2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
17 #include <traceevent/event-parse.h>
21 #include "util/util.h"
23 #include "util/color.h"
24 #include <linux/list.h>
25 #include "util/cache.h"
26 #include "util/evlist.h"
27 #include "util/evsel.h"
28 #include <linux/kernel.h>
29 #include <linux/rbtree.h>
30 #include <linux/time64.h>
31 #include "util/symbol.h"
32 #include "util/thread.h"
33 #include "util/callchain.h"
36 #include "util/header.h"
37 #include <subcmd/parse-options.h>
38 #include "util/parse-events.h"
39 #include "util/event.h"
40 #include "util/session.h"
41 #include "util/svghelper.h"
42 #include "util/tool.h"
43 #include "util/data.h"
44 #include "util/debug.h"
46 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
47 FILE *open_memstream(char **ptr, size_t *sizeloc);
50 #define SUPPORT_OLD_POWER_EVENTS 1
51 #define PWR_EVENT_EXIT -1
58 struct perf_tool tool;
59 struct per_pid *all_data;
60 struct power_event *power_events;
61 struct wake_event *wake_events;
64 u64 min_freq, /* Lowest CPU frequency seen */
65 max_freq, /* Highest CPU frequency seen */
67 first_time, last_time;
73 /* IO related settings */
86 * Datastructure layout:
87 * We keep an list of "pid"s, matching the kernels notion of a task struct.
88 * Each "pid" entry, has a list of "comm"s.
89 * this is because we want to track different programs different, while
90 * exec will reuse the original pid (by design).
91 * Each comm has a list of samples that will be used to draw
107 struct per_pidcomm *all;
108 struct per_pidcomm *current;
113 struct per_pidcomm *next;
129 struct cpu_sample *samples;
130 struct io_sample *io_samples;
133 struct sample_wrapper {
134 struct sample_wrapper *next;
137 unsigned char data[0];
141 #define TYPE_RUNNING 1
142 #define TYPE_WAITING 2
143 #define TYPE_BLOCKED 3
146 struct cpu_sample *next;
152 const char *backtrace;
165 struct io_sample *next;
180 struct power_event *next;
189 struct wake_event *next;
193 const char *backtrace;
196 struct process_filter {
199 struct process_filter *next;
202 static struct process_filter *process_filter;
205 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
207 struct per_pid *cursor = tchart->all_data;
210 if (cursor->pid == pid)
212 cursor = cursor->next;
214 cursor = zalloc(sizeof(*cursor));
215 assert(cursor != NULL);
217 cursor->next = tchart->all_data;
218 tchart->all_data = cursor;
222 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
225 struct per_pidcomm *c;
226 p = find_create_pid(tchart, pid);
229 if (c->comm && strcmp(c->comm, comm) == 0) {
234 c->comm = strdup(comm);
240 c = zalloc(sizeof(*c));
242 c->comm = strdup(comm);
248 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
250 struct per_pid *p, *pp;
251 p = find_create_pid(tchart, pid);
252 pp = find_create_pid(tchart, ppid);
254 if (pp->current && pp->current->comm && !p->current)
255 pid_set_comm(tchart, pid, pp->current->comm);
257 p->start_time = timestamp;
258 if (p->current && !p->current->start_time) {
259 p->current->start_time = timestamp;
260 p->current->state_since = timestamp;
264 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
267 p = find_create_pid(tchart, pid);
268 p->end_time = timestamp;
270 p->current->end_time = timestamp;
273 static void pid_put_sample(struct timechart *tchart, int pid, int type,
274 unsigned int cpu, u64 start, u64 end,
275 const char *backtrace)
278 struct per_pidcomm *c;
279 struct cpu_sample *sample;
281 p = find_create_pid(tchart, pid);
284 c = zalloc(sizeof(*c));
291 sample = zalloc(sizeof(*sample));
292 assert(sample != NULL);
293 sample->start_time = start;
294 sample->end_time = end;
296 sample->next = c->samples;
298 sample->backtrace = backtrace;
301 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
302 c->total_time += (end-start);
303 p->total_time += (end-start);
306 if (c->start_time == 0 || c->start_time > start)
307 c->start_time = start;
308 if (p->start_time == 0 || p->start_time > start)
309 p->start_time = start;
312 #define MAX_CPUS 4096
314 static u64 cpus_cstate_start_times[MAX_CPUS];
315 static int cpus_cstate_state[MAX_CPUS];
316 static u64 cpus_pstate_start_times[MAX_CPUS];
317 static u64 cpus_pstate_state[MAX_CPUS];
319 static int process_comm_event(struct perf_tool *tool,
320 union perf_event *event,
321 struct perf_sample *sample __maybe_unused,
322 struct machine *machine __maybe_unused)
324 struct timechart *tchart = container_of(tool, struct timechart, tool);
325 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
