]> Git Repo - linux.git/blob - fs/userfaultfd.c
mm, kmemleak: little optimization while scanning
[linux.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <[email protected]>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36         UFFD_STATE_WAIT_API,
37         UFFD_STATE_RUNNING,
38 };
39
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45         /* waitqueue head for the pending (i.e. not read) userfaults */
46         wait_queue_head_t fault_pending_wqh;
47         /* waitqueue head for the userfaults */
48         wait_queue_head_t fault_wqh;
49         /* waitqueue head for the pseudo fd to wakeup poll/read */
50         wait_queue_head_t fd_wqh;
51         /* waitqueue head for events */
52         wait_queue_head_t event_wqh;
53         /* a refile sequence protected by fault_pending_wqh lock */
54         struct seqcount refile_seq;
55         /* pseudo fd refcounting */
56         refcount_t refcount;
57         /* userfaultfd syscall flags */
58         unsigned int flags;
59         /* features requested from the userspace */
60         unsigned int features;
61         /* state machine */
62         enum userfaultfd_state state;
63         /* released */
64         bool released;
65         /* memory mappings are changing because of non-cooperative event */
66         bool mmap_changing;
67         /* mm with one ore more vmas attached to this userfaultfd_ctx */
68         struct mm_struct *mm;
69 };
70
71 struct userfaultfd_fork_ctx {
72         struct userfaultfd_ctx *orig;
73         struct userfaultfd_ctx *new;
74         struct list_head list;
75 };
76
77 struct userfaultfd_unmap_ctx {
78         struct userfaultfd_ctx *ctx;
79         unsigned long start;
80         unsigned long end;
81         struct list_head list;
82 };
83
84 struct userfaultfd_wait_queue {
85         struct uffd_msg msg;
86         wait_queue_entry_t wq;
87         struct userfaultfd_ctx *ctx;
88         bool waken;
89 };
90
91 struct userfaultfd_wake_range {
92         unsigned long start;
93         unsigned long len;
94 };
95
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97                                      int wake_flags, void *key)
98 {
99         struct userfaultfd_wake_range *range = key;
100         int ret;
101         struct userfaultfd_wait_queue *uwq;
102         unsigned long start, len;
103
104         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105         ret = 0;
106         /* len == 0 means wake all */
107         start = range->start;
108         len = range->len;
109         if (len && (start > uwq->msg.arg.pagefault.address ||
110                     start + len <= uwq->msg.arg.pagefault.address))
111                 goto out;
112         WRITE_ONCE(uwq->waken, true);
113         /*
114          * The Program-Order guarantees provided by the scheduler
115          * ensure uwq->waken is visible before the task is woken.
116          */
117         ret = wake_up_state(wq->private, mode);
118         if (ret) {
119                 /*
120                  * Wake only once, autoremove behavior.
121                  *
122                  * After the effect of list_del_init is visible to the other
123                  * CPUs, the waitqueue may disappear from under us, see the
124                  * !list_empty_careful() in handle_userfault().
125                  *
126                  * try_to_wake_up() has an implicit smp_mb(), and the
127                  * wq->private is read before calling the extern function
128                  * "wake_up_state" (which in turns calls try_to_wake_up).
129                  */
130                 list_del_init(&wq->entry);
131         }
132 out:
133         return ret;
134 }
135
136 /**
137  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138  * context.
139  * @ctx: [in] Pointer to the userfaultfd context.
140  */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143         refcount_inc(&ctx->refcount);
144 }
145
146 /**
147  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to userfaultfd context.
150  *
151  * The userfaultfd context reference must have been previously acquired either
152  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153  */
154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
155 {
156         if (refcount_dec_and_test(&ctx->refcount)) {
157                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
158                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
159                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
160                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
161                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
162                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
163                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
164                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
165                 mmdrop(ctx->mm);
166                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
167         }
168 }
169
170 static inline void msg_init(struct uffd_msg *msg)
171 {
172         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
173         /*
174          * Must use memset to zero out the paddings or kernel data is
175          * leaked to userland.
176          */
177         memset(msg, 0, sizeof(struct uffd_msg));
178 }
179
180 static inline struct uffd_msg userfault_msg(unsigned long address,
181                                             unsigned int flags,
182                                             unsigned long reason,
183                                             unsigned int features)
184 {
185         struct uffd_msg msg;
186         msg_init(&msg);
187         msg.event = UFFD_EVENT_PAGEFAULT;
188         msg.arg.pagefault.address = address;
189         if (flags & FAULT_FLAG_WRITE)
190                 /*
191                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
192                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
193                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
194                  * was a read fault, otherwise if set it means it's
195                  * a write fault.
196                  */
197                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
198         if (reason & VM_UFFD_WP)
199                 /*
200                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
201                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
202                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
203                  * a missing fault, otherwise if set it means it's a
204                  * write protect fault.
205                  */
206                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
207         if (features & UFFD_FEATURE_THREAD_ID)
208                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
209         return msg;
210 }
211
212 #ifdef CONFIG_HUGETLB_PAGE
213 /*
214  * Same functionality as userfaultfd_must_wait below with modifications for
215  * hugepmd ranges.
216  */
217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
218                                          struct vm_area_struct *vma,
219                                          unsigned long address,
220                                          unsigned long flags,
221                                          unsigned long reason)
222 {
223         struct mm_struct *mm = ctx->mm;
224         pte_t *ptep, pte;
225         bool ret = true;
226
227         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
230
231         if (!ptep)
232                 goto out;
233
234         ret = false;
235         pte = huge_ptep_get(ptep);
236
237         /*
238          * Lockless access: we're in a wait_event so it's ok if it
239          * changes under us.
240          */
241         if (huge_pte_none(pte))
242                 ret = true;
243         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
244                 ret = true;
245 out:
246         return ret;
247 }
248 #else
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250                                          struct vm_area_struct *vma,
251                                          unsigned long address,
252                                          unsigned long flags,
253                                          unsigned long reason)
254 {
255         return false;   /* should never get here */
256 }
257 #endif /* CONFIG_HUGETLB_PAGE */
258
259 /*
260  * Verify the pagetables are still not ok after having reigstered into
261  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
262  * userfault that has already been resolved, if userfaultfd_read and
263  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
264  * threads.
265  */
266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
267                                          unsigned long address,
268                                          unsigned long flags,
269                                          unsigned long reason)
270 {
271         struct mm_struct *mm = ctx->mm;
272         pgd_t *pgd;
273         p4d_t *p4d;
274         pud_t *pud;
275         pmd_t *pmd, _pmd;
276         pte_t *pte;
277         bool ret = true;
278
279         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
280
281         pgd = pgd_offset(mm, address);
282         if (!pgd_present(*pgd))
283                 goto out;
284         p4d = p4d_offset(pgd, address);
285         if (!p4d_present(*p4d))
286                 goto out;
287         pud = pud_offset(p4d, address);
288         if (!pud_present(*pud))
289                 goto out;
290         pmd = pmd_offset(pud, address);
291         /*
292          * READ_ONCE must function as a barrier with narrower scope
293          * and it must be equivalent to:
294          *      _pmd = *pmd; barrier();
295          *
296          * This is to deal with the instability (as in
297          * pmd_trans_unstable) of the pmd.
