igc_adv_tx_desc *eop_desc, *tx_desc;
203
204                 switch (tx_buffer->type) {
205                 case IGC_TX_BUFFER_TYPE_XSK:
206                         xsk_frames++;
207                         break;
208                 case IGC_TX_BUFFER_TYPE_XDP:
209                         xdp_return_frame(tx_buffer->xdpf);
210                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211                         break;
212                 case IGC_TX_BUFFER_TYPE_SKB:
213                         dev_kfree_skb_any(tx_buffer->skb);
214                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215                         break;
216                 default:
217                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218                         break;
219                 }
220
221                 /* check for eop_desc to determine the end of the packet */
222                 eop_desc = tx_buffer->next_to_watch;
223                 tx_desc = IGC_TX_DESC(tx_ring, i);
224
225                 /* unmap remaining buffers */
226                 while (tx_desc != eop_desc) {
227                         tx_buffer++;
228                         tx_desc++;
229                         i++;
230                         if (unlikely(i == tx_ring->count)) {
231                                 i = 0;
232                                 tx_buffer = tx_ring->tx_buffer_info;
233                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
234                         }
235
236                         /* unmap any remaining paged data */
237                         if (dma_unmap_len(tx_buffer, len))
238                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239                 }
240
241                 tx_buffer->next_to_watch = NULL;
242
243                 /* move us one more past the eop_desc for start of next pkt */
244                 tx_buffer++;
245                 i++;
246                 if (unlikely(i == tx_ring->count)) {
247                         i = 0;
248                         tx_buffer = tx_ring->tx_buffer_info;
249                 }
250         }
251
252         if (tx_ring->xsk_pool && xsk_frames)
253                 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254
255         /* reset BQL for queue */
256         netdev_tx_reset_queue(txring_txq(tx_ring));
257
258         /* reset next_to_use and next_to_clean */
259         tx_ring->next_to_use = 0;
260         tx_ring->next_to_clean = 0;
261 }
262
263 /**
264  * igc_free_tx_resources - Free Tx Resources per Queue
265  * @tx_ring: Tx descriptor ring for a specific queue
266  *
267  * Free all transmit software resources
268  */
269 void igc_free_tx_resources(struct igc_ring *tx_ring)
270 {
271         igc_clean_tx_ring(tx_ring);
272
273         vfree(tx_ring->tx_buffer_info);
274         tx_ring->tx_buffer_info = NULL;
275
276         /* if not set, then don't free */
277         if (!tx_ring->desc)
278                 return;
279
280         dma_free_coherent(tx_ring->dev, tx_ring->size,
281                           tx_ring->desc, tx_ring->dma);
282
283         tx_ring->desc = NULL;
284 }
285
286 /**
287  * igc_free_all_tx_resources - Free Tx Resources for All Queues
288  * @adapter: board private structure
289  *
290  * Free all transmit software resources
291  */
292 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
293 {
294         int i;
295
296         for (i = 0; i < adapter->num_tx_queues; i++)
297                 igc_free_tx_resources(adapter->tx_ring[i]);
298 }
299
300 /**
301  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
302  * @adapter: board private structure
303  */
304 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
305 {
306         int i;
307
308         for (i = 0; i < adapter->num_tx_queues; i++)
309                 if (adapter->tx_ring[i])
310                         igc_clean_tx_ring(adapter->tx_ring[i]);
311 }
312
313 /**
314  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
315  * @tx_ring: tx descriptor ring (for a specific queue) to setup
316  *
317  * Return 0 on success, negative on failure
318  */
319 int igc_setup_tx_resources(struct igc_ring *tx_ring)
320 {
321         struct net_device *ndev = tx_ring->netdev;
322         struct device *dev = tx_ring->dev;
323         int size = 0;
324
325         size = sizeof(struct igc_tx_buffer) * tx_ring->count;
326         tx_ring->tx_buffer_info = vzalloc(size);
327         if (!tx_ring->tx_buffer_info)
328                 goto err;
329
330         /* round up to nearest 4K */
331         tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
332         tx_ring->size = ALIGN(tx_ring->size, 4096);
333
334         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
335                                            &tx_ring->dma, GFP_KERNEL);
336
337         if (!tx_ring->desc)
338                 goto err;
339
340         tx_ring->next_to_use = 0;
341         tx_ring->next_to_clean = 0;
342
343         return 0;
344
345 err:
346         vfree(tx_ring->tx_buffer_info);
347         netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
348         return -ENOMEM;
349 }
350
351 /**
352  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
353  * @adapter: board private structure
354  *
355  * Return 0 on success, negative on failure
356  */
357 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
358 {
359         struct net_device *dev = adapter->netdev;
360         int i, err = 0;
361
362         for (i = 0; i < adapter->num_tx_queues; i++) {
363                 err = igc_setup_tx_resources(adapter->tx_ring[i]);
364                 if (err) {
365                         netdev_err(dev, "Error on Tx queue %u setup\n", i);
366                         for (i--; i >= 0; i--)
367                                 igc_free_tx_resources(adapter->tx_ring[i]);
368                         break;
369                 }
370         }
371
372         return err;
373 }
374
375 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
376 {
377         u16 i = rx_ring->next_to_clean;
378
379         dev_kfree_skb(rx_ring->skb);
380         rx_ring->skb = NULL;
381
382         /* Free all the Rx ring sk_buffs */
383         while (i != rx_ring->next_to_alloc) {
384                 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
385
386                 /* Invalidate cache lines that may have been written to by
387                  * device so that we avoid corrupting memory.
388                  */
389                 dma_sync_single_range_for_cpu(rx_ring->dev,
390                                               buffer_info->dma,
391                                               buffer_info->page_offset,
392                                               igc_rx_bufsz(rx_ring),
393                                               DMA_FROM_DEVICE);
394
395                 /* free resources associated with mapping */
396                 dma_unmap_page_attrs(rx_ring->dev,
397                                      buffer_info->dma,
398                                      igc_rx_pg_size(rx_ring),
399                                      DMA_FROM_DEVICE,
400                                      IGC_RX_DMA_ATTR);
401                 __page_frag_cache_drain(buffer_info->page,
402                                         buffer_info->pagecnt_bias);
403
404                 i++;
405                 if (i == rx_ring->count)
406                         i = 0;
407         }
408 }
409
410 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
411 {
412         struct igc_rx_buffer *bi;
413         u16 i;
414
415         for (i = 0; i < ring->count; i++) {
416                 bi = &ring->rx_buffer_info[i];
417                 if (!bi->xdp)
418                         continue;
419
420                 xsk_buff_free(bi->xdp);
421                 bi->xdp = NULL;
422         }
423 }
424
425 /**
426  * igc_clean_rx_ring - Free Rx Buffers per Queue
427  * @ring: ring to free buffers from
428  */
429 static void igc_clean_rx_ring(struct igc_ring *ring)
430 {
431         if (ring->xsk_pool)
432                 igc_clean_rx_ring_xsk_pool(ring);
433         else
434                 igc_clean_rx_ring_page_shared(ring);
435
436         clear_ring_uses_large_buffer(ring);
437
438         ring->next_to_alloc = 0;
439         ring->next_to_clean = 0;
440         ring->next_to_use = 0;
441 }
442
443 /**
444  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
445  * @adapter: board private structure
446  */
447 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
448 {
449         int i;
450
451         for (i = 0; i < adapter->num_rx_queues; i++)
452                 if (adapter->rx_ring[i])
453                         igc_clean_rx_ring(adapter->rx_ring[i]);
454 }
455
456 /**
457  * igc_free_rx_resources - Free Rx Resources
458  * @rx_ring: ring to clean the resources from
459  *
460  * Free all receive software resources
461  */
462 void igc_free_rx_resources(struct igc_ring *rx_ring)
463 {
464         igc_clean_rx_ring(rx_ring);
465
466         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
467
468         vfree(rx_ring->rx_buffer_info);
469         rx_ring->rx_buffer_info = NULL;
470
471         /* if not set, then don't free */
472         if (!rx_ring->desc)
473                 return;
474
475         dma_free_coherent(rx_ring->dev, rx_ring->size,
476                           rx_ring->desc, rx_ring->dma);
477
478         rx_ring->desc = NULL;
479 }
480
481 /**
482  * igc_free_all_rx_resources - Free Rx Resources for All Queues
483  * @adapter: board private structure
484  *
485  * Free all receive software resources
486  */
487 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
488 {
489         int i;
490
491         for (i = 0; i < adapter->num_rx_queues; i++)
492                 igc_free_rx_resources(adapter->rx_ring[i]);
493 }
494
495 /**
496  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
497  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
498  *
499  * Returns 0 on success, negative on failure
500  */
501 int igc_setup_rx_resources(struct igc_ring *rx_ring)
502 {
503         struct net_device *ndev = rx_ring->netdev;
504         struct device *dev = rx_ring->dev;
505         u8 index = rx_ring->queue_index;
506         int size, desc_len, res;
507
508         /* XDP RX-queue info */
509         if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
510                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
511         res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
512                                rx_ring->q_vector->napi.napi_id);
513         if (res < 0) {
514                 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
515                            index);
516                 return res;
517         }
518
519         size = sizeof(struct igc_rx_buffer) * rx_ring->count;
520         rx_ring->rx_buffer_info = vzalloc(size);
521         if (!rx_ring->rx_buffer_info)
522                 goto err;
523
524         desc_len = sizeof(union igc_adv_rx_desc);
525
526         /* Round up to nearest 4K */
527         rx_ring->size = rx_ring->count * desc_len;
528         rx_ring->size = ALIGN(rx_ring->size, 4096);
529
530         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
531                                            &rx_ring->dma, GFP_KERNEL);
532
533         if (!rx_ring->desc)
534                 goto err;
535
536         rx_ring->next_to_alloc = 0;
537         rx_ring->next_to_clean = 0;
538         rx_ring->next_to_use = 0;
539
540         return 0;
541
542 err:
543         xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544         vfree(rx_ring->rx_buffer_info);
545         rx_ring->rx_buffer_info = NULL;
546         netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
547         return -ENOMEM;
548 }
549
550 /**
551  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
552  *                                (Descriptors) for all queues
553  * @adapter: board private structure
554  *
555  * Return 0 on success, negative on failure
556  */
557 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
558 {
559         struct net_device *dev = adapter->netdev;
560         int i, err = 0;
561
562         for (i = 0; i < adapter->num_rx_queues; i++) {
563                 err = igc_setup_rx_resources(adapter->rx_ring[i]);
564                 if (err) {
565                         netdev_err(dev, "Error on Rx queue %u setup\n", i);
566                         for (i--; i >= 0; i--)
567                                 igc_free_rx_resources(adapter->rx_ring[i]);
568                         break;
569                 }
570         }
571
572         return err;
573 }
574
575 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
576                                               struct igc_ring *ring)
577 {
578         if (!igc_xdp_is_enabled(adapter) ||
579             !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
580                 return NULL;
581
582         return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
583 }
584
585 /**
586  * igc_configure_rx_ring - Configure a receive ring after Reset
587  * @adapter: board private structure
588  * @ring: receive ring to be configured
589  *
590  * Configure the Rx unit of the MAC after a reset.
591  */
592 static void igc_configure_rx_ring(struct igc_adapter *adapter,
593                                   struct igc_ring *ring)
594 {
595         struct igc_hw *hw = &adapter->hw;
596         union igc_adv_rx_desc *rx_desc;
597         int reg_idx = ring->reg_idx;
598         u32 srrctl = 0, rxdctl = 0;
599         u64 rdba = ring->dma;
600         u32 buf_size;
601
602         xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
603         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
604         if (ring->xsk_pool) {
605                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
606                                                    MEM_TYPE_XSK_BUFF_POOL,
607                                                    NULL));
608                 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
609         } else {
610                 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
611                                                    MEM_TYPE_PAGE_SHARED,
612                                                    NULL));
613         }
614
615         if (igc_xdp_is_enabled(adapter))
616                 set_ring_uses_large_buffer(ring);
617
618         /* disable the queue */
619         wr32(IGC_RXDCTL(reg_idx), 0);
620
621         /* Set DMA base address registers */
622         wr32(IGC_RDBAL(reg_idx),
623              rdba & 0x00000000ffffffffULL);
624         wr32(IGC_RDBAH(reg_idx), rdba >> 32);
625         wr32(IGC_RDLEN(reg_idx),
626              ring->count * sizeof(union igc_adv_rx_desc));
627
628         /* initialize head and tail */
629         ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
630         wr32(IGC_RDH(reg_idx), 0);
631         writel(0, ring->tail);
632
633         /* reset next-to- use/clean to place SW in sync with hardware */
634         ring->next_to_clean = 0;
635         ring->next_to_use = 0;
636
637         if (ring->xsk_pool)
638                 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
639         else if (ring_uses_large_buffer(ring))
640                 buf_size = IGC_RXBUFFER_3072;
641         else
642                 buf_size = IGC_RXBUFFER_2048;
643
644         srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
645         srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
646         srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
647
648         wr32(IGC_SRRCTL(reg_idx), srrctl);
649
650         rxdctl |= IGC_RX_PTHRESH;
651         rxdctl |= IGC_RX_HTHRESH << 8;
652         rxdctl |= IGC_RX_WTHRESH << 16;
653
654         /* initialize rx_buffer_info */
655         memset(ring->rx_buffer_info, 0,
656                sizeof(struct igc_rx_buffer) * ring->count);
657
658         /* initialize Rx descriptor 0 */
659         rx_desc = IGC_RX_DESC(ring, 0);
660         rx_desc->wb.upper.length = 0;
661
662         /* enable receive descriptor fetching */
663         rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
664
665         wr32(IGC_RXDCTL(reg_idx), rxdctl);
666 }
667
668 /**
669  * igc_configure_rx - Configure receive Unit after Reset
670  * @adapter: board private structure
671  *
672  * Configure the Rx unit of the MAC after a reset.
673  */
674 static void igc_configure_rx(struct igc_adapter *adapter)
675 {
676         int i;
677
678         /* Setup the HW Rx Head and Tail Descriptor Pointers and
679          * the Base and Length of the Rx Descriptor Ring
680          */
681         for (i = 0; i < adapter->num_rx_queues; i++)
682                 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
683 }
684
685 /**
686  * igc_configure_tx_ring - Configure transmit ring after Reset
687  * @adapter: board private structure
688  * @ring: tx ring to configure
689  *
690  * Configure a transmit ring after a reset.
691  */
692 static void igc_configure_tx_ring(struct igc_adapter *adapter,
693                                   struct igc_ring *ring)
694 {
695         struct igc_hw *hw = &adapter->hw;
696         int reg_idx = ring->reg_idx;
697         u64 tdba = ring->dma;
698         u32 txdctl = 0;
699
700         ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
701
702         /* disable the queue */
703         wr32(IGC_TXDCTL(reg_idx), 0);
704         wrfl();
705         mdelay(10);
706
707         wr32(IGC_TDLEN(reg_idx),
708              ring->count * sizeof(union igc_adv_tx_desc));
709         wr32(IGC_TDBAL(reg_idx),
710              tdba & 0x00000000ffffffffULL);
711         wr32(IGC_TDBAH(reg_idx), tdba >> 32);
712
713         ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
714         wr32(IGC_TDH(reg_idx), 0);
715         writel(0, ring->tail);
716
717         txdctl |= IGC_TX_PTHRESH;
718         txdctl |= IGC_TX_HTHRESH << 8;
719         txdctl |= IGC_TX_WTHRESH << 16;
720
721         txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
722         wr32(IGC_TXDCTL(reg_idx), txdctl);
723 }
724
725 /**
726  * igc_configure_tx - Configure transmit Unit after Reset
727  * @adapter: board private structure
728  *
729  * Configure the Tx unit of the MAC after a reset.
730  */
731 static void igc_configure_tx(struct igc_adapter *adapter)
732 {
733         int i;
734
735         for (i = 0; i < adapter->num_tx_queues; i++)
736                 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
737 }
738
739 /**
740  * igc_setup_mrqc - configure the multiple receive queue control registers
741  * @adapter: Board private structure
742  */
743 static void igc_setup_mrqc(struct igc_adapter *adapter)
744 {
745         struct igc_hw *hw = &adapter->hw;
746         u32 j, num_rx_queues;
747         u32 mrqc, rxcsum;
748         u32 rss_key[10];
749
750         netdev_rss_key_fill(rss_key, sizeof(rss_key));
751         for (j = 0; j < 10; j++)
752                 wr32(IGC_RSSRK(j), rss_key[j]);
753
754         num_rx_queues = adapter->rss_queues;
755
756         if (adapter->rss_indir_tbl_init != num_rx_queues) {
757                 for (j = 0; j < IGC_RETA_SIZE; j++)
758                         adapter->rss_indir_tbl[j] =
759                         (j * num_rx_queues) / IGC_RETA_SIZE;
760                 adapter->rss_indir_tbl_init = num_rx_queues;
761         }
762         igc_write_rss_indir_tbl(adapter);
763
764         /* Disable raw packet checksumming so that RSS hash is placed in
765          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
766          * offloads as they are enabled by default
767          */
768         rxcsum = rd32(IGC_RXCSUM);
769         rxcsum |= IGC_RXCSUM_PCSD;
770
771         /* Enable Receive Checksum Offload for SCTP */
772         rxcsum |= IGC_RXCSUM_CRCOFL;
773
774         /* Don't need to set TUOFL or IPOFL, they default to 1 */
775         wr32(IGC_RXCSUM, rxcsum);
776
777         /* Generate RSS hash based on packet types, TCP/UDP
778          * port numbers and/or IPv4/v6 src and dst addresses
779          */
780         mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
781                IGC_MRQC_RSS_FIELD_IPV4_TCP |
782                IGC_MRQC_RSS_FIELD_IPV6 |
783                IGC_MRQC_RSS_FIELD_IPV6_TCP |
784                IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
785
786         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
787                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
788         if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
789                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
790
791         mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
792
793         wr32(IGC_MRQC, mrqc);
794 }
795
796 /**
797  * igc_setup_rctl - configure the receive control registers
798  * @adapter: Board private structure
799  */
800 static void igc_setup_rctl(struct igc_adapter *adapter)
801 {
802         struct igc_hw *hw = &adapter->hw;
803         u32 rctl;
804
805         rctl = rd32(IGC_RCTL);
806
807         rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
808         rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
809
810         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
811                 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
812
813         /* enable stripping of CRC. Newer features require
814          * that the HW strips the CRC.
815          */
816         rctl |= IGC_RCTL_SECRC;
817
818         /* disable store bad packets and clear size bits. */
819         rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
820
821         /* enable LPE to allow for reception of jumbo frames */
822         rctl |= IGC_RCTL_LPE;
823
824         /* disable queue 0 to prevent tail write w/o re-config */
825         wr32(IGC_RXDCTL(0), 0);
826
827         /* This is useful for sniffing bad packets. */
828         if (adapter->netdev->features & NETIF_F_RXALL) {
829                 /* UPE and MPE will be handled by normal PROMISC logic
830                  * in set_rx_mode
831                  */
832                 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
833                          IGC_RCTL_BAM | /* RX All Bcast Pkts */
834                          IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
835
836                 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
837                           IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
838         }
839
840         wr32(IGC_RCTL, rctl);
841 }
842
843 /**
844  * igc_setup_tctl - configure the transmit control registers
845  * @adapter: Board private structure
846  */
847 static void igc_setup_tctl(struct igc_adapter *adapter)
848 {
849         struct igc_hw *hw = &adapter->hw;
850         u32 tctl;
851
852         /* disable queue 0 which icould be enabled by default */
853         wr32(IGC_TXDCTL(0), 0);
854
855         /* Program the Transmit Control Register */
856         tctl = rd32(IGC_TCTL);
857         tctl &= ~IGC_TCTL_CT;
858         tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
859                 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
860
861         /* Enable transmits */
862         tctl |= IGC_TCTL_EN;
863
864         wr32(IGC_TCTL, tctl);
865 }
866
867 /**
868  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
869  * @adapter: Pointer to adapter where the filter should be set
870  * @index: Filter index
871  * @type: MAC address filter type (source or destination)
872  * @addr: MAC address
873  * @queue: If non-negative, queue assignment feature is enabled and frames
874  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
875  *         assignment is disabled.
876  */
877 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
878                                   enum igc_mac_filter_type type,
879                                   const u8 *addr, int queue)
880 {
881         struct net_device *dev = adapter->netdev;
882         struct igc_hw *hw = &adapter->hw;
883         u32 ral, rah;
884
885         if (WARN_ON(index >= hw->mac.rar_entry_count))
886                 return;
887
888         ral = le32_to_cpup((__le32 *)(addr));
889         rah = le16_to_cpup((__le16 *)(addr + 4));
890
891         if (type == IGC_MAC_FILTER_TYPE_SRC) {
892                 rah &= ~IGC_RAH_ASEL_MASK;
893                 rah |= IGC_RAH_ASEL_SRC_ADDR;
894         }
895
896         if (queue >= 0) {
897                 rah &= ~IGC_RAH_QSEL_MASK;
898                 rah |= (queue << IGC_RAH_QSEL_SHIFT);
899                 rah |= IGC_RAH_QSEL_ENABLE;
900         }
901
902         rah |= IGC_RAH_AV;
903
904         wr32(IGC_RAL(index), ral);
905         wr32(IGC_RAH(index), rah);
906
907         netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
908 }
909
910 /**
911  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
912  * @adapter: Pointer to adapter where the filter should be cleared
913  * @index: Filter index
914  */
915 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
916 {
917         struct net_device *dev = adapter->netdev;
918         struct igc_hw *hw = &adapter->hw;
919
920         if (WARN_ON(index >= hw->mac.rar_entry_count))
921                 return;
922
923         wr32(IGC_RAL(index), 0);
924         wr32(IGC_RAH(index), 0);
925
926         netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
927 }
928
929 /* Set default MAC address for the PF in the first RAR entry */
930 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
931 {
932         struct net_device *dev = adapter->netdev;
933         u8 *addr = adapter->hw.mac.addr;
934
935         netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
936
937         igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
938 }
939
940 /**
941  * igc_set_mac - Change the Ethernet Address of the NIC
942  * @netdev: network interface device structure
943  * @p: pointer to an address structure
944  *
945  * Returns 0 on success, negative on failure
946  */
947 static int igc_set_mac(struct net_device *netdev, void *p)
948 {
949         struct igc_adapter *adapter = netdev_priv(netdev);
950         struct igc_hw *hw = &adapter->hw;
951         struct sockaddr *addr = p;
952
953         if (!is_valid_ether_addr(addr->sa_data))
954                 return -EADDRNOTAVAIL;
955
956         eth_hw_addr_set(netdev, addr->sa_data);
957         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
958
959         /* set the correct pool for the new PF MAC address in entry 0 */
960         igc_set_default_mac_filter(adapter);
961
962         return 0;
963 }
964
965 /**
966  *  igc_write_mc_addr_list - write multicast addresses to MTA
967  *  @netdev: network interface device structure
968  *
969  *  Writes multicast address list to the MTA hash table.
970  *  Returns: -ENOMEM on failure
971  *           0 on no addresses written
972  *           X on writing X addresses to MTA
973  **/
974 static int igc_write_mc_addr_list(struct net_device *netdev)
975 {
976         struct igc_adapter *adapter = netdev_priv(netdev);
977         struct igc_hw *hw = &adapter->hw;
978         struct netdev_hw_addr *ha;
979         u8  *mta_list;
980         int i;
981
982         if (netdev_mc_empty(netdev)) {
983                 /* nothing to program, so clear mc list */
984                 igc_update_mc_addr_list(hw, NULL, 0);
985                 return 0;
986         }
987
988         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
989         if (!mta_list)
990                 return -ENOMEM;
991
992         /* The shared function expects a packed array of only addresses. */
993         i = 0;
994         netdev_for_each_mc_addr(ha, netdev)
995                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
996
997         igc_update_mc_addr_list(hw, mta_list, i);
998         kfree(mta_list);
999
1000         return netdev_mc_count(netdev);
1001 }
1002
1003 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
1004 {
1005         ktime_t cycle_time = adapter->cycle_time;
1006         ktime_t base_time = adapter->base_time;
1007         u32 launchtime;
1008
1009         /* FIXME: when using ETF together with taprio, we may have a
1010          * case where 'delta' is larger than the cycle_time, this may
1011          * cause problems if we don't read the current value of
1012          * IGC_BASET, as the value writen into the launchtime
1013          * descriptor field may be misinterpreted.
1014          */
1015         div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1016
1017         return cpu_to_le32(launchtime);
1018 }
1019
1020 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1021                             struct igc_tx_buffer *first,
1022                             u32 vlan_macip_lens, u32 type_tucmd,
1023                             u32 mss_l4len_idx)
1024 {
1025         struct igc_adv_tx_context_desc *context_desc;
1026         u16 i = tx_ring->next_to_use;
1027
1028         context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1029
1030         i++;
1031         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1032
1033         /* set bits to identify this as an advanced context descriptor */
1034         type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1035
1036         /* For i225, context index must be unique per ring. */
1037         if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1038                 mss_l4len_idx |= tx_ring->reg_idx << 4;
1039
1040         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1041         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1042         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1043
1044         /* We assume there is always a valid Tx time available. Invalid times
1045          * should have been handled by the upper layers.
1046          */
1047         if (tx_ring->launchtime_enable) {
1048                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1049                 ktime_t txtime = first->skb->tstamp;
1050
1051                 skb_txtime_consumed(first->skb);
1052                 context_desc->launch_time = igc_tx_launchtime(adapter,
1053                                                               txtime);
1054         } else {
1055                 context_desc->launch_time = 0;
1056         }
1057 }
1058
1059 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1060 {
1061         struct sk_buff *skb = first->skb;
1062         u32 vlan_macip_lens = 0;
1063         u32 type_tucmd = 0;
1064
1065         if (skb->ip_summed != CHECKSUM_PARTIAL) {
1066 csum_failed:
1067                 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1068                     !tx_ring->launchtime_enable)
1069                         return;
1070                 goto no_csum;
1071         }
1072
1073         switch (skb->csum_offset) {
1074         case offsetof(struct tcphdr, check):
1075                 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1076                 fallthrough;
1077         case offsetof(struct udphdr, check):
1078                 break;
1079         case offsetof(struct sctphdr, checksum):
1080                 /* validate that this is actually an SCTP request */
1081                 if (skb_csum_is_sctp(skb)) {
1082                         type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1083                         break;
1084                 }
1085                 fallthrough;
1086         default:
1087                 skb_checksum_help(skb);
1088                 goto csum_failed;
1089         }
1090
1091         /* update TX checksum flag */
1092         first->tx_flags |= IGC_TX_FLAGS_CSUM;
1093         vlan_macip_lens = skb_checksum_start_offset(skb) -
1094                           skb_network_offset(skb);
1095 no_csum:
1096         vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1097         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1098
1099         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1100 }
1101
1102 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1103 {
1104         struct net_device *netdev = tx_ring->netdev;
1105
1106         netif_stop_subqueue(netdev, tx_ring->queue_index);
1107
1108         /* memory barriier comment */
1109         smp_mb();
1110
1111         /* We need to check again in a case another CPU has just
1112          * made room available.