329 static int process_fork_event(struct perf_tool *tool,
330 union perf_event *event,
331 struct perf_sample *sample __maybe_unused,
332 struct machine *machine __maybe_unused)
334 struct timechart *tchart = container_of(tool, struct timechart, tool);
335 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
339 static int process_exit_event(struct perf_tool *tool,
340 union perf_event *event,
341 struct perf_sample *sample __maybe_unused,
342 struct machine *machine __maybe_unused)
344 struct timechart *tchart = container_of(tool, struct timechart, tool);
345 pid_exit(tchart, event->fork.pid, event->fork.time);
349 #ifdef SUPPORT_OLD_POWER_EVENTS
350 static int use_old_power_events;
353 static void c_state_start(int cpu, u64 timestamp, int state)
355 cpus_cstate_start_times[cpu] = timestamp;
356 cpus_cstate_state[cpu] = state;
359 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
361 struct power_event *pwr = zalloc(sizeof(*pwr));
366 pwr->state = cpus_cstate_state[cpu];
367 pwr->start_time = cpus_cstate_start_times[cpu];
368 pwr->end_time = timestamp;
371 pwr->next = tchart->power_events;
373 tchart->power_events = pwr;
376 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
378 struct power_event *pwr;
380 if (new_freq > 8000000) /* detect invalid data */
383 pwr = zalloc(sizeof(*pwr));
387 pwr->state = cpus_pstate_state[cpu];
388 pwr->start_time = cpus_pstate_start_times[cpu];
389 pwr->end_time = timestamp;
392 pwr->next = tchart->power_events;
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
397 tchart->power_events = pwr;
399 cpus_pstate_state[cpu] = new_freq;
400 cpus_pstate_start_times[cpu] = timestamp;
402 if ((u64)new_freq > tchart->max_freq)
403 tchart->max_freq = new_freq;
405 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
406 tchart->min_freq = new_freq;
408 if (new_freq == tchart->max_freq - 1000)
409 tchart->turbo_frequency = tchart->max_freq;
412 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
413 int waker, int wakee, u8 flags, const char *backtrace)
416 struct wake_event *we = zalloc(sizeof(*we));
421 we->time = timestamp;
423 we->backtrace = backtrace;
425 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
429 we->next = tchart->wake_events;
430 tchart->wake_events = we;
431 p = find_create_pid(tchart, we->wakee);
433 if (p && p->current && p->current->state == TYPE_NONE) {
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
437 if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 pid_put_sample(tchart, p->pid, p->current->state, cpu,
439 p->current->state_since, timestamp, NULL);
440 p->current->state_since = timestamp;
441 p->current->state = TYPE_WAITING;
445 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
446 int prev_pid, int next_pid, u64 prev_state,
447 const char *backtrace)
449 struct per_pid *p = NULL, *prev_p;
451 prev_p = find_create_pid(tchart, prev_pid);
453 p = find_create_pid(tchart, next_pid);
455 if (prev_p->current && prev_p->current->state != TYPE_NONE)
456 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
457 prev_p->current->state_since, timestamp,
459 if (p && p->current) {
460 if (p->current->state != TYPE_NONE)
461 pid_put_sample(tchart, next_pid, p->current->state, cpu,
462 p->current->state_since, timestamp,
465 p->current->state_since = timestamp;
466 p->current->state = TYPE_RUNNING;
469 if (prev_p->current) {
470 prev_p->current->state = TYPE_NONE;
471 prev_p->current->state_since = timestamp;
473 prev_p->current->state = TYPE_BLOCKED;
475 prev_p->current->state = TYPE_WAITING;
479 static const char *cat_backtrace(union perf_event *event,
480 struct perf_sample *sample,
481 struct machine *machine)
483 struct addr_location al;
487 u8 cpumode = PERF_RECORD_MISC_USER;
488 struct addr_location tal;
489 struct ip_callchain *chain = sample->callchain;
490 FILE *f = open_memstream(&p, &p_len);
493 perror("open_memstream error");
500 if (machine__resolve(machine, &al, sample) < 0) {
501 fprintf(stderr, "problem processing %d event, skipping it.\n",
506 for (i = 0; i < chain->nr; i++) {
509 if (callchain_param.order == ORDER_CALLEE)
512 ip = chain->ips[chain->nr - i - 1];
514 if (ip >= PERF_CONTEXT_MAX) {
516 case PERF_CONTEXT_HV:
517 cpumode = PERF_RECORD_MISC_HYPERVISOR;
519 case PERF_CONTEXT_KERNEL:
520 cpumode = PERF_RECORD_MISC_KERNEL;
522 case PERF_CONTEXT_USER:
523 cpumode = PERF_RECORD_MISC_USER;
526 pr_debug("invalid callchain context: "
527 "%"PRId64"\n", (s64) ip);
530 * It seems the callchain is corrupted.
