1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
33 static unsigned long __reverse_ulong(unsigned char *str)
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
38 #if BITS_PER_LONG == 64
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word)
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
62 if ((word & 0xffff0000) == 0)
67 if ((word & 0xff00) == 0)
72 if ((word & 0xf0) == 0)
77 if ((word & 0xc) == 0)
82 if ((word & 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
113 tmp = __reverse_ulong((unsigned char *)p);
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (size <= BITS_PER_LONG)
123 size -= BITS_PER_LONG;
129 return result - size + __reverse_ffs(tmp);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
149 tmp = __reverse_ulong((unsigned char *)p);
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
158 if (size <= BITS_PER_LONG)
160 size -= BITS_PER_LONG;
166 return result - size + __reverse_ffz(tmp);
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
175 if (test_opt(sbi, LFS))
177 if (sbi->gc_mode == GC_URGENT)
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
192 f2fs_trace_pid(page);
194 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 SetPagePrivate(page);
197 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199 /* add atomic page indices to the list */
201 INIT_LIST_HEAD(&new->list);
203 /* increase reference count with clean state */
204 mutex_lock(&fi->inmem_lock);
206 list_add_tail(&new->list, &fi->inmem_pages);
207 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208 if (list_empty(&fi->inmem_ilist))
209 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212 mutex_unlock(&fi->inmem_lock);
214 trace_f2fs_register_inmem_page(page, INMEM);
217 static int __revoke_inmem_pages(struct inode *inode,
218 struct list_head *head, bool drop, bool recover)
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
232 f2fs_wait_on_page_writeback(page, DATA, true);
235 struct dnode_of_data dn;
238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 set_new_dnode(&dn, inode, NULL, NULL, 0);
241 err = f2fs_get_dnode_of_data(&dn, page->index,
244 if (err == -ENOMEM) {
245 congestion_wait(BLK_RW_ASYNC, HZ/50);
253 err = f2fs_get_node_info(sbi, dn.nid, &ni);
259 if (cur->old_addr == NEW_ADDR) {
260 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264 cur->old_addr, ni.version, true, true);
268 /* we don't need to invalidate this in the sccessful status */
269 if (drop || recover) {
270 ClearPageUptodate(page);
271 clear_cold_data(page);
273 set_page_private(page, 0);
274 ClearPagePrivate(page);
275 f2fs_put_page(page, 1);
277 list_del(&cur->list);
278 kmem_cache_free(inmem_entry_slab, cur);
279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 struct f2fs_inode_info *fi;
290 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291 if (list_empty(head)) {
292 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296 inode = igrab(&fi->vfs_inode);
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
306 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307 f2fs_drop_inmem_pages(inode);
311 congestion_wait(BLK_RW_ASYNC, HZ/50);
316 void f2fs_drop_inmem_pages(struct inode *inode)
318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319 struct f2fs_inode_info *fi = F2FS_I(inode);
321 mutex_lock(&fi->inmem_lock);
322 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324 if (!list_empty(&fi->inmem_ilist))
325 list_del_init(&fi->inmem_ilist);
326 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327 mutex_unlock(&fi->inmem_lock);
329 clear_inode_flag(inode, FI_ATOMIC_FILE);
330 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331 stat_dec_atomic_write(inode);
334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
336 struct f2fs_inode_info *fi = F2FS_I(inode);
337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338 struct list_head *head = &fi->inmem_pages;
339 struct inmem_pages *cur = NULL;
341 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
343 mutex_lock(&fi->inmem_lock);
344 list_for_each_entry(cur, head, list) {
345 if (cur->page == page)
349 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350 list_del(&cur->list);
351 mutex_unlock(&fi->inmem_lock);
353 dec_page_count(sbi, F2FS_INMEM_PAGES);
354 kmem_cache_free(inmem_entry_slab, cur);
356 ClearPageUptodate(page);
357 set_page_private(page, 0);
358 ClearPagePrivate(page);
359 f2fs_put_page(page, 0);
361 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
364 static int __f2fs_commit_inmem_pages(struct inode *inode)
366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367 struct f2fs_inode_info *fi = F2FS_I(inode);
368 struct inmem_pages *cur, *tmp;
369 struct f2fs_io_info fio = {
374 .op_flags = REQ_SYNC | REQ_PRIO,
375 .io_type = FS_DATA_IO,
377 struct list_head revoke_list;
378 bool submit_bio = false;
381 INIT_LIST_HEAD(&revoke_list);
383 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384 struct page *page = cur->page;
387 if (page->mapping == inode->i_mapping) {
388 trace_f2fs_commit_inmem_page(page, INMEM);
390 set_page_dirty(page);
391 f2fs_wait_on_page_writeback(page, DATA, true);
392 if (clear_page_dirty_for_io(page)) {
393 inode_dec_dirty_pages(inode);
394 f2fs_remove_dirty_inode(inode);
398 fio.old_blkaddr = NULL_ADDR;
399 fio.encrypted_page = NULL;
400 fio.need_lock = LOCK_DONE;
401 err = f2fs_do_write_data_page(&fio);
403 if (err == -ENOMEM) {
404 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 /* record old blkaddr for revoking */
412 cur->old_addr = fio.old_blkaddr;
416 list_move_tail(&cur->list, &revoke_list);
420 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
424 * try to revoke all committed pages, but still we could fail
425 * due to no memory or other reason, if that happened, EAGAIN
426 * will be returned, which means in such case, transaction is
427 * already not integrity, caller should use journal to do the
428 * recovery or rewrite & commit last transaction. For other
429 * error number, revoking was done by filesystem itself.