1113          */
1114         if (igc_desc_unused(tx_ring) < size)
1115                 return -EBUSY;
1116
1117         /* A reprieve! */
1118         netif_wake_subqueue(netdev, tx_ring->queue_index);
1119
1120         u64_stats_update_begin(&tx_ring->tx_syncp2);
1121         tx_ring->tx_stats.restart_queue2++;
1122         u64_stats_update_end(&tx_ring->tx_syncp2);
1123
1124         return 0;
1125 }
1126
1127 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1128 {
1129         if (igc_desc_unused(tx_ring) >= size)
1130                 return 0;
1131         return __igc_maybe_stop_tx(tx_ring, size);
1132 }
1133
1134 #define IGC_SET_FLAG(_input, _flag, _result) \
1135         (((_flag) <= (_result)) ?                               \
1136          ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :  \
1137          ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1138
1139 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1140 {
1141         /* set type for advanced descriptor with frame checksum insertion */
1142         u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1143                        IGC_ADVTXD_DCMD_DEXT |
1144                        IGC_ADVTXD_DCMD_IFCS;
1145
1146         /* set HW vlan bit if vlan is present */
1147         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1148                                  IGC_ADVTXD_DCMD_VLE);
1149
1150         /* set segmentation bits for TSO */
1151         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1152                                  (IGC_ADVTXD_DCMD_TSE));
1153
1154         /* set timestamp bit if present */
1155         cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1156                                  (IGC_ADVTXD_MAC_TSTAMP));
1157
1158         /* insert frame checksum */
1159         cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1160
1161         return cmd_type;
1162 }
1163
1164 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1165                                  union igc_adv_tx_desc *tx_desc,
1166                                  u32 tx_flags, unsigned int paylen)
1167 {
1168         u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1169
1170         /* insert L4 checksum */
1171         olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1172                           ((IGC_TXD_POPTS_TXSM << 8) /
1173                           IGC_TX_FLAGS_CSUM);
1174
1175         /* insert IPv4 checksum */
1176         olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1177                           (((IGC_TXD_POPTS_IXSM << 8)) /
1178                           IGC_TX_FLAGS_IPV4);
1179
1180         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1181 }
1182
1183 static int igc_tx_map(struct igc_ring *tx_ring,
1184                       struct igc_tx_buffer *first,
1185                       const u8 hdr_len)
1186 {
1187         struct sk_buff *skb = first->skb;
1188         struct igc_tx_buffer *tx_buffer;
1189         union igc_adv_tx_desc *tx_desc;
1190         u32 tx_flags = first->tx_flags;
1191         skb_frag_t *frag;
1192         u16 i = tx_ring->next_to_use;
1193         unsigned int data_len, size;
1194         dma_addr_t dma;
1195         u32 cmd_type;
1196
1197         cmd_type = igc_tx_cmd_type(skb, tx_flags);
1198         tx_desc = IGC_TX_DESC(tx_ring, i);
1199
1200         igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1201
1202         size = skb_headlen(skb);
1203         data_len = skb->data_len;
1204
1205         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1206
1207         tx_buffer = first;
1208
1209         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1210                 if (dma_mapping_error(tx_ring->dev, dma))
1211                         goto dma_error;
1212
1213                 /* record length, and DMA address */
1214                 dma_unmap_len_set(tx_buffer, len, size);
1215                 dma_unmap_addr_set(tx_buffer, dma, dma);
1216
1217                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1218
1219                 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1220                         tx_desc->read.cmd_type_len =
1221                                 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1222
1223                         i++;
1224                         tx_desc++;
1225                         if (i == tx_ring->count) {
1226                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
1227                                 i = 0;
1228                         }
1229                         tx_desc->read.olinfo_status = 0;
1230
1231                         dma += IGC_MAX_DATA_PER_TXD;
1232                         size -= IGC_MAX_DATA_PER_TXD;
1233
1234                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
1235                 }
1236
1237                 if (likely(!data_len))
1238                         break;
1239
1240                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1241
1242                 i++;
1243                 tx_desc++;
1244                 if (i == tx_ring->count) {
1245                         tx_desc = IGC_TX_DESC(tx_ring, 0);
1246                         i = 0;
1247                 }
1248                 tx_desc->read.olinfo_status = 0;
1249
1250                 size = skb_frag_size(frag);
1251                 data_len -= size;
1252
1253                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1254                                        size, DMA_TO_DEVICE);
1255
1256                 tx_buffer = &tx_ring->tx_buffer_info[i];
1257         }
1258
1259         /* write last descriptor with RS and EOP bits */
1260         cmd_type |= size | IGC_TXD_DCMD;
1261         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1262
1263         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265         /* set the timestamp */
1266         first->time_stamp = jiffies;
1267
1268         skb_tx_timestamp(skb);
1269
1270         /* Force memory writes to complete before letting h/w know there
1271          * are new descriptors to fetch.  (Only applicable for weak-ordered
1272          * memory model archs, such as IA-64).
1273          *
1274          * We also need this memory barrier to make certain all of the
1275          * status bits have been updated before next_to_watch is written.
1276          */
1277         wmb();
1278
1279         /* set next_to_watch value indicating a packet is present */
1280         first->next_to_watch = tx_desc;
1281
1282         i++;
1283         if (i == tx_ring->count)
1284                 i = 0;
1285
1286         tx_ring->next_to_use = i;
1287
1288         /* Make sure there is space in the ring for the next send. */
1289         igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1290
1291         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1292                 writel(i, tx_ring->tail);
1293         }
1294
1295         return 0;
1296 dma_error:
1297         netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1298         tx_buffer = &tx_ring->tx_buffer_info[i];
1299
1300         /* clear dma mappings for failed tx_buffer_info map */
1301         while (tx_buffer != first) {
1302                 if (dma_unmap_len(tx_buffer, len))
1303                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1304
1305                 if (i-- == 0)
1306                         i += tx_ring->count;
1307                 tx_buffer = &tx_ring->tx_buffer_info[i];
1308         }
1309
1310         if (dma_unmap_len(tx_buffer, len))
1311                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1312
1313         dev_kfree_skb_any(tx_buffer->skb);
1314         tx_buffer->skb = NULL;
1315
1316         tx_ring->next_to_use = i;
1317
1318         return -1;
1319 }
1320
1321 static int igc_tso(struct igc_ring *tx_ring,
1322                    struct igc_tx_buffer *first,
1323                    u8 *hdr_len)
1324 {
1325         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1326         struct sk_buff *skb = first->skb;
1327         union {
1328                 struct iphdr *v4;
1329                 struct ipv6hdr *v6;
1330                 unsigned char *hdr;
1331         } ip;
1332         union {
1333                 struct tcphdr *tcp;
1334                 struct udphdr *udp;
1335                 unsigned char *hdr;
1336         } l4;
1337         u32 paylen, l4_offset;
1338         int err;
1339
1340         if (skb->ip_summed != CHECKSUM_PARTIAL)
1341                 return 0;
1342
1343         if (!skb_is_gso(skb))
1344                 return 0;
1345
1346         err = skb_cow_head(skb, 0);
1347         if (err < 0)
1348                 return err;
1349
1350         ip.hdr = skb_network_header(skb);
1351         l4.hdr = skb_checksum_start(skb);
1352
1353         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1354         type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1355
1356         /* initialize outer IP header fields */
1357         if (ip.v4->version == 4) {
1358                 unsigned char *csum_start = skb_checksum_start(skb);
1359                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1360
1361                 /* IP header will have to cancel out any data that
1362                  * is not a part of the outer IP header
1363                  */
1364                 ip.v4->check = csum_fold(csum_partial(trans_start,
1365                                                       csum_start - trans_start,
1366                                                       0));
1367                 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1368
1369                 ip.v4->tot_len = 0;
1370                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1371                                    IGC_TX_FLAGS_CSUM |
1372                                    IGC_TX_FLAGS_IPV4;
1373         } else {
1374                 ip.v6->payload_len = 0;
1375                 first->tx_flags |= IGC_TX_FLAGS_TSO |
1376                                    IGC_TX_FLAGS_CSUM;
1377         }
1378
1379         /* determine offset of inner transport header */
1380         l4_offset = l4.hdr - skb->data;
1381
1382         /* remove payload length from inner checksum */
1383         paylen = skb->len - l4_offset;
1384         if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1385                 /* compute length of segmentation header */
1386                 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1387                 csum_replace_by_diff(&l4.tcp->check,
1388                                      (__force __wsum)htonl(paylen));
1389         } else {
1390                 /* compute length of segmentation header */
1391                 *hdr_len = sizeof(*l4.udp) + l4_offset;
1392                 csum_replace_by_diff(&l4.udp->check,
1393                                      (__force __wsum)htonl(paylen));
1394         }
1395
1396         /* update gso size and bytecount with header size */
1397         first->gso_segs = skb_shinfo(skb)->gso_segs;
1398         first->bytecount += (first->gso_segs - 1) * *hdr_len;
1399
1400         /* MSS L4LEN IDX */
1401         mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1402         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1403
1404         /* VLAN MACLEN IPLEN */
1405         vlan_macip_lens = l4.hdr - ip.hdr;
1406         vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1407         vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1408
1409         igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1410                         type_tucmd, mss_l4len_idx);
1411
1412         return 1;
1413 }
1414
1415 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1416                                        struct igc_ring *tx_ring)
1417 {
1418         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1419         __be16 protocol = vlan_get_protocol(skb);
1420         struct igc_tx_buffer *first;
1421         u32 tx_flags = 0;
1422         unsigned short f;
1423         u8 hdr_len = 0;
1424         int tso = 0;
1425
1426         /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1427          *      + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1428          *      + 2 desc gap to keep tail from touching head,
1429          *      + 1 desc for context descriptor,
1430          * otherwise try next time
1431          */
1432         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1433                 count += TXD_USE_COUNT(skb_frag_size(
1434                                                 &skb_shinfo(skb)->frags[f]));
1435
1436         if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1437                 /* this is a hard error */
1438                 return NETDEV_TX_BUSY;
1439         }
1440
1441         /* record the location of the first descriptor for this packet */
1442         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1443         first->type = IGC_TX_BUFFER_TYPE_SKB;
1444         first->skb = skb;
1445         first->bytecount = skb->len;
1446         first->gso_segs = 1;
1447
1448         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1449                 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1450
1451                 /* FIXME: add support for retrieving timestamps from
1452                  * the other timer registers before skipping the
1453                  * timestamping request.
1454                  */
1455                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1456                     !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1457                                            &adapter->state)) {
1458                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1459                         tx_flags |= IGC_TX_FLAGS_TSTAMP;
1460
1461                         adapter->ptp_tx_skb = skb_get(skb);
1462                         adapter->ptp_tx_start = jiffies;
1463                 } else {
1464                         adapter->tx_hwtstamp_skipped++;
1465                 }
1466         }
1467
1468         if (skb_vlan_tag_present(skb)) {
1469                 tx_flags |= IGC_TX_FLAGS_VLAN;
1470                 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1471         }
1472
1473         /* record initial flags and protocol */
1474         first->tx_flags = tx_flags;
1475         first->protocol = protocol;
1476
1477         tso = igc_tso(tx_ring, first, &hdr_len);
1478         if (tso < 0)
1479                 goto out_drop;
1480         else if (!tso)
1481                 igc_tx_csum(tx_ring, first);
1482
1483         igc_tx_map(tx_ring, first, hdr_len);
1484
1485         return NETDEV_TX_OK;
1486
1487 out_drop:
1488         dev_kfree_skb_any(first->skb);
1489         first->skb = NULL;
1490
1491         return NETDEV_TX_OK;
1492 }
1493
1494 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1495                                                     struct sk_buff *skb)
1496 {
1497         unsigned int r_idx = skb->queue_mapping;
1498
1499         if (r_idx >= adapter->num_tx_queues)
1500                 r_idx = r_idx % adapter->num_tx_queues;
1501
1502         return adapter->tx_ring[r_idx];
1503 }
1504
1505 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1506                                   struct net_device *netdev)
1507 {
1508         struct igc_adapter *adapter = netdev_priv(netdev);
1509
1510         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1511          * in order to meet this minimum size requirement.
1512          */
1513         if (skb->len < 17) {
1514                 if (skb_padto(skb, 17))
1515                         return NETDEV_TX_OK;
1516                 skb->len = 17;
1517         }
1518
1519         return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1520 }
1521
1522 static void igc_rx_checksum(struct igc_ring *ring,
1523                             union igc_adv_rx_desc *rx_desc,
1524                             struct sk_buff *skb)
1525 {
1526         skb_checksum_none_assert(skb);
1527
1528         /* Ignore Checksum bit is set */
1529         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1530                 return;
1531
1532         /* Rx checksum disabled via ethtool */
1533         if (!(ring->netdev->features & NETIF_F_RXCSUM))
1534                 return;
1535
1536         /* TCP/UDP checksum error bit is set */
1537         if (igc_test_staterr(rx_desc,
1538                              IGC_RXDEXT_STATERR_L4E |
1539                              IGC_RXDEXT_STATERR_IPE)) {
1540                 /* work around errata with sctp packets where the TCPE aka
1541                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1542                  * packets (aka let the stack check the crc32c)
1543                  */
1544                 if (!(skb->len == 60 &&
1545                       test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1546                         u64_stats_update_begin(&ring->rx_syncp);
1547                         ring->rx_stats.csum_err++;
1548                         u64_stats_update_end(&ring->rx_syncp);
1549                 }
1550                 /* let the stack verify checksum errors */
1551                 return;
1552         }
1553         /* It must be a TCP or UDP packet with a valid checksum */
1554         if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1555                                       IGC_RXD_STAT_UDPCS))
1556                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557
1558         netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1559                    le32_to_cpu(rx_desc->wb.upper.status_error));
1560 }
1561
1562 static inline void igc_rx_hash(struct igc_ring *ring,
1563                                union igc_adv_rx_desc *rx_desc,
1564                                struct sk_buff *skb)
1565 {
1566         if (ring->netdev->features & NETIF_F_RXHASH)
1567                 skb_set_hash(skb,
1568                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1569                              PKT_HASH_TYPE_L3);
1570 }
1571
1572 static void igc_rx_vlan(struct igc_ring *rx_ring,
1573                         union igc_adv_rx_desc *rx_desc,
1574                         struct sk_buff *skb)
1575 {
1576         struct net_device *dev = rx_ring->netdev;
1577         u16 vid;
1578
1579         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1580             igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1581                 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1582                     test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1583                         vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1584                 else
1585                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1586
1587                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1588         }
1589 }
1590
1591 /**
1592  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1593  * @rx_ring: rx descriptor ring packet is being transacted on
1594  * @rx_desc: pointer to the EOP Rx descriptor
1595  * @skb: pointer to current skb being populated
1596  *
1597  * This function checks the ring, descriptor, and packet information in order
1598  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1599  * skb.
1600  */
1601 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1602                                    union igc_adv_rx_desc *rx_desc,
1603                                    struct sk_buff *skb)
1604 {
1605         igc_rx_hash(rx_ring, rx_desc, skb);
1606
1607         igc_rx_checksum(rx_ring, rx_desc, skb);
1608
1609         igc_rx_vlan(rx_ring, rx_desc, skb);
1610
1611         skb_record_rx_queue(skb, rx_ring->queue_index);
1612
1613         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1614 }
1615
1616 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1617 {
1618         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1619         struct igc_adapter *adapter = netdev_priv(netdev);
1620         struct igc_hw *hw = &adapter->hw;
1621         u32 ctrl;
1622
1623         ctrl = rd32(IGC_CTRL);
1624
1625         if (enable) {
1626                 /* enable VLAN tag insert/strip */
1627                 ctrl |= IGC_CTRL_VME;
1628         } else {
1629                 /* disable VLAN tag insert/strip */
1630                 ctrl &= ~IGC_CTRL_VME;
1631         }
1632         wr32(IGC_CTRL, ctrl);
1633 }
1634
1635 static void igc_restore_vlan(struct igc_adapter *adapter)
1636 {
1637         igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1638 }
1639
1640 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1641                                                const unsigned int size,
1642                                                int *rx_buffer_pgcnt)
1643 {
1644         struct igc_rx_buffer *rx_buffer;
1645
1646         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1647         *rx_buffer_pgcnt =
1648 #if (PAGE_SIZE < 8192)
1649                 page_count(rx_buffer->page);
1650 #else
1651                 0;
1652 #endif
1653         prefetchw(rx_buffer->page);
1654
1655         /* we are reusing so sync this buffer for CPU use */
1656         dma_sync_single_range_for_cpu(rx_ring->dev,
1657                                       rx_buffer->dma,
1658                                       rx_buffer->page_offset,
1659                                       size,
1660                                       DMA_FROM_DEVICE);
1661
1662         rx_buffer->pagecnt_bias--;
1663
1664         return rx_buffer;
1665 }
1666
1667 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1668                                unsigned int truesize)
1669 {
1670 #if (PAGE_SIZE < 8192)
1671         buffer->page_offset ^= truesize;
1672 #else
1673         buffer->page_offset += truesize;
1674 #endif
1675 }
1676
1677 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1678                                               unsigned int size)
1679 {
1680         unsigned int truesize;
1681
1682 #if (PAGE_SIZE < 8192)
1683         truesize = igc_rx_pg_size(ring) / 2;
1684 #else
1685         truesize = ring_uses_build_skb(ring) ?
1686                    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1687                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1688                    SKB_DATA_ALIGN(size);
1689 #endif
1690         return truesize;
1691 }
1692
1693 /**
1694  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1695  * @rx_ring: rx descriptor ring to transact packets on
1696  * @rx_buffer: buffer containing page to add
1697  * @skb: sk_buff to place the data into
1698  * @size: size of buffer to be added
1699  *
1700  * This function will add the data contained in rx_buffer->page to the skb.
1701  */
1702 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1703                             struct igc_rx_buffer *rx_buffer,
1704                             struct sk_buff *skb,
1705                             unsigned int size)
1706 {
1707         unsigned int truesize;
1708
1709 #if (PAGE_SIZE < 8192)
1710         truesize = igc_rx_pg_size(rx_ring) / 2;
1711 #else
1712         truesize = ring_uses_build_skb(rx_ring) ?
1713                    SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1714                    SKB_DATA_ALIGN(size);
1715 #endif
1716         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1717                         rx_buffer->page_offset, size, truesize);
1718
1719         igc_rx_buffer_flip(rx_buffer, truesize);
1720 }
1721
1722 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1723                                      struct igc_rx_buffer *rx_buffer,
1724                                      struct xdp_buff *xdp)
1725 {
1726         unsigned int size = xdp->data_end - xdp->data;
1727         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1728         unsigned int metasize = xdp->data - xdp->data_meta;
1729         struct sk_buff *skb;
1730
1731         /* prefetch first cache line of first page */
1732         net_prefetch(xdp->data_meta);
1733
1734         /* build an skb around the page buffer */
1735         skb = napi_build_skb(xdp->data_hard_start, truesize);
1736         if (unlikely(!skb))
1737                 return NULL;
1738
1739         /* update pointers within the skb to store the data */
1740         skb_reserve(skb, xdp->data - xdp->data_hard_start);
1741         __skb_put(skb, size);
1742         if (metasize)
1743                 skb_metadata_set(skb, metasize);
1744
1745         igc_rx_buffer_flip(rx_buffer, truesize);
1746         return skb;
1747 }
1748
1749 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1750                                          struct igc_rx_buffer *rx_buffer,
1751                                          struct xdp_buff *xdp,
1752                                          ktime_t timestamp)
1753 {
1754         unsigned int metasize = xdp->data - xdp->data_meta;
1755         unsigned int size = xdp->data_end - xdp->data;
1756         unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1757         void *va = xdp->data;
1758         unsigned int headlen;
1759         struct sk_buff *skb;
1760
1761         /* prefetch first cache line of first page */
1762         net_prefetch(xdp->data_meta);
1763
1764         /* allocate a skb to store the frags */
1765         skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1766                              IGC_RX_HDR_LEN + metasize);
1767         if (unlikely(!skb))
1768                 return NULL;
1769
1770         if (timestamp)
1771                 skb_hwtstamps(skb)->hwtstamp = timestamp;
1772
1773         /* Determine available headroom for copy */
1774         headlen = size;
1775         if (headlen > IGC_RX_HDR_LEN)
1776                 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1777
1778         /* align pull length to size of long to optimize memcpy performance */
1779         memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1780                ALIGN(headlen + metasize, sizeof(long)));
1781
1782         if (metasize) {
1783                 skb_metadata_set(skb, metasize);
1784                 __skb_pull(skb, metasize);
1785         }
1786
1787         /* update all of the pointers */
1788         size -= headlen;
1789         if (size) {
1790                 skb_add_rx_frag(skb, 0, rx_buffer->page,
1791                                 (va + headlen) - page_address(rx_buffer->page),
1792                                 size, truesize);
1793                 igc_rx_buffer_flip(rx_buffer, truesize);
1794         } else {
1795                 rx_buffer->pagecnt_bias++;
1796         }
1797
1798         return skb;
1799 }
1800
1801 /**
1802  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1803  * @rx_ring: rx descriptor ring to store buffers on
1804  * @old_buff: donor buffer to have page reused
1805  *
1806  * Synchronizes page for reuse by the adapter
1807  */
1808 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1809                               struct igc_rx_buffer *old_buff)
1810 {
1811         u16 nta = rx_ring->next_to_alloc;
1812         struct igc_rx_buffer *new_buff;
1813
1814         new_buff = &rx_ring->rx_buffer_info[nta];
1815
1816         /* update, and store next to alloc */
1817         nta++;
1818         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1819
1820         /* Transfer page from old buffer to new buffer.
1821          * Move each member individually to avoid possible store
1822          * forwarding stalls.
1823          */
1824         new_buff->dma           = old_buff->dma;
1825         new_buff->page          = old_buff->page;
1826         new_buff->page_offset   = old_buff->page_offset;
1827         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1828 }
1829
1830 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1831                                   int rx_buffer_pgcnt)
1832 {
1833         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1834         struct page *page = rx_buffer->page;
1835
1836         /* avoid re-using remote and pfmemalloc pages */
1837         if (!dev_page_is_reusable(page))
1838                 return false;
1839
1840 #if (PAGE_SIZE < 8192)
1841         /* if we are only owner of page we can reuse it */
1842         if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1843                 return false;
1844 #else
1845 #define IGC_LAST_OFFSET \
1846         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1847
1848         if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1849                 return false;
1850 #endif
1851
1852         /* If we have drained the page fragment pool we need to update
1853          * the pagecnt_bias and page count so that we fully restock the
1854          * number of references the driver holds.
1855          */
1856         if (unlikely(pagecnt_bias == 1)) {
1857                 page_ref_add(page, USHRT_MAX - 1);
1858                 rx_buffer->pagecnt_bias = USHRT_MAX;
1859         }
1860
1861         return true;
1862 }
1863
1864 /**
1865  * igc_is_non_eop - process handling of non-EOP buffers
1866  * @rx_ring: Rx ring being processed
1867  * @rx_desc: Rx descriptor for current buffer
1868  *
1869  * This function updates next to clean.  If the buffer is an EOP buffer
1870  * this function exits returning false, otherwise it will place the
1871  * sk_buff in the next buffer to be chained and return true indicating
1872  * that this is in fact a non-EOP buffer.
1873  */
1874 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1875                            union igc_adv_rx_desc *rx_desc)
1876 {
1877         u32 ntc = rx_ring->next_to_clean + 1;
1878
1879         /* fetch, update, and store next to clean */
1880         ntc = (ntc < rx_ring->count) ? ntc : 0;
1881         rx_ring->next_to_clean = ntc;
1882
1883         prefetch(IGC_RX_DESC(rx_ring, ntc));
1884
1885         if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1886                 return false;
1887
1888         return true;
1889 }
1890
1891 /**
1892  * igc_cleanup_headers - Correct corrupted or empty headers
1893  * @rx_ring: rx descriptor ring packet is being transacted on
1894  * @rx_desc: pointer to the EOP Rx descriptor
1895  * @skb: pointer to current skb being fixed
1896  *
1897  * Address the case where we are pulling data in on pages only
1898  * and as such no data is present in the skb header.
1899  *
1900  * In addition if skb is not at least 60 bytes we need to pad it so that
1901  * it is large enough to qualify as a valid Ethernet frame.
1902  *
1903  * Returns true if an error was encountered and skb was freed.