540 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
541 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
543 fprintf(f, "..... %016" PRIx64 "\n", ip);
546 addr_location__put(&al);
553 typedef int (*tracepoint_handler)(struct timechart *tchart,
554 struct perf_evsel *evsel,
555 struct perf_sample *sample,
556 const char *backtrace);
558 static int process_sample_event(struct perf_tool *tool,
559 union perf_event *event,
560 struct perf_sample *sample,
561 struct perf_evsel *evsel,
562 struct machine *machine)
564 struct timechart *tchart = container_of(tool, struct timechart, tool);
566 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
567 if (!tchart->first_time || tchart->first_time > sample->time)
568 tchart->first_time = sample->time;
569 if (tchart->last_time < sample->time)
570 tchart->last_time = sample->time;
573 if (evsel->handler != NULL) {
574 tracepoint_handler f = evsel->handler;
575 return f(tchart, evsel, sample,
576 cat_backtrace(event, sample, machine));
583 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
584 struct perf_evsel *evsel,
585 struct perf_sample *sample,
586 const char *backtrace __maybe_unused)
588 u32 state = perf_evsel__intval(evsel, sample, "state");
589 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
591 if (state == (u32)PWR_EVENT_EXIT)
592 c_state_end(tchart, cpu_id, sample->time);
594 c_state_start(cpu_id, sample->time, state);
599 process_sample_cpu_frequency(struct timechart *tchart,
600 struct perf_evsel *evsel,
601 struct perf_sample *sample,
602 const char *backtrace __maybe_unused)
604 u32 state = perf_evsel__intval(evsel, sample, "state");
605 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
607 p_state_change(tchart, cpu_id, sample->time, state);
612 process_sample_sched_wakeup(struct timechart *tchart,
613 struct perf_evsel *evsel,
614 struct perf_sample *sample,
615 const char *backtrace)
617 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
618 int waker = perf_evsel__intval(evsel, sample, "common_pid");
619 int wakee = perf_evsel__intval(evsel, sample, "pid");
621 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
626 process_sample_sched_switch(struct timechart *tchart,
627 struct perf_evsel *evsel,
628 struct perf_sample *sample,
629 const char *backtrace)
631 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
632 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
633 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
635 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
636 prev_state, backtrace);
640 #ifdef SUPPORT_OLD_POWER_EVENTS
642 process_sample_power_start(struct timechart *tchart __maybe_unused,
643 struct perf_evsel *evsel,
644 struct perf_sample *sample,
645 const char *backtrace __maybe_unused)
647 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
648 u64 value = perf_evsel__intval(evsel, sample, "value");
650 c_state_start(cpu_id, sample->time, value);
655 process_sample_power_end(struct timechart *tchart,
656 struct perf_evsel *evsel __maybe_unused,
657 struct perf_sample *sample,
658 const char *backtrace __maybe_unused)
660 c_state_end(tchart, sample->cpu, sample->time);
665 process_sample_power_frequency(struct timechart *tchart,
666 struct perf_evsel *evsel,
667 struct perf_sample *sample,
668 const char *backtrace __maybe_unused)
670 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
671 u64 value = perf_evsel__intval(evsel, sample, "value");
673 p_state_change(tchart, cpu_id, sample->time, value);
676 #endif /* SUPPORT_OLD_POWER_EVENTS */
679 * After the last sample we need to wrap up the current C/P state
680 * and close out each CPU for these.
682 static void end_sample_processing(struct timechart *tchart)
685 struct power_event *pwr;
687 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
690 pwr = zalloc(sizeof(*pwr));
694 pwr->state = cpus_cstate_state[cpu];
695 pwr->start_time = cpus_cstate_start_times[cpu];
696 pwr->end_time = tchart->last_time;
699 pwr->next = tchart->power_events;
701 tchart->power_events = pwr;
705 pwr = zalloc(sizeof(*pwr));
709 pwr->state = cpus_pstate_state[cpu];
710 pwr->start_time = cpus_pstate_start_times[cpu];
711 pwr->end_time = tchart->last_time;
714 pwr->next = tchart->power_events;
716 if (!pwr->start_time)
717 pwr->start_time = tchart->first_time;
719 pwr->state = tchart->min_freq;
720 tchart->power_events = pwr;
724 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
727 struct per_pid *p = find_create_pid(tchart, pid);
728 struct per_pidcomm *c = p->current;
729 struct io_sample *sample;
730 struct io_sample *prev;
733 c = zalloc(sizeof(*c));
741 prev = c->io_samples;
743 if (prev && prev->start_time && !prev->end_time) {
744 pr_warning("Skip invalid start event: "
745 "previous event already started!\n");
747 /* remove previous event that has been started,
748 * we are not sure we will ever get an end for it */
749 c->io_samples = prev->next;
754 sample = zalloc(sizeof(*sample));