298          */
299         _pmd = READ_ONCE(*pmd);
300         if (pmd_none(_pmd))
301                 goto out;
302
303         ret = false;
304         if (!pmd_present(_pmd))
305                 goto out;
306
307         if (pmd_trans_huge(_pmd))
308                 goto out;
309
310         /*
311          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
312          * and use the standard pte_offset_map() instead of parsing _pmd.
313          */
314         pte = pte_offset_map(pmd, address);
315         /*
316          * Lockless access: we're in a wait_event so it's ok if it
317          * changes under us.
318          */
319         if (pte_none(*pte))
320                 ret = true;
321         pte_unmap(pte);
322
323 out:
324         return ret;
325 }
326
327 /*
328  * The locking rules involved in returning VM_FAULT_RETRY depending on
329  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
330  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
331  * recommendation in __lock_page_or_retry is not an understatement.
332  *
333  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
334  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
335  * not set.
336  *
337  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
338  * set, VM_FAULT_RETRY can still be returned if and only if there are
339  * fatal_signal_pending()s, and the mmap_sem must be released before
340  * returning it.
341  */
342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
343 {
344         struct mm_struct *mm = vmf->vma->vm_mm;
345         struct userfaultfd_ctx *ctx;
346         struct userfaultfd_wait_queue uwq;
347         vm_fault_t ret = VM_FAULT_SIGBUS;
348         bool must_wait, return_to_userland;
349         long blocking_state;
350
351         /*
352          * We don't do userfault handling for the final child pid update.
353          *
354          * We also don't do userfault handling during
355          * coredumping. hugetlbfs has the special
356          * follow_hugetlb_page() to skip missing pages in the
357          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
358          * the no_page_table() helper in follow_page_mask(), but the
359          * shmem_vm_ops->fault method is invoked even during
360          * coredumping without mmap_sem and it ends up here.
361          */
362         if (current->flags & (PF_EXITING|PF_DUMPCORE))
363                 goto out;
364
365         /*
366          * Coredumping runs without mmap_sem so we can only check that
367          * the mmap_sem is held, if PF_DUMPCORE was not set.
368          */
369         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
370
371         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
372         if (!ctx)
373                 goto out;
374
375         BUG_ON(ctx->mm != mm);
376
377         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
378         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
379
380         if (ctx->features & UFFD_FEATURE_SIGBUS)
381                 goto out;
382
383         /*
384          * If it's already released don't get it. This avoids to loop
385          * in __get_user_pages if userfaultfd_release waits on the
386          * caller of handle_userfault to release the mmap_sem.
387          */
388         if (unlikely(READ_ONCE(ctx->released))) {
389                 /*
390                  * Don't return VM_FAULT_SIGBUS in this case, so a non
391                  * cooperative manager can close the uffd after the
392                  * last UFFDIO_COPY, without risking to trigger an
393                  * involuntary SIGBUS if the process was starting the
394                  * userfaultfd while the userfaultfd was still armed
395                  * (but after the last UFFDIO_COPY). If the uffd
396                  * wasn't already closed when the userfault reached
397                  * this point, that would normally be solved by
398                  * userfaultfd_must_wait returning 'false'.
399                  *
400                  * If we were to return VM_FAULT_SIGBUS here, the non
401                  * cooperative manager would be instead forced to
402                  * always call UFFDIO_UNREGISTER before it can safely
403                  * close the uffd.
404                  */
405                 ret = VM_FAULT_NOPAGE;
406                 goto out;
407         }
408
409         /*
410          * Check that we can return VM_FAULT_RETRY.
411          *
412          * NOTE: it should become possible to return VM_FAULT_RETRY
413          * even if FAULT_FLAG_TRIED is set without leading to gup()
414          * -EBUSY failures, if the userfaultfd is to be extended for
415          * VM_UFFD_WP tracking and we intend to arm the userfault
416          * without first stopping userland access to the memory. For
417          * VM_UFFD_MISSING userfaults this is enough for now.
418          */
419         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
420                 /*
421                  * Validate the invariant that nowait must allow retry
422                  * to be sure not to return SIGBUS erroneously on
423                  * nowait invocations.
424                  */
425                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
426 #ifdef CONFIG_DEBUG_VM
427                 if (printk_ratelimit()) {
428                         printk(KERN_WARNING
429                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
430                                vmf->flags);
431                         dump_stack();
432                 }
433 #endif
434                 goto out;
435         }
436
437         /*
438          * Handle nowait, not much to do other than tell it to retry
439          * and wait.
440          */
441         ret = VM_FAULT_RETRY;
442         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
443                 goto out;
444
445         /* take the reference before dropping the mmap_sem */
446         userfaultfd_ctx_get(ctx);
447
448         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
449         uwq.wq.private = current;
450         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
451                         ctx->features);
452         uwq.ctx = ctx;
453         uwq.waken = false;
454
455         return_to_userland =
456                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
457                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
458         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
459                          TASK_KILLABLE;
460
461         spin_lock(&ctx->fault_pending_wqh.lock);
462         /*
463          * After the __add_wait_queue the uwq is visible to userland
464          * through poll/read().
465          */
466         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
467         /*
468          * The smp_mb() after __set_current_state prevents the reads
469          * following the spin_unlock to happen before the list_add in
470          * __add_wait_queue.
471          */
472         set_current_state(blocking_state);
473         spin_unlock(&ctx->fault_pending_wqh.lock);
474
475         if (!is_vm_hugetlb_page(vmf->vma))
476                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
477                                                   reason);
478         else
479                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
480                                                        vmf->address,
481                                                        vmf->flags, reason);
482         up_read(&mm->mmap_sem);
483
484         if (likely(must_wait && !READ_ONCE(ctx->released) &&
485                    (return_to_userland ? !signal_pending(current) :
486                     !fatal_signal_pending(current)))) {
487                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
488                 schedule();
489                 ret |= VM_FAULT_MAJOR;
490
491                 /*
492                  * False wakeups can orginate even from rwsem before
493                  * up_read() however userfaults will wait either for a
494                  * targeted wakeup on the specific uwq waitqueue from
495                  * wake_userfault() or for signals or for uffd
496                  * release.
497                  */
498                 while (!READ_ONCE(uwq.waken)) {
499                         /*
500                          * This needs the full smp_store_mb()
501                          * guarantee as the state write must be
502                          * visible to other CPUs before reading
503                          * uwq.waken from other CPUs.
504                          */
505                         set_current_state(blocking_state);
506                         if (READ_ONCE(uwq.waken) ||
507                             READ_ONCE(ctx->released) ||
508                             (return_to_userland ? signal_pending(current) :
509                              fatal_signal_pending(current)))
510                                 break;
511                         schedule();
512                 }
513         }
514
515         __set_current_state(TASK_RUNNING);
516
517         if (return_to_userland) {
518                 if (signal_pending(current) &&
519                     !fatal_signal_pending(current)) {
520                         /*
521                          * If we got a SIGSTOP or SIGCONT and this is
522                          * a normal userland page fault, just let
523                          * userland return so the signal will be
524                          * handled and gdb debugging works.  The page
525                          * fault code immediately after we return from
526                          * this function is going to release the
527                          * mmap_sem and it's not depending on it
528                          * (unlike gup would if we were not to return
529                          * VM_FAULT_RETRY).
530                          *
531                          * If a fatal signal is pending we still take
532                          * the streamlined VM_FAULT_RETRY failure path
533                          * and there's no need to retake the mmap_sem
534                          * in such case.