1904  */
1905 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1906                                 union igc_adv_rx_desc *rx_desc,
1907                                 struct sk_buff *skb)
1908 {
1909         /* XDP packets use error pointer so abort at this point */
1910         if (IS_ERR(skb))
1911                 return true;
1912
1913         if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1914                 struct net_device *netdev = rx_ring->netdev;
1915
1916                 if (!(netdev->features & NETIF_F_RXALL)) {
1917                         dev_kfree_skb_any(skb);
1918                         return true;
1919                 }
1920         }
1921
1922         /* if eth_skb_pad returns an error the skb was freed */
1923         if (eth_skb_pad(skb))
1924                 return true;
1925
1926         return false;
1927 }
1928
1929 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1930                               struct igc_rx_buffer *rx_buffer,
1931                               int rx_buffer_pgcnt)
1932 {
1933         if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1934                 /* hand second half of page back to the ring */
1935                 igc_reuse_rx_page(rx_ring, rx_buffer);
1936         } else {
1937                 /* We are not reusing the buffer so unmap it and free
1938                  * any references we are holding to it
1939                  */
1940                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1941                                      igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1942                                      IGC_RX_DMA_ATTR);
1943                 __page_frag_cache_drain(rx_buffer->page,
1944                                         rx_buffer->pagecnt_bias);
1945         }
1946
1947         /* clear contents of rx_buffer */
1948         rx_buffer->page = NULL;
1949 }
1950
1951 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1952 {
1953         struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1954
1955         if (ring_uses_build_skb(rx_ring))
1956                 return IGC_SKB_PAD;
1957         if (igc_xdp_is_enabled(adapter))
1958                 return XDP_PACKET_HEADROOM;
1959
1960         return 0;
1961 }
1962
1963 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1964                                   struct igc_rx_buffer *bi)
1965 {
1966         struct page *page = bi->page;
1967         dma_addr_t dma;
1968
1969         /* since we are recycling buffers we should seldom need to alloc */
1970         if (likely(page))
1971                 return true;
1972
1973         /* alloc new page for storage */
1974         page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1975         if (unlikely(!page)) {
1976                 rx_ring->rx_stats.alloc_failed++;
1977                 return false;
1978         }
1979
1980         /* map page for use */
1981         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1982                                  igc_rx_pg_size(rx_ring),
1983                                  DMA_FROM_DEVICE,
1984                                  IGC_RX_DMA_ATTR);
1985
1986         /* if mapping failed free memory back to system since
1987          * there isn't much point in holding memory we can't use
1988          */
1989         if (dma_mapping_error(rx_ring->dev, dma)) {
1990                 __free_page(page);
1991
1992                 rx_ring->rx_stats.alloc_failed++;
1993                 return false;
1994         }
1995
1996         bi->dma = dma;
1997         bi->page = page;
1998         bi->page_offset = igc_rx_offset(rx_ring);
1999         page_ref_add(page, USHRT_MAX - 1);
2000         bi->pagecnt_bias = USHRT_MAX;
2001
2002         return true;
2003 }
2004
2005 /**
2006  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2007  * @rx_ring: rx descriptor ring
2008  * @cleaned_count: number of buffers to clean
2009  */
2010 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2011 {
2012         union igc_adv_rx_desc *rx_desc;
2013         u16 i = rx_ring->next_to_use;
2014         struct igc_rx_buffer *bi;
2015         u16 bufsz;
2016
2017         /* nothing to do */
2018         if (!cleaned_count)
2019                 return;
2020
2021         rx_desc = IGC_RX_DESC(rx_ring, i);
2022         bi = &rx_ring->rx_buffer_info[i];
2023         i -= rx_ring->count;
2024
2025         bufsz = igc_rx_bufsz(rx_ring);
2026
2027         do {
2028                 if (!igc_alloc_mapped_page(rx_ring, bi))
2029                         break;
2030
2031                 /* sync the buffer for use by the device */
2032                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2033                                                  bi->page_offset, bufsz,
2034                                                  DMA_FROM_DEVICE);
2035
2036                 /* Refresh the desc even if buffer_addrs didn't change
2037                  * because each write-back erases this info.
2038                  */
2039                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2040
2041                 rx_desc++;
2042                 bi++;
2043                 i++;
2044                 if (unlikely(!i)) {
2045                         rx_desc = IGC_RX_DESC(rx_ring, 0);
2046                         bi = rx_ring->rx_buffer_info;
2047                         i -= rx_ring->count;
2048                 }
2049
2050                 /* clear the length for the next_to_use descriptor */
2051                 rx_desc->wb.upper.length = 0;
2052
2053                 cleaned_count--;
2054         } while (cleaned_count);
2055
2056         i += rx_ring->count;
2057
2058         if (rx_ring->next_to_use != i) {
2059                 /* record the next descriptor to use */
2060                 rx_ring->next_to_use = i;
2061
2062                 /* update next to alloc since we have filled the ring */
2063                 rx_ring->next_to_alloc = i;
2064
2065                 /* Force memory writes to complete before letting h/w
2066                  * know there are new descriptors to fetch.  (Only
2067                  * applicable for weak-ordered memory model archs,
2068                  * such as IA-64).
2069                  */
2070                 wmb();
2071                 writel(i, rx_ring->tail);
2072         }
2073 }
2074
2075 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2076 {
2077         union igc_adv_rx_desc *desc;
2078         u16 i = ring->next_to_use;
2079         struct igc_rx_buffer *bi;
2080         dma_addr_t dma;
2081         bool ok = true;
2082
2083         if (!count)
2084                 return ok;
2085
2086         desc = IGC_RX_DESC(ring, i);
2087         bi = &ring->rx_buffer_info[i];
2088         i -= ring->count;
2089
2090         do {
2091                 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2092                 if (!bi->xdp) {
2093                         ok = false;
2094                         break;
2095                 }
2096
2097                 dma = xsk_buff_xdp_get_dma(bi->xdp);
2098                 desc->read.pkt_addr = cpu_to_le64(dma);
2099
2100                 desc++;
2101                 bi++;
2102                 i++;
2103                 if (unlikely(!i)) {
2104                         desc = IGC_RX_DESC(ring, 0);
2105                         bi = ring->rx_buffer_info;
2106                         i -= ring->count;
2107                 }
2108
2109                 /* Clear the length for the next_to_use descriptor. */
2110                 desc->wb.upper.length = 0;
2111
2112                 count--;
2113         } while (count);
2114
2115         i += ring->count;
2116
2117         if (ring->next_to_use != i) {
2118                 ring->next_to_use = i;
2119
2120                 /* Force memory writes to complete before letting h/w
2121                  * know there are new descriptors to fetch.  (Only
2122                  * applicable for weak-ordered memory model archs,
2123                  * such as IA-64).
2124                  */
2125                 wmb();
2126                 writel(i, ring->tail);
2127         }
2128
2129         return ok;
2130 }
2131
2132 /* This function requires __netif_tx_lock is held by the caller. */
2133 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2134                                       struct xdp_frame *xdpf)
2135 {
2136         struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2137         u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2138         u16 count, index = ring->next_to_use;
2139         struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2140         struct igc_tx_buffer *buffer = head;
2141         union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2142         u32 olinfo_status, len = xdpf->len, cmd_type;
2143         void *data = xdpf->data;
2144         u16 i;
2145
2146         count = TXD_USE_COUNT(len);
2147         for (i = 0; i < nr_frags; i++)
2148                 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2149
2150         if (igc_maybe_stop_tx(ring, count + 3)) {
2151                 /* this is a hard error */
2152                 return -EBUSY;
2153         }
2154
2155         i = 0;
2156         head->bytecount = xdp_get_frame_len(xdpf);
2157         head->type = IGC_TX_BUFFER_TYPE_XDP;
2158         head->gso_segs = 1;
2159         head->xdpf = xdpf;
2160
2161         olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2162         desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2163
2164         for (;;) {
2165                 dma_addr_t dma;
2166
2167                 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2168                 if (dma_mapping_error(ring->dev, dma)) {
2169                         netdev_err_once(ring->netdev,
2170                                         "Failed to map DMA for TX\n");
2171                         goto unmap;
2172                 }
2173
2174                 dma_unmap_len_set(buffer, len, len);
2175                 dma_unmap_addr_set(buffer, dma, dma);
2176
2177                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2178                            IGC_ADVTXD_DCMD_IFCS | len;
2179
2180                 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2181                 desc->read.buffer_addr = cpu_to_le64(dma);
2182
2183                 buffer->protocol = 0;
2184
2185                 if (++index == ring->count)
2186                         index = 0;
2187
2188                 if (i == nr_frags)
2189                         break;
2190
2191                 buffer = &ring->tx_buffer_info[index];
2192                 desc = IGC_TX_DESC(ring, index);
2193                 desc->read.olinfo_status = 0;
2194
2195                 data = skb_frag_address(&sinfo->frags[i]);
2196                 len = skb_frag_size(&sinfo->frags[i]);
2197                 i++;
2198         }
2199         desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2200
2201         netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2202         /* set the timestamp */
2203         head->time_stamp = jiffies;
2204         /* set next_to_watch value indicating a packet is present */
2205         head->next_to_watch = desc;
2206         ring->next_to_use = index;
2207
2208         return 0;
2209
2210 unmap:
2211         for (;;) {
2212                 buffer = &ring->tx_buffer_info[index];
2213                 if (dma_unmap_len(buffer, len))
2214                         dma_unmap_page(ring->dev,
2215                                        dma_unmap_addr(buffer, dma),
2216                                        dma_unmap_len(buffer, len),
2217                                        DMA_TO_DEVICE);
2218                 dma_unmap_len_set(buffer, len, 0);
2219                 if (buffer == head)
2220                         break;
2221
2222                 if (!index)
2223                         index += ring->count;
2224                 index--;
2225         }
2226
2227         return -ENOMEM;
2228 }
2229
2230 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2231                                             int cpu)
2232 {
2233         int index = cpu;
2234
2235         if (unlikely(index < 0))
2236                 index = 0;
2237
2238         while (index >= adapter->num_tx_queues)
2239                 index -= adapter->num_tx_queues;
2240
2241         return adapter->tx_ring[index];
2242 }
2243
2244 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2245 {
2246         struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2247         int cpu = smp_processor_id();
2248         struct netdev_queue *nq;
2249         struct igc_ring *ring;
2250         int res;
2251
2252         if (unlikely(!xdpf))
2253                 return -EFAULT;
2254
2255         ring = igc_xdp_get_tx_ring(adapter, cpu);
2256         nq = txring_txq(ring);
2257
2258         __netif_tx_lock(nq, cpu);
2259         res = igc_xdp_init_tx_descriptor(ring, xdpf);
2260         __netif_tx_unlock(nq);
2261         return res;
2262 }
2263
2264 /* This function assumes rcu_read_lock() is held by the caller. */
2265 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2266                               struct bpf_prog *prog,
2267                               struct xdp_buff *xdp)
2268 {
2269         u32 act = bpf_prog_run_xdp(prog, xdp);
2270
2271         switch (act) {
2272         case XDP_PASS:
2273                 return IGC_XDP_PASS;
2274         case XDP_TX:
2275                 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2276                         goto out_failure;
2277                 return IGC_XDP_TX;
2278         case XDP_REDIRECT:
2279                 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2280                         goto out_failure;
2281                 return IGC_XDP_REDIRECT;
2282                 break;
2283         default:
2284                 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2285                 fallthrough;
2286         case XDP_ABORTED:
2287 out_failure:
2288                 trace_xdp_exception(adapter->netdev, prog, act);
2289                 fallthrough;
2290         case XDP_DROP:
2291                 return IGC_XDP_CONSUMED;
2292         }
2293 }
2294
2295 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2296                                         struct xdp_buff *xdp)
2297 {
2298         struct bpf_prog *prog;
2299         int res;
2300
2301         prog = READ_ONCE(adapter->xdp_prog);
2302         if (!prog) {
2303                 res = IGC_XDP_PASS;
2304                 goto out;
2305         }
2306
2307         res = __igc_xdp_run_prog(adapter, prog, xdp);
2308
2309 out:
2310         return ERR_PTR(-res);
2311 }
2312
2313 /* This function assumes __netif_tx_lock is held by the caller. */
2314 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2315 {
2316         /* Once tail pointer is updated, hardware can fetch the descriptors
2317          * any time so we issue a write membar here to ensure all memory
2318          * writes are complete before the tail pointer is updated.
2319          */
2320         wmb();
2321         writel(ring->next_to_use, ring->tail);
2322 }
2323
2324 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2325 {
2326         int cpu = smp_processor_id();
2327         struct netdev_queue *nq;
2328         struct igc_ring *ring;
2329
2330         if (status & IGC_XDP_TX) {
2331                 ring = igc_xdp_get_tx_ring(adapter, cpu);
2332                 nq = txring_txq(ring);
2333
2334                 __netif_tx_lock(nq, cpu);
2335                 igc_flush_tx_descriptors(ring);
2336                 __netif_tx_unlock(nq);
2337         }
2338
2339         if (status & IGC_XDP_REDIRECT)
2340                 xdp_do_flush();
2341 }
2342
2343 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2344                                 unsigned int packets, unsigned int bytes)
2345 {
2346         struct igc_ring *ring = q_vector->rx.ring;
2347
2348         u64_stats_update_begin(&ring->rx_syncp);
2349         ring->rx_stats.packets += packets;
2350         ring->rx_stats.bytes += bytes;
2351         u64_stats_update_end(&ring->rx_syncp);
2352
2353         q_vector->rx.total_packets += packets;
2354         q_vector->rx.total_bytes += bytes;
2355 }
2356
2357 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2358 {
2359         unsigned int total_bytes = 0, total_packets = 0;
2360         struct igc_adapter *adapter = q_vector->adapter;
2361         struct igc_ring *rx_ring = q_vector->rx.ring;
2362         struct sk_buff *skb = rx_ring->skb;
2363         u16 cleaned_count = igc_desc_unused(rx_ring);
2364         int xdp_status = 0, rx_buffer_pgcnt;
2365
2366         while (likely(total_packets < budget)) {
2367                 union igc_adv_rx_desc *rx_desc;
2368                 struct igc_rx_buffer *rx_buffer;
2369                 unsigned int size, truesize;
2370                 ktime_t timestamp = 0;
2371                 struct xdp_buff xdp;
2372                 int pkt_offset = 0;
2373                 void *pktbuf;
2374
2375                 /* return some buffers to hardware, one at a time is too slow */
2376                 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2377                         igc_alloc_rx_buffers(rx_ring, cleaned_count);
2378                         cleaned_count = 0;
2379                 }
2380
2381                 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2382                 size = le16_to_cpu(rx_desc->wb.upper.length);
2383                 if (!size)
2384                         break;
2385
2386                 /* This memory barrier is needed to keep us from reading
2387                  * any other fields out of the rx_desc until we know the
2388                  * descriptor has been written back
2389                  */
2390                 dma_rmb();
2391
2392                 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2393                 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2394
2395                 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2396
2397                 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2398                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2399                                                         pktbuf);
2400                         pkt_offset = IGC_TS_HDR_LEN;
2401                         size -= IGC_TS_HDR_LEN;
2402                 }
2403
2404                 if (!skb) {
2405                         xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2406                         xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2407                                          igc_rx_offset(rx_ring) + pkt_offset,
2408                                          size, true);
2409                         xdp_buff_clear_frags_flag(&xdp);
2410
2411                         skb = igc_xdp_run_prog(adapter, &xdp);
2412                 }
2413
2414                 if (IS_ERR(skb)) {
2415                         unsigned int xdp_res = -PTR_ERR(skb);
2416
2417                         switch (xdp_res) {
2418                         case IGC_XDP_CONSUMED:
2419                                 rx_buffer->pagecnt_bias++;
2420                                 break;
2421                         case IGC_XDP_TX:
2422                         case IGC_XDP_REDIRECT:
2423                                 igc_rx_buffer_flip(rx_buffer, truesize);
2424                                 xdp_status |= xdp_res;
2425                                 break;
2426                         }
2427
2428                         total_packets++;
2429                         total_bytes += size;
2430                 } else if (skb)
2431                         igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2432                 else if (ring_uses_build_skb(rx_ring))
2433                         skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2434                 else
2435                         skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2436                                                 timestamp);
2437
2438                 /* exit if we failed to retrieve a buffer */
2439                 if (!skb) {
2440                         rx_ring->rx_stats.alloc_failed++;
2441                         rx_buffer->pagecnt_bias++;
2442                         break;
2443                 }
2444
2445                 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2446                 cleaned_count++;
2447
2448                 /* fetch next buffer in frame if non-eop */
2449                 if (igc_is_non_eop(rx_ring, rx_desc))
2450                         continue;
2451
2452                 /* verify the packet layout is correct */
2453                 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2454                         skb = NULL;
2455                         continue;
2456                 }
2457
2458                 /* probably a little skewed due to removing CRC */
2459                 total_bytes += skb->len;
2460
2461                 /* populate checksum, VLAN, and protocol */
2462                 igc_process_skb_fields(rx_ring, rx_desc, skb);
2463
2464                 napi_gro_receive(&q_vector->napi, skb);
2465
2466                 /* reset skb pointer */
2467                 skb = NULL;
2468
2469                 /* update budget accounting */
2470                 total_packets++;
2471         }
2472
2473         if (xdp_status)
2474                 igc_finalize_xdp(adapter, xdp_status);
2475
2476         /* place incomplete frames back on ring for completion */
2477         rx_ring->skb = skb;
2478
2479         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2480
2481         if (cleaned_count)
2482                 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2483
2484         return total_packets;
2485 }
2486
2487 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2488                                             struct xdp_buff *xdp)
2489 {
2490         unsigned int totalsize = xdp->data_end - xdp->data_meta;
2491         unsigned int metasize = xdp->data - xdp->data_meta;
2492         struct sk_buff *skb;
2493
2494         net_prefetch(xdp->data_meta);
2495
2496         skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2497                                GFP_ATOMIC | __GFP_NOWARN);
2498         if (unlikely(!skb))
2499                 return NULL;
2500
2501         memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2502                ALIGN(totalsize, sizeof(long)));
2503
2504         if (metasize) {
2505                 skb_metadata_set(skb, metasize);
2506                 __skb_pull(skb, metasize);
2507         }
2508
2509         return skb;
2510 }
2511
2512 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2513                                 union igc_adv_rx_desc *desc,
2514                                 struct xdp_buff *xdp,
2515                                 ktime_t timestamp)
2516 {
2517         struct igc_ring *ring = q_vector->rx.ring;
2518         struct sk_buff *skb;
2519
2520         skb = igc_construct_skb_zc(ring, xdp);
2521         if (!skb) {
2522                 ring->rx_stats.alloc_failed++;
2523                 return;
2524         }
2525
2526         if (timestamp)
2527                 skb_hwtstamps(skb)->hwtstamp = timestamp;
2528
2529         if (igc_cleanup_headers(ring, desc, skb))
2530                 return;
2531
2532         igc_process_skb_fields(ring, desc, skb);
2533         napi_gro_receive(&q_vector->napi, skb);
2534 }
2535
2536 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2537 {
2538         struct igc_adapter *adapter = q_vector->adapter;
2539         struct igc_ring *ring = q_vector->rx.ring;
2540         u16 cleaned_count = igc_desc_unused(ring);
2541         int total_bytes = 0, total_packets = 0;
2542         u16 ntc = ring->next_to_clean;
2543         struct bpf_prog *prog;
2544         bool failure = false;
2545         int xdp_status = 0;
2546
2547         rcu_read_lock();
2548
2549         prog = READ_ONCE(adapter->xdp_prog);
2550
2551         while (likely(total_packets < budget)) {
2552                 union igc_adv_rx_desc *desc;
2553                 struct igc_rx_buffer *bi;
2554                 ktime_t timestamp = 0;
2555                 unsigned int size;
2556                 int res;
2557
2558                 desc = IGC_RX_DESC(ring, ntc);
2559                 size = le16_to_cpu(desc->wb.upper.length);
2560                 if (!size)
2561                         break;
2562
2563                 /* This memory barrier is needed to keep us from reading
2564                  * any other fields out of the rx_desc until we know the
2565                  * descriptor has been written back
2566                  */
2567                 dma_rmb();
2568
2569                 bi = &ring->rx_buffer_info[ntc];
2570
2571                 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2572                         timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2573                                                         bi->xdp->data);
2574
2575                         bi->xdp->data += IGC_TS_HDR_LEN;
2576
2577                         /* HW timestamp has been copied into local variable. Metadata
2578                          * length when XDP program is called should be 0.
2579                          */
2580                         bi->xdp->data_meta += IGC_TS_HDR_LEN;
2581                         size -= IGC_TS_HDR_LEN;
2582                 }
2583
2584                 bi->xdp->data_end = bi->xdp->data + size;
2585                 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2586
2587                 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2588                 switch (res) {
2589                 case IGC_XDP_PASS:
2590                         igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2591                         fallthrough;
2592                 case IGC_XDP_CONSUMED:
2593                         xsk_buff_free(bi->xdp);
2594                         break;
2595                 case IGC_XDP_TX:
2596                 case IGC_XDP_REDIRECT:
2597                         xdp_status |= res;
2598                         break;
2599                 }
2600
2601                 bi->xdp = NULL;
2602                 total_bytes += size;
2603                 total_packets++;
2604                 cleaned_count++;
2605                 ntc++;
2606                 if (ntc == ring->count)
2607                         ntc = 0;
2608         }
2609
2610         ring->next_to_clean = ntc;
2611         rcu_read_unlock();
2612
2613         if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2614                 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2615
2616         if (xdp_status)
2617                 igc_finalize_xdp(adapter, xdp_status);
2618
2619         igc_update_rx_stats(q_vector, total_packets, total_bytes);
2620
2621         if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2622                 if (failure || ring->next_to_clean == ring->next_to_use)
2623                         xsk_set_rx_need_wakeup(ring->xsk_pool);
2624                 else
2625                         xsk_clear_rx_need_wakeup(ring->xsk_pool);
2626                 return total_packets;
2627         }
2628
2629         return failure ? budget : total_packets;
2630 }
2631
2632 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2633                                 unsigned int packets, unsigned int bytes)
2634 {
2635         struct igc_ring *ring = q_vector->tx.ring;
2636
2637         u64_stats_update_begin(&ring->tx_syncp);
2638         ring->tx_stats.bytes += bytes;
2639         ring->tx_stats.packets += packets;
2640         u64_stats_update_end(&ring->tx_syncp);
2641
2642         q_vector->tx.total_bytes += bytes;
2643         q_vector->tx.total_packets += packets;
2644 }
2645
2646 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2647 {
2648         struct xsk_buff_pool *pool = ring->xsk_pool;
2649         struct netdev_queue *nq = txring_txq(ring);
2650         union igc_adv_tx_desc *tx_desc = NULL;
2651         int cpu = smp_processor_id();
2652         u16 ntu = ring->next_to_use;
2653         struct xdp_desc xdp_desc;
2654         u16 budget;
2655
2656         if (!netif_carrier_ok(ring->netdev))
2657                 return;
2658
2659         __netif_tx_lock(nq, cpu);
2660
2661         budget = igc_desc_unused(ring);
2662
2663         while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2664                 u32 cmd_type, olinfo_status;
2665                 struct igc_tx_buffer *bi;
2666                 dma_addr_t dma;
2667
2668                 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2669                            IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2670                            xdp_desc.len;
2671                 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2672
2673                 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2674                 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2675
2676                 tx_desc = IGC_TX_DESC(ring, ntu);
2677                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2678                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2679                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2680
2681                 bi = &ring->tx_buffer_info[ntu];
2682                 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2683                 bi->protocol = 0;
2684                 bi->bytecount = xdp_desc.len;
2685                 bi->gso_segs = 1;
2686                 bi->time_stamp = jiffies;
2687                 bi->next_to_watch = tx_desc;
2688
2689                 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2690
2691                 ntu++;
2692                 if (ntu == ring->count)
2693                         ntu = 0;
2694         }
2695
2696         ring->next_to_use = ntu;
2697         if (tx_desc) {
2698                 igc_flush_tx_descriptors(ring);
2699                 xsk_tx_release(pool);
2700         }
2701
2702         __netif_tx_unlock(nq);
2703 }
2704
2705 /**
2706  * igc_clean_tx_irq - Reclaim resources after transmit completes
2707  * @q_vector: pointer to q_vector containing needed info
2708  * @napi_budget: Used to determine if we are in netpoll
2709  *
2710  * returns true if ring is completely cleaned
2711  */
2712 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2713 {
2714         struct igc_adapter *adapter = q_vector->adapter;
2715         unsigned int total_bytes = 0, total_packets = 0;
2716         unsigned int budget = q_vector->tx.work_limit;
2717         struct igc_ring *tx_ring = q_vector->tx.ring;
2718         unsigned int i = tx_ring->next_to_clean;
2719         struct igc_tx_buffer *tx_buffer;
2720         union igc_adv_tx_desc *tx_desc;
2721         u32 xsk_frames = 0;
2722
2723         if (test_bit(__IGC_DOWN, &adapter->state))
2724                 return true;
2725
2726         tx_buffer = &tx_ring->tx_buffer_info[i];
2727         tx_desc = IGC_TX_DESC(tx_ring, i);
2728         i -= tx_ring->count;
2729
2730         do {
2731                 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2732
2733                 /* if next_to_watch is not set then there is no work pending */
2734                 if (!eop_desc)
2735                         break;
2736
2737                 /* prevent any other reads prior to eop_desc */
2738                 smp_rmb();
2739
2740                 /* if DD is not set pending work has not been completed */
2741                 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2742                         break;
2743
2744                 /* clear next_to_watch to prevent false hangs */
2745                 tx_buffer->next_to_watch = NULL;
2746
2747                 /* update the statistics for this packet */
2748                 total_bytes += tx_buffer->bytecount;
2749                 total_packets += tx_buffer->gso_segs;
2750
2751                 switch (tx_buffer->type) {
2752                 case IGC_TX_BUFFER_TYPE_XSK:
2753                         xsk_frames++;
2754                         break;
2755                 case IGC_TX_BUFFER_TYPE_XDP:
2756                         xdp_return_frame(tx_buffer->xdpf);
2757                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2758                         break;
2759                 case IGC_TX_BUFFER_TYPE_SKB:
2760                         napi_consume_skb(tx_buffer->skb, napi_budget);
2761                         igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2762                         break;
2763                 default:
2764                         netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2765                         break;
2766                 }
2767
2768                 /* clear last DMA location and unmap remaining buffers */
2769                 while (tx_desc != eop_desc) {
2770                         tx_buffer++;
2771                         tx_desc++;
2772                         i++;
2773                         if (unlikely(!i)) {
2774                                 i -= tx_ring->count;
2775                                 tx_buffer = tx_ring->tx_buffer_info;
2776                                 tx_desc = IGC_TX_DESC(tx_ring, 0);
2777                         }
2778
2779                         /* unmap any remaining paged data */
2780                         if (dma_unmap_len(tx_buffer, len))
2781                                 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2782                 }
2783
2784                 /* move us one more past the eop_desc for start of next pkt */
2785                 tx_buffer++;
2786                 tx_desc++;
2787                 i++;
2788                 if (unlikely(!i)) {
2789                         i -= tx_ring->count;
2790                         tx_buffer = tx_ring->tx_buffer_info;
2791                         tx_desc = IGC_TX_DESC(tx_ring, 0);
2792                 }
2793
2794                 /* issue prefetch for next Tx descriptor */
2795                 prefetch(tx_desc);
2796
2797                 /* update budget accounting */
2798                 budget--;
2799         } while (likely(budget));
2800
2801         netdev_tx_completed_queue(txring_txq(tx_ring),
2802                                   total_packets, total_bytes);
2803
2804         i += tx_ring->count;
2805         tx_ring->next_to_clean = i;
2806
2807         igc_update_tx_stats(q_vector, total_packets, total_bytes);
2808
2809         if (tx_ring->xsk_pool) {
2810                 if (xsk_frames)
2811                         xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2812                 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2813                         xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2814                 igc_xdp_xmit_zc(tx_ring);
2815         }
2816
2817         if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2818                 struct igc_hw *hw = &adapter->hw;
2819
2820                 /* Detect a transmit hang in hardware, this serializes the
2821                  * check with the clearing of time_stamp and movement of i
2822                  */
2823                 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2824                 if (tx_buffer->next_to_watch &&
2825                     time_after(jiffies, tx_buffer->time_stamp +
2826                     (adapter->tx_timeout_factor * HZ)) &&
2827                     !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2828                         /* detected Tx unit hang */
2829                         netdev_err(tx_ring->netdev,
2830                                    "Detected Tx Unit Hang\n"
2831                                    "  Tx Queue             <%d>\n"
2832                                    "  TDH                  <%x>\n"
2833                                    "  TDT                  <%x>\n"
2834                                    "  next_to_use          <%x>\n"
2835                                    "  next_to_clean        <%x>\n"
2836                                    "buffer_info[next_to_clean]\n"
2837                                    "  time_stamp           <%lx>\n"
2838                                    "  next_to_watch        <%p>\n"
2839                                    "  jiffies              <%lx>\n"
2840                                    "  desc.status          <%x>\n",
2841                                    tx_ring->queue_index,
2842                                    rd32(IGC_TDH(tx_ring->reg_idx)),
2843                                    readl(tx_ring->tail),
2844                                    tx_ring->next_to_use,
2845                                    tx_ring->next_to_clean,
2846                                    tx_buffer->time_stamp,
2847                                    tx_buffer->next_to_watch,
2848                                    jiffies,
2849                                    tx_buffer->next_to_watch->wb.status);
2850                         netif_stop_subqueue(tx_ring->netdev,
2851                                             tx_ring->queue_index);
2852
2853                         /* we are about to reset, no point in enabling stuff */
2854                         return true;
2855                 }
2856         }
2857
2858 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2859         if (unlikely(total_packets &&
2860                      netif_carrier_ok(tx_ring->netdev) &&
2861                      igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2862                 /* Make sure that anybody stopping the queue after this
2863                  * sees the new next_to_clean.