757 sample->start_time = start;
760 sample->next = c->io_samples;
761 c->io_samples = sample;
763 if (c->start_time == 0 || c->start_time > start)
764 c->start_time = start;
769 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
772 struct per_pid *p = find_create_pid(tchart, pid);
773 struct per_pidcomm *c = p->current;
774 struct io_sample *sample, *prev;
777 pr_warning("Invalid pidcomm!\n");
781 sample = c->io_samples;
783 if (!sample) /* skip partially captured events */
786 if (sample->end_time) {
787 pr_warning("Skip invalid end event: "
788 "previous event already ended!\n");
792 if (sample->type != type) {
793 pr_warning("Skip invalid end event: invalid event type!\n");
797 sample->end_time = end;
800 /* we want to be able to see small and fast transfers, so make them
801 * at least min_time long, but don't overlap them */
802 if (sample->end_time - sample->start_time < tchart->min_time)
803 sample->end_time = sample->start_time + tchart->min_time;
804 if (prev && sample->start_time < prev->end_time) {
805 if (prev->err) /* try to make errors more visible */
806 sample->start_time = prev->end_time;
808 prev->end_time = sample->start_time;
813 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814 type == IOTYPE_TX || type == IOTYPE_RX) {
816 if ((u64)ret > c->max_bytes)
819 c->total_bytes += ret;
820 p->total_bytes += ret;
824 /* merge two requests to make svg smaller and render-friendly */
826 prev->type == sample->type &&
827 prev->err == sample->err &&
828 prev->fd == sample->fd &&
829 prev->end_time + tchart->merge_dist >= sample->start_time) {
831 sample->bytes += prev->bytes;
832 sample->merges += prev->merges + 1;
834 sample->start_time = prev->start_time;
835 sample->next = prev->next;
838 if (!sample->err && sample->bytes > c->max_bytes)
839 c->max_bytes = sample->bytes;
848 process_enter_read(struct timechart *tchart,
849 struct perf_evsel *evsel,
850 struct perf_sample *sample)
852 long fd = perf_evsel__intval(evsel, sample, "fd");
853 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
858 process_exit_read(struct timechart *tchart,
859 struct perf_evsel *evsel,
860 struct perf_sample *sample)
862 long ret = perf_evsel__intval(evsel, sample, "ret");
863 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
868 process_enter_write(struct timechart *tchart,
869 struct perf_evsel *evsel,
870 struct perf_sample *sample)
872 long fd = perf_evsel__intval(evsel, sample, "fd");
873 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 process_exit_write(struct timechart *tchart,
879 struct perf_evsel *evsel,
880 struct perf_sample *sample)
882 long ret = perf_evsel__intval(evsel, sample, "ret");
883 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
888 process_enter_sync(struct timechart *tchart,
889 struct perf_evsel *evsel,
890 struct perf_sample *sample)
892 long fd = perf_evsel__intval(evsel, sample, "fd");
893 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 process_exit_sync(struct timechart *tchart,
899 struct perf_evsel *evsel,
900 struct perf_sample *sample)
902 long ret = perf_evsel__intval(evsel, sample, "ret");
903 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
908 process_enter_tx(struct timechart *tchart,
909 struct perf_evsel *evsel,
910 struct perf_sample *sample)
912 long fd = perf_evsel__intval(evsel, sample, "fd");
913 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
918 process_exit_tx(struct timechart *tchart,
919 struct perf_evsel *evsel,
920 struct perf_sample *sample)
922 long ret = perf_evsel__intval(evsel, sample, "ret");
923 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
928 process_enter_rx(struct timechart *tchart,
929 struct perf_evsel *evsel,
930 struct perf_sample *sample)
932 long fd = perf_evsel__intval(evsel, sample, "fd");
933 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
938 process_exit_rx(struct timechart *tchart,
939 struct perf_evsel *evsel,
940 struct perf_sample *sample)
942 long ret = perf_evsel__intval(evsel, sample, "ret");
943 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
948 process_enter_poll(struct timechart *tchart,
949 struct perf_evsel *evsel,
950 struct perf_sample *sample)
952 long fd = perf_evsel__intval(evsel, sample, "fd");
953 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 process_exit_poll(struct timechart *tchart,
959 struct perf_evsel *evsel,
960 struct perf_sample *sample)
962 long ret = perf_evsel__intval(evsel, sample, "ret");
963 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
968 * Sort the pid datastructure
970 static void sort_pids(struct timechart *tchart)
972 struct per_pid *new_list, *p, *cursor, *prev;
973 /* sort by ppid first, then by pid, lowest to highest */
977 while (tchart->all_data) {
978 p = tchart->all_data;
979 tchart->all_data = p->next;
982 if (new_list == NULL) {
990 if (cursor->ppid > p->ppid ||
991 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992 /* must insert before */
994 p->next = prev->next;