431 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
433 /* drop all uncommitted pages */
434 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
436 __revoke_inmem_pages(inode, &revoke_list, false, false);
442 int f2fs_commit_inmem_pages(struct inode *inode)
444 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
445 struct f2fs_inode_info *fi = F2FS_I(inode);
448 f2fs_balance_fs(sbi, true);
450 down_write(&fi->i_gc_rwsem[WRITE]);
453 set_inode_flag(inode, FI_ATOMIC_COMMIT);
455 mutex_lock(&fi->inmem_lock);
456 err = __f2fs_commit_inmem_pages(inode);
458 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
459 if (!list_empty(&fi->inmem_ilist))
460 list_del_init(&fi->inmem_ilist);
461 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
462 mutex_unlock(&fi->inmem_lock);
464 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
467 up_write(&fi->i_gc_rwsem[WRITE]);
473 * This function balances dirty node and dentry pages.
474 * In addition, it controls garbage collection.
476 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
478 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
479 f2fs_show_injection_info(FAULT_CHECKPOINT);
480 f2fs_stop_checkpoint(sbi, false);
483 /* balance_fs_bg is able to be pending */
484 if (need && excess_cached_nats(sbi))
485 f2fs_balance_fs_bg(sbi);
487 if (f2fs_is_checkpoint_ready(sbi))
491 * We should do GC or end up with checkpoint, if there are so many dirty
492 * dir/node pages without enough free segments.
494 if (has_not_enough_free_secs(sbi, 0, 0)) {
495 mutex_lock(&sbi->gc_mutex);
496 f2fs_gc(sbi, false, false, NULL_SEGNO);
500 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
502 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
505 /* try to shrink extent cache when there is no enough memory */
506 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
507 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
509 /* check the # of cached NAT entries */
510 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
511 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
513 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
514 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
516 f2fs_build_free_nids(sbi, false, false);
518 if (!is_idle(sbi, REQ_TIME) &&
519 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
522 /* checkpoint is the only way to shrink partial cached entries */
523 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
524 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
525 excess_prefree_segs(sbi) ||
526 excess_dirty_nats(sbi) ||
527 excess_dirty_nodes(sbi) ||
528 f2fs_time_over(sbi, CP_TIME)) {
529 if (test_opt(sbi, DATA_FLUSH)) {
530 struct blk_plug plug;
532 blk_start_plug(&plug);
533 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
534 blk_finish_plug(&plug);
536 f2fs_sync_fs(sbi->sb, true);
537 stat_inc_bg_cp_count(sbi->stat_info);
541 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
542 struct block_device *bdev)
544 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
547 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
548 bio_set_dev(bio, bdev);
549 ret = submit_bio_wait(bio);
552 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553 test_opt(sbi, FLUSH_MERGE), ret);
557 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
563 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
565 for (i = 0; i < sbi->s_ndevs; i++) {
566 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
568 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
575 static int issue_flush_thread(void *data)
577 struct f2fs_sb_info *sbi = data;
578 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
579 wait_queue_head_t *q = &fcc->flush_wait_queue;
581 if (kthread_should_stop())
584 sb_start_intwrite(sbi->sb);
586 if (!llist_empty(&fcc->issue_list)) {
587 struct flush_cmd *cmd, *next;
590 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
593 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
595 ret = submit_flush_wait(sbi, cmd->ino);
596 atomic_inc(&fcc->issued_flush);
598 llist_for_each_entry_safe(cmd, next,
599 fcc->dispatch_list, llnode) {
601 complete(&cmd->wait);
603 fcc->dispatch_list = NULL;
606 sb_end_intwrite(sbi->sb);
608 wait_event_interruptible(*q,
609 kthread_should_stop() || !llist_empty(&fcc->issue_list));
613 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
615 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
616 struct flush_cmd cmd;
619 if (test_opt(sbi, NOBARRIER))
622 if (!test_opt(sbi, FLUSH_MERGE)) {
623 ret = submit_flush_wait(sbi, ino);
624 atomic_inc(&fcc->issued_flush);
628 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
629 ret = submit_flush_wait(sbi, ino);
630 atomic_dec(&fcc->issing_flush);
632 atomic_inc(&fcc->issued_flush);
637 init_completion(&cmd.wait);
639 llist_add(&cmd.llnode, &fcc->issue_list);
641 /* update issue_list before we wake up issue_flush thread */
644 if (waitqueue_active(&fcc->flush_wait_queue))
645 wake_up(&fcc->flush_wait_queue);
647 if (fcc->f2fs_issue_flush) {
648 wait_for_completion(&cmd.wait);
649 atomic_dec(&fcc->issing_flush);
651 struct llist_node *list;
653 list = llist_del_all(&fcc->issue_list);
655 wait_for_completion(&cmd.wait);
656 atomic_dec(&