2864                  */
2865                 smp_mb();
2866                 if (__netif_subqueue_stopped(tx_ring->netdev,
2867                                              tx_ring->queue_index) &&
2868                     !(test_bit(__IGC_DOWN, &adapter->state))) {
2869                         netif_wake_subqueue(tx_ring->netdev,
2870                                             tx_ring->queue_index);
2871
2872                         u64_stats_update_begin(&tx_ring->tx_syncp);
2873                         tx_ring->tx_stats.restart_queue++;
2874                         u64_stats_update_end(&tx_ring->tx_syncp);
2875                 }
2876         }
2877
2878         return !!budget;
2879 }
2880
2881 static int igc_find_mac_filter(struct igc_adapter *adapter,
2882                                enum igc_mac_filter_type type, const u8 *addr)
2883 {
2884         struct igc_hw *hw = &adapter->hw;
2885         int max_entries = hw->mac.rar_entry_count;
2886         u32 ral, rah;
2887         int i;
2888
2889         for (i = 0; i < max_entries; i++) {
2890                 ral = rd32(IGC_RAL(i));
2891                 rah = rd32(IGC_RAH(i));
2892
2893                 if (!(rah & IGC_RAH_AV))
2894                         continue;
2895                 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2896                         continue;
2897                 if ((rah & IGC_RAH_RAH_MASK) !=
2898                     le16_to_cpup((__le16 *)(addr + 4)))
2899                         continue;
2900                 if (ral != le32_to_cpup((__le32 *)(addr)))
2901                         continue;
2902
2903                 return i;
2904         }
2905
2906         return -1;
2907 }
2908
2909 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2910 {
2911         struct igc_hw *hw = &adapter->hw;
2912         int max_entries = hw->mac.rar_entry_count;
2913         u32 rah;
2914         int i;
2915
2916         for (i = 0; i < max_entries; i++) {
2917                 rah = rd32(IGC_RAH(i));
2918
2919                 if (!(rah & IGC_RAH_AV))
2920                         return i;
2921         }
2922
2923         return -1;
2924 }
2925
2926 /**
2927  * igc_add_mac_filter() - Add MAC address filter
2928  * @adapter: Pointer to adapter where the filter should be added
2929  * @type: MAC address filter type (source or destination)
2930  * @addr: MAC address
2931  * @queue: If non-negative, queue assignment feature is enabled and frames
2932  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2933  *         assignment is disabled.
2934  *
2935  * Return: 0 in case of success, negative errno code otherwise.
2936  */
2937 static int igc_add_mac_filter(struct igc_adapter *adapter,
2938                               enum igc_mac_filter_type type, const u8 *addr,
2939                               int queue)
2940 {
2941         struct net_device *dev = adapter->netdev;
2942         int index;
2943
2944         index = igc_find_mac_filter(adapter, type, addr);
2945         if (index >= 0)
2946                 goto update_filter;
2947
2948         index = igc_get_avail_mac_filter_slot(adapter);
2949         if (index < 0)
2950                 return -ENOSPC;
2951
2952         netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2953                    index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2954                    addr, queue);
2955
2956 update_filter:
2957         igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2958         return 0;
2959 }
2960
2961 /**
2962  * igc_del_mac_filter() - Delete MAC address filter
2963  * @adapter: Pointer to adapter where the filter should be deleted from
2964  * @type: MAC address filter type (source or destination)
2965  * @addr: MAC address
2966  */
2967 static void igc_del_mac_filter(struct igc_adapter *adapter,
2968                                enum igc_mac_filter_type type, const u8 *addr)
2969 {
2970         struct net_device *dev = adapter->netdev;
2971         int index;
2972
2973         index = igc_find_mac_filter(adapter, type, addr);
2974         if (index < 0)
2975                 return;
2976
2977         if (index == 0) {
2978                 /* If this is the default filter, we don't actually delete it.
2979                  * We just reset to its default value i.e. disable queue
2980                  * assignment.
2981                  */
2982                 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2983
2984                 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2985         } else {
2986                 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2987                            index,
2988                            type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2989                            addr);
2990
2991                 igc_clear_mac_filter_hw(adapter, index);
2992         }
2993 }
2994
2995 /**
2996  * igc_add_vlan_prio_filter() - Add VLAN priority filter
2997  * @adapter: Pointer to adapter where the filter should be added
2998  * @prio: VLAN priority value
2999  * @queue: Queue number which matching frames are assigned to
3000  *
3001  * Return: 0 in case of success, negative errno code otherwise.
3002  */
3003 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3004                                     int queue)
3005 {
3006         struct net_device *dev = adapter->netdev;
3007         struct igc_hw *hw = &adapter->hw;
3008         u32 vlanpqf;
3009
3010         vlanpqf = rd32(IGC_VLANPQF);
3011
3012         if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3013                 netdev_dbg(dev, "VLAN priority filter already in use\n");
3014                 return -EEXIST;
3015         }
3016
3017         vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3018         vlanpqf |= IGC_VLANPQF_VALID(prio);
3019
3020         wr32(IGC_VLANPQF, vlanpqf);
3021
3022         netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3023                    prio, queue);
3024         return 0;
3025 }
3026
3027 /**
3028  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3029  * @adapter: Pointer to adapter where the filter should be deleted from
3030  * @prio: VLAN priority value
3031  */
3032 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3033 {
3034         struct igc_hw *hw = &adapter->hw;
3035         u32 vlanpqf;
3036
3037         vlanpqf = rd32(IGC_VLANPQF);
3038
3039         vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3040         vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3041
3042         wr32(IGC_VLANPQF, vlanpqf);
3043
3044         netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3045                    prio);
3046 }
3047
3048 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3049 {
3050         struct igc_hw *hw = &adapter->hw;
3051         int i;
3052
3053         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3054                 u32 etqf = rd32(IGC_ETQF(i));
3055
3056                 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3057                         return i;
3058         }
3059
3060         return -1;
3061 }
3062
3063 /**
3064  * igc_add_etype_filter() - Add ethertype filter
3065  * @adapter: Pointer to adapter where the filter should be added
3066  * @etype: Ethertype value
3067  * @queue: If non-negative, queue assignment feature is enabled and frames
3068  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3069  *         assignment is disabled.
3070  *
3071  * Return: 0 in case of success, negative errno code otherwise.
3072  */
3073 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3074                                 int queue)
3075 {
3076         struct igc_hw *hw = &adapter->hw;
3077         int index;
3078         u32 etqf;
3079
3080         index = igc_get_avail_etype_filter_slot(adapter);
3081         if (index < 0)
3082                 return -ENOSPC;
3083
3084         etqf = rd32(IGC_ETQF(index));
3085
3086         etqf &= ~IGC_ETQF_ETYPE_MASK;
3087         etqf |= etype;
3088
3089         if (queue >= 0) {
3090                 etqf &= ~IGC_ETQF_QUEUE_MASK;
3091                 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3092                 etqf |= IGC_ETQF_QUEUE_ENABLE;
3093         }
3094
3095         etqf |= IGC_ETQF_FILTER_ENABLE;
3096
3097         wr32(IGC_ETQF(index), etqf);
3098
3099         netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3100                    etype, queue);
3101         return 0;
3102 }
3103
3104 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3105 {
3106         struct igc_hw *hw = &adapter->hw;
3107         int i;
3108
3109         for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3110                 u32 etqf = rd32(IGC_ETQF(i));
3111
3112                 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3113                         return i;
3114         }
3115
3116         return -1;
3117 }
3118
3119 /**
3120  * igc_del_etype_filter() - Delete ethertype filter
3121  * @adapter: Pointer to adapter where the filter should be deleted from
3122  * @etype: Ethertype value
3123  */
3124 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3125 {
3126         struct igc_hw *hw = &adapter->hw;
3127         int index;
3128
3129         index = igc_find_etype_filter(adapter, etype);
3130         if (index < 0)
3131                 return;
3132
3133         wr32(IGC_ETQF(index), 0);
3134
3135         netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3136                    etype);
3137 }
3138
3139 static int igc_flex_filter_select(struct igc_adapter *adapter,
3140                                   struct igc_flex_filter *input,
3141                                   u32 *fhft)
3142 {
3143         struct igc_hw *hw = &adapter->hw;
3144         u8 fhft_index;
3145         u32 fhftsl;
3146
3147         if (input->index >= MAX_FLEX_FILTER) {
3148                 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3149                 return -EINVAL;
3150         }
3151
3152         /* Indirect table select register */
3153         fhftsl = rd32(IGC_FHFTSL);
3154         fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3155         switch (input->index) {
3156         case 0 ... 7:
3157                 fhftsl |= 0x00;
3158                 break;
3159         case 8 ... 15:
3160                 fhftsl |= 0x01;
3161                 break;
3162         case 16 ... 23:
3163                 fhftsl |= 0x02;
3164                 break;
3165         case 24 ... 31:
3166                 fhftsl |= 0x03;
3167                 break;
3168         }
3169         wr32(IGC_FHFTSL, fhftsl);
3170
3171         /* Normalize index down to host table register */
3172         fhft_index = input->index % 8;
3173
3174         *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3175                 IGC_FHFT_EXT(fhft_index - 4);
3176
3177         return 0;
3178 }
3179
3180 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3181                                     struct igc_flex_filter *input)
3182 {
3183         struct device *dev = &adapter->pdev->dev;
3184         struct igc_hw *hw = &adapter->hw;
3185         u8 *data = input->data;
3186         u8 *mask = input->mask;
3187         u32 queuing;
3188         u32 fhft;
3189         u32 wufc;
3190         int ret;
3191         int i;
3192
3193         /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3194          * out early to avoid surprises later.
3195          */
3196         if (input->length % 8 != 0) {
3197                 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3198                 return -EINVAL;
3199         }
3200
3201         /* Select corresponding flex filter register and get base for host table. */
3202         ret = igc_flex_filter_select(adapter, input, &fhft);
3203         if (ret)
3204                 return ret;
3205
3206         /* When adding a filter globally disable flex filter feature. That is
3207          * recommended within the datasheet.
3208          */
3209         wufc = rd32(IGC_WUFC);
3210         wufc &= ~IGC_WUFC_FLEX_HQ;
3211         wr32(IGC_WUFC, wufc);
3212
3213         /* Configure filter */
3214         queuing = input->length & IGC_FHFT_LENGTH_MASK;
3215         queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3216         queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3217
3218         if (input->immediate_irq)
3219                 queuing |= IGC_FHFT_IMM_INT;
3220
3221         if (input->drop)
3222                 queuing |= IGC_FHFT_DROP;
3223
3224         wr32(fhft + 0xFC, queuing);
3225
3226         /* Write data (128 byte) and mask (128 bit) */
3227         for (i = 0; i < 16; ++i) {
3228                 const size_t data_idx = i * 8;
3229                 const size_t row_idx = i * 16;
3230                 u32 dw0 =
3231                         (data[data_idx + 0] << 0) |
3232                         (data[data_idx + 1] << 8) |
3233                         (data[data_idx + 2] << 16) |
3234                         (data[data_idx + 3] << 24);
3235                 u32 dw1 =
3236                         (data[data_idx + 4] << 0) |
3237                         (data[data_idx + 5] << 8) |
3238                         (data[data_idx + 6] << 16) |
3239                         (data[data_idx + 7] << 24);
3240                 u32 tmp;
3241
3242                 /* Write row: dw0, dw1 and mask */
3243                 wr32(fhft + row_idx, dw0);
3244                 wr32(fhft + row_idx + 4, dw1);
3245
3246                 /* mask is only valid for MASK(7, 0) */
3247                 tmp = rd32(fhft + row_idx + 8);
3248                 tmp &= ~GENMASK(7, 0);
3249                 tmp |= mask[i];
3250                 wr32(fhft + row_idx + 8, tmp);
3251         }
3252
3253         /* Enable filter. */
3254         wufc |= IGC_WUFC_FLEX_HQ;
3255         if (input->index > 8) {
3256                 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3257                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3258
3259                 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3260
3261                 wr32(IGC_WUFC_EXT, wufc_ext);
3262         } else {
3263                 wufc |= (IGC_WUFC_FLX0 << input->index);
3264         }
3265         wr32(IGC_WUFC, wufc);
3266
3267         dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3268                 input->index);
3269
3270         return 0;
3271 }
3272
3273 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3274                                       const void *src, unsigned int offset,
3275                                       size_t len, const void *mask)
3276 {
3277         int i;
3278
3279         /* data */
3280         memcpy(&flex->data[offset], src, len);
3281
3282         /* mask */
3283         for (i = 0; i < len; ++i) {
3284                 const unsigned int idx = i + offset;
3285                 const u8 *ptr = mask;
3286
3287                 if (mask) {
3288                         if (ptr[i] & 0xff)
3289                                 flex->mask[idx / 8] |= BIT(idx % 8);
3290
3291                         continue;
3292                 }
3293
3294                 flex->mask[idx / 8] |= BIT(idx % 8);
3295         }
3296 }
3297
3298 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3299 {
3300         struct igc_hw *hw = &adapter->hw;
3301         u32 wufc, wufc_ext;
3302         int i;
3303
3304         wufc = rd32(IGC_WUFC);
3305         wufc_ext = rd32(IGC_WUFC_EXT);
3306
3307         for (i = 0; i < MAX_FLEX_FILTER; i++) {
3308                 if (i < 8) {
3309                         if (!(wufc & (IGC_WUFC_FLX0 << i)))
3310                                 return i;
3311                 } else {
3312                         if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3313                                 return i;
3314                 }
3315         }
3316
3317         return -ENOSPC;
3318 }
3319
3320 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3321 {
3322         struct igc_hw *hw = &adapter->hw;
3323         u32 wufc, wufc_ext;
3324
3325         wufc = rd32(IGC_WUFC);
3326         wufc_ext = rd32(IGC_WUFC_EXT);
3327
3328         if (wufc & IGC_WUFC_FILTER_MASK)
3329                 return true;
3330
3331         if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3332                 return true;
3333
3334         return false;
3335 }
3336
3337 static int igc_add_flex_filter(struct igc_adapter *adapter,
3338                                struct igc_nfc_rule *rule)
3339 {
3340         struct igc_flex_filter flex = { };
3341         struct igc_nfc_filter *filter = &rule->filter;
3342         unsigned int eth_offset, user_offset;
3343         int ret, index;
3344         bool vlan;
3345
3346         index = igc_find_avail_flex_filter_slot(adapter);
3347         if (index < 0)
3348                 return -ENOSPC;
3349
3350         /* Construct the flex filter:
3351          *  -> dest_mac [6]
3352          *  -> src_mac [6]
3353          *  -> tpid [2]
3354          *  -> vlan tci [2]
3355          *  -> ether type [2]
3356          *  -> user data [8]
3357          *  -> = 26 bytes => 32 length
3358          */
3359         flex.index    = index;
3360         flex.length   = 32;
3361         flex.rx_queue = rule->action;
3362
3363         vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3364         eth_offset = vlan ? 16 : 12;
3365         user_offset = vlan ? 18 : 14;
3366
3367         /* Add destination MAC  */
3368         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3369                 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3370                                           ETH_ALEN, NULL);
3371
3372         /* Add source MAC */
3373         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3374                 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3375                                           ETH_ALEN, NULL);
3376
3377         /* Add VLAN etype */
3378         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3379                 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3380                                           sizeof(filter->vlan_etype),
3381                                           NULL);
3382
3383         /* Add VLAN TCI */
3384         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3385                 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3386                                           sizeof(filter->vlan_tci), NULL);
3387
3388         /* Add Ether type */
3389         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3390                 __be16 etype = cpu_to_be16(filter->etype);
3391
3392                 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3393                                           sizeof(etype), NULL);
3394         }
3395
3396         /* Add user data */
3397         if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3398                 igc_flex_filter_add_field(&flex, &filter->user_data,
3399                                           user_offset,
3400                                           sizeof(filter->user_data),
3401                                           filter->user_mask);
3402
3403         /* Add it down to the hardware and enable it. */
3404         ret = igc_write_flex_filter_ll(adapter, &flex);
3405         if (ret)
3406                 return ret;
3407
3408         filter->flex_index = index;
3409
3410         return 0;
3411 }
3412
3413 static void igc_del_flex_filter(struct igc_adapter *adapter,
3414                                 u16 reg_index)
3415 {
3416         struct igc_hw *hw = &adapter->hw;
3417         u32 wufc;
3418
3419         /* Just disable the filter. The filter table itself is kept
3420          * intact. Another flex_filter_add() should override the "old" data
3421          * then.
3422          */
3423         if (reg_index > 8) {
3424                 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3425
3426                 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3427                 wr32(IGC_WUFC_EXT, wufc_ext);
3428         } else {
3429                 wufc = rd32(IGC_WUFC);
3430
3431                 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3432                 wr32(IGC_WUFC, wufc);
3433         }
3434
3435         if (igc_flex_filter_in_use(adapter))
3436                 return;
3437
3438         /* No filters are in use, we may disable flex filters */
3439         wufc = rd32(IGC_WUFC);
3440         wufc &= ~IGC_WUFC_FLEX_HQ;
3441         wr32(IGC_WUFC, wufc);
3442 }
3443
3444 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3445                                struct igc_nfc_rule *rule)
3446 {
3447         int err;
3448
3449         if (rule->flex) {
3450                 return igc_add_flex_filter(adapter, rule);
3451         }
3452
3453         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3454                 err = igc_add_etype_filter(adapter, rule->filter.etype,
3455                                            rule->action);
3456                 if (err)
3457                         return err;
3458         }
3459
3460         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3461                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3462                                          rule->filter.src_addr, rule->action);
3463                 if (err)
3464                         return err;
3465         }
3466
3467         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3468                 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3469                                          rule->filter.dst_addr, rule->action);
3470                 if (err)
3471                         return err;
3472         }
3473
3474         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3475                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3476                            VLAN_PRIO_SHIFT;
3477
3478                 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3479                 if (err)
3480                         return err;
3481         }
3482
3483         return 0;
3484 }
3485
3486 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3487                                  const struct igc_nfc_rule *rule)
3488 {
3489         if (rule->flex) {
3490                 igc_del_flex_filter(adapter, rule->filter.flex_index);
3491                 return;
3492         }
3493
3494         if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3495                 igc_del_etype_filter(adapter, rule->filter.etype);
3496
3497         if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3498                 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3499                            VLAN_PRIO_SHIFT;
3500
3501                 igc_del_vlan_prio_filter(adapter, prio);
3502         }
3503
3504         if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3505                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3506                                    rule->filter.src_addr);
3507
3508         if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3509                 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3510                                    rule->filter.dst_addr);
3511 }
3512
3513 /**
3514  * igc_get_nfc_rule() - Get NFC rule
3515  * @adapter: Pointer to adapter
3516  * @location: Rule location
3517  *
3518  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3519  *
3520  * Return: Pointer to NFC rule at @location. If not found, NULL.
3521  */
3522 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3523                                       u32 location)
3524 {
3525         struct igc_nfc_rule *rule;
3526
3527         list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3528                 if (rule->location == location)
3529                         return rule;
3530                 if (rule->location > location)
3531                         break;
3532         }
3533
3534         return NULL;
3535 }
3536
3537 /**
3538  * igc_del_nfc_rule() - Delete NFC rule
3539  * @adapter: Pointer to adapter
3540  * @rule: Pointer to rule to be deleted
3541  *
3542  * Disable NFC rule in hardware and delete it from adapter.
3543  *
3544  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3545  */
3546 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3547 {
3548         igc_disable_nfc_rule(adapter, rule);
3549
3550         list_del(&rule->list);
3551         adapter->nfc_rule_count--;
3552
3553         kfree(rule);
3554 }
3555
3556 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3557 {
3558         struct igc_nfc_rule *rule, *tmp;
3559
3560         mutex_lock(&adapter->nfc_rule_lock);
3561
3562         list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3563                 igc_del_nfc_rule(adapter, rule);
3564
3565         mutex_unlock(&adapter->nfc_rule_lock);
3566 }
3567
3568 /**
3569  * igc_add_nfc_rule() - Add NFC rule
3570  * @adapter: Pointer to adapter
3571  * @rule: Pointer to rule to be added
3572  *
3573  * Enable NFC rule in hardware and add it to adapter.
3574  *
3575  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3576  *
3577  * Return: 0 on success, negative errno on failure.
3578  */
3579 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3580 {
3581         struct igc_nfc_rule *pred, *cur;
3582         int err;
3583
3584         err = igc_enable_nfc_rule(adapter, rule);
3585         if (err)
3586                 return err;
3587
3588         pred = NULL;
3589         list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3590                 if (cur->location >= rule->location)
3591                         break;
3592                 pred = cur;
3593         }
3594
3595         list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3596         adapter->nfc_rule_count++;
3597         return 0;
3598 }
3599
3600 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3601 {
3602         struct igc_nfc_rule *rule;
3603
3604         mutex_lock(&adapter->nfc_rule_lock);
3605
3606         list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3607                 igc_enable_nfc_rule(adapter, rule);
3608
3609         mutex_unlock(&adapter->nfc_rule_lock);
3610 }
3611
3612 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3613 {
3614         struct igc_adapter *adapter = netdev_priv(netdev);
3615
3616         return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3617 }
3618
3619 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3620 {
3621         struct igc_adapter *adapter = netdev_priv(netdev);
3622
3623         igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3624         return 0;
3625 }
3626
3627 /**
3628  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3629  * @netdev: network interface device structure
3630  *
3631  * The set_rx_mode entry point is called whenever the unicast or multicast
3632  * address lists or the network interface flags are updated.  This routine is
3633  * responsible for configuring the hardware for proper unicast, multicast,
3634  * promiscuous mode, and all-multi behavior.
3635  */
3636 static void igc_set_rx_mode(struct net_device *netdev)
3637 {
3638         struct igc_adapter *adapter = netdev_priv(netdev);
3639         struct igc_hw *hw = &adapter->hw;
3640         u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3641         int count;
3642
3643         /* Check for Promiscuous and All Multicast modes */
3644         if (netdev->flags & IFF_PROMISC) {
3645                 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3646         } else {
3647                 if (netdev->flags & IFF_ALLMULTI) {
3648                         rctl |= IGC_RCTL_MPE;
3649                 } else {
3650                         /* Write addresses to the MTA, if the attempt fails
3651                          * then we should just turn on promiscuous mode so
3652                          * that we can at least receive multicast traffic
3653                          */
3654                         count = igc_write_mc_addr_list(netdev);
3655                         if (count < 0)
3656                                 rctl |= IGC_RCTL_MPE;
3657                 }
3658         }
3659
3660         /* Write addresses to available RAR registers, if there is not
3661          * sufficient space to store all the addresses then enable
3662          * unicast promiscuous mode
3663          */
3664         if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3665                 rctl |= IGC_RCTL_UPE;
3666
3667         /* update state of unicast and multicast */
3668         rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3669         wr32(IGC_RCTL, rctl);
3670
3671 #if (PAGE_SIZE < 8192)
3672         if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3673                 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3674 #endif
3675         wr32(IGC_RLPML, rlpml);
3676 }
3677
3678 /**
3679  * igc_configure - configure the hardware for RX and TX
3680  * @adapter: private board structure
3681  */
3682 static void igc_configure(struct igc_adapter *adapter)
3683 {
3684         struct net_device *netdev = adapter->netdev;
3685         int i = 0;
3686
3687         igc_get_hw_control(adapter);
3688         igc_set_rx_mode(netdev);
3689
3690         igc_restore_vlan(adapter);
3691
3692         igc_setup_tctl(adapter);
3693         igc_setup_mrqc(adapter);
3694         igc_setup_rctl(adapter);
3695
3696         igc_set_default_mac_filter(adapter);
3697         igc_restore_nfc_rules(adapter);
3698
3699         igc_configure_tx(adapter);
3700         igc_configure_rx(adapter);
3701
3702         igc_rx_fifo_flush_base(&adapter->hw);
3703
3704         /* call igc_desc_unused which always leaves
3705          * at least 1 descriptor unused to make sure
3706          * next_to_use != next_to_clean
3707          */
3708         for (i = 0; i < adapter->num_rx_queues; i++) {
3709                 struct igc_ring *ring = adapter->rx_ring[i];
3710
3711                 if (ring->xsk_pool)
3712                         igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3713                 else
3714                         igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3715         }
3716 }
3717
3718 /**
3719  * igc_write_ivar - configure ivar for given MSI-X vector
3720  * @hw: pointer to the HW structure
3721  * @msix_vector: vector number we are allocating to a given ring
3722  * @index: row index of IVAR register to write within IVAR table
3723  * @offset: column offset of in IVAR, should be multiple of 8
3724  *
3725  * The IVAR table consists of 2 columns,
3726  * each containing an cause allocation for an Rx and Tx ring, and a
3727  * variable number of rows depending on the number of queues supported.