1007 cursor = cursor->next;
1012 tchart->all_data = new_list;
1016 static void draw_c_p_states(struct timechart *tchart)
1018 struct power_event *pwr;
1019 pwr = tchart->power_events;
1022 * two pass drawing so that the P state bars are on top of the C state blocks
1025 if (pwr->type == CSTATE)
1026 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 pwr = tchart->power_events;
1032 if (pwr->type == PSTATE) {
1034 pwr->state = tchart->min_freq;
1035 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1041 static void draw_wakeups(struct timechart *tchart)
1043 struct wake_event *we;
1045 struct per_pidcomm *c;
1047 we = tchart->wake_events;
1049 int from = 0, to = 0;
1050 char *task_from = NULL, *task_to = NULL;
1052 /* locate the column of the waker and wakee */
1053 p = tchart->all_data;
1055 if (p->pid == we->waker || p->pid == we->wakee) {
1058 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059 if (p->pid == we->waker && !from) {
1061 task_from = strdup(c->comm);
1063 if (p->pid == we->wakee && !to) {
1065 task_to = strdup(c->comm);
1072 if (p->pid == we->waker && !from) {
1074 task_from = strdup(c->comm);
1076 if (p->pid == we->wakee && !to) {
1078 task_to = strdup(c->comm);
1087 task_from = malloc(40);
1088 sprintf(task_from, "[%i]", we->waker);
1091 task_to = malloc(40);
1092 sprintf(task_to, "[%i]", we->wakee);
1095 if (we->waker == -1)
1096 svg_interrupt(we->time, to, we->backtrace);
1097 else if (from && to && abs(from - to) == 1)
1098 svg_wakeline(we->time, from, to, we->backtrace);
1100 svg_partial_wakeline(we->time, from, task_from, to,
1101 task_to, we->backtrace);
1109 static void draw_cpu_usage(struct timechart *tchart)
1112 struct per_pidcomm *c;
1113 struct cpu_sample *sample;
1114 p = tchart->all_data;
1118 sample = c->samples;
1120 if (sample->type == TYPE_RUNNING) {
1121 svg_process(sample->cpu,
1129 sample = sample->next;
1137 static void draw_io_bars(struct timechart *tchart)
1143 struct per_pidcomm *c;
1144 struct io_sample *sample;
1147 p = tchart->all_data;
1157 svg_box(Y, c->start_time, c->end_time, "process3");
1158 sample = c->io_samples;
1159 for (sample = c->io_samples; sample; sample = sample->next) {
1160 double h = (double)sample->bytes / c->max_bytes;
1162 if (tchart->skip_eagain &&
1163 sample->err == -EAGAIN)
1169 if (sample->type == IOTYPE_SYNC)
1174 sample->err ? "error" : "sync",
1178 else if (sample->type == IOTYPE_POLL)
1183 sample->err ? "error" : "poll",
1187 else if (sample->type == IOTYPE_READ)
1192 sample->err ? "error" : "disk",
1196 else if (sample->type == IOTYPE_WRITE)
1201 sample->err ? "error" : "disk",
1205 else if (sample->type == IOTYPE_RX)
1210 sample->err ? "error" : "net",
1214 else if (sample->type == IOTYPE_TX)
1219 sample->err ? "error" : "net",
1226 bytes = c->total_bytes;
1228 bytes = bytes / 1024;
1232 bytes = bytes / 1024;
1236 bytes = bytes / 1024;
1241 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242 svg_text(Y, c->start_time, comm);
1252 static void draw_process_bars(struct timechart *tchart)
1255 struct per_pidcomm *c;
1256 struct cpu_sample *sample;
1259 Y = 2 * tchart->numcpus + 2;
1261 p = tchart->all_data;
1271 svg_box(Y, c->start_time, c->end_time, "process");
1272 sample = c->samples;
1274 if (sample->type == TYPE_RUNNING)
1275 svg_running(Y, sample->cpu,
1279 if (sample->type == TYPE_BLOCKED)
1280 svg_blocked(Y, sample->cpu,
1284 if (sample->type == TYPE_WAITING)
1285 svg_waiting(Y, sample->cpu,
1289 sample = sample->next;
1294 if (c->total_time > 5000000000) /* 5 seconds */
1295 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1297 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1299 svg_text(Y, c->start_time, comm);
1309 static void add_process_filter(const char *string)
1311 int pid = strtoull(string, NULL, 10);
1312 struct process_filter *filt = malloc(sizeof(*filt));
1317 filt->name = strdup(string);
1319 filt->next = process_filter;
1321 process_filter = filt;
1324 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1326 struct process_filter *filt;
1327 if (!process_filter)
1330 filt = process_filter;
1332 if (filt->pid && p->pid == filt->pid)
1334 if (strcmp(filt->name, c->comm) == 0)
1341 static int determine_display_tasks_filtered(struct timechart *tchart)
1344 struct per_pidcomm *c;
1347 p = tchart->all_data;
1350 if (p->start_time == 1)
1351 p->start_time = tchart->first_time;
1353 /* no exit marker, task kept running to the end */
1354 if (p->end_time == 0)
1355 p->end_time = tchart->last_time;
1362 if (c->start_time == 1)
1363 c->start_time = tchart->first_time;
1365 if (passes_filter(p, c)) {
1371 if (c->end_time == 0)
1372 c->end_time = tchart->last_time;
1381 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1384 struct per_pidcomm *c;
1387 p = tchart->all_data;
1390 if (p->start_time == 1)
1391 p->start_time = tchart->first_time;
1393 /* no exit marker, task kept running to the end */
1394 if (p->end_time == 0)
1395 p->end_time = tchart->last_time;