535                          */
536                         down_read(&mm->mmap_sem);
537                         ret = VM_FAULT_NOPAGE;
538                 }
539         }
540
541         /*
542          * Here we race with the list_del; list_add in
543          * userfaultfd_ctx_read(), however because we don't ever run
544          * list_del_init() to refile across the two lists, the prev
545          * and next pointers will never point to self. list_add also
546          * would never let any of the two pointers to point to
547          * self. So list_empty_careful won't risk to see both pointers
548          * pointing to self at any time during the list refile. The
549          * only case where list_del_init() is called is the full
550          * removal in the wake function and there we don't re-list_add
551          * and it's fine not to block on the spinlock. The uwq on this
552          * kernel stack can be released after the list_del_init.
553          */
554         if (!list_empty_careful(&uwq.wq.entry)) {
555                 spin_lock(&ctx->fault_pending_wqh.lock);
556                 /*
557                  * No need of list_del_init(), the uwq on the stack
558                  * will be freed shortly anyway.
559                  */
560                 list_del(&uwq.wq.entry);
561                 spin_unlock(&ctx->fault_pending_wqh.lock);
562         }
563
564         /*
565          * ctx may go away after this if the userfault pseudo fd is
566          * already released.
567          */
568         userfaultfd_ctx_put(ctx);
569
570 out:
571         return ret;
572 }
573
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
575                                               struct userfaultfd_wait_queue *ewq)
576 {
577         struct userfaultfd_ctx *release_new_ctx;
578
579         if (WARN_ON_ONCE(current->flags & PF_EXITING))
580                 goto out;
581
582         ewq->ctx = ctx;
583         init_waitqueue_entry(&ewq->wq, current);
584         release_new_ctx = NULL;
585
586         spin_lock(&ctx->event_wqh.lock);
587         /*
588          * After the __add_wait_queue the uwq is visible to userland
589          * through poll/read().
590          */
591         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
592         for (;;) {
593                 set_current_state(TASK_KILLABLE);
594                 if (ewq->msg.event == 0)
595                         break;
596                 if (READ_ONCE(ctx->released) ||
597                     fatal_signal_pending(current)) {
598                         /*
599                          * &ewq->wq may be queued in fork_event, but
600                          * __remove_wait_queue ignores the head
601                          * parameter. It would be a problem if it
602                          * didn't.
603                          */
604                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
605                         if (ewq->msg.event == UFFD_EVENT_FORK) {
606                                 struct userfaultfd_ctx *new;
607
608                                 new = (struct userfaultfd_ctx *)
609                                         (unsigned long)
610                                         ewq->msg.arg.reserved.reserved1;
611                                 release_new_ctx = new;
612                         }
613                         break;
614                 }
615
616                 spin_unlock(&ctx->event_wqh.lock);
617
618                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
619                 schedule();
620
621                 spin_lock(&ctx->event_wqh.lock);
622         }
623         __set_current_state(TASK_RUNNING);
624         spin_unlock(&ctx->event_wqh.lock);
625
626         if (release_new_ctx) {
627                 struct vm_area_struct *vma;
628                 struct mm_struct *mm = release_new_ctx->mm;
629
630                 /* the various vma->vm_userfaultfd_ctx still points to it */
631                 down_write(&mm->mmap_sem);
632                 for (vma = mm->mmap; vma; vma = vma->vm_next)
633                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636                         }
637                 up_write(&mm->mmap_sem);
638
639                 userfaultfd_ctx_put(release_new_ctx);
640         }
641
642         /*
643          * ctx may go away after this if the userfault pseudo fd is
644          * already released.
645          */
646 out:
647         WRITE_ONCE(ctx->mmap_changing, false);
648         userfaultfd_ctx_put(ctx);
649 }
650
651 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
652                                        struct userfaultfd_wait_queue *ewq)
653 {
654         ewq->msg.event = 0;
655         wake_up_locked(&ctx->event_wqh);
656         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
657 }
658
659 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
660 {
661         struct userfaultfd_ctx *ctx = NULL, *octx;
662         struct userfaultfd_fork_ctx *fctx;
663
664         octx = vma->vm_userfaultfd_ctx.ctx;
665         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
666                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
668                 return 0;
669         }
670
671         list_for_each_entry(fctx, fcs, list)
672                 if (fctx->orig == octx) {
673                         ctx = fctx->new;
674                         break;
675                 }
676
677         if (!ctx) {
678                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679                 if (!fctx)
680                         return -ENOMEM;
681
682                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683                 if (!ctx) {
684                         kfree(fctx);
685                         return -ENOMEM;
686                 }
687
688                 refcount_set(&ctx->refcount, 1);
689                 ctx->flags = octx->flags;
690                 ctx->state = UFFD_STATE_RUNNING;
691                 ctx->features = octx->features;
692                 ctx->released = false;
693                 ctx->mmap_changing = false;
694                 ctx->mm = vma->vm_mm;
695                 mmgrab(ctx->mm);
696
697                 userfaultfd_ctx_get(octx);
698                 WRITE_ONCE(octx->mmap_changing, true);
699                 fctx->orig = octx;
700                 fctx->new = ctx;
701                 list_add_tail(&fctx->list, fcs);
702         }
703
704         vma->vm_userfaultfd_ctx.ctx = ctx;
705         return 0;
706 }
707
708 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
709 {
710         struct userfaultfd_ctx *ctx = fctx->orig;
711         struct userfaultfd_wait_queue ewq;
712
713         msg_init(&ewq.msg);
714
715         ewq.msg.event = UFFD_EVENT_FORK;
716         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
717
718         userfaultfd_event_wait_completion(ctx, &ewq);
719 }
720
721 void dup_userfaultfd_complete(struct list_head *fcs)
722 {
723         struct userfaultfd_fork_ctx *fctx, *n;
724
725         list_for_each_entry_safe(fctx, n, fcs, list) {
726                 dup_fctx(fctx);
727                 list_del(&fctx->list);
728                 kfree(fctx);
729         }
730 }
731
732 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
733                              struct vm_userfaultfd_ctx *vm_ctx)
734 {
735         struct userfaultfd_ctx *ctx;
736
737         ctx = vma->vm_userfaultfd_ctx.ctx;
738         if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
739                 vm_ctx->ctx = ctx;
740                 userfaultfd_ctx_get(ctx);
741                 WRITE_ONCE(ctx->mmap_changing, true);
742         }
743 }
744
745 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
746                                  unsigned long from, unsigned long to,
747                                  unsigned long len)
748 {
749         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
750         struct userfaultfd_wait_queue ewq;
751
752         if (!ctx)
753                 return;
754
755         if (to & ~PAGE_MASK) {
756                 userfaultfd_ctx_put(ctx);
757                 return;
758         }
759
760         msg_init(&ewq.msg);
761
762         ewq.msg.event = UFFD_EVENT_REMAP;
763         ewq.msg.arg.remap.from = from;
764         ewq.msg.arg.remap.to = to;
765         ewq.msg.arg.remap.len = len;
766
767         userfaultfd_event_wait_completion(ctx, &ewq);
768 }
769
770 bool userfaultfd_remove(struct vm_area_struct *vma,
771                         unsigned long start, unsigned long end)
772 {
773         struct mm_struct *mm = vma->vm_mm;
774         struct userfaultfd_ctx *ctx;
775         struct userfaultfd_wait_queue ewq;
776
777         ctx = vma->vm_userfaultfd_ctx.ctx;
778         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
779                 return true;
780
781         userfaultfd_ctx_get(ctx);
782         WRITE_ONCE(ctx->mmap_changing, true);
783         up_read(&mm->mmap_sem);
784
785         msg_init(&ewq.msg);