3728  */
3729 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3730                            int index, int offset)
3731 {
3732         u32 ivar = array_rd32(IGC_IVAR0, index);
3733
3734         /* clear any bits that are currently set */
3735         ivar &= ~((u32)0xFF << offset);
3736
3737         /* write vector and valid bit */
3738         ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3739
3740         array_wr32(IGC_IVAR0, index, ivar);
3741 }
3742
3743 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3744 {
3745         struct igc_adapter *adapter = q_vector->adapter;
3746         struct igc_hw *hw = &adapter->hw;
3747         int rx_queue = IGC_N0_QUEUE;
3748         int tx_queue = IGC_N0_QUEUE;
3749
3750         if (q_vector->rx.ring)
3751                 rx_queue = q_vector->rx.ring->reg_idx;
3752         if (q_vector->tx.ring)
3753                 tx_queue = q_vector->tx.ring->reg_idx;
3754
3755         switch (hw->mac.type) {
3756         case igc_i225:
3757                 if (rx_queue > IGC_N0_QUEUE)
3758                         igc_write_ivar(hw, msix_vector,
3759                                        rx_queue >> 1,
3760                                        (rx_queue & 0x1) << 4);
3761                 if (tx_queue > IGC_N0_QUEUE)
3762                         igc_write_ivar(hw, msix_vector,
3763                                        tx_queue >> 1,
3764                                        ((tx_queue & 0x1) << 4) + 8);
3765                 q_vector->eims_value = BIT(msix_vector);
3766                 break;
3767         default:
3768                 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3769                 break;
3770         }
3771
3772         /* add q_vector eims value to global eims_enable_mask */
3773         adapter->eims_enable_mask |= q_vector->eims_value;
3774
3775         /* configure q_vector to set itr on first interrupt */
3776         q_vector->set_itr = 1;
3777 }
3778
3779 /**
3780  * igc_configure_msix - Configure MSI-X hardware
3781  * @adapter: Pointer to adapter structure
3782  *
3783  * igc_configure_msix sets up the hardware to properly
3784  * generate MSI-X interrupts.
3785  */
3786 static void igc_configure_msix(struct igc_adapter *adapter)
3787 {
3788         struct igc_hw *hw = &adapter->hw;
3789         int i, vector = 0;
3790         u32 tmp;
3791
3792         adapter->eims_enable_mask = 0;
3793
3794         /* set vector for other causes, i.e. link changes */
3795         switch (hw->mac.type) {
3796         case igc_i225:
3797                 /* Turn on MSI-X capability first, or our settings
3798                  * won't stick.  And it will take days to debug.
3799                  */
3800                 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3801                      IGC_GPIE_PBA | IGC_GPIE_EIAME |
3802                      IGC_GPIE_NSICR);
3803
3804                 /* enable msix_other interrupt */
3805                 adapter->eims_other = BIT(vector);
3806                 tmp = (vector++ | IGC_IVAR_VALID) << 8;
3807
3808                 wr32(IGC_IVAR_MISC, tmp);
3809                 break;
3810         default:
3811                 /* do nothing, since nothing else supports MSI-X */
3812                 break;
3813         } /* switch (hw->mac.type) */
3814
3815         adapter->eims_enable_mask |= adapter->eims_other;
3816
3817         for (i = 0; i < adapter->num_q_vectors; i++)
3818                 igc_assign_vector(adapter->q_vector[i], vector++);
3819
3820         wrfl();
3821 }
3822
3823 /**
3824  * igc_irq_enable - Enable default interrupt generation settings
3825  * @adapter: board private structure
3826  */
3827 static void igc_irq_enable(struct igc_adapter *adapter)
3828 {
3829         struct igc_hw *hw = &adapter->hw;
3830
3831         if (adapter->msix_entries) {
3832                 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3833                 u32 regval = rd32(IGC_EIAC);
3834
3835                 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3836                 regval = rd32(IGC_EIAM);
3837                 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3838                 wr32(IGC_EIMS, adapter->eims_enable_mask);
3839                 wr32(IGC_IMS, ims);
3840         } else {
3841                 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3842                 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3843         }
3844 }
3845
3846 /**
3847  * igc_irq_disable - Mask off interrupt generation on the NIC
3848  * @adapter: board private structure
3849  */
3850 static void igc_irq_disable(struct igc_adapter *adapter)
3851 {
3852         struct igc_hw *hw = &adapter->hw;
3853
3854         if (adapter->msix_entries) {
3855                 u32 regval = rd32(IGC_EIAM);
3856
3857                 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3858                 wr32(IGC_EIMC, adapter->eims_enable_mask);
3859                 regval = rd32(IGC_EIAC);
3860                 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3861         }
3862
3863         wr32(IGC_IAM, 0);
3864         wr32(IGC_IMC, ~0);
3865         wrfl();
3866
3867         if (adapter->msix_entries) {
3868                 int vector = 0, i;
3869
3870                 synchronize_irq(adapter->msix_entries[vector++].vector);
3871
3872                 for (i = 0; i < adapter->num_q_vectors; i++)
3873                         synchronize_irq(adapter->msix_entries[vector++].vector);
3874         } else {
3875                 synchronize_irq(adapter->pdev->irq);
3876         }
3877 }
3878
3879 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3880                               const u32 max_rss_queues)
3881 {
3882         /* Determine if we need to pair queues. */
3883         /* If rss_queues > half of max_rss_queues, pair the queues in
3884          * order to conserve interrupts due to limited supply.
3885          */
3886         if (adapter->rss_queues > (max_rss_queues / 2))
3887                 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3888         else
3889                 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3890 }
3891
3892 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3893 {
3894         return IGC_MAX_RX_QUEUES;
3895 }
3896
3897 static void igc_init_queue_configuration(struct igc_adapter *adapter)
3898 {
3899         u32 max_rss_queues;
3900
3901         max_rss_queues = igc_get_max_rss_queues(adapter);
3902         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3903
3904         igc_set_flag_queue_pairs(adapter, max_rss_queues);
3905 }
3906
3907 /**
3908  * igc_reset_q_vector - Reset config for interrupt vector
3909  * @adapter: board private structure to initialize
3910  * @v_idx: Index of vector to be reset
3911  *
3912  * If NAPI is enabled it will delete any references to the
3913  * NAPI struct. This is preparation for igc_free_q_vector.
3914  */
3915 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3916 {
3917         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3918
3919         /* if we're coming from igc_set_interrupt_capability, the vectors are
3920          * not yet allocated
3921          */
3922         if (!q_vector)
3923                 return;
3924
3925         if (q_vector->tx.ring)
3926                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3927
3928         if (q_vector->rx.ring)
3929                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3930
3931         netif_napi_del(&q_vector->napi);
3932 }
3933
3934 /**
3935  * igc_free_q_vector - Free memory allocated for specific interrupt vector
3936  * @adapter: board private structure to initialize
3937  * @v_idx: Index of vector to be freed
3938  *
3939  * This function frees the memory allocated to the q_vector.
3940  */
3941 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3942 {
3943         struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3944
3945         adapter->q_vector[v_idx] = NULL;
3946
3947         /* igc_get_stats64() might access the rings on this vector,
3948          * we must wait a grace period before freeing it.
3949          */
3950         if (q_vector)
3951                 kfree_rcu(q_vector, rcu);
3952 }
3953
3954 /**
3955  * igc_free_q_vectors - Free memory allocated for interrupt vectors
3956  * @adapter: board private structure to initialize
3957  *
3958  * This function frees the memory allocated to the q_vectors.  In addition if
3959  * NAPI is enabled it will delete any references to the NAPI struct prior
3960  * to freeing the q_vector.
3961  */
3962 static void igc_free_q_vectors(struct igc_adapter *adapter)
3963 {
3964         int v_idx = adapter->num_q_vectors;
3965
3966         adapter->num_tx_queues = 0;
3967         adapter->num_rx_queues = 0;
3968         adapter->num_q_vectors = 0;
3969
3970         while (v_idx--) {
3971                 igc_reset_q_vector(adapter, v_idx);
3972                 igc_free_q_vector(adapter, v_idx);
3973         }
3974 }
3975
3976 /**
3977  * igc_update_itr - update the dynamic ITR value based on statistics
3978  * @q_vector: pointer to q_vector
3979  * @ring_container: ring info to update the itr for
3980  *
3981  * Stores a new ITR value based on packets and byte
3982  * counts during the last interrupt.  The advantage of per interrupt
3983  * computation is faster updates and more accurate ITR for the current
3984  * traffic pattern.  Constants in this function were computed
3985  * based on theoretical maximum wire speed and thresholds were set based
3986  * on testing data as well as attempting to minimize response time
3987  * while increasing bulk throughput.
3988  * NOTE: These calculations are only valid when operating in a single-
3989  * queue environment.
3990  */
3991 static void igc_update_itr(struct igc_q_vector *q_vector,
3992                            struct igc_ring_container *ring_container)
3993 {
3994         unsigned int packets = ring_container->total_packets;
3995         unsigned int bytes = ring_container->total_bytes;
3996         u8 itrval = ring_container->itr;
3997
3998         /* no packets, exit with status unchanged */
3999         if (packets == 0)
4000                 return;
4001
4002         switch (itrval) {
4003         case lowest_latency:
4004                 /* handle TSO and jumbo frames */
4005                 if (bytes / packets > 8000)
4006                         itrval = bulk_latency;
4007                 else if ((packets < 5) && (bytes > 512))
4008                         itrval = low_latency;
4009                 break;
4010         case low_latency:  /* 50 usec aka 20000 ints/s */
4011                 if (bytes > 10000) {
4012                         /* this if handles the TSO accounting */
4013                         if (bytes / packets > 8000)
4014                                 itrval = bulk_latency;
4015                         else if ((packets < 10) || ((bytes / packets) > 1200))
4016                                 itrval = bulk_latency;
4017                         else if ((packets > 35))
4018                                 itrval = lowest_latency;
4019                 } else if (bytes / packets > 2000) {
4020                         itrval = bulk_latency;
4021                 } else if (packets <= 2 && bytes < 512) {
4022                         itrval = lowest_latency;
4023                 }
4024                 break;
4025         case bulk_latency: /* 250 usec aka 4000 ints/s */
4026                 if (bytes > 25000) {
4027                         if (packets > 35)
4028                                 itrval = low_latency;
4029                 } else if (bytes < 1500) {
4030                         itrval = low_latency;
4031                 }
4032                 break;
4033         }
4034
4035         /* clear work counters since we have the values we need */
4036         ring_container->total_bytes = 0;
4037         ring_container->total_packets = 0;
4038
4039         /* write updated itr to ring container */
4040         ring_container->itr = itrval;
4041 }
4042
4043 static void igc_set_itr(struct igc_q_vector *q_vector)
4044 {
4045         struct igc_adapter *adapter = q_vector->adapter;
4046         u32 new_itr = q_vector->itr_val;
4047         u8 current_itr = 0;
4048
4049         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4050         switch (adapter->link_speed) {
4051         case SPEED_10:
4052         case SPEED_100:
4053                 current_itr = 0;
4054                 new_itr = IGC_4K_ITR;
4055                 goto set_itr_now;
4056         default:
4057                 break;
4058         }
4059
4060         igc_update_itr(q_vector, &q_vector->tx);
4061         igc_update_itr(q_vector, &q_vector->rx);
4062
4063         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4064
4065         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4066         if (current_itr == lowest_latency &&
4067             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4068             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4069                 current_itr = low_latency;
4070
4071         switch (current_itr) {
4072         /* counts and packets in update_itr are dependent on these numbers */
4073         case lowest_latency:
4074                 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4075                 break;
4076         case low_latency:
4077                 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4078                 break;
4079         case bulk_latency:
4080                 new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4081                 break;
4082         default:
4083                 break;
4084         }
4085
4086 set_itr_now:
4087         if (new_itr != q_vector->itr_val) {
4088                 /* this attempts to bias the interrupt rate towards Bulk
4089                  * by adding intermediate steps when interrupt rate is
4090                  * increasing
4091                  */
4092                 new_itr = new_itr > q_vector->itr_val ?
4093                           max((new_itr * q_vector->itr_val) /
4094                           (new_itr + (q_vector->itr_val >> 2)),
4095                           new_itr) : new_itr;
4096                 /* Don't write the value here; it resets the adapter's
4097                  * internal timer, and causes us to delay far longer than
4098                  * we should between interrupts.  Instead, we write the ITR
4099                  * value at the beginning of the next interrupt so the timing
4100                  * ends up being correct.
4101                  */
4102                 q_vector->itr_val = new_itr;
4103                 q_vector->set_itr = 1;
4104         }
4105 }
4106
4107 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4108 {
4109         int v_idx = adapter->num_q_vectors;
4110
4111         if (adapter->msix_entries) {
4112                 pci_disable_msix(adapter->pdev);
4113                 kfree(adapter->msix_entries);
4114                 adapter->msix_entries = NULL;
4115         } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4116                 pci_disable_msi(adapter->pdev);
4117         }
4118
4119         while (v_idx--)
4120                 igc_reset_q_vector(adapter, v_idx);
4121 }
4122
4123 /**
4124  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4125  * @adapter: Pointer to adapter structure
4126  * @msix: boolean value for MSI-X capability
4127  *
4128  * Attempt to configure interrupts using the best available
4129  * capabilities of the hardware and kernel.
4130  */
4131 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4132                                          bool msix)
4133 {
4134         int numvecs, i;
4135         int err;
4136
4137         if (!msix)
4138                 goto msi_only;
4139         adapter->flags |= IGC_FLAG_HAS_MSIX;
4140
4141         /* Number of supported queues. */
4142         adapter->num_rx_queues = adapter->rss_queues;
4143
4144         adapter->num_tx_queues = adapter->rss_queues;
4145
4146         /* start with one vector for every Rx queue */
4147         numvecs = adapter->num_rx_queues;
4148
4149         /* if Tx handler is separate add 1 for every Tx queue */
4150         if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4151                 numvecs += adapter->num_tx_queues;
4152
4153         /* store the number of vectors reserved for queues */
4154         adapter->num_q_vectors = numvecs;
4155
4156         /* add 1 vector for link status interrupts */
4157         numvecs++;
4158
4159         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4160                                         GFP_KERNEL);
4161
4162         if (!adapter->msix_entries)
4163                 return;
4164
4165         /* populate entry values */
4166         for (i = 0; i < numvecs; i++)
4167                 adapter->msix_entries[i].entry = i;
4168
4169         err = pci_enable_msix_range(adapter->pdev,
4170                                     adapter->msix_entries,
4171                                     numvecs,
4172                                     numvecs);
4173         if (err > 0)
4174                 return;
4175
4176         kfree(adapter->msix_entries);
4177         adapter->msix_entries = NULL;
4178
4179         igc_reset_interrupt_capability(adapter);
4180
4181 msi_only:
4182         adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4183
4184         adapter->rss_queues = 1;
4185         adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4186         adapter->num_rx_queues = 1;
4187         adapter->num_tx_queues = 1;
4188         adapter->num_q_vectors = 1;
4189         if (!pci_enable_msi(adapter->pdev))
4190                 adapter->flags |= IGC_FLAG_HAS_MSI;
4191 }
4192
4193 /**
4194  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4195  * @q_vector: pointer to q_vector
4196  *
4197  * Stores a new ITR value based on strictly on packet size.  This
4198  * algorithm is less sophisticated than that used in igc_update_itr,
4199  * due to the difficulty of synchronizing statistics across multiple
4200  * receive rings.  The divisors and thresholds used by this function
4201  * were determined based on theoretical maximum wire speed and testing
4202  * data, in order to minimize response time while increasing bulk
4203  * throughput.
4204  * NOTE: This function is called only when operating in a multiqueue
4205  * receive environment.
4206  */
4207 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4208 {
4209         struct igc_adapter *adapter = q_vector->adapter;
4210         int new_val = q_vector->itr_val;
4211         int avg_wire_size = 0;
4212         unsigned int packets;
4213
4214         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4215          * ints/sec - ITR timer value of 120 ticks.
4216          */
4217         switch (adapter->link_speed) {
4218         case SPEED_10:
4219         case SPEED_100:
4220                 new_val = IGC_4K_ITR;
4221                 goto set_itr_val;
4222         default:
4223                 break;
4224         }
4225
4226         packets = q_vector->rx.total_packets;
4227         if (packets)
4228                 avg_wire_size = q_vector->rx.total_bytes / packets;
4229
4230         packets = q_vector->tx.total_packets;
4231         if (packets)
4232                 avg_wire_size = max_t(u32, avg_wire_size,
4233                                       q_vector->tx.total_bytes / packets);
4234
4235         /* if avg_wire_size isn't set no work was done */
4236         if (!avg_wire_size)
4237                 goto clear_counts;
4238
4239         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4240         avg_wire_size += 24;
4241
4242         /* Don't starve jumbo frames */
4243         avg_wire_size = min(avg_wire_size, 3000);
4244
4245         /* Give a little boost to mid-size frames */
4246         if (avg_wire_size > 300 && avg_wire_size < 1200)
4247                 new_val = avg_wire_size / 3;
4248         else
4249                 new_val = avg_wire_size / 2;
4250
4251         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4252         if (new_val < IGC_20K_ITR &&
4253             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4254             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4255                 new_val = IGC_20K_ITR;
4256
4257 set_itr_val:
4258         if (new_val != q_vector->itr_val) {
4259                 q_vector->itr_val = new_val;
4260                 q_vector->set_itr = 1;
4261         }
4262 clear_counts:
4263         q_vector->rx.total_bytes = 0;
4264         q_vector->rx.total_packets = 0;
4265         q_vector->tx.total_bytes = 0;
4266         q_vector->tx.total_packets = 0;
4267 }
4268
4269 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4270 {
4271         struct igc_adapter *adapter = q_vector->adapter;
4272         struct igc_hw *hw = &adapter->hw;
4273
4274         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4275             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4276                 if (adapter->num_q_vectors == 1)
4277                         igc_set_itr(q_vector);
4278                 else
4279                         igc_update_ring_itr(q_vector);
4280         }
4281
4282         if (!test_bit(__IGC_DOWN, &adapter->state)) {
4283                 if (adapter->msix_entries)
4284                         wr32(IGC_EIMS, q_vector->eims_value);
4285                 else
4286                         igc_irq_enable(adapter);
4287         }
4288 }
4289
4290 static void igc_add_ring(struct igc_ring *ring,
4291                          struct igc_ring_container *head)
4292 {
4293         head->ring = ring;
4294         head->count++;
4295 }
4296
4297 /**
4298  * igc_cache_ring_register - Descriptor ring to register mapping
4299  * @adapter: board private structure to initialize
4300  *
4301  * Once we know the feature-set enabled for the device, we'll cache
4302  * the register offset the descriptor ring is assigned to.
4303  */
4304 static void igc_cache_ring_register(struct igc_adapter *adapter)
4305 {
4306         int i = 0, j = 0;
4307
4308         switch (adapter->hw.mac.type) {
4309         case igc_i225:
4310         default:
4311                 for (; i < adapter->num_rx_queues; i++)
4312                         adapter->rx_ring[i]->reg_idx = i;
4313                 for (; j < adapter->num_tx_queues; j++)
4314                         adapter->tx_ring[j]->reg_idx = j;
4315                 break;
4316         }
4317 }
4318
4319 /**
4320  * igc_poll - NAPI Rx polling callback
4321  * @napi: napi polling structure
4322  * @budget: count of how many packets we should handle
4323  */
4324 static int igc_poll(struct napi_struct *napi, int budget)
4325 {
4326         struct igc_q_vector *q_vector = container_of(napi,
4327                                                      struct igc_q_vector,
4328                                                      napi);
4329         struct igc_ring *rx_ring = q_vector->rx.ring;
4330         bool clean_complete = true;
4331         int work_done = 0;
4332
4333         if (q_vector->tx.ring)
4334                 clean_complete = igc_clean_tx_irq(q_vector, budget);
4335
4336         if (rx_ring) {
4337                 int cleaned = rx_ring->xsk_pool ?
4338                               igc_clean_rx_irq_zc(q_vector, budget) :
4339                               igc_clean_rx_irq(q_vector, budget);
4340
4341                 work_done += cleaned;
4342                 if (cleaned >= budget)
4343                         clean_complete = false;
4344         }
4345
4346         /* If all work not completed, return budget and keep polling */
4347         if (!clean_complete)
4348                 return budget;
4349
4350         /* Exit the polling mode, but don't re-enable interrupts if stack might
4351          * poll us due to busy-polling
4352          */
4353         if (likely(napi_complete_done(napi, work_done)))
4354                 igc_ring_irq_enable(q_vector);
4355
4356         return min(work_done, budget - 1);
4357 }
4358
4359 /**
4360  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4361  * @adapter: board private structure to initialize
4362  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4363  * @v_idx: index of vector in adapter struct
4364  * @txr_count: total number of Tx rings to allocate
4365  * @txr_idx: index of first Tx ring to allocate
4366  * @rxr_count: total number of Rx rings to allocate
4367  * @rxr_idx: index of first Rx ring to allocate
4368  *
4369  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4370  */
4371 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4372                               unsigned int v_count, unsigned int v_idx,
4373                               unsigned int txr_count, unsigned int txr_idx,
4374                               unsigned int rxr_count, unsigned int rxr_idx)
4375 {
4376         struct igc_q_vector *q_vector;
4377         struct igc_ring *ring;
4378         int ring_count;
4379
4380         /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4381         if (txr_count > 1 || rxr_count > 1)
4382                 return -ENOMEM;
4383
4384         ring_count = txr_count + rxr_count;
4385
4386         /* allocate q_vector and rings */
4387         q_vector = adapter->q_vector[v_idx];
4388         if (!q_vector)
4389                 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4390                                    GFP_KERNEL);
4391         else
4392                 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4393         if (!q_vector)
4394                 return -ENOMEM;
4395
4396         /* initialize NAPI */
4397         netif_napi_add(adapter->netdev, &q_vector->napi,
4398                        igc_poll, 64);
4399
4400         /* tie q_vector and adapter together */
4401         adapter->q_vector[v_idx] = q_vector;
4402         q_vector->adapter = adapter;
4403
4404         /* initialize work limits */
4405         q_vector->tx.work_limit = adapter->tx_work_limit;
4406
4407         /* initialize ITR configuration */
4408         q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4409         q_vector->itr_val = IGC_START_ITR;
4410
4411         /* initialize pointer to rings */
4412         ring = q_vector->ring;
4413
4414         /* initialize ITR */
4415         if (rxr_count) {
4416                 /* rx or rx/tx vector */
4417                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4418                         q_vector->itr_val = adapter->rx_itr_setting;
4419         } else {
4420                 /* tx only vector */
4421                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4422                         q_vector->itr_val = adapter->tx_itr_setting;
4423         }
4424
4425         if (txr_count) {
4426                 /* assign generic ring traits */
4427                 ring->dev = &adapter->pdev->dev;
4428                 ring->netdev = adapter->netdev;
4429
4430                 /* configure backlink on ring */
4431                 ring->q_vector = q_vector;
4432
4433                 /* update q_vector Tx values */
4434                 igc_add_ring(ring, &q_vector->tx);
4435
4436                 /* apply Tx specific ring traits */
4437                 ring->count = adapter->tx_ring_count;
4438                 ring->queue_index = txr_idx;
4439
4440                 /* assign ring to adapter */
4441                 adapter->tx_ring[txr_idx] = ring;
4442
4443                 /* push pointer to next ring */
4444                 ring++;
4445         }
4446
4447         if (rxr_count) {
4448                 /* assign generic ring traits */
4449                 ring->dev = &adapter->pdev->dev;
4450                 ring->netdev = adapter->netdev;
4451
4452                 /* configure backlink on ring */
4453                 ring->q_vector = q_vector;
4454
4455                 /* update q_vector Rx values */
4456                 igc_add_ring(ring, &q_vector->rx);
4457
4458                 /* apply Rx specific ring traits */
4459                 ring->count = adapter->rx_ring_count;
4460                 ring->queue_index = rxr_idx;
4461
4462                 /* assign ring to adapter */
4463                 adapter->rx_ring[rxr_idx] = ring;
4464         }
4465
4466         return 0;
4467 }
4468
4469 /**
4470  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4471  * @adapter: board private structure to initialize
4472  *
4473  * We allocate one q_vector per queue interrupt.  If allocation fails we
4474  * return -ENOMEM.
4475  */
4476 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4477 {
4478         int rxr_remaining = adapter->num_rx_queues;
4479         int txr_remaining = adapter->num_tx_queues;
4480         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4481         int q_vectors = adapter->num_q_vectors;
4482         int err;
4483
4484         if (q_vectors >= (rxr_remaining + txr_remaining)) {
4485                 for (; rxr_remaining; v_idx++) {
4486                         err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4487                                                  0, 0, 1, rxr_idx);
4488
4489                         if (err)
4490                                 goto err_out;
4491
4492                         /* update counts and index */
4493                         rxr_remaining--;
4494                         rxr_idx++;
4495                 }
4496         }
4497
4498         for (; v_idx < q_vectors; v_idx++) {
4499                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4500                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4501
4502                 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4503                                          tqpv, txr_idx, rqpv, rxr_idx);
4504
4505                 if (err)
4506                         goto err_out;
4507
4508                 /* update counts and index */
4509                 rxr_remaining -= rqpv;
4510                 txr_remaining -= tqpv;
4511                 rxr_idx++;
4512                 txr_idx++;
4513         }
4514
4515         return 0;
4516
4517 err_out:
4518         adapter->num_tx_queues = 0;
4519         adapter->num_rx_queues = 0;
4520         adapter->num_q_vectors = 0;
4521
4522         while (v_idx--)
4523                 igc_free_q_vector(adapter, v_idx);
4524
4525         return -ENOMEM;
4526 }
4527
4528 /**
4529  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4530  * @adapter: Pointer to adapter structure
4531  * @msix: boolean for MSI-X capability
4532  *
4533  * This function initializes the interrupts and allocates all of the queues.
4534  */
4535 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4536 {
4537         struct net_device *dev = adapter->netdev;
4538         int err = 0;
4539
4540         igc_set_interrupt_capability(adapter, msix);
4541
4542         err = igc_alloc_q_vectors(adapter);
4543         if (err) {
4544                 netdev_err(dev, "Unable to allocate memory for vectors\n");
4545                 goto err_alloc_q_vectors;
4546         }
4547
4548         igc_cache_ring_register(adapter);
4549
4550         return 0;
4551
4552 err_alloc_q_vectors:
4553         igc_reset_interrupt_capability(adapter);
4554         return err;
4555 }
4556
4557 /**
4558  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4559  * @adapter: board private structure to initialize
4560  *
4561  * igc_sw_init initializes the Adapter private data structure.