1396 if (p->total_time >= threshold)
1404 if (c->start_time == 1)
1405 c->start_time = tchart->first_time;
1407 if (c->total_time >= threshold) {
1412 if (c->end_time == 0)
1413 c->end_time = tchart->last_time;
1422 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1425 struct per_pidcomm *c;
1428 p = timechart->all_data;
1430 /* no exit marker, task kept running to the end */
1431 if (p->end_time == 0)
1432 p->end_time = timechart->last_time;
1439 if (c->total_bytes >= threshold) {
1444 if (c->end_time == 0)
1445 c->end_time = timechart->last_time;
1454 #define BYTES_THRESH (1 * 1024 * 1024)
1455 #define TIME_THRESH 10000000
1457 static void write_svg_file(struct timechart *tchart, const char *filename)
1461 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1463 if (tchart->power_only)
1464 tchart->proc_num = 0;
1466 /* We'd like to show at least proc_num tasks;
1467 * be less picky if we have fewer */
1470 count = determine_display_tasks_filtered(tchart);
1471 else if (tchart->io_events)
1472 count = determine_display_io_tasks(tchart, thresh);
1474 count = determine_display_tasks(tchart, thresh);
1476 } while (!process_filter && thresh && count < tchart->proc_num);
1478 if (!tchart->proc_num)
1481 if (tchart->io_events) {
1482 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1487 draw_io_bars(tchart);
1489 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1495 for (i = 0; i < tchart->numcpus; i++)
1496 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1498 draw_cpu_usage(tchart);
1499 if (tchart->proc_num)
1500 draw_process_bars(tchart);
1501 if (!tchart->tasks_only)
1502 draw_c_p_states(tchart);
1503 if (tchart->proc_num)
1504 draw_wakeups(tchart);
1510 static int process_header(struct perf_file_section *section __maybe_unused,
1511 struct perf_header *ph,
1513 int fd __maybe_unused,
1516 struct timechart *tchart = data;
1520 tchart->numcpus = ph->env.nr_cpus_avail;
1523 case HEADER_CPU_TOPOLOGY:
1524 if (!tchart->topology)
1527 if (svg_build_topology_map(ph->env.sibling_cores,
1528 ph->env.nr_sibling_cores,
1529 ph->env.sibling_threads,
1530 ph->env.nr_sibling_threads))
1531 fprintf(stderr, "problem building topology\n");
1541 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1543 const struct perf_evsel_str_handler power_tracepoints[] = {
1544 { "power:cpu_idle", process_sample_cpu_idle },
1545 { "power:cpu_frequency", process_sample_cpu_frequency },
1546 { "sched:sched_wakeup", process_sample_sched_wakeup },
1547 { "sched:sched_switch", process_sample_sched_switch },
1548 #ifdef SUPPORT_OLD_POWER_EVENTS
1549 { "power:power_start", process_sample_power_start },
1550 { "power:power_end", process_sample_power_end },
1551 { "power:power_frequency", process_sample_power_frequency },
1554 { "syscalls:sys_enter_read", process_enter_read },
1555 { "syscalls:sys_enter_pread64", process_enter_read },
1556 { "syscalls:sys_enter_readv", process_enter_read },
1557 { "syscalls:sys_enter_preadv", process_enter_read },
1558 { "syscalls:sys_enter_write", process_enter_write },
1559 { "syscalls:sys_enter_pwrite64", process_enter_write },
1560 { "syscalls:sys_enter_writev", process_enter_write },
1561 { "syscalls:sys_enter_pwritev", process_enter_write },
1562 { "syscalls:sys_enter_sync", process_enter_sync },
1563 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1564 { "syscalls:sys_enter_fsync", process_enter_sync },
1565 { "syscalls:sys_enter_msync", process_enter_sync },
1566 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1567 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1568 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1569 { "syscalls:sys_enter_sendto", process_enter_tx },
1570 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1571 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1572 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1573 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1574 { "syscalls:sys_enter_poll", process_enter_poll },
1575 { "syscalls:sys_enter_ppoll", process_enter_poll },
1576 { "syscalls:sys_enter_pselect6", process_enter_poll },
1577 { "syscalls:sys_enter_select", process_enter_poll },
1579 { "syscalls:sys_exit_read", process_exit_read },
1580 { "syscalls:sys_exit_pread64", process_exit_read },
1581 { "syscalls:sys_exit_readv", process_exit_read },
1582 { "syscalls:sys_exit_preadv", process_exit_read },
1583 { "syscalls:sys_exit_write", process_exit_write },
1584 { "syscalls:sys_exit_pwrite64", process_exit_write },
1585 { "syscalls:sys_exit_writev", process_exit_write },
1586 { "syscalls:sys_exit_pwritev", process_exit_write },
1587 { "syscalls:sys_exit_sync", process_exit_sync },
1588 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1589 { "syscalls:sys_exit_fsync", process_exit_sync },
1590 { "syscalls:sys_exit_msync", process_exit_sync },
1591 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1592 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1593 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1594 { "syscalls:sys_exit_sendto", process_exit_tx },