786
787         ewq.msg.event = UFFD_EVENT_REMOVE;
788         ewq.msg.arg.remove.start = start;
789         ewq.msg.arg.remove.end = end;
790
791         userfaultfd_event_wait_completion(ctx, &ewq);
792
793         return false;
794 }
795
796 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
797                           unsigned long start, unsigned long end)
798 {
799         struct userfaultfd_unmap_ctx *unmap_ctx;
800
801         list_for_each_entry(unmap_ctx, unmaps, list)
802                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
803                     unmap_ctx->end == end)
804                         return true;
805
806         return false;
807 }
808
809 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
810                            unsigned long start, unsigned long end,
811                            struct list_head *unmaps)
812 {
813         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
814                 struct userfaultfd_unmap_ctx *unmap_ctx;
815                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
816
817                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
818                     has_unmap_ctx(ctx, unmaps, start, end))
819                         continue;
820
821                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
822                 if (!unmap_ctx)
823                         return -ENOMEM;
824
825                 userfaultfd_ctx_get(ctx);
826                 WRITE_ONCE(ctx->mmap_changing, true);
827                 unmap_ctx->ctx = ctx;
828                 unmap_ctx->start = start;
829                 unmap_ctx->end = end;
830                 list_add_tail(&unmap_ctx->list, unmaps);
831         }
832
833         return 0;
834 }
835
836 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
837 {
838         struct userfaultfd_unmap_ctx *ctx, *n;
839         struct userfaultfd_wait_queue ewq;
840
841         list_for_each_entry_safe(ctx, n, uf, list) {
842                 msg_init(&ewq.msg);
843
844                 ewq.msg.event = UFFD_EVENT_UNMAP;
845                 ewq.msg.arg.remove.start = ctx->start;
846                 ewq.msg.arg.remove.end = ctx->end;
847
848                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
849
850                 list_del(&ctx->list);
851                 kfree(ctx);
852         }
853 }
854
855 static int userfaultfd_release(struct inode *inode, struct file *file)
856 {
857         struct userfaultfd_ctx *ctx = file->private_data;
858         struct mm_struct *mm = ctx->mm;
859         struct vm_area_struct *vma, *prev;
860         /* len == 0 means wake all */
861         struct userfaultfd_wake_range range = { .len = 0, };
862         unsigned long new_flags;
863
864         WRITE_ONCE(ctx->released, true);
865
866         if (!mmget_not_zero(mm))
867                 goto wakeup;
868
869         /*
870          * Flush page faults out of all CPUs. NOTE: all page faults
871          * must be retried without returning VM_FAULT_SIGBUS if
872          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
873          * changes while handle_userfault released the mmap_sem. So
874          * it's critical that released is set to true (above), before
875          * taking the mmap_sem for writing.
876          */
877         down_write(&mm->mmap_sem);
878         prev = NULL;
879         for (vma = mm->mmap; vma; vma = vma->vm_next) {
880                 cond_resched();
881                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
882                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
883                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
884                         prev = vma;
885                         continue;
886                 }
887                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
888                 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
889                                  new_flags, vma->anon_vma,
890                                  vma->vm_file, vma->vm_pgoff,
891                                  vma_policy(vma),
892                                  NULL_VM_UFFD_CTX);
893                 if (prev)
894                         vma = prev;
895                 else
896                         prev = vma;
897                 vma->vm_flags = new_flags;
898                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
899         }
900         up_write(&mm->mmap_sem);
901         mmput(mm);
902 wakeup:
903         /*
904          * After no new page faults can wait on this fault_*wqh, flush
905          * the last page faults that may have been already waiting on
906          * the fault_*wqh.
907          */
908         spin_lock(&ctx->fault_pending_wqh.lock);
909         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
910         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
911         spin_unlock(&ctx->fault_pending_wqh.lock);
912
913         /* Flush pending events that may still wait on event_wqh */
914         wake_up_all(&ctx->event_wqh);
915
916         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
917         userfaultfd_ctx_put(ctx);
918         return 0;
919 }
920
921 /* fault_pending_wqh.lock must be hold by the caller */
922 static inline struct userfaultfd_wait_queue *find_userfault_in(
923                 wait_queue_head_t *wqh)
924 {
925         wait_queue_entry_t *wq;
926         struct userfaultfd_wait_queue *uwq;
927
928         lockdep_assert_held(&wqh->lock);
929
930         uwq = NULL;
931         if (!waitqueue_active(wqh))
932                 goto out;
933         /* walk in reverse to provide FIFO behavior to read userfaults */
934         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
935         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
936 out:
937         return uwq;
938 }
939
940 static inline struct userfaultfd_wait_queue *find_userfault(
941                 struct userfaultfd_ctx *ctx)
942 {
943         return find_userfault_in(&ctx->fault_pending_wqh);
944 }
945
946 static inline struct userfaultfd_wait_queue *find_userfault_evt(
947                 struct userfaultfd_ctx *ctx)
948 {
949         return find_userfault_in(&ctx->event_wqh);
950 }
951
952 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
953 {
954         struct userfaultfd_ctx *ctx = file->private_data;
955         __poll_t ret;
956
957         poll_wait(file, &ctx->fd_wqh, wait);
958
959         switch (ctx->state) {
960         case UFFD_STATE_WAIT_API:
961                 return EPOLLERR;
962         case UFFD_STATE_RUNNING:
963                 /*
964                  * poll() never guarantees that read won't block.
965                  * userfaults can be waken before they're read().
966                  */
967                 if (unlikely(!(file->f_flags & O_NONBLOCK)))
968                         return EPOLLERR;
969                 /*
970                  * lockless access to see if there are pending faults
971                  * __pollwait last action is the add_wait_queue but
972                  * the spin_unlock would allow the waitqueue_active to
973                  * pass above the actual list_add inside
974                  * add_wait_queue critical section. So use a full
975                  * memory barrier to serialize the list_add write of
976                  * add_wait_queue() with the waitqueue_active read
977                  * below.
978                  */
979                 ret = 0;
980                 smp_mb();
981                 if (waitqueue_active(&ctx->fault_pending_wqh))
982                         ret = EPOLLIN;
983                 else if (waitqueue_active(&ctx->event_wqh))
984                         ret = EPOLLIN;
985
986                 return ret;
987         default:
988                 WARN_ON_ONCE(1);
989                 return EPOLLERR;
990         }
991 }
992
993 static const struct file_operations userfaultfd_fops;
994
995 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
996                                   struct userfaultfd_ctx *new,
997                                   struct uffd_msg *msg)
998 {
999         int fd;
1000
1001         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1002                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1003         if (fd < 0)
1004                 return fd;
1005
1006         msg->arg.reserved.reserved1 = 0;
1007         msg->arg.fork.ufd = fd;
1008         return 0;
1009 }
1010
1011 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1012                                     struct uffd_msg *msg)
1013 {
1014         ssize_t ret;
1015         DECLARE_WAITQUEUE(wait, current);
1016         struct userfaultfd_wait_queue *uwq;
1017         /*
1018          * Handling fork event requires sleeping operations, so
1019          * we drop the event_wqh lock, then do these ops, then
1020          * lock it back and wake up the waiter. While the lock is
1021          * dropped the ewq may go away so we keep track of it
1022          * carefully.