4562  * Fields are initialized based on PCI device information and
4563  * OS network device settings (MTU size).
4564  */
4565 static int igc_sw_init(struct igc_adapter *adapter)
4566 {
4567         struct net_device *netdev = adapter->netdev;
4568         struct pci_dev *pdev = adapter->pdev;
4569         struct igc_hw *hw = &adapter->hw;
4570
4571         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4572
4573         /* set default ring sizes */
4574         adapter->tx_ring_count = IGC_DEFAULT_TXD;
4575         adapter->rx_ring_count = IGC_DEFAULT_RXD;
4576
4577         /* set default ITR values */
4578         adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4579         adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4580
4581         /* set default work limits */
4582         adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4583
4584         /* adjust max frame to be at least the size of a standard frame */
4585         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4586                                 VLAN_HLEN;
4587         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4588
4589         mutex_init(&adapter->nfc_rule_lock);
4590         INIT_LIST_HEAD(&adapter->nfc_rule_list);
4591         adapter->nfc_rule_count = 0;
4592
4593         spin_lock_init(&adapter->stats64_lock);
4594         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4595         adapter->flags |= IGC_FLAG_HAS_MSIX;
4596
4597         igc_init_queue_configuration(adapter);
4598
4599         /* This call may decrease the number of queues */
4600         if (igc_init_interrupt_scheme(adapter, true)) {
4601                 netdev_err(netdev, "Unable to allocate memory for queues\n");
4602                 return -ENOMEM;
4603         }
4604
4605         /* Explicitly disable IRQ since the NIC can be in any state. */
4606         igc_irq_disable(adapter);
4607
4608         set_bit(__IGC_DOWN, &adapter->state);
4609
4610         return 0;
4611 }
4612
4613 /**
4614  * igc_up - Open the interface and prepare it to handle traffic
4615  * @adapter: board private structure
4616  */
4617 void igc_up(struct igc_adapter *adapter)
4618 {
4619         struct igc_hw *hw = &adapter->hw;
4620         int i = 0;
4621
4622         /* hardware has been reset, we need to reload some things */
4623         igc_configure(adapter);
4624
4625         clear_bit(__IGC_DOWN, &adapter->state);
4626
4627         for (i = 0; i < adapter->num_q_vectors; i++)
4628                 napi_enable(&adapter->q_vector[i]->napi);
4629
4630         if (adapter->msix_entries)
4631                 igc_configure_msix(adapter);
4632         else
4633                 igc_assign_vector(adapter->q_vector[0], 0);
4634
4635         /* Clear any pending interrupts. */
4636         rd32(IGC_ICR);
4637         igc_irq_enable(adapter);
4638
4639         netif_tx_start_all_queues(adapter->netdev);
4640
4641         /* start the watchdog. */
4642         hw->mac.get_link_status = true;
4643         schedule_work(&adapter->watchdog_task);
4644 }
4645
4646 /**
4647  * igc_update_stats - Update the board statistics counters
4648  * @adapter: board private structure
4649  */
4650 void igc_update_stats(struct igc_adapter *adapter)
4651 {
4652         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4653         struct pci_dev *pdev = adapter->pdev;
4654         struct igc_hw *hw = &adapter->hw;
4655         u64 _bytes, _packets;
4656         u64 bytes, packets;
4657         unsigned int start;
4658         u32 mpc;
4659         int i;
4660
4661         /* Prevent stats update while adapter is being reset, or if the pci
4662          * connection is down.
4663          */
4664         if (adapter->link_speed == 0)
4665                 return;
4666         if (pci_channel_offline(pdev))
4667                 return;
4668
4669         packets = 0;
4670         bytes = 0;
4671
4672         rcu_read_lock();
4673         for (i = 0; i < adapter->num_rx_queues; i++) {
4674                 struct igc_ring *ring = adapter->rx_ring[i];
4675                 u32 rqdpc = rd32(IGC_RQDPC(i));
4676
4677                 if (hw->mac.type >= igc_i225)
4678                         wr32(IGC_RQDPC(i), 0);
4679
4680                 if (rqdpc) {
4681                         ring->rx_stats.drops += rqdpc;
4682                         net_stats->rx_fifo_errors += rqdpc;
4683                 }
4684
4685                 do {
4686                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4687                         _bytes = ring->rx_stats.bytes;
4688                         _packets = ring->rx_stats.packets;
4689                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4690                 bytes += _bytes;
4691                 packets += _packets;
4692         }
4693
4694         net_stats->rx_bytes = bytes;
4695         net_stats->rx_packets = packets;
4696
4697         packets = 0;
4698         bytes = 0;
4699         for (i = 0; i < adapter->num_tx_queues; i++) {
4700                 struct igc_ring *ring = adapter->tx_ring[i];
4701
4702                 do {
4703                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4704                         _bytes = ring->tx_stats.bytes;
4705                         _packets = ring->tx_stats.packets;
4706                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4707                 bytes += _bytes;
4708                 packets += _packets;
4709         }
4710         net_stats->tx_bytes = bytes;
4711         net_stats->tx_packets = packets;
4712         rcu_read_unlock();
4713
4714         /* read stats registers */
4715         adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4716         adapter->stats.gprc += rd32(IGC_GPRC);
4717         adapter->stats.gorc += rd32(IGC_GORCL);
4718         rd32(IGC_GORCH); /* clear GORCL */
4719         adapter->stats.bprc += rd32(IGC_BPRC);
4720         adapter->stats.mprc += rd32(IGC_MPRC);
4721         adapter->stats.roc += rd32(IGC_ROC);
4722
4723         adapter->stats.prc64 += rd32(IGC_PRC64);
4724         adapter->stats.prc127 += rd32(IGC_PRC127);
4725         adapter->stats.prc255 += rd32(IGC_PRC255);
4726         adapter->stats.prc511 += rd32(IGC_PRC511);
4727         adapter->stats.prc1023 += rd32(IGC_PRC1023);
4728         adapter->stats.prc1522 += rd32(IGC_PRC1522);
4729         adapter->stats.tlpic += rd32(IGC_TLPIC);
4730         adapter->stats.rlpic += rd32(IGC_RLPIC);
4731         adapter->stats.hgptc += rd32(IGC_HGPTC);
4732
4733         mpc = rd32(IGC_MPC);
4734         adapter->stats.mpc += mpc;
4735         net_stats->rx_fifo_errors += mpc;
4736         adapter->stats.scc += rd32(IGC_SCC);
4737         adapter->stats.ecol += rd32(IGC_ECOL);
4738         adapter->stats.mcc += rd32(IGC_MCC);
4739         adapter->stats.latecol += rd32(IGC_LATECOL);
4740         adapter->stats.dc += rd32(IGC_DC);
4741         adapter->stats.rlec += rd32(IGC_RLEC);
4742         adapter->stats.xonrxc += rd32(IGC_XONRXC);
4743         adapter->stats.xontxc += rd32(IGC_XONTXC);
4744         adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4745         adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4746         adapter->stats.fcruc += rd32(IGC_FCRUC);
4747         adapter->stats.gptc += rd32(IGC_GPTC);
4748         adapter->stats.gotc += rd32(IGC_GOTCL);
4749         rd32(IGC_GOTCH); /* clear GOTCL */
4750         adapter->stats.rnbc += rd32(IGC_RNBC);
4751         adapter->stats.ruc += rd32(IGC_RUC);
4752         adapter->stats.rfc += rd32(IGC_RFC);
4753         adapter->stats.rjc += rd32(IGC_RJC);
4754         adapter->stats.tor += rd32(IGC_TORH);
4755         adapter->stats.tot += rd32(IGC_TOTH);
4756         adapter->stats.tpr += rd32(IGC_TPR);
4757
4758         adapter->stats.ptc64 += rd32(IGC_PTC64);
4759         adapter->stats.ptc127 += rd32(IGC_PTC127);
4760         adapter->stats.ptc255 += rd32(IGC_PTC255);
4761         adapter->stats.ptc511 += rd32(IGC_PTC511);
4762         adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4763         adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4764
4765         adapter->stats.mptc += rd32(IGC_MPTC);
4766         adapter->stats.bptc += rd32(IGC_BPTC);
4767
4768         adapter->stats.tpt += rd32(IGC_TPT);
4769         adapter->stats.colc += rd32(IGC_COLC);
4770         adapter->stats.colc += rd32(IGC_RERC);
4771
4772         adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4773
4774         adapter->stats.tsctc += rd32(IGC_TSCTC);
4775
4776         adapter->stats.iac += rd32(IGC_IAC);
4777
4778         /* Fill out the OS statistics structure */
4779         net_stats->multicast = adapter->stats.mprc;
4780         net_stats->collisions = adapter->stats.colc;
4781
4782         /* Rx Errors */
4783
4784         /* RLEC on some newer hardware can be incorrect so build
4785          * our own version based on RUC and ROC
4786          */
4787         net_stats->rx_errors = adapter->stats.rxerrc +
4788                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4789                 adapter->stats.ruc + adapter->stats.roc +
4790                 adapter->stats.cexterr;
4791         net_stats->rx_length_errors = adapter->stats.ruc +
4792                                       adapter->stats.roc;
4793         net_stats->rx_crc_errors = adapter->stats.crcerrs;
4794         net_stats->rx_frame_errors = adapter->stats.algnerrc;
4795         net_stats->rx_missed_errors = adapter->stats.mpc;
4796
4797         /* Tx Errors */
4798         net_stats->tx_errors = adapter->stats.ecol +
4799                                adapter->stats.latecol;
4800         net_stats->tx_aborted_errors = adapter->stats.ecol;
4801         net_stats->tx_window_errors = adapter->stats.latecol;
4802         net_stats->tx_carrier_errors = adapter->stats.tncrs;
4803
4804         /* Tx Dropped needs to be maintained elsewhere */
4805
4806         /* Management Stats */
4807         adapter->stats.mgptc += rd32(IGC_MGTPTC);
4808         adapter->stats.mgprc += rd32(IGC_MGTPRC);
4809         adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4810 }
4811
4812 /**
4813  * igc_down - Close the interface
4814  * @adapter: board private structure
4815  */
4816 void igc_down(struct igc_adapter *adapter)
4817 {
4818         struct net_device *netdev = adapter->netdev;
4819         struct igc_hw *hw = &adapter->hw;
4820         u32 tctl, rctl;
4821         int i = 0;
4822
4823         set_bit(__IGC_DOWN, &adapter->state);
4824
4825         igc_ptp_suspend(adapter);
4826
4827         if (pci_device_is_present(adapter->pdev)) {
4828                 /* disable receives in the hardware */
4829                 rctl = rd32(IGC_RCTL);
4830                 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4831                 /* flush and sleep below */
4832         }
4833         /* set trans_start so we don't get spurious watchdogs during reset */
4834         netif_trans_update(netdev);
4835
4836         netif_carrier_off(netdev);
4837         netif_tx_stop_all_queues(netdev);
4838
4839         if (pci_device_is_present(adapter->pdev)) {
4840                 /* disable transmits in the hardware */
4841                 tctl = rd32(IGC_TCTL);
4842                 tctl &= ~IGC_TCTL_EN;
4843                 wr32(IGC_TCTL, tctl);
4844                 /* flush both disables and wait for them to finish */
4845                 wrfl();
4846                 usleep_range(10000, 20000);
4847
4848                 igc_irq_disable(adapter);
4849         }
4850
4851         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4852
4853         for (i = 0; i < adapter->num_q_vectors; i++) {
4854                 if (adapter->q_vector[i]) {
4855                         napi_synchronize(&adapter->q_vector[i]->napi);
4856                         napi_disable(&adapter->q_vector[i]->napi);
4857                 }
4858         }
4859
4860         del_timer_sync(&adapter->watchdog_timer);
4861         del_timer_sync(&adapter->phy_info_timer);
4862
4863         /* record the stats before reset*/
4864         spin_lock(&adapter->stats64_lock);
4865         igc_update_stats(adapter);
4866         spin_unlock(&adapter->stats64_lock);
4867
4868         adapter->link_speed = 0;
4869         adapter->link_duplex = 0;
4870
4871         if (!pci_channel_offline(adapter->pdev))
4872                 igc_reset(adapter);
4873
4874         /* clear VLAN promisc flag so VFTA will be updated if necessary */
4875         adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4876
4877         igc_clean_all_tx_rings(adapter);
4878         igc_clean_all_rx_rings(adapter);
4879 }
4880
4881 void igc_reinit_locked(struct igc_adapter *adapter)
4882 {
4883         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4884                 usleep_range(1000, 2000);
4885         igc_down(adapter);
4886         igc_up(adapter);
4887         clear_bit(__IGC_RESETTING, &adapter->state);
4888 }
4889
4890 static void igc_reset_task(struct work_struct *work)
4891 {
4892         struct igc_adapter *adapter;
4893
4894         adapter = container_of(work, struct igc_adapter, reset_task);
4895
4896         rtnl_lock();
4897         /* If we're already down or resetting, just bail */
4898         if (test_bit(__IGC_DOWN, &adapter->state) ||
4899             test_bit(__IGC_RESETTING, &adapter->state)) {
4900                 rtnl_unlock();
4901                 return;
4902         }
4903
4904         igc_rings_dump(adapter);
4905         igc_regs_dump(adapter);
4906         netdev_err(adapter->netdev, "Reset adapter\n");
4907         igc_reinit_locked(adapter);
4908         rtnl_unlock();
4909 }
4910
4911 /**
4912  * igc_change_mtu - Change the Maximum Transfer Unit
4913  * @netdev: network interface device structure
4914  * @new_mtu: new value for maximum frame size
4915  *
4916  * Returns 0 on success, negative on failure
4917  */
4918 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4919 {
4920         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4921         struct igc_adapter *adapter = netdev_priv(netdev);
4922
4923         if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4924                 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4925                 return -EINVAL;
4926         }
4927
4928         /* adjust max frame to be at least the size of a standard frame */
4929         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4930                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4931
4932         while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4933                 usleep_range(1000, 2000);
4934
4935         /* igc_down has a dependency on max_frame_size */
4936         adapter->max_frame_size = max_frame;
4937
4938         if (netif_running(netdev))
4939                 igc_down(adapter);
4940
4941         netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4942         netdev->mtu = new_mtu;
4943
4944         if (netif_running(netdev))
4945                 igc_up(adapter);
4946         else
4947                 igc_reset(adapter);
4948
4949         clear_bit(__IGC_RESETTING, &adapter->state);
4950
4951         return 0;
4952 }
4953
4954 /**
4955  * igc_get_stats64 - Get System Network Statistics
4956  * @netdev: network interface device structure
4957  * @stats: rtnl_link_stats64 pointer
4958  *
4959  * Returns the address of the device statistics structure.
4960  * The statistics are updated here and also from the timer callback.
4961  */
4962 static void igc_get_stats64(struct net_device *netdev,
4963                             struct rtnl_link_stats64 *stats)
4964 {
4965         struct igc_adapter *adapter = netdev_priv(netdev);
4966
4967         spin_lock(&adapter->stats64_lock);
4968         if (!test_bit(__IGC_RESETTING, &adapter->state))
4969                 igc_update_stats(adapter);
4970         memcpy(stats, &adapter->stats64, sizeof(*stats));
4971         spin_unlock(&adapter->stats64_lock);
4972 }
4973
4974 static netdev_features_t igc_fix_features(struct net_device *netdev,
4975                                           netdev_features_t features)
4976 {
4977         /* Since there is no support for separate Rx/Tx vlan accel
4978          * enable/disable make sure Tx flag is always in same state as Rx.
4979          */
4980         if (features & NETIF_F_HW_VLAN_CTAG_RX)
4981                 features |= NETIF_F_HW_VLAN_CTAG_TX;
4982         else
4983                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4984
4985         return features;
4986 }
4987
4988 static int igc_set_features(struct net_device *netdev,
4989                             netdev_features_t features)
4990 {
4991         netdev_features_t changed = netdev->features ^ features;
4992         struct igc_adapter *adapter = netdev_priv(netdev);
4993
4994         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4995                 igc_vlan_mode(netdev, features);
4996
4997         /* Add VLAN support */
4998         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4999                 return 0;
5000
5001         if (!(features & NETIF_F_NTUPLE))
5002                 igc_flush_nfc_rules(adapter);
5003
5004         netdev->features = features;
5005
5006         if (netif_running(netdev))
5007                 igc_reinit_locked(adapter);
5008         else
5009                 igc_reset(adapter);
5010
5011         return 1;
5012 }
5013
5014 static netdev_features_t
5015 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5016                    netdev_features_t features)
5017 {
5018         unsigned int network_hdr_len, mac_hdr_len;
5019
5020         /* Make certain the headers can be described by a context descriptor */
5021         mac_hdr_len = skb_network_header(skb) - skb->data;
5022         if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5023                 return features & ~(NETIF_F_HW_CSUM |
5024                                     NETIF_F_SCTP_CRC |
5025                                     NETIF_F_HW_VLAN_CTAG_TX |
5026                                     NETIF_F_TSO |
5027                                     NETIF_F_TSO6);
5028
5029         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5030         if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5031                 return features & ~(NETIF_F_HW_CSUM |
5032                                     NETIF_F_SCTP_CRC |
5033                                     NETIF_F_TSO |
5034                                     NETIF_F_TSO6);
5035
5036         /* We can only support IPv4 TSO in tunnels if we can mangle the
5037          * inner IP ID field, so strip TSO if MANGLEID is not supported.
5038          */
5039         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5040                 features &= ~NETIF_F_TSO;
5041
5042         return features;
5043 }
5044
5045 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5046 {
5047         u32 ack, tsauxc, sec, nsec, tsicr;
5048         struct igc_hw *hw = &adapter->hw;
5049         struct ptp_clock_event event;
5050         struct timespec64 ts;
5051
5052         tsicr = rd32(IGC_TSICR);
5053         ack = 0;
5054
5055         if (tsicr & IGC_TSICR_SYS_WRAP) {
5056                 event.type = PTP_CLOCK_PPS;
5057                 if (adapter->ptp_caps.pps)
5058                         ptp_clock_event(adapter->ptp_clock, &event);
5059                 ack |= IGC_TSICR_SYS_WRAP;
5060         }
5061
5062         if (tsicr & IGC_TSICR_TXTS) {
5063                 /* retrieve hardware timestamp */
5064                 schedule_work(&adapter->ptp_tx_work);
5065                 ack |= IGC_TSICR_TXTS;
5066         }
5067
5068         if (tsicr & IGC_TSICR_TT0) {
5069                 spin_lock(&adapter->tmreg_lock);
5070                 ts = timespec64_add(adapter->perout[0].start,
5071                                     adapter->perout[0].period);
5072                 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5073                 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5074                 tsauxc = rd32(IGC_TSAUXC);
5075                 tsauxc |= IGC_TSAUXC_EN_TT0;
5076                 wr32(IGC_TSAUXC, tsauxc);
5077                 adapter->perout[0].start = ts;
5078                 spin_unlock(&adapter->tmreg_lock);
5079                 ack |= IGC_TSICR_TT0;
5080         }
5081
5082         if (tsicr & IGC_TSICR_TT1) {
5083                 spin_lock(&adapter->tmreg_lock);
5084                 ts = timespec64_add(adapter->perout[1].start,
5085                                     adapter->perout[1].period);
5086                 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5087                 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5088                 tsauxc = rd32(IGC_TSAUXC);
5089                 tsauxc |= IGC_TSAUXC_EN_TT1;
5090                 wr32(IGC_TSAUXC, tsauxc);
5091                 adapter->perout[1].start = ts;
5092                 spin_unlock(&adapter->tmreg_lock);
5093                 ack |= IGC_TSICR_TT1;
5094         }
5095
5096         if (tsicr & IGC_TSICR_AUTT0) {
5097                 nsec = rd32(IGC_AUXSTMPL0);
5098                 sec  = rd32(IGC_AUXSTMPH0);
5099                 event.type = PTP_CLOCK_EXTTS;
5100                 event.index = 0;
5101                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5102                 ptp_clock_event(adapter->ptp_clock, &event);
5103                 ack |= IGC_TSICR_AUTT0;
5104         }
5105
5106         if (tsicr & IGC_TSICR_AUTT1) {
5107                 nsec = rd32(IGC_AUXSTMPL1);
5108                 sec  = rd32(IGC_AUXSTMPH1);
5109                 event.type = PTP_CLOCK_EXTTS;
5110                 event.index = 1;
5111                 event.timestamp = sec * NSEC_PER_SEC + nsec;
5112                 ptp_clock_event(adapter->ptp_clock, &event);
5113                 ack |= IGC_TSICR_AUTT1;
5114         }
5115
5116         /* acknowledge the interrupts */
5117         wr32(IGC_TSICR, ack);
5118 }
5119
5120 /**
5121  * igc_msix_other - msix other interrupt handler
5122  * @irq: interrupt number
5123  * @data: pointer to a q_vector
5124  */
5125 static irqreturn_t igc_msix_other(int irq, void *data)
5126 {
5127         struct igc_adapter *adapter = data;
5128         struct igc_hw *hw = &adapter->hw;
5129         u32 icr = rd32(IGC_ICR);
5130
5131         /* reading ICR causes bit 31 of EICR to be cleared */
5132         if (icr & IGC_ICR_DRSTA)
5133                 schedule_work(&adapter->reset_task);
5134
5135         if (icr & IGC_ICR_DOUTSYNC) {
5136                 /* HW is reporting DMA is out of sync */
5137                 adapter->stats.doosync++;
5138         }
5139
5140         if (icr & IGC_ICR_LSC) {
5141                 hw->mac.get_link_status = true;
5142                 /* guard against interrupt when we're going down */
5143                 if (!test_bit(__IGC_DOWN, &adapter->state))
5144                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5145         }
5146
5147         if (icr & IGC_ICR_TS)
5148                 igc_tsync_interrupt(adapter);
5149
5150         wr32(IGC_EIMS, adapter->eims_other);
5151
5152         return IRQ_HANDLED;
5153 }
5154
5155 static void igc_write_itr(struct igc_q_vector *q_vector)
5156 {
5157         u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5158
5159         if (!q_vector->set_itr)
5160                 return;
5161
5162         if (!itr_val)
5163                 itr_val = IGC_ITR_VAL_MASK;
5164
5165         itr_val |= IGC_EITR_CNT_IGNR;
5166
5167         writel(itr_val, q_vector->itr_register);
5168         q_vector->set_itr = 0;
5169 }
5170
5171 static irqreturn_t igc_msix_ring(int irq, void *data)
5172 {
5173         struct igc_q_vector *q_vector = data;
5174
5175         /* Write the ITR value calculated from the previous interrupt. */
5176         igc_write_itr(q_vector);
5177
5178         napi_schedule(&q_vector->napi);
5179
5180         return IRQ_HANDLED;
5181 }
5182
5183 /**
5184  * igc_request_msix - Initialize MSI-X interrupts
5185  * @adapter: Pointer to adapter structure
5186  *
5187  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5188  * kernel.
5189  */
5190 static int igc_request_msix(struct igc_adapter *adapter)
5191 {
5192         unsigned int num_q_vectors = adapter->num_q_vectors;
5193         int i = 0, err = 0, vector = 0, free_vector = 0;
5194         struct net_device *netdev = adapter->netdev;
5195
5196         err = request_irq(adapter->msix_entries[vector].vector,
5197                           &igc_msix_other, 0, netdev->name, adapter);
5198         if (err)
5199                 goto err_out;
5200
5201         if (num_q_vectors > MAX_Q_VECTORS) {
5202                 num_q_vectors = MAX_Q_VECTORS;
5203                 dev_warn(&adapter->pdev->dev,
5204                          "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5205                          adapter->num_q_vectors, MAX_Q_VECTORS);
5206         }
5207         for (i = 0; i < num_q_vectors; i++) {
5208                 struct igc_q_vector *q_vector = adapter->q_vector[i];
5209
5210                 vector++;
5211
5212                 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5213
5214                 if (q_vector->rx.ring && q_vector->tx.ring)
5215                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5216                                 q_vector->rx.ring->queue_index);
5217                 else if (q_vector->tx.ring)
5218                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5219                                 q_vector->tx.ring->queue_index);
5220                 else if (q_vector->rx.ring)
5221                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5222                                 q_vector->rx.ring->queue_index);
5223                 else
5224                         sprintf(q_vector->name, "%s-unused", netdev->name);
5225
5226                 err = request_irq(adapter->msix_entries[vector].vector,
5227                                   igc_msix_ring, 0, q_vector->name,
5228                                   q_vector);
5229                 if (err)
5230                         goto err_free;
5231         }
5232
5233         igc_configure_msix(adapter);
5234         return 0;
5235
5236 err_free:
5237         /* free already assigned IRQs */
5238         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5239
5240         vector--;
5241         for (i = 0; i < vector; i++) {
5242                 free_irq(adapter->msix_entries[free_vector++].vector,
5243                          adapter->q_vector[i]);
5244         }
5245 err_out:
5246         return err;
5247 }
5248
5249 /**
5250  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5251  * @adapter: Pointer to adapter structure
5252  *
5253  * This function resets the device so that it has 0 rx queues, tx queues, and
5254  * MSI-X interrupts allocated.