1595 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1596 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1597 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1598 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1599 { "syscalls:sys_exit_poll", process_exit_poll },
1600 { "syscalls:sys_exit_ppoll", process_exit_poll },
1601 { "syscalls:sys_exit_pselect6", process_exit_poll },
1602 { "syscalls:sys_exit_select", process_exit_poll },
1604 struct perf_data data = {
1608 .mode = PERF_DATA_MODE_READ,
1609 .force = tchart->force,
1612 struct perf_session *session = perf_session__new(&data, false,
1616 if (session == NULL)
1619 symbol__init(&session->header.env);
1621 (void)perf_header__process_sections(&session->header,
1622 perf_data__fd(session->data),
1626 if (!perf_session__has_traces(session, "timechart record"))
1629 if (perf_session__set_tracepoints_handlers(session,
1630 power_tracepoints)) {
1631 pr_err("Initializing session tracepoint handlers failed\n");
1635 ret = perf_session__process_events(session);
1639 end_sample_processing(tchart);
1643 write_svg_file(tchart, output_name);
1645 pr_info("Written %2.1f seconds of trace to %s.\n",
1646 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1648 perf_session__delete(session);
1652 static int timechart__io_record(int argc, const char **argv)
1654 unsigned int rec_argc, i;
1655 const char **rec_argv;
1657 char *filter = NULL;
1659 const char * const common_args[] = {
1660 "record", "-a", "-R", "-c", "1",
1662 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1664 const char * const disk_events[] = {
1665 "syscalls:sys_enter_read",
1666 "syscalls:sys_enter_pread64",
1667 "syscalls:sys_enter_readv",
1668 "syscalls:sys_enter_preadv",
1669 "syscalls:sys_enter_write",
1670 "syscalls:sys_enter_pwrite64",
1671 "syscalls:sys_enter_writev",
1672 "syscalls:sys_enter_pwritev",
1673 "syscalls:sys_enter_sync",
1674 "syscalls:sys_enter_sync_file_range",
1675 "syscalls:sys_enter_fsync",
1676 "syscalls:sys_enter_msync",
1678 "syscalls:sys_exit_read",
1679 "syscalls:sys_exit_pread64",
1680 "syscalls:sys_exit_readv",
1681 "syscalls:sys_exit_preadv",
1682 "syscalls:sys_exit_write",
1683 "syscalls:sys_exit_pwrite64",
1684 "syscalls:sys_exit_writev",
1685 "syscalls:sys_exit_pwritev",
1686 "syscalls:sys_exit_sync",
1687 "syscalls:sys_exit_sync_file_range",
1688 "syscalls:sys_exit_fsync",
1689 "syscalls:sys_exit_msync",
1691 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1693 const char * const net_events[] = {
1694 "syscalls:sys_enter_recvfrom",
1695 "syscalls:sys_enter_recvmmsg",
1696 "syscalls:sys_enter_recvmsg",
1697 "syscalls:sys_enter_sendto",
1698 "syscalls:sys_enter_sendmsg",
1699 "syscalls:sys_enter_sendmmsg",
1701 "syscalls:sys_exit_recvfrom",
1702 "syscalls:sys_exit_recvmmsg",
1703 "syscalls:sys_exit_recvmsg",
1704 "syscalls:sys_exit_sendto",
1705 "syscalls:sys_exit_sendmsg",
1706 "syscalls:sys_exit_sendmmsg",
1708 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1710 const char * const poll_events[] = {
1711 "syscalls:sys_enter_epoll_pwait",
1712 "syscalls:sys_enter_epoll_wait",
1713 "syscalls:sys_enter_poll",
1714 "syscalls:sys_enter_ppoll",
1715 "syscalls:sys_enter_pselect6",
1716 "syscalls:sys_enter_select",
1718 "syscalls:sys_exit_epoll_pwait",
1719 "syscalls:sys_exit_epoll_wait",
1720 "syscalls:sys_exit_poll",
1721 "syscalls:sys_exit_ppoll",
1722 "syscalls:sys_exit_pselect6",
1723 "syscalls:sys_exit_select",
1725 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1727 rec_argc = common_args_nr +
1728 disk_events_nr * 4 +
1730 poll_events_nr * 4 +
1732 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1734 if (rec_argv == NULL)
1737 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1743 for (i = 0; i < common_args_nr; i++)
1744 *p++ = strdup(common_args[i]);
1746 for (i = 0; i < disk_events_nr; i++) {
1747 if (!is_valid_tracepoint(disk_events[i])) {
1753 *p++ = strdup(disk_events[i]);
1757 for (i = 0; i < net_events_nr; i++) {
1758 if (!is_valid_tracepoint(net_events[i])) {
1764 *p++ = strdup(net_events[i]);
1768 for (i = 0; i < poll_events_nr; i++) {
1769 if (!is_valid_tracepoint(poll_events[i])) {
1775 *p++ = strdup(poll_events[i]);
1780 for (i = 0; i < (unsigned int)argc; i++)
1783 return cmd_record(rec_argc, rec_argv);
1787 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1789 unsigned int rec_argc, i, j;
1790 const char **rec_argv;
1792 unsigned int record_elems;
1794 const char * const common_args[] = {
1795 "record", "-a", "-R", "-c", "1",
1797 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1799 const char * const backtrace_args[] = {
1802 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1804 const char * const power_args[] = {
1805 "-e", "power:cpu_frequency",
1806 "-e", "power:cpu_idle",
1808 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1810 const char * const old_power_args[] = {