1023          */
1024         LIST_HEAD(fork_event);
1025         struct userfaultfd_ctx *fork_nctx = NULL;
1026
1027         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1028         spin_lock_irq(&ctx->fd_wqh.lock);
1029         __add_wait_queue(&ctx->fd_wqh, &wait);
1030         for (;;) {
1031                 set_current_state(TASK_INTERRUPTIBLE);
1032                 spin_lock(&ctx->fault_pending_wqh.lock);
1033                 uwq = find_userfault(ctx);
1034                 if (uwq) {
1035                         /*
1036                          * Use a seqcount to repeat the lockless check
1037                          * in wake_userfault() to avoid missing
1038                          * wakeups because during the refile both
1039                          * waitqueue could become empty if this is the
1040                          * only userfault.
1041                          */
1042                         write_seqcount_begin(&ctx->refile_seq);
1043
1044                         /*
1045                          * The fault_pending_wqh.lock prevents the uwq
1046                          * to disappear from under us.
1047                          *
1048                          * Refile this userfault from
1049                          * fault_pending_wqh to fault_wqh, it's not
1050                          * pending anymore after we read it.
1051                          *
1052                          * Use list_del() by hand (as
1053                          * userfaultfd_wake_function also uses
1054                          * list_del_init() by hand) to be sure nobody
1055                          * changes __remove_wait_queue() to use
1056                          * list_del_init() in turn breaking the
1057                          * !list_empty_careful() check in
1058                          * handle_userfault(). The uwq->wq.head list
1059                          * must never be empty at any time during the
1060                          * refile, or the waitqueue could disappear
1061                          * from under us. The "wait_queue_head_t"
1062                          * parameter of __remove_wait_queue() is unused
1063                          * anyway.
1064                          */
1065                         list_del(&uwq->wq.entry);
1066                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1067
1068                         write_seqcount_end(&ctx->refile_seq);
1069
1070                         /* careful to always initialize msg if ret == 0 */
1071                         *msg = uwq->msg;
1072                         spin_unlock(&ctx->fault_pending_wqh.lock);
1073                         ret = 0;
1074                         break;
1075                 }
1076                 spin_unlock(&ctx->fault_pending_wqh.lock);
1077
1078                 spin_lock(&ctx->event_wqh.lock);
1079                 uwq = find_userfault_evt(ctx);
1080                 if (uwq) {
1081                         *msg = uwq->msg;
1082
1083                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1084                                 fork_nctx = (struct userfaultfd_ctx *)
1085                                         (unsigned long)
1086                                         uwq->msg.arg.reserved.reserved1;
1087                                 list_move(&uwq->wq.entry, &fork_event);
1088                                 /*
1089                                  * fork_nctx can be freed as soon as
1090                                  * we drop the lock, unless we take a
1091                                  * reference on it.
1092                                  */
1093                                 userfaultfd_ctx_get(fork_nctx);
1094                                 spin_unlock(&ctx->event_wqh.lock);
1095                                 ret = 0;
1096                                 break;
1097                         }
1098
1099                         userfaultfd_event_complete(ctx, uwq);
1100                         spin_unlock(&ctx->event_wqh.lock);
1101                         ret = 0;
1102                         break;
1103                 }
1104                 spin_unlock(&ctx->event_wqh.lock);
1105
1106                 if (signal_pending(current)) {
1107                         ret = -ERESTARTSYS;
1108                         break;
1109                 }
1110                 if (no_wait) {
1111                         ret = -EAGAIN;
1112                         break;
1113                 }
1114                 spin_unlock_irq(&ctx->fd_wqh.lock);
1115                 schedule();
1116                 spin_lock_irq(&ctx->fd_wqh.lock);
1117         }
1118         __remove_wait_queue(&ctx->fd_wqh, &wait);
1119         __set_current_state(TASK_RUNNING);
1120         spin_unlock_irq(&ctx->fd_wqh.lock);
1121
1122         if (!ret && msg->event == UFFD_EVENT_FORK) {
1123                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1124                 spin_lock(&ctx->event_wqh.lock);
1125                 if (!list_empty(&fork_event)) {
1126                         /*
1127                          * The fork thread didn't abort, so we can
1128                          * drop the temporary refcount.
1129                          */
1130                         userfaultfd_ctx_put(fork_nctx);
1131
1132                         uwq = list_first_entry(&fork_event,
1133                                                typeof(*uwq),
1134                                                wq.entry);
1135                         /*
1136                          * If fork_event list wasn't empty and in turn
1137                          * the event wasn't already released by fork
1138                          * (the event is allocated on fork kernel
1139                          * stack), put the event back to its place in
1140                          * the event_wq. fork_event head will be freed
1141                          * as soon as we return so the event cannot
1142                          * stay queued there no matter the current
1143                          * "ret" value.
1144                          */
1145                         list_del(&uwq->wq.entry);
1146                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1147
1148                         /*
1149                          * Leave the event in the waitqueue and report
1150                          * error to userland if we failed to resolve
1151                          * the userfault fork.
1152                          */
1153                         if (likely(!ret))
1154                                 userfaultfd_event_complete(ctx, uwq);
1155                 } else {
1156                         /*
1157                          * Here the fork thread aborted and the
1158                          * refcount from the fork thread on fork_nctx
1159                          * has already been released. We still hold
1160                          * the reference we took before releasing the
1161                          * lock above. If resolve_userfault_fork
1162                          * failed we've to drop it because the
1163                          * fork_nctx has to be freed in such case. If
1164                          * it succeeded we'll hold it because the new
1165                          * uffd references it.
1166                          */
1167                         if (ret)
1168                                 userfaultfd_ctx_put(fork_nctx);
1169                 }
1170                 spin_unlock(&ctx->event_wqh.lock);
1171         }
1172
1173         return ret;
1174 }
1175
1176 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1177                                 size_t count, loff_t *ppos)
1178 {
1179         struct userfaultfd_ctx *ctx = file->private_data;
1180         ssize_t _ret, ret = 0;
1181         struct uffd_msg msg;
1182         int no_wait = file->f_flags & O_NONBLOCK;
1183
1184         if (ctx->state == UFFD_STATE_WAIT_API)
1185                 return -EINVAL;
1186
1187         for (;;) {
1188                 if (count < sizeof(msg))
1189                         return ret ? ret : -EINVAL;
1190                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1191                 if (_ret < 0)
1192                         return ret ? ret : _ret;
1193                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1194                         return ret ? ret : -EFAULT;
1195                 ret += sizeof(msg);
1196                 buf += sizeof(msg);
1197                 count -= sizeof(msg);
1198                 /*
1199                  * Allow to read more than one fault at time but only
1200                  * block if waiting for the very first one.