5255  */
5256 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5257 {
5258         igc_free_q_vectors(adapter);
5259         igc_reset_interrupt_capability(adapter);
5260 }
5261
5262 /* Need to wait a few seconds after link up to get diagnostic information from
5263  * the phy
5264  */
5265 static void igc_update_phy_info(struct timer_list *t)
5266 {
5267         struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5268
5269         igc_get_phy_info(&adapter->hw);
5270 }
5271
5272 /**
5273  * igc_has_link - check shared code for link and determine up/down
5274  * @adapter: pointer to driver private info
5275  */
5276 bool igc_has_link(struct igc_adapter *adapter)
5277 {
5278         struct igc_hw *hw = &adapter->hw;
5279         bool link_active = false;
5280
5281         /* get_link_status is set on LSC (link status) interrupt or
5282          * rx sequence error interrupt.  get_link_status will stay
5283          * false until the igc_check_for_link establishes link
5284          * for copper adapters ONLY
5285          */
5286         if (!hw->mac.get_link_status)
5287                 return true;
5288         hw->mac.ops.check_for_link(hw);
5289         link_active = !hw->mac.get_link_status;
5290
5291         if (hw->mac.type == igc_i225) {
5292                 if (!netif_carrier_ok(adapter->netdev)) {
5293                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5294                 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5295                         adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5296                         adapter->link_check_timeout = jiffies;
5297                 }
5298         }
5299
5300         return link_active;
5301 }
5302
5303 /**
5304  * igc_watchdog - Timer Call-back
5305  * @t: timer for the watchdog
5306  */
5307 static void igc_watchdog(struct timer_list *t)
5308 {
5309         struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5310         /* Do the rest outside of interrupt context */
5311         schedule_work(&adapter->watchdog_task);
5312 }
5313
5314 static void igc_watchdog_task(struct work_struct *work)
5315 {
5316         struct igc_adapter *adapter = container_of(work,
5317                                                    struct igc_adapter,
5318                                                    watchdog_task);
5319         struct net_device *netdev = adapter->netdev;
5320         struct igc_hw *hw = &adapter->hw;
5321         struct igc_phy_info *phy = &hw->phy;
5322         u16 phy_data, retry_count = 20;
5323         u32 link;
5324         int i;
5325
5326         link = igc_has_link(adapter);
5327
5328         if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5329                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5330                         adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5331                 else
5332                         link = false;
5333         }
5334
5335         if (link) {
5336                 /* Cancel scheduled suspend requests. */
5337                 pm_runtime_resume(netdev->dev.parent);
5338
5339                 if (!netif_carrier_ok(netdev)) {
5340                         u32 ctrl;
5341
5342                         hw->mac.ops.get_speed_and_duplex(hw,
5343                                                          &adapter->link_speed,
5344                                                          &adapter->link_duplex);
5345
5346                         ctrl = rd32(IGC_CTRL);
5347                         /* Link status message must follow this format */
5348                         netdev_info(netdev,
5349                                     "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5350                                     adapter->link_speed,
5351                                     adapter->link_duplex == FULL_DUPLEX ?
5352                                     "Full" : "Half",
5353                                     (ctrl & IGC_CTRL_TFCE) &&
5354                                     (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5355                                     (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5356                                     (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5357
5358                         /* disable EEE if enabled */
5359                         if ((adapter->flags & IGC_FLAG_EEE) &&
5360                             adapter->link_duplex == HALF_DUPLEX) {
5361                                 netdev_info(netdev,
5362                                             "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5363                                 adapter->hw.dev_spec._base.eee_enable = false;
5364                                 adapter->flags &= ~IGC_FLAG_EEE;
5365                         }
5366
5367                         /* check if SmartSpeed worked */
5368                         igc_check_downshift(hw);
5369                         if (phy->speed_downgraded)
5370                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5371
5372                         /* adjust timeout factor according to speed/duplex */
5373                         adapter->tx_timeout_factor = 1;
5374                         switch (adapter->link_speed) {
5375                         case SPEED_10:
5376                                 adapter->tx_timeout_factor = 14;
5377                                 break;
5378                         case SPEED_100:
5379                         case SPEED_1000:
5380                         case SPEED_2500:
5381                                 adapter->tx_timeout_factor = 7;
5382                                 break;
5383                         }
5384
5385                         if (adapter->link_speed != SPEED_1000)
5386                                 goto no_wait;
5387
5388                         /* wait for Remote receiver status OK */
5389 retry_read_status:
5390                         if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5391                                               &phy_data)) {
5392                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5393                                     retry_count) {
5394                                         msleep(100);
5395                                         retry_count--;
5396                                         goto retry_read_status;
5397                                 } else if (!retry_count) {
5398                                         netdev_err(netdev, "exceed max 2 second\n");
5399                                 }
5400                         } else {
5401                                 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5402                         }
5403 no_wait:
5404                         netif_carrier_on(netdev);
5405
5406                         /* link state has changed, schedule phy info update */
5407                         if (!test_bit(__IGC_DOWN, &adapter->state))
5408                                 mod_timer(&adapter->phy_info_timer,
5409                                           round_jiffies(jiffies + 2 * HZ));
5410                 }
5411         } else {
5412                 if (netif_carrier_ok(netdev)) {
5413                         adapter->link_speed = 0;
5414                         adapter->link_duplex = 0;
5415
5416                         /* Links status message must follow this format */
5417                         netdev_info(netdev, "NIC Link is Down\n");
5418                         netif_carrier_off(netdev);
5419
5420                         /* link state has changed, schedule phy info update */
5421                         if (!test_bit(__IGC_DOWN, &adapter->state))
5422                                 mod_timer(&adapter->phy_info_timer,
5423                                           round_jiffies(jiffies + 2 * HZ));
5424
5425                         /* link is down, time to check for alternate media */
5426                         if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5427                                 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5428                                         schedule_work(&adapter->reset_task);
5429                                         /* return immediately */
5430                                         return;
5431                                 }
5432                         }
5433                         pm_schedule_suspend(netdev->dev.parent,
5434                                             MSEC_PER_SEC * 5);
5435
5436                 /* also check for alternate media here */
5437                 } else if (!netif_carrier_ok(netdev) &&
5438                            (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5439                         if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5440                                 schedule_work(&adapter->reset_task);
5441                                 /* return immediately */
5442                                 return;
5443                         }
5444                 }
5445         }
5446
5447         spin_lock(&adapter->stats64_lock);
5448         igc_update_stats(adapter);
5449         spin_unlock(&adapter->stats64_lock);
5450
5451         for (i = 0; i < adapter->num_tx_queues; i++) {
5452                 struct igc_ring *tx_ring = adapter->tx_ring[i];
5453
5454                 if (!netif_carrier_ok(netdev)) {
5455                         /* We've lost link, so the controller stops DMA,
5456                          * but we've got queued Tx work that's never going
5457                          * to get done, so reset controller to flush Tx.
5458                          * (Do the reset outside of interrupt context).
5459                          */
5460                         if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5461                                 adapter->tx_timeout_count++;
5462                                 schedule_work(&adapter->reset_task);
5463                                 /* return immediately since reset is imminent */
5464                                 return;
5465                         }
5466                 }
5467
5468                 /* Force detection of hung controller every watchdog period */
5469                 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5470         }
5471
5472         /* Cause software interrupt to ensure Rx ring is cleaned */
5473         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5474                 u32 eics = 0;
5475
5476                 for (i = 0; i < adapter->num_q_vectors; i++)
5477                         eics |= adapter->q_vector[i]->eims_value;
5478                 wr32(IGC_EICS, eics);
5479         } else {
5480                 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5481         }
5482
5483         igc_ptp_tx_hang(adapter);
5484
5485         /* Reset the timer */
5486         if (!test_bit(__IGC_DOWN, &adapter->state)) {
5487                 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5488                         mod_timer(&adapter->watchdog_timer,
5489                                   round_jiffies(jiffies +  HZ));
5490                 else
5491                         mod_timer(&adapter->watchdog_timer,
5492                                   round_jiffies(jiffies + 2 * HZ));
5493         }
5494 }
5495
5496 /**
5497  * igc_intr_msi - Interrupt Handler
5498  * @irq: interrupt number
5499  * @data: pointer to a network interface device structure
5500  */
5501 static irqreturn_t igc_intr_msi(int irq, void *data)
5502 {
5503         struct igc_adapter *adapter = data;
5504         struct igc_q_vector *q_vector = adapter->q_vector[0];
5505         struct igc_hw *hw = &adapter->hw;
5506         /* read ICR disables interrupts using IAM */
5507         u32 icr = rd32(IGC_ICR);
5508
5509         igc_write_itr(q_vector);
5510
5511         if (icr & IGC_ICR_DRSTA)
5512                 schedule_work(&adapter->reset_task);
5513
5514         if (icr & IGC_ICR_DOUTSYNC) {
5515                 /* HW is reporting DMA is out of sync */
5516                 adapter->stats.doosync++;
5517         }
5518
5519         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5520                 hw->mac.get_link_status = true;
5521                 if (!test_bit(__IGC_DOWN, &adapter->state))
5522                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5523         }
5524
5525         if (icr & IGC_ICR_TS)
5526                 igc_tsync_interrupt(adapter);
5527
5528         napi_schedule(&q_vector->napi);
5529
5530         return IRQ_HANDLED;
5531 }
5532
5533 /**
5534  * igc_intr - Legacy Interrupt Handler
5535  * @irq: interrupt number
5536  * @data: pointer to a network interface device structure
5537  */
5538 static irqreturn_t igc_intr(int irq, void *data)
5539 {
5540         struct igc_adapter *adapter = data;
5541         struct igc_q_vector *q_vector = adapter->q_vector[0];
5542         struct igc_hw *hw = &adapter->hw;
5543         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5544          * need for the IMC write
5545          */
5546         u32 icr = rd32(IGC_ICR);
5547
5548         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5549          * not set, then the adapter didn't send an interrupt
5550          */
5551         if (!(icr & IGC_ICR_INT_ASSERTED))
5552                 return IRQ_NONE;
5553
5554         igc_write_itr(q_vector);
5555
5556         if (icr & IGC_ICR_DRSTA)
5557                 schedule_work(&adapter->reset_task);
5558
5559         if (icr & IGC_ICR_DOUTSYNC) {
5560                 /* HW is reporting DMA is out of sync */
5561                 adapter->stats.doosync++;
5562         }
5563
5564         if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5565                 hw->mac.get_link_status = true;
5566                 /* guard against interrupt when we're going down */
5567                 if (!test_bit(__IGC_DOWN, &adapter->state))
5568                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5569         }
5570
5571         if (icr & IGC_ICR_TS)
5572                 igc_tsync_interrupt(adapter);
5573
5574         napi_schedule(&q_vector->napi);
5575
5576         return IRQ_HANDLED;
5577 }
5578
5579 static void igc_free_irq(struct igc_adapter *adapter)
5580 {
5581         if (adapter->msix_entries) {
5582                 int vector = 0, i;
5583
5584                 free_irq(adapter->msix_entries[vector++].vector, adapter);
5585
5586                 for (i = 0; i < adapter->num_q_vectors; i++)
5587                         free_irq(adapter->msix_entries[vector++].vector,
5588                                  adapter->q_vector[i]);
5589         } else {
5590                 free_irq(adapter->pdev->irq, adapter);
5591         }
5592 }
5593
5594 /**
5595  * igc_request_irq - initialize interrupts
5596  * @adapter: Pointer to adapter structure
5597  *
5598  * Attempts to configure interrupts using the best available
5599  * capabilities of the hardware and kernel.
5600  */
5601 static int igc_request_irq(struct igc_adapter *adapter)
5602 {
5603         struct net_device *netdev = adapter->netdev;
5604         struct pci_dev *pdev = adapter->pdev;
5605         int err = 0;
5606
5607         if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5608                 err = igc_request_msix(adapter);
5609                 if (!err)
5610                         goto request_done;
5611                 /* fall back to MSI */
5612                 igc_free_all_tx_resources(adapter);
5613                 igc_free_all_rx_resources(adapter);
5614
5615                 igc_clear_interrupt_scheme(adapter);
5616                 err = igc_init_interrupt_scheme(adapter, false);
5617                 if (err)
5618                         goto request_done;
5619                 igc_setup_all_tx_resources(adapter);
5620                 igc_setup_all_rx_resources(adapter);
5621                 igc_configure(adapter);
5622         }
5623
5624         igc_assign_vector(adapter->q_vector[0], 0);
5625
5626         if (adapter->flags & IGC_FLAG_HAS_MSI) {
5627                 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5628                                   netdev->name, adapter);
5629                 if (!err)
5630                         goto request_done;
5631
5632                 /* fall back to legacy interrupts */
5633                 igc_reset_interrupt_capability(adapter);
5634                 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5635         }
5636
5637         err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5638                           netdev->name, adapter);
5639
5640         if (err)
5641                 netdev_err(netdev, "Error %d getting interrupt\n", err);
5642
5643 request_done:
5644         return err;
5645 }
5646
5647 /**
5648  * __igc_open - Called when a network interface is made active
5649  * @netdev: network interface device structure
5650  * @resuming: boolean indicating if the device is resuming
5651  *
5652  * Returns 0 on success, negative value on failure
5653  *
5654  * The open entry point is called when a network interface is made
5655  * active by the system (IFF_UP).  At this point all resources needed
5656  * for transmit and receive operations are allocated, the interrupt
5657  * handler is registered with the OS, the watchdog timer is started,
5658  * and the stack is notified that the interface is ready.
5659  */
5660 static int __igc_open(struct net_device *netdev, bool resuming)
5661 {
5662         struct igc_adapter *adapter = netdev_priv(netdev);
5663         struct pci_dev *pdev = adapter->pdev;
5664         struct igc_hw *hw = &adapter->hw;
5665         int err = 0;
5666         int i = 0;
5667
5668         /* disallow open during test */
5669
5670         if (test_bit(__IGC_TESTING, &adapter->state)) {
5671                 WARN_ON(resuming);
5672                 return -EBUSY;
5673         }
5674
5675         if (!resuming)
5676                 pm_runtime_get_sync(&pdev->dev);
5677
5678         netif_carrier_off(netdev);
5679
5680         /* allocate transmit descriptors */
5681         err = igc_setup_all_tx_resources(adapter);
5682         if (err)
5683                 goto err_setup_tx;
5684
5685         /* allocate receive descriptors */
5686         err = igc_setup_all_rx_resources(adapter);
5687         if (err)
5688                 goto err_setup_rx;
5689
5690         igc_power_up_link(adapter);
5691
5692         igc_configure(adapter);
5693
5694         err = igc_request_irq(adapter);
5695         if (err)
5696                 goto err_req_irq;
5697
5698         /* Notify the stack of the actual queue counts. */
5699         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5700         if (err)
5701                 goto err_set_queues;
5702
5703         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5704         if (err)
5705                 goto err_set_queues;
5706
5707         clear_bit(__IGC_DOWN, &adapter->state);
5708
5709         for (i = 0; i < adapter->num_q_vectors; i++)
5710                 napi_enable(&adapter->q_vector[i]->napi);
5711
5712         /* Clear any pending interrupts. */
5713         rd32(IGC_ICR);
5714         igc_irq_enable(adapter);
5715
5716         if (!resuming)
5717                 pm_runtime_put(&pdev->dev);
5718
5719         netif_tx_start_all_queues(netdev);
5720
5721         /* start the watchdog. */
5722         hw->mac.get_link_status = true;
5723         schedule_work(&adapter->watchdog_task);
5724
5725         return IGC_SUCCESS;
5726
5727 err_set_queues:
5728         igc_free_irq(adapter);
5729 err_req_irq:
5730         igc_release_hw_control(adapter);
5731         igc_power_down_phy_copper_base(&adapter->hw);
5732         igc_free_all_rx_resources(adapter);
5733 err_setup_rx:
5734         igc_free_all_tx_resources(adapter);
5735 err_setup_tx:
5736         igc_reset(adapter);
5737         if (!resuming)
5738                 pm_runtime_put(&pdev->dev);
5739
5740         return err;
5741 }
5742
5743 int igc_open(struct net_device *netdev)
5744 {
5745         return __igc_open(netdev, false);
5746 }
5747
5748 /**
5749  * __igc_close - Disables a network interface
5750  * @netdev: network interface device structure
5751  * @suspending: boolean indicating the device is suspending
5752  *
5753  * Returns 0, this is not allowed to fail
5754  *
5755  * The close entry point is called when an interface is de-activated
5756  * by the OS.  The hardware is still under the driver's control, but
5757  * needs to be disabled.  A global MAC reset is issued to stop the
5758  * hardware, and all transmit and receive resources are freed.
5759  */
5760 static int __igc_close(struct net_device *netdev, bool suspending)
5761 {
5762         struct igc_adapter *adapter = netdev_priv(netdev);
5763         struct pci_dev *pdev = adapter->pdev;
5764
5765         WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5766
5767         if (!suspending)
5768                 pm_runtime_get_sync(&pdev->dev);
5769
5770         igc_down(adapter);
5771
5772         igc_release_hw_control(adapter);
5773
5774         igc_free_irq(adapter);
5775
5776         igc_free_all_tx_resources(adapter);
5777         igc_free_all_rx_resources(adapter);
5778
5779         if (!suspending)
5780                 pm_runtime_put_sync(&pdev->dev);
5781
5782         return 0;
5783 }
5784
5785 int igc_close(struct net_device *netdev)
5786 {
5787         if (netif_device_present(netdev) || netdev->dismantle)
5788                 return __igc_close(netdev, false);
5789         return 0;
5790 }
5791
5792 /**
5793  * igc_ioctl - Access the hwtstamp interface
5794  * @netdev: network interface device structure
5795  * @ifr: interface request data
5796  * @cmd: ioctl command
5797  **/
5798 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5799 {
5800         switch (cmd) {
5801         case SIOCGHWTSTAMP:
5802                 return igc_ptp_get_ts_config(netdev, ifr);
5803         case SIOCSHWTSTAMP:
5804                 return igc_ptp_set_ts_config(netdev, ifr);
5805         default:
5806                 return -EOPNOTSUPP;
5807         }
5808 }
5809
5810 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5811                                       bool enable)
5812 {
5813         struct igc_ring *ring;
5814
5815         if (queue < 0 || queue >= adapter->num_tx_queues)
5816                 return -EINVAL;
5817
5818         ring = adapter->tx_ring[queue];
5819         ring->launchtime_enable = enable;
5820
5821         return 0;
5822 }
5823
5824 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5825 {
5826         struct timespec64 b;
5827
5828         b = ktime_to_timespec64(base_time);
5829
5830         return timespec64_compare(now, &b) > 0;
5831 }
5832
5833 static bool validate_schedule(struct igc_adapter *adapter,
5834                               const struct tc_taprio_qopt_offload *qopt)
5835 {
5836         int queue_uses[IGC_MAX_TX_QUEUES] = { };
5837         struct timespec64 now;
5838         size_t n;
5839
5840         if (qopt->cycle_time_extension)
5841                 return false;
5842
5843         igc_ptp_read(adapter, &now);
5844
5845         /* If we program the controller's BASET registers with a time
5846          * in the future, it will hold all the packets until that
5847          * time, causing a lot of TX Hangs, so to avoid that, we
5848          * reject schedules that would start in the future.
5849          */
5850         if (!is_base_time_past(qopt->base_time, &now))
5851                 return false;
5852
5853         for (n = 0; n < qopt->num_entries; n++) {
5854                 const struct tc_taprio_sched_entry *e, *prev;
5855                 int i;
5856
5857                 prev = n ? &qopt->entries[n - 1] : NULL;
5858                 e = &qopt->entries[n];
5859
5860                 /* i225 only supports "global" frame preemption
5861                  * settings.
5862                  */
5863                 if (e->command != TC_TAPRIO_CMD_SET_GATES)
5864                         return false;
5865
5866                 for (i = 0; i < adapter->num_tx_queues; i++) {
5867                         if (e->gate_mask & BIT(i))
5868                                 queue_uses[i]++;
5869
5870                         /* There are limitations: A single queue cannot be
5871                          * opened and closed multiple times per cycle unless the
5872                          * gate stays open. Check for it.
5873                          */
5874                         if (queue_uses[i] > 1 &&
5875                             !(prev->gate_mask & BIT(i)))
5876                                 return false;
5877                 }
5878         }
5879
5880         return true;
5881 }
5882
5883 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5884                                      struct tc_etf_qopt_offload *qopt)
5885 {
5886         struct igc_hw *hw = &adapter->hw;
5887         int err;
5888
5889         if (hw->mac.type != igc_i225)
5890                 return -EOPNOTSUPP;
5891
5892         err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5893         if (err)
5894                 return err;
5895
5896         return igc_tsn_offload_apply(adapter);
5897 }
5898
5899 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
5900 {
5901         int i;
5902
5903         adapter->base_time = 0;
5904         adapter->cycle_time = NSEC_PER_SEC;
5905
5906         for (i = 0; i < adapter->num_tx_queues; i++) {
5907                 struct igc_ring *ring = adapter->tx_ring[i];
5908
5909                 ring->start_time = 0;
5910                 ring->end_time = NSEC_PER_SEC;
5911         }
5912
5913         return 0;
5914 }
5915
5916 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5917                                  struct tc_taprio_qopt_offload *qopt)
5918 {
5919         bool queue_configured[IGC_MAX_TX_QUEUES] = { };
5920         u32 start_time = 0, end_time = 0;
5921         size_t n;
5922
5923         if (!qopt->enable)
5924                 return igc_tsn_clear_schedule(adapter);
5925
5926         if (adapter->base_time)
5927                 return -EALREADY;
5928
5929         if (!validate_schedule(adapter, qopt))
5930                 return -EINVAL;
5931
5932         adapter->cycle_time = qopt->cycle_time;
5933         adapter->base_time = qopt->base_time;
5934
5935         for (n = 0; n < qopt->num_entries; n++) {
5936                 struct tc_taprio_sched_entry *e = &qopt->entries[n];
5937                 int i;
5938
5939                 end_time += e->interval;
5940
5941                 for (i = 0; i < adapter->num_tx_queues; i++) {
5942                         struct igc_ring *ring = adapter->tx_ring[i];
5943
5944                         if (!(e->gate_mask & BIT(i)))
5945                                 continue;
5946
5947                         /* Check whether a queue stays open for more than one
5948                          * entry. If so, keep the start and advance the end
5949                          * time.
5950                          */
5951                         if (!queue_configured[i])
5952                                 ring->start_time = start_time;
5953                         ring->end_time = end_time;
5954
5955                         queue_configured[i] = true;
5956                 }
5957
5958                 start_time += e->interval;
5959         }
5960
5961         return 0;
5962 }
5963
5964 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5965                                          struct tc_taprio_qopt_offload *qopt)
5966 {
5967         struct igc_hw *hw = &adapter->hw;
5968         int err;
5969
5970         if (hw->mac.type != igc_i225)
5971                 return -EOPNOTSUPP;
5972
5973         err = igc_save_qbv_schedule(adapter, qopt);
5974         if (err)
5975                 return err;
5976
5977         return igc_tsn_offload_apply(adapter);
5978 }
5979
5980 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
5981                                bool enable, int idleslope, int sendslope,
5982                                int hicredit, int locredit)
5983 {
5984         bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
5985         struct net_device *netdev = adapter->netdev;
5986         struct igc_ring *ring;
5987         int i;
5988
5989         /* i225 has two sets of credit-based shaper logic.
5990          * Supporting it only on the top two priority queues
5991          */
5992         if (queue < 0 || queue > 1)
5993                 return -EINVAL;
5994
5995         ring = adapter->tx_ring[queue];
5996
5997         for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
5998                 if (adapter->tx_ring[i])
5999                         cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6000
6001         /* CBS should be enabled on the highest priority queue first in order
6002          * for the CBS algorithm to operate as intended.
6003          */
6004         if (enable) {
6005                 if (queue == 1 && !cbs_status[0]) {
6006                         netdev_err(netdev,
6007                                    "Enabling CBS on queue1 before queue0\n");
6008                         return -EINVAL;
6009                 }
6010         } else {
6011                 if (queue == 0 && cbs_status[1]) {
6012                         netdev_err(netdev,
6013                                    "Disabling CBS on queue0 before queue1\n");
6014                         return -EINVAL;
6015                 }
6016         }
6017
6018         ring->cbs_enable = enable;
6019         ring->idleslope = idleslope;
6020         ring->sendslope = sendslope;
6021         ring->hicredit = hicredit;
6022         ring->locredit = locredit;
6023
6024         return 0;
6025 }
6026
6027 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6028                               struct tc_cbs_qopt_offload *qopt)
6029 {
6030         struct igc_hw *hw = &adapter->hw;
6031         int err;
6032
6033         if (hw->mac.type != igc_i225)
6034                 return -EOPNOTSUPP;
6035
6036         if (qopt->queue < 0 || qopt->queue > 1)
6037                 return -EINVAL;
6038
6039         err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6040                                   qopt->idleslope, qopt->sendslope,
6041                                   qopt->hicredit, qopt->locredit);
6042         if (err)
6043                 return err;
6044
6045         return igc_tsn_offload_apply(adapter);
6046 }
6047
6048 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6049                         void *type_data)
6050 {
6051         struct igc_adapter *adapter = netdev_priv(dev);
6052
6053         switch (type) {
6054         case TC_SETUP_QDISC_TAPRIO:
6055                 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6056
6057         case TC_SETUP_QDISC_ETF:
6058                 return igc_tsn_enable_launchtime(adapter, type_data);
6059
6060         case TC_SETUP_QDISC_CBS:
6061                 return igc_tsn_enable_cbs(adapter, type_data);
6062
6063         default:
6064                 return -EOPNOTSUPP;
6065         }
6066 }
6067
6068 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6069 {
6070         struct igc_adapter *adapter = netdev_priv(dev);
6071
6072         switch (bpf->command) {
6073         case XDP_SETUP_PROG:
6074                 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6075         case XDP_SETUP_XSK_POOL:
6076                 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6077                                           bpf->xsk.queue_id);
6078         default:
6079                 return -EOPNOTSUPP;
6080         }
6081 }
6082
6083 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6084                         struct xdp_frame **frames, u32 flags)
6085 {
6086         struct igc_adapter *adapter = netdev_priv(dev);
6087         int cpu = smp_processor_id();
6088         struct netdev_queue *nq;
6089         struct igc_ring *ring;
6090         int i, drops;
6091
6092         if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
6093                 return -ENETDOWN;
6094
6095         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6096                 return -EINVAL;
6097
6098         ring = igc_xdp_get_tx_ring(adapter, cpu);
6099         nq = txring_txq(ring);
6100
6101         __netif_tx_lock(nq, cpu);
6102
6103         drops = 0;
6104         for (i = 0; i < num_frames; i++) {
6105                 int err;
6106                 struct xdp_frame *xdpf = frames[i];
6107
6108                 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6109                 if (err) {
6110                         xdp_return_frame_rx_napi(xdpf);
6111                         drops++;
6112                 }
6113         }
6114
6115         if (flags & XDP_XMIT_FLUSH)
6116                 igc_flush_tx_descriptors(ring);
6117
6118         __netif_tx_unlock(nq);
6119
6120         return num_frames - drops;
6121 }
6122
6123 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6124                                         struct igc_q_vector *q_vector)
6125 {
6126         struct igc_hw *hw = &adapter->hw;
6127         u32 eics = 0;
6128
6129         eics |= q_vector->eims_value;
6130         wr32(IGC_EICS, eics);
6131 }
6132
6133 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6134 {
6135         struct igc_adapter *adapter = netdev_priv(dev);
6136         struct igc_q_vector *q_vector;
6137         struct igc_ring *ring;
6138
6139         if (test_bit(__IGC_DOWN, &adapter->state))
6140                 return -ENETDOWN;
6141
6142         if (!igc_xdp_is_enabled(adapter))
6143                 return -ENXIO;
6144
6145         if (queue_id >= adapter->num_rx_queues)
6146                 return -EINVAL;
6147
6148         ring = adapter->rx_ring[queue_id];
6149
6150         if (!ring->xsk_pool)
6151                 return -ENXIO;
6152
6153         q_vector = adapter->q_vector[queue_id];
6154         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6155                 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6156
6157         return 0;
6158 }
6159
6160 static const struct net_device_ops igc_netdev_ops = {
6161         .ndo_open               = igc_open,
6162         .ndo_stop               = igc_close,
6163         .ndo_start_xmit         = igc_xmit_frame,
6164         .ndo_set_rx_mode        = igc_set_rx_mode,
6165         .ndo_set_mac_address    = igc_set_mac,
6166         .ndo_change_mtu         = igc_change_mtu,
6167         .ndo_get_stats64        = igc_get_stats64,
6168         .ndo_fix_features       = igc_fix_features,
6169         .ndo_set_features       = igc_set_features,
6170         .ndo_features_check     = igc_features_check,
6171         .ndo_eth_ioctl          = igc_ioctl,
6172         .ndo_setup_tc           = igc_setup_tc,
6173         .ndo_bpf                = igc_bpf,
6174         .ndo_xdp_xmit           = igc_xdp_xmit,
6175         .ndo_xsk_wakeup         = igc_xsk_wakeup,
6176 };
6177
6178 /* PCIe configuration access */
6179 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6180 {
6181         struct igc_adapter *adapter = hw->back;
6182
6183         pci_read_config_word(adapter->pdev, reg, value);
6184 }
6185
6186 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6187 {
6188         struct igc_adapter *adapter = hw->back;
6189
6190         pci_write_config_word(adapter->pdev, reg, *value);
6191 }
6192
6193 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6194 {
6195         struct igc_adapter *adapter = hw->back;
6196
6197         if (!pci_is_pcie(adapter->pdev))
6198                 return -IGC_ERR_CONFIG;
6199
6200         pcie_capability_read_word(adapter->pdev, reg, value);
6201
6202         return IGC_SUCCESS;
6203 }
6204
6205 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6206 {
6207         struct igc_adapter *adapter = hw->back;
6208
6209         if (!pci_is_pcie(adapter->pdev))
6210                 return -IGC_ERR_CONFIG;
6211
6212         pcie_capability_write_word(adapter->pdev, reg, *value);
6213
6214         return IGC_SUCCESS;
6215 }
6216
6217 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6218 {
6219         struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6220         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6221         u32 value = 0;
6222
6223         if (IGC_REMOVED(hw_addr))
6224                 return ~value;
6225
6226         value = readl(&hw_addr[reg]);
6227
6228         /* reads should not return all F's */
6229         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6230                 struct net_device *netdev = igc->netdev;
6231
6232                 hw->hw_addr = NULL;
6233                 netif_device_detach(netdev);
6234                 netdev_err(netdev, "PCIe link lost, device now detached\n");
6235                 WARN(pci_device_is_present(igc->pdev),
6236                      "igc: Failed to read reg 0x%x!\n", reg);
6237         }
6238
6239         return value;
6240 }
6241
6242 /**
6243  * igc_probe - Device Initialization Routine
6244  * @pdev: PCI device information struct
6245  * @ent: entry in igc_pci_tbl
6246  *
6247  * Returns 0 on success, negative on failure
6248  *
6249  * igc_probe initializes an adapter identified by a pci_dev structure.