1811 #ifdef SUPPORT_OLD_POWER_EVENTS
1812 "-e", "power:power_start",
1813 "-e", "power:power_end",
1814 "-e", "power:power_frequency",
1817 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1819 const char * const tasks_args[] = {
1820 "-e", "sched:sched_wakeup",
1821 "-e", "sched:sched_switch",
1823 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1825 #ifdef SUPPORT_OLD_POWER_EVENTS
1826 if (!is_valid_tracepoint("power:cpu_idle") &&
1827 is_valid_tracepoint("power:power_start")) {
1828 use_old_power_events = 1;
1831 old_power_args_nr = 0;
1835 if (tchart->power_only)
1838 if (tchart->tasks_only) {
1840 old_power_args_nr = 0;
1843 if (!tchart->with_backtrace)
1844 backtrace_args_no = 0;
1846 record_elems = common_args_nr + tasks_args_nr +
1847 power_args_nr + old_power_args_nr + backtrace_args_no;
1849 rec_argc = record_elems + argc;
1850 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1852 if (rec_argv == NULL)
1856 for (i = 0; i < common_args_nr; i++)
1857 *p++ = strdup(common_args[i]);
1859 for (i = 0; i < backtrace_args_no; i++)
1860 *p++ = strdup(backtrace_args[i]);
1862 for (i = 0; i < tasks_args_nr; i++)
1863 *p++ = strdup(tasks_args[i]);
1865 for (i = 0; i < power_args_nr; i++)
1866 *p++ = strdup(power_args[i]);
1868 for (i = 0; i < old_power_args_nr; i++)
1869 *p++ = strdup(old_power_args[i]);
1871 for (j = 0; j < (unsigned int)argc; j++)
1874 return cmd_record(rec_argc, rec_argv);
1878 parse_process(const struct option *opt __maybe_unused, const char *arg,
1879 int __maybe_unused unset)
1882 add_process_filter(arg);
1887 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1888 int __maybe_unused unset)
1890 unsigned long duration = strtoul(arg, NULL, 0);
1892 if (svg_highlight || svg_highlight_name)
1896 svg_highlight = duration;
1898 svg_highlight_name = strdup(arg);
1904 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1907 u64 *value = opt->value;
1909 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1912 *value *= NSEC_PER_MSEC;
1915 *value *= NSEC_PER_USEC;
1927 int cmd_timechart(int argc, const char **argv)
1929 struct timechart tchart = {
1931 .comm = process_comm_event,
1932 .fork = process_fork_event,
1933 .exit = process_exit_event,
1934 .sample = process_sample_event,
1935 .ordered_events = true,
1938 .min_time = NSEC_PER_MSEC,
1941 const char *output_name = "output.svg";
1942 const struct option timechart_common_options[] = {
1943 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1947 const struct option timechart_options[] = {
1948 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1949 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1950 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1951 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1952 "highlight tasks. Pass duration in ns or process name.",
1954 OPT_CALLBACK('p', "process", NULL, "process",
1955 "process selector. Pass a pid or process name.",
1957 OPT_CALLBACK(0, "symfs", NULL, "directory",
1958 "Look for files with symbols relative to this directory",
1959 symbol__config_symfs),
1960 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1961 "min. number of tasks to print"),
1962 OPT_BOOLEAN('t', "topology", &tchart.topology,
1963 "sort CPUs according to topology"),
1964 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1965 "skip EAGAIN errors"),
1966 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1967 "all IO faster than min-time will visually appear longer",
1969 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1970 "merge events that are merge-dist us apart",
1972 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1973 OPT_PARENT(timechart_common_options),
1975 const char * const timechart_subcommands[] = { "record", NULL };
1976 const char *timechart_usage[] = {
1977 "perf timechart [<options>] {record}",
1980 const struct option timechart_record_options[] = {
1981 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1982 "record only IO data"),
1983 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1984 OPT_PARENT(timechart_common_options),
1986 const char * const timechart_record_usage[] = {
1987 "perf timechart record [<options>]",
1990 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1991 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1993 if (tchart.power_only && tchart.tasks_only) {
1994 pr_err("-P and -T options cannot be used at the same time.\n");
1998 if (argc && !strncmp(argv[0], "rec", 3)) {
1999 argc = parse_options(argc, argv, timechart_record_options,
2000 timechart_record_usage,
2001 PARSE_OPT_STOP_AT_NON_OPTION);
2003 if (tchart.power_only && tchart.tasks_only) {
2004 pr_err("-P and -T options cannot be used at the same time.\n");
2009 return timechart__io_record(argc, argv);
2011 return timechart__record(&tchart, argc, argv);
2013 usage_with_options(timechart_usage, timechart_options);
2017 return __cmd_timechart(&tchart, output_name);