1201                  */
1202                 no_wait = O_NONBLOCK;
1203         }
1204 }
1205
1206 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1207                              struct userfaultfd_wake_range *range)
1208 {
1209         spin_lock(&ctx->fault_pending_wqh.lock);
1210         /* wake all in the range and autoremove */
1211         if (waitqueue_active(&ctx->fault_pending_wqh))
1212                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1213                                      range);
1214         if (waitqueue_active(&ctx->fault_wqh))
1215                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1216         spin_unlock(&ctx->fault_pending_wqh.lock);
1217 }
1218
1219 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1220                                            struct userfaultfd_wake_range *range)
1221 {
1222         unsigned seq;
1223         bool need_wakeup;
1224
1225         /*
1226          * To be sure waitqueue_active() is not reordered by the CPU
1227          * before the pagetable update, use an explicit SMP memory
1228          * barrier here. PT lock release or up_read(mmap_sem) still
1229          * have release semantics that can allow the
1230          * waitqueue_active() to be reordered before the pte update.
1231          */
1232         smp_mb();
1233
1234         /*
1235          * Use waitqueue_active because it's very frequent to
1236          * change the address space atomically even if there are no
1237          * userfaults yet. So we take the spinlock only when we're
1238          * sure we've userfaults to wake.
1239          */
1240         do {
1241                 seq = read_seqcount_begin(&ctx->refile_seq);
1242                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1243                         waitqueue_active(&ctx->fault_wqh);
1244                 cond_resched();
1245         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1246         if (need_wakeup)
1247                 __wake_userfault(ctx, range);
1248 }
1249
1250 static __always_inline int validate_range(struct mm_struct *mm,
1251                                           __u64 start, __u64 len)
1252 {
1253         __u64 task_size = mm->task_size;
1254
1255         if (start & ~PAGE_MASK)
1256                 return -EINVAL;
1257         if (len & ~PAGE_MASK)
1258                 return -EINVAL;
1259         if (!len)
1260                 return -EINVAL;
1261         if (start < mmap_min_addr)
1262                 return -EINVAL;
1263         if (start >= task_size)
1264                 return -EINVAL;
1265         if (len > task_size - start)
1266                 return -EINVAL;
1267         return 0;
1268 }
1269
1270 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1271 {
1272         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273                 vma_is_shmem(vma);
1274 }
1275
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277                                 unsigned long arg)
1278 {
1279         struct mm_struct *mm = ctx->mm;
1280         struct vm_area_struct *vma, *prev, *cur;
1281         int ret;
1282         struct uffdio_register uffdio_register;
1283         struct uffdio_register __user *user_uffdio_register;
1284         unsigned long vm_flags, new_flags;
1285         bool found;
1286         bool basic_ioctls;
1287         unsigned long start, end, vma_end;
1288
1289         user_uffdio_register = (struct uffdio_register __user *) arg;
1290
1291         ret = -EFAULT;
1292         if (copy_from_user(&uffdio_register, user_uffdio_register,
1293                            sizeof(uffdio_register)-sizeof(__u64)))
1294                 goto out;
1295
1296         ret = -EINVAL;
1297         if (!uffdio_register.mode)
1298                 goto out;
1299         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1300                                      UFFDIO_REGISTER_MODE_WP))
1301                 goto out;
1302         vm_flags = 0;
1303         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1304                 vm_flags |= VM_UFFD_MISSING;
1305         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1306                 vm_flags |= VM_UFFD_WP;
1307                 /*
1308                  * FIXME: remove the below error constraint by
1309                  * implementing the wprotect tracking mode.
1310                  */
1311                 ret = -EINVAL;
1312                 goto out;
1313         }
1314
1315         ret = validate_range(mm, uffdio_register.range.start,
1316                              uffdio_register.range.len);
1317         if (ret)
1318                 goto out;
1319
1320         start = uffdio_register.range.start;
1321         end = start + uffdio_register.range.len;
1322
1323         ret = -ENOMEM;
1324         if (!mmget_not_zero(mm))
1325                 goto out;
1326
1327         down_write(&mm->mmap_sem);
1328         vma = find_vma_prev(mm, start, &prev);
1329         if (!vma)
1330                 goto out_unlock;
1331
1332         /* check that there's at least one vma in the range */
1333         ret = -EINVAL;
1334         if (vma->vm_start >= end)
1335                 goto out_unlock;
1336
1337         /*
1338          * If the first vma contains huge pages, make sure start address
1339          * is aligned to huge page size.
1340          */
1341         if (is_vm_hugetlb_page(vma)) {
1342                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1343
1344                 if (start & (vma_hpagesize - 1))
1345                         goto out_unlock;
1346         }
1347
1348         /*
1349          * Search for not compatible vmas.
1350          */
1351         found = false;
1352         basic_ioctls = false;
1353         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1354                 cond_resched();
1355
1356                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1357                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1358
1359                 /* check not compatible vmas */
1360                 ret = -EINVAL;
1361                 if (!vma_can_userfault(cur))
1362                         goto out_unlock;
1363
1364                 /*
1365                  * UFFDIO_COPY will fill file holes even without
1366                  * PROT_WRITE. This check enforces that if this is a
1367                  * MAP_SHARED, the process has write permission to the backing
1368                  * file. If VM_MAYWRITE is set it also enforces that on a
1369                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1370                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1371                  */
1372                 ret = -EPERM;
1373                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1374                         goto out_unlock;
1375
1376                 /*
1377                  * If this vma contains ending address, and huge pages
1378                  * check alignment.
1379                  */
1380                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1381                     end > cur->vm_start) {
1382                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1383
1384                         ret = -EINVAL;
1385
1386                         if (end & (vma_hpagesize - 1))
1387                                 goto out_unlock;
1388                 }
1389
1390                 /*
1391                  * Check that this vma isn't already owned by a
1392                  * different userfaultfd. We can't allow more than one
1393                  * userfaultfd to own a single vma simultaneously or we
1394                  * wouldn't know which one to deliver the userfaults to.
1395                  */
1396                 ret = -EBUSY;
1397                 if (cur->vm_userfaultfd_ctx.ctx &&
1398                     cur->vm_userfaultfd_ctx.ctx != ctx)
1399                         goto out_unlock;
1400
1401                 /*
1402                  * Note vmas containing huge pages
1403                  */
1404                 if (is_vm_hugetlb_page(cur))
1405                         basic_ioctls = true;
1406
1407                 found = true;
1408         }
1409         BUG_ON(!found);
1410
1411         if (vma->vm_start < start)
1412                 prev = vma;
1413
1414         ret = 0;
1415         do {
1416                 cond_resched();
1417
1418                 BUG_ON(!vma_can_userfault(vma));
1419                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1420                        vma->vm_userfaultfd_ctx.ctx != ctx);
1421                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1422
1423                 /*
1424                  * Nothing to do: this vma is already registered into this
1425                  * userfaultfd and with the right tracking mode too.
1426                  */
1427                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1428                     (vma->vm_flags & vm_flags) == vm_flags)
1429                         goto skip;
1430
1431                 if (vma->vm_start > start)
1432                         start = vma->vm_start;
1433                 vma_end = min(end, vma->vm_end);
1434
1435                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1436                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1437                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1438                                  vma_policy(vma),
1439                                  ((struct vm_userfaultfd_ctx){ ctx }));
1440                 if (prev) {
1441                         vma = prev;
1442                         goto next;
1443                 }
1444                 if (vma->vm_start < start) {
1445                         ret = split_vma(mm, vma, start, 1);
1446                         if (ret)
1447                                 break;
1448                 }
1449                 if (vma->vm_end > end) {
1450                         ret = split_vma(mm, vma, end, 0);
1451                         if (ret)
1452                                 break;
1453                 }
1454         next:
1455                 /*
1456                  * In the vma_merge() successful mprotect-like case 8:
1457                  * the next vma was merged into the current one and
1458                  * the current one has not been updated yet.