6250  * The OS initialization, configuring the adapter private structure,
6251  * and a hardware reset occur.
6252  */
6253 static int igc_probe(struct pci_dev *pdev,
6254                      const struct pci_device_id *ent)
6255 {
6256         struct igc_adapter *adapter;
6257         struct net_device *netdev;
6258         struct igc_hw *hw;
6259         const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6260         int err;
6261
6262         err = pci_enable_device_mem(pdev);
6263         if (err)
6264                 return err;
6265
6266         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6267         if (err) {
6268                 dev_err(&pdev->dev,
6269                         "No usable DMA configuration, aborting\n");
6270                 goto err_dma;
6271         }
6272
6273         err = pci_request_mem_regions(pdev, igc_driver_name);
6274         if (err)
6275                 goto err_pci_reg;
6276
6277         pci_enable_pcie_error_reporting(pdev);
6278
6279         err = pci_enable_ptm(pdev, NULL);
6280         if (err < 0)
6281                 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6282
6283         pci_set_master(pdev);
6284
6285         err = -ENOMEM;
6286         netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6287                                    IGC_MAX_TX_QUEUES);
6288
6289         if (!netdev)
6290                 goto err_alloc_etherdev;
6291
6292         SET_NETDEV_DEV(netdev, &pdev->dev);
6293
6294         pci_set_drvdata(pdev, netdev);
6295         adapter = netdev_priv(netdev);
6296         adapter->netdev = netdev;
6297         adapter->pdev = pdev;
6298         hw = &adapter->hw;
6299         hw->back = adapter;
6300         adapter->port_num = hw->bus.func;
6301         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6302
6303         err = pci_save_state(pdev);
6304         if (err)
6305                 goto err_ioremap;
6306
6307         err = -EIO;
6308         adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6309                                    pci_resource_len(pdev, 0));
6310         if (!adapter->io_addr)
6311                 goto err_ioremap;
6312
6313         /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6314         hw->hw_addr = adapter->io_addr;
6315
6316         netdev->netdev_ops = &igc_netdev_ops;
6317         igc_ethtool_set_ops(netdev);
6318         netdev->watchdog_timeo = 5 * HZ;
6319
6320         netdev->mem_start = pci_resource_start(pdev, 0);
6321         netdev->mem_end = pci_resource_end(pdev, 0);
6322
6323         /* PCI config space info */
6324         hw->vendor_id = pdev->vendor;
6325         hw->device_id = pdev->device;
6326         hw->revision_id = pdev->revision;
6327         hw->subsystem_vendor_id = pdev->subsystem_vendor;
6328         hw->subsystem_device_id = pdev->subsystem_device;
6329
6330         /* Copy the default MAC and PHY function pointers */
6331         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6332         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6333
6334         /* Initialize skew-specific constants */
6335         err = ei->get_invariants(hw);
6336         if (err)
6337                 goto err_sw_init;
6338
6339         /* Add supported features to the features list*/
6340         netdev->features |= NETIF_F_SG;
6341         netdev->features |= NETIF_F_TSO;
6342         netdev->features |= NETIF_F_TSO6;
6343         netdev->features |= NETIF_F_TSO_ECN;
6344         netdev->features |= NETIF_F_RXCSUM;
6345         netdev->features |= NETIF_F_HW_CSUM;
6346         netdev->features |= NETIF_F_SCTP_CRC;
6347         netdev->features |= NETIF_F_HW_TC;
6348
6349 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6350                                   NETIF_F_GSO_GRE_CSUM | \
6351                                   NETIF_F_GSO_IPXIP4 | \
6352                                   NETIF_F_GSO_IPXIP6 | \
6353                                   NETIF_F_GSO_UDP_TUNNEL | \
6354                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
6355
6356         netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6357         netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6358
6359         /* setup the private structure */
6360         err = igc_sw_init(adapter);
6361         if (err)
6362                 goto err_sw_init;
6363
6364         /* copy netdev features into list of user selectable features */
6365         netdev->hw_features |= NETIF_F_NTUPLE;
6366         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6367         netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6368         netdev->hw_features |= netdev->features;
6369
6370         netdev->features |= NETIF_F_HIGHDMA;
6371
6372         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6373         netdev->mpls_features |= NETIF_F_HW_CSUM;
6374         netdev->hw_enc_features |= netdev->vlan_features;
6375
6376         /* MTU range: 68 - 9216 */
6377         netdev->min_mtu = ETH_MIN_MTU;
6378         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6379
6380         /* before reading the NVM, reset the controller to put the device in a
6381          * known good starting state
6382          */
6383         hw->mac.ops.reset_hw(hw);
6384
6385         if (igc_get_flash_presence_i225(hw)) {
6386                 if (hw->nvm.ops.validate(hw) < 0) {
6387                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6388                         err = -EIO;
6389                         goto err_eeprom;
6390                 }
6391         }
6392
6393         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6394                 /* copy the MAC address out of the NVM */
6395                 if (hw->mac.ops.read_mac_addr(hw))
6396                         dev_err(&pdev->dev, "NVM Read Error\n");
6397         }
6398
6399         eth_hw_addr_set(netdev, hw->mac.addr);
6400
6401         if (!is_valid_ether_addr(netdev->dev_addr)) {
6402                 dev_err(&pdev->dev, "Invalid MAC Address\n");
6403                 err = -EIO;
6404                 goto err_eeprom;
6405         }
6406
6407         /* configure RXPBSIZE and TXPBSIZE */
6408         wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6409         wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6410
6411         timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6412         timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6413
6414         INIT_WORK(&adapter->reset_task, igc_reset_task);
6415         INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6416
6417         /* Initialize link properties that are user-changeable */
6418         adapter->fc_autoneg = true;
6419         hw->mac.autoneg = true;
6420         hw->phy.autoneg_advertised = 0xaf;
6421
6422         hw->fc.requested_mode = igc_fc_default;
6423         hw->fc.current_mode = igc_fc_default;
6424
6425         /* By default, support wake on port A */
6426         adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6427
6428         /* initialize the wol settings based on the eeprom settings */
6429         if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6430                 adapter->wol |= IGC_WUFC_MAG;
6431
6432         device_set_wakeup_enable(&adapter->pdev->dev,
6433                                  adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6434
6435         igc_ptp_init(adapter);
6436
6437         igc_tsn_clear_schedule(adapter);
6438
6439         /* reset the hardware with the new settings */
6440         igc_reset(adapter);
6441
6442         /* let the f/w know that the h/w is now under the control of the
6443          * driver.
6444          */
6445         igc_get_hw_control(adapter);
6446
6447         strncpy(netdev->name, "eth%d", IFNAMSIZ);
6448         err = register_netdev(netdev);
6449         if (err)
6450                 goto err_register;
6451
6452          /* carrier off reporting is important to ethtool even BEFORE open */
6453         netif_carrier_off(netdev);
6454
6455         /* Check if Media Autosense is enabled */
6456         adapter->ei = *ei;
6457
6458         /* print pcie link status and MAC address */
6459         pcie_print_link_status(pdev);
6460         netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6461
6462         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6463         /* Disable EEE for internal PHY devices */
6464         hw->dev_spec._base.eee_enable = false;
6465         adapter->flags &= ~IGC_FLAG_EEE;
6466         igc_set_eee_i225(hw, false, false, false);
6467
6468         pm_runtime_put_noidle(&pdev->dev);
6469
6470         return 0;
6471
6472 err_register:
6473         igc_release_hw_control(adapter);
6474 err_eeprom:
6475         if (!igc_check_reset_block(hw))
6476                 igc_reset_phy(hw);
6477 err_sw_init:
6478         igc_clear_interrupt_scheme(adapter);
6479         iounmap(adapter->io_addr);
6480 err_ioremap:
6481         free_netdev(netdev);
6482 err_alloc_etherdev:
6483         pci_disable_pcie_error_reporting(pdev);
6484         pci_release_mem_regions(pdev);
6485 err_pci_reg:
6486 err_dma:
6487         pci_disable_device(pdev);
6488         return err;
6489 }
6490
6491 /**
6492  * igc_remove - Device Removal Routine
6493  * @pdev: PCI device information struct
6494  *
6495  * igc_remove is called by the PCI subsystem to alert the driver
6496  * that it should release a PCI device.  This could be caused by a
6497  * Hot-Plug event, or because the driver is going to be removed from
6498  * memory.
6499  */
6500 static void igc_remove(struct pci_dev *pdev)
6501 {
6502         struct net_device *netdev = pci_get_drvdata(pdev);
6503         struct igc_adapter *adapter = netdev_priv(netdev);
6504
6505         pm_runtime_get_noresume(&pdev->dev);
6506
6507         igc_flush_nfc_rules(adapter);
6508
6509         igc_ptp_stop(adapter);
6510
6511         set_bit(__IGC_DOWN, &adapter->state);
6512
6513         del_timer_sync(&adapter->watchdog_timer);
6514         del_timer_sync(&adapter->phy_info_timer);
6515
6516         cancel_work_sync(&adapter->reset_task);
6517         cancel_work_sync(&adapter->watchdog_task);
6518
6519         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6520          * would have already happened in close and is redundant.
6521          */
6522         igc_release_hw_control(adapter);
6523         unregister_netdev(netdev);
6524
6525         igc_clear_interrupt_scheme(adapter);
6526         pci_iounmap(pdev, adapter->io_addr);
6527         pci_release_mem_regions(pdev);
6528
6529         free_netdev(netdev);
6530
6531         pci_disable_pcie_error_reporting(pdev);
6532
6533         pci_disable_device(pdev);
6534 }
6535
6536 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6537                           bool runtime)
6538 {
6539         struct net_device *netdev = pci_get_drvdata(pdev);
6540         struct igc_adapter *adapter = netdev_priv(netdev);
6541         u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6542         struct igc_hw *hw = &adapter->hw;
6543         u32 ctrl, rctl, status;
6544         bool wake;
6545
6546         rtnl_lock();
6547         netif_device_detach(netdev);
6548
6549         if (netif_running(netdev))
6550                 __igc_close(netdev, true);
6551
6552         igc_ptp_suspend(adapter);
6553
6554         igc_clear_interrupt_scheme(adapter);
6555         rtnl_unlock();
6556
6557         status = rd32(IGC_STATUS);
6558         if (status & IGC_STATUS_LU)
6559                 wufc &= ~IGC_WUFC_LNKC;
6560
6561         if (wufc) {
6562                 igc_setup_rctl(adapter);
6563                 igc_set_rx_mode(netdev);
6564
6565                 /* turn on all-multi mode if wake on multicast is enabled */
6566                 if (wufc & IGC_WUFC_MC) {
6567                         rctl = rd32(IGC_RCTL);
6568                         rctl |= IGC_RCTL_MPE;
6569                         wr32(IGC_RCTL, rctl);
6570                 }
6571
6572                 ctrl = rd32(IGC_CTRL);
6573                 ctrl |= IGC_CTRL_ADVD3WUC;
6574                 wr32(IGC_CTRL, ctrl);
6575
6576                 /* Allow time for pending master requests to run */
6577                 igc_disable_pcie_master(hw);
6578
6579                 wr32(IGC_WUC, IGC_WUC_PME_EN);
6580                 wr32(IGC_WUFC, wufc);
6581         } else {
6582                 wr32(IGC_WUC, 0);
6583                 wr32(IGC_WUFC, 0);
6584         }
6585
6586         wake = wufc || adapter->en_mng_pt;
6587         if (!wake)
6588                 igc_power_down_phy_copper_base(&adapter->hw);
6589         else
6590                 igc_power_up_link(adapter);
6591
6592         if (enable_wake)
6593                 *enable_wake = wake;
6594
6595         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6596          * would have already happened in close and is redundant.
6597          */
6598         igc_release_hw_control(adapter);
6599
6600         pci_disable_device(pdev);
6601
6602         return 0;
6603 }
6604
6605 #ifdef CONFIG_PM
6606 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6607 {
6608         return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6609 }
6610
6611 static void igc_deliver_wake_packet(struct net_device *netdev)
6612 {
6613         struct igc_adapter *adapter = netdev_priv(netdev);
6614         struct igc_hw *hw = &adapter->hw;
6615         struct sk_buff *skb;
6616         u32 wupl;
6617
6618         wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6619
6620         /* WUPM stores only the first 128 bytes of the wake packet.
6621          * Read the packet only if we have the whole thing.
6622          */
6623         if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6624                 return;
6625
6626         skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6627         if (!skb)
6628                 return;
6629
6630         skb_put(skb, wupl);
6631
6632         /* Ensure reads are 32-bit aligned */
6633         wupl = roundup(wupl, 4);
6634
6635         memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6636
6637         skb->protocol = eth_type_trans(skb, netdev);
6638         netif_rx(skb);
6639 }
6640
6641 static int __maybe_unused igc_resume(struct device *dev)
6642 {
6643         struct pci_dev *pdev = to_pci_dev(dev);
6644         struct net_device *netdev = pci_get_drvdata(pdev);
6645         struct igc_adapter *adapter = netdev_priv(netdev);
6646         struct igc_hw *hw = &adapter->hw;
6647         u32 err, val;
6648
6649         pci_set_power_state(pdev, PCI_D0);
6650         pci_restore_state(pdev);
6651         pci_save_state(pdev);
6652
6653         if (!pci_device_is_present(pdev))
6654                 return -ENODEV;
6655         err = pci_enable_device_mem(pdev);
6656         if (err) {
6657                 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6658                 return err;
6659         }
6660         pci_set_master(pdev);
6661
6662         pci_enable_wake(pdev, PCI_D3hot, 0);
6663         pci_enable_wake(pdev, PCI_D3cold, 0);
6664
6665         if (igc_init_interrupt_scheme(adapter, true)) {
6666                 netdev_err(netdev, "Unable to allocate memory for queues\n");
6667                 return -ENOMEM;
6668         }
6669
6670         igc_reset(adapter);
6671
6672         /* let the f/w know that the h/w is now under the control of the
6673          * driver.
6674          */
6675         igc_get_hw_control(adapter);
6676
6677         val = rd32(IGC_WUS);
6678         if (val & WAKE_PKT_WUS)
6679                 igc_deliver_wake_packet(netdev);
6680
6681         wr32(IGC_WUS, ~0);
6682
6683         rtnl_lock();
6684         if (!err && netif_running(netdev))
6685                 err = __igc_open(netdev, true);
6686
6687         if (!err)
6688                 netif_device_attach(netdev);
6689         rtnl_unlock();
6690
6691         return err;
6692 }
6693
6694 static int __maybe_unused igc_runtime_resume(struct device *dev)
6695 {
6696         return igc_resume(dev);
6697 }
6698
6699 static int __maybe_unused igc_suspend(struct device *dev)
6700 {
6701         return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6702 }
6703
6704 static int __maybe_unused igc_runtime_idle(struct device *dev)
6705 {
6706         struct net_device *netdev = dev_get_drvdata(dev);
6707         struct igc_adapter *adapter = netdev_priv(netdev);
6708
6709         if (!igc_has_link(adapter))
6710                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6711
6712         return -EBUSY;
6713 }
6714 #endif /* CONFIG_PM */
6715
6716 static void igc_shutdown(struct pci_dev *pdev)
6717 {
6718         bool wake;
6719
6720         __igc_shutdown(pdev, &wake, 0);
6721
6722         if (system_state == SYSTEM_POWER_OFF) {
6723                 pci_wake_from_d3(pdev, wake);
6724                 pci_set_power_state(pdev, PCI_D3hot);
6725         }
6726 }
6727
6728 /**
6729  *  igc_io_error_detected - called when PCI error is detected
6730  *  @pdev: Pointer to PCI device
6731  *  @state: The current PCI connection state
6732  *
6733  *  This function is called after a PCI bus error affecting
6734  *  this device has been detected.
6735  **/
6736 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6737                                               pci_channel_state_t state)
6738 {
6739         struct net_device *netdev = pci_get_drvdata(pdev);
6740         struct igc_adapter *adapter = netdev_priv(netdev);
6741
6742         netif_device_detach(netdev);
6743
6744         if (state == pci_channel_io_perm_failure)
6745                 return PCI_ERS_RESULT_DISCONNECT;
6746
6747         if (netif_running(netdev))
6748                 igc_down(adapter);
6749         pci_disable_device(pdev);
6750
6751         /* Request a slot reset. */
6752         return PCI_ERS_RESULT_NEED_RESET;
6753 }
6754
6755 /**
6756  *  igc_io_slot_reset - called after the PCI bus has been reset.
6757  *  @pdev: Pointer to PCI device
6758  *
6759  *  Restart the card from scratch, as if from a cold-boot. Implementation
6760  *  resembles the first-half of the igc_resume routine.
6761  **/
6762 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6763 {
6764         struct net_device *netdev = pci_get_drvdata(pdev);
6765         struct igc_adapter *adapter = netdev_priv(netdev);
6766         struct igc_hw *hw = &adapter->hw;
6767         pci_ers_result_t result;
6768
6769         if (pci_enable_device_mem(pdev)) {
6770                 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6771                 result = PCI_ERS_RESULT_DISCONNECT;
6772         } else {
6773                 pci_set_master(pdev);
6774                 pci_restore_state(pdev);
6775                 pci_save_state(pdev);
6776
6777                 pci_enable_wake(pdev, PCI_D3hot, 0);
6778                 pci_enable_wake(pdev, PCI_D3cold, 0);
6779
6780                 /* In case of PCI error, adapter loses its HW address
6781                  * so we should re-assign it here.
6782                  */
6783                 hw->hw_addr = adapter->io_addr;
6784
6785                 igc_reset(adapter);
6786                 wr32(IGC_WUS, ~0);
6787                 result = PCI_ERS_RESULT_RECOVERED;
6788         }
6789
6790         return result;
6791 }
6792
6793 /**
6794  *  igc_io_resume - called when traffic can start to flow again.
6795  *  @pdev: Pointer to PCI device
6796  *
6797  *  This callback is called when the error recovery driver tells us that
6798  *  its OK to resume normal operation. Implementation resembles the
6799  *  second-half of the igc_resume routine.
6800  */
6801 static void igc_io_resume(struct pci_dev *pdev)
6802 {
6803         struct net_device *netdev = pci_get_drvdata(pdev);
6804         struct igc_adapter *adapter = netdev_priv(netdev);
6805
6806         rtnl_lock();
6807         if (netif_running(netdev)) {
6808                 if (igc_open(netdev)) {
6809                         netdev_err(netdev, "igc_open failed after reset\n");
6810                         return;
6811                 }
6812         }
6813
6814         netif_device_attach(netdev);
6815
6816         /* let the f/w know that the h/w is now under the control of the
6817          * driver.
6818          */
6819         igc_get_hw_control(adapter);
6820         rtnl_unlock();
6821 }
6822
6823 static const struct pci_error_handlers igc_err_handler = {
6824         .error_detected = igc_io_error_detected,
6825         .slot_reset = igc_io_slot_reset,
6826         .resume = igc_io_resume,
6827 };
6828
6829 #ifdef CONFIG_PM
6830 static const struct dev_pm_ops igc_pm_ops = {
6831         SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6832         SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6833                            igc_runtime_idle)
6834 };
6835 #endif
6836
6837 static struct pci_driver igc_driver = {
6838         .name     = igc_driver_name,
6839         .id_table = igc_pci_tbl,
6840         .probe    = igc_probe,
6841         .remove   = igc_remove,
6842 #ifdef CONFIG_PM
6843         .driver.pm = &igc_pm_ops,
6844 #endif
6845         .shutdown = igc_shutdown,
6846         .err_handler = &igc_err_handler,
6847 };
6848
6849 /**
6850  * igc_reinit_queues - return error
6851  * @adapter: pointer to adapter structure
6852  */
6853 int igc_reinit_queues(struct igc_adapter *adapter)
6854 {
6855         struct net_device *netdev = adapter->netdev;
6856         int err = 0;
6857
6858         if (netif_running(netdev))
6859                 igc_close(netdev);
6860
6861         igc_reset_interrupt_capability(adapter);
6862
6863         if (igc_init_interrupt_scheme(adapter, true)) {
6864                 netdev_err(netdev, "Unable to allocate memory for queues\n");
6865                 return -ENOMEM;
6866         }
6867
6868         if (netif_running(netdev))
6869                 err = igc_open(netdev);
6870
6871         return err;
6872 }
6873
6874 /**
6875  * igc_get_hw_dev - return device
6876  * @hw: pointer to hardware structure
6877  *
6878  * used by hardware layer to print debugging information
6879  */
6880 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6881 {
6882         struct igc_adapter *adapter = hw->back;
6883
6884         return adapter->netdev;
6885 }
6886
6887 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6888 {
6889         struct igc_hw *hw = &ring->q_vector->adapter->hw;
6890         u8 idx = ring->reg_idx;
6891         u32 rxdctl;
6892
6893         rxdctl = rd32(IGC_RXDCTL(idx));
6894         rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6895         rxdctl |= IGC_RXDCTL_SWFLUSH;
6896         wr32(IGC_RXDCTL(idx), rxdctl);
6897 }
6898
6899 void igc_disable_rx_ring(struct igc_ring *ring)
6900 {
6901         igc_disable_rx_ring_hw(ring);
6902         igc_clean_rx_ring(ring);
6903 }
6904
6905 void igc_enable_rx_ring(struct igc_ring *ring)
6906 {
6907         struct igc_adapter *adapter = ring->q_vector->adapter;
6908
6909         igc_configure_rx_ring(adapter, ring);
6910
6911         if (ring->xsk_pool)
6912                 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6913         else
6914                 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6915 }
6916
6917 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6918 {
6919         struct igc_hw *hw = &ring->q_vector->adapter->hw;
6920         u8 idx = ring->reg_idx;
6921         u32 txdctl;
6922
6923         txdctl = rd32(IGC_TXDCTL(idx));
6924         txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6925         txdctl |= IGC_TXDCTL_SWFLUSH;
6926         wr32(IGC_TXDCTL(idx), txdctl);
6927 }
6928
6929 void igc_disable_tx_ring(struct igc_ring *ring)
6930 {
6931         igc_disable_tx_ring_hw(ring);
6932         igc_clean_tx_ring(ring);
6933 }
6934
6935 void igc_enable_tx_ring(struct igc_ring *ring)
6936 {
6937         struct igc_adapter *adapter = ring->q_vector->adapter;
6938
6939         igc_configure_tx_ring(adapter, ring);
6940 }
6941
6942 /**
6943  * igc_init_module - Driver Registration Routine
6944  *
6945  * igc_init_module is the first routine called when the driver is
6946  * loaded. All it does is register with the PCI subsystem.
6947  */
6948 static int __init igc_init_module(void)
6949 {
6950         int ret;
6951
6952         pr_info("%s\n", igc_driver_string);
6953         pr_info("%s\n", igc_copyright);
6954
6955         ret = pci_register_driver(&igc_driver);
6956         return ret;
6957 }
6958
6959 module_init(igc_init_module);
6960
6961 /**
6962  * igc_exit_module - Driver Exit Cleanup Routine
6963  *
6964  * igc_exit_module is called just before the driver is removed
6965  * from memory.
6966  */
6967 static void __exit igc_exit_module(void)
6968 {
6969         pci_unregister_driver(&igc_driver);
6970 }
6971
6972 module_exit(igc_exit_module);
6973 /* igc_main.c */
This page took 0.459854 seconds and 4 git commands to generate.