1459                  */
1460                 vma->vm_flags = new_flags;
1461                 vma->vm_userfaultfd_ctx.ctx = ctx;
1462
1463         skip:
1464                 prev = vma;
1465                 start = vma->vm_end;
1466                 vma = vma->vm_next;
1467         } while (vma && vma->vm_start < end);
1468 out_unlock:
1469         up_write(&mm->mmap_sem);
1470         mmput(mm);
1471         if (!ret) {
1472                 /*
1473                  * Now that we scanned all vmas we can already tell
1474                  * userland which ioctls methods are guaranteed to
1475                  * succeed on this range.
1476                  */
1477                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1478                              UFFD_API_RANGE_IOCTLS,
1479                              &user_uffdio_register->ioctls))
1480                         ret = -EFAULT;
1481         }
1482 out:
1483         return ret;
1484 }
1485
1486 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1487                                   unsigned long arg)
1488 {
1489         struct mm_struct *mm = ctx->mm;
1490         struct vm_area_struct *vma, *prev, *cur;
1491         int ret;
1492         struct uffdio_range uffdio_unregister;
1493         unsigned long new_flags;
1494         bool found;
1495         unsigned long start, end, vma_end;
1496         const void __user *buf = (void __user *)arg;
1497
1498         ret = -EFAULT;
1499         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1500                 goto out;
1501
1502         ret = validate_range(mm, uffdio_unregister.start,
1503                              uffdio_unregister.len);
1504         if (ret)
1505                 goto out;
1506
1507         start = uffdio_unregister.start;
1508         end = start + uffdio_unregister.len;
1509
1510         ret = -ENOMEM;
1511         if (!mmget_not_zero(mm))
1512                 goto out;
1513
1514         down_write(&mm->mmap_sem);
1515         vma = find_vma_prev(mm, start, &prev);
1516         if (!vma)
1517                 goto out_unlock;
1518
1519         /* check that there's at least one vma in the range */
1520         ret = -EINVAL;
1521         if (vma->vm_start >= end)
1522                 goto out_unlock;
1523
1524         /*
1525          * If the first vma contains huge pages, make sure start address
1526          * is aligned to huge page size.
1527          */
1528         if (is_vm_hugetlb_page(vma)) {
1529                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1530
1531                 if (start & (vma_hpagesize - 1))
1532                         goto out_unlock;
1533         }
1534
1535         /*
1536          * Search for not compatible vmas.
1537          */
1538         found = false;
1539         ret = -EINVAL;
1540         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1541                 cond_resched();
1542
1543                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1544                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1545
1546                 /*
1547                  * Check not compatible vmas, not strictly required
1548                  * here as not compatible vmas cannot have an
1549                  * userfaultfd_ctx registered on them, but this
1550                  * provides for more strict behavior to notice
1551                  * unregistration errors.
1552                  */
1553                 if (!vma_can_userfault(cur))
1554                         goto out_unlock;
1555
1556                 found = true;
1557         }
1558         BUG_ON(!found);
1559
1560         if (vma->vm_start < start)
1561                 prev = vma;
1562
1563         ret = 0;
1564         do {
1565                 cond_resched();
1566
1567                 BUG_ON(!vma_can_userfault(vma));
1568
1569                 /*
1570                  * Nothing to do: this vma is already registered into this
1571                  * userfaultfd and with the right tracking mode too.
1572                  */
1573                 if (!vma->vm_userfaultfd_ctx.ctx)
1574                         goto skip;
1575
1576                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1577
1578                 if (vma->vm_start > start)
1579                         start = vma->vm_start;
1580                 vma_end = min(end, vma->vm_end);
1581
1582                 if (userfaultfd_missing(vma)) {
1583                         /*
1584                          * Wake any concurrent pending userfault while
1585                          * we unregister, so they will not hang
1586                          * permanently and it avoids userland to call
1587                          * UFFDIO_WAKE explicitly.
1588                          */
1589                         struct userfaultfd_wake_range range;
1590                         range.start = start;
1591                         range.len = vma_end - start;
1592                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1593                 }
1594
1595                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1596                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1597                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1598                                  vma_policy(vma),
1599                                  NULL_VM_UFFD_CTX);
1600                 if (prev) {
1601                         vma = prev;
1602                         goto next;
1603                 }
1604                 if (vma->vm_start < start) {
1605                         ret = split_vma(mm, vma, start, 1);
1606                         if (ret)
1607                                 break;
1608                 }
1609                 if (vma->vm_end > end) {
1610                         ret = split_vma(mm, vma, end, 0);
1611                         if (ret)
1612                                 break;
1613                 }
1614         next:
1615                 /*
1616                  * In the vma_merge() successful mprotect-like case 8:
1617                  * the next vma was merged into the current one and
1618                  * the current one has not been updated yet.
1619                  */
1620                 vma->vm_flags = new_flags;
1621                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1622
1623         skip:
1624                 prev = vma;
1625                 start = vma->vm_end;
1626                 vma = vma->vm_next;
1627         } while (vma && vma->vm_start < end);
1628 out_unlock:
1629         up_write(&mm->mmap_sem);
1630         mmput(mm);
1631 out:
1632         return ret;
1633 }
1634
1635 /*
1636  * userfaultfd_wake may be used in combination with the
1637  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1638  */
1639 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1640                             unsigned long arg)
1641 {
1642         int ret;
1643         struct uffdio_range uffdio_wake;
1644         struct userfaultfd_wake_range range;
1645         const void __user *buf = (void __user *)arg;
1646
1647         ret = -EFAULT;
1648         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1649                 goto out;
1650
1651         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1652         if (ret)
1653                 goto out;
1654
1655         range.start = uffdio_wake.start;
1656         range.len = uffdio_wake.len;
1657
1658         /*
1659          * len == 0 means wake all and we don't want to wake all here,
1660          * so check it again to be sure.
1661          */
1662         VM_BUG_ON(!range.len);
1663
1664         wake_userfault(ctx, &range);
1665         ret = 0;
1666
1667 out:
1668         return ret;
1669 }
1670
1671 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1672                             unsigned long arg)
1673 {
1674         __s64 ret;
1675         struct uffdio_copy uffdio_copy;
1676         struct uffdio_copy __user *user_uffdio_copy;
1677         struct userfaultfd_wake_range range;
1678
1679         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1680
1681         ret = -EAGAIN;
1682         if (READ_ONCE(ctx->mmap_changing))
1683                 goto out;
1684
1685         ret = -EFAULT;
1686         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1687                            /* don't copy "copy" last field */
1688                            sizeof(uffdio_copy)-sizeof(__s64)))
1689                 goto out;
1690
1691         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1692         if (ret)
1693                 goto out;
1694         /*
1695          * double check for wraparound just in case. copy_from_user()
1696          * will later check uffdio_copy.src + uffdio_copy.len to fit
1697          * in the userland range.
1698          */
1699         ret = -EINVAL;
1700         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1701                 goto out;
1702         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1703                 goto out;
1704         if (mmget_not_zero(ctx->mm)) {
1705                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1706                                    uffdio_copy.len, &ctx->mmap_changing);
1707                 mmput(ctx->mm);
1708         } else {
1709                 return -ESRCH;
1710         }
1711         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1712                 return -EFAULT;
1713         if (ret < 0)
1714                 goto out;
1715         BUG_ON(!ret);
1716         /* len == 0 would wake all */
1717         range.len = ret;
1718         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1719                 range.start = uffdio_copy.dst;
1720                 wake_userfault(ctx, &range);
1721         }
1722         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1723 out:
1724         return ret;
1725 }
1726
1727 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1728                                 unsigned long arg)
1729 {
1730         __s64 ret;
1731         struct uffdio_zeropage uffdio_zeropage;
1732         struct uffdio_zeropage __user *user_uffdio_zeropage;
1733         struct userfaultfd_wake_range range;
1734
1735         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1736
1737         ret = -EAGAIN;
1738         if (READ_ONCE(ctx->mmap_changing))
1739                 goto out;
1740
1741         ret = -EFAULT;
1742         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1743                            /* don't copy "zeropage" last field */
1744                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1745                 goto out;
1746
1747         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1748                              uffdio_zeropage.range.len);
1749         if (ret)
1750                 goto out;
1751         ret = -EINVAL;
1752         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1753                 goto out;
1754
1755         if (mmget_not_zero(ctx->mm)) {
1756                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1757                                      uffdio_zeropage.range.len,
1758                                      &ctx->mmap_changing);
1759                 mmput(ctx->mm);
1760         } else {
1761                 return -ESRCH;
1762         }
1763         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1764                 return -EFAULT;
1765         if (ret < 0)
1766                 goto out;
1767         /* len == 0 would wake all */
1768         BUG_ON(!ret);
1769         range.len = ret;
1770         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1771                 range.start = uffdio_zeropage.range.start;
1772                 wake_userfault(ctx, &range);
1773         }
1774         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1775 out:
1776         return ret;
1777 }
1778
1779 static inline unsigned int uffd_ctx_features(__u64 user_features)
1780 {
1781         /*
1782          * For the current set of features the bits just coincide
1783          */
1784         return (unsigned int)user_features;
1785 }
1786
1787 /*
1788  * userland asks for a certain API version and we return which bits
1789  * and ioctl commands are implemented in this kernel for such API
1790  * version or -EINVAL if unknown.
1791  */
1792 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1793                            unsigned long arg)
1794 {
1795         struct uffdio_api uffdio_api;
1796         void __user *buf = (void __user *)arg;
1797         int ret;
1798         __u64 features;
1799
1800         ret = -EINVAL;
1801         if (ctx->state != UFFD_STATE_WAIT_API)
1802                 goto out;
1803         ret = -EFAULT;
1804         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1805                 goto out;
1806         features = uffdio_api.features;
1807         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1808                 memset(&uffdio_api, 0, sizeof(uffdio_api));
1809                 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1810                         goto out;
1811                 ret = -EINVAL;
1812                 goto out;
1813         }
1814         /* report all available features and ioctls to userland */
1815         uffdio_api.features = UFFD_API_FEATURES;
1816         uffdio_api.ioctls = UFFD_API_IOCTLS;
1817         ret = -EFAULT;
1818         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1819                 goto out;
1820         ctx->state = UFFD_STATE_RUNNING;
1821         /* only enable the requested features for this uffd context */
1822         ctx->features = uffd_ctx_features(features);
1823         ret = 0;
1824 out:
1825         return ret;
1826 }
1827
1828 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1829                               unsigned long arg)
1830 {
1831         int ret = -EINVAL;
1832         struct userfaultfd_ctx *ctx = file->private_data;
1833
1834         if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1835                 return -EINVAL;
1836
1837         switch(cmd) {
1838         case UFFDIO_API:
1839                 ret = userfaultfd_api(ctx, arg);
1840                 break;
1841         case UFFDIO_REGISTER:
1842                 ret = userfaultfd_register(ctx, arg);
1843                 break;
1844         case UFFDIO_UNREGISTER:
1845                 ret = userfaultfd_unregister(ctx, arg);
1846                 break;
1847         case UFFDIO_WAKE:
1848                 ret = userfaultfd_wake(ctx, arg);
1849                 break;
1850         case UFFDIO_COPY:
1851                 ret = userfaultfd_copy(ctx, arg);
1852                 break;
1853         case UFFDIO_ZEROPAGE:
1854                 ret = userfaultfd_zeropage(ctx, arg);
1855                 break;
1856         }
1857         return ret;
1858 }
1859
1860 #ifdef CONFIG_PROC_FS
1861 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1862 {
1863         struct userfaultfd_ctx *ctx = f->private_data;
1864         wait_queue_entry_t *wq;
1865         unsigned long pending = 0, total = 0;
1866
1867         spin_lock(&ctx->fault_pending_wqh.lock);
1868         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1869                 pending++;
1870                 total++;
1871         }
1872         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1873                 total++;
1874         }
1875         spin_unlock(&ctx->fault_pending_wqh.lock);
1876
1877         /*
1878          * If more protocols will be added, there will be all shown
1879          * separated by a space. Like this:
1880          *      protocols: aa:... bb:...
1881          */
1882         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1883                    pending, total, UFFD_API, ctx->features,
1884                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1885 }
1886 #endif
1887
1888 static const struct file_operations userfaultfd_fops = {
1889 #ifdef CONFIG_PROC_FS
1890         .show_fdinfo    = userfaultfd_show_fdinfo,
1891 #endif
1892         .release        = userfaultfd_release,
1893         .poll           = userfaultfd_poll,
1894         .read           = userfaultfd_read,
1895         .unlocked_ioctl = userfaultfd_ioctl,
1896         .compat_ioctl   = userfaultfd_ioctl,
1897         .llseek         = noop_llseek,
1898 };
1899
1900 static void init_once_userfaultfd_ctx(void *mem)
1901 {
1902         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1903
1904         init_waitqueue_head(&ctx->fault_pending_wqh);
1905         init_waitqueue_head(&ctx->fault_wqh);
1906         init_waitqueue_head(&ctx->event_wqh);
1907         init_waitqueue_head(&ctx->fd_wqh);
1908         seqcount_init(&ctx->refile_seq);
1909 }
1910
1911 SYSCALL_DEFINE1(userfaultfd, int, flags)
1912 {
1913         struct userfaultfd_ctx *ctx;
1914         int fd;
1915
1916         BUG_ON(!current->mm);
1917
1918         /* Check the UFFD_* constants for consistency.  */
1919         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1920         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1921
1922         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1923                 return -EINVAL;
1924
1925         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1926         if (!ctx)
1927                 return -ENOMEM;
1928
1929         refcount_set(&ctx->refcount, 1);
1930         ctx->flags = flags;
1931         ctx->features = 0;
1932         ctx->state = UFFD_STATE_WAIT_API;
1933         ctx->released = false;
1934         ctx->mmap_changing = false;
1935         ctx->mm = current->mm;
1936         /* prevent the mm struct to be freed */
1937         mmgrab(ctx->mm);
1938
1939         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1940                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1941         if (fd < 0) {
1942                 mmdrop(ctx->mm);
1943                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1944         }
1945         return fd;
1946 }
1947
1948 static int __init userfaultfd_init(void)
1949 {
1950         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1951                                                 sizeof(struct userfaultfd_ctx),
1952                                                 0,
1953                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1954                                                 init_once_userfaultfd_ctx);
1955         return 0;
1956 }
1957 __initcall(userfaultfd_init);
This page took 0.139897 seconds and 4 git commands to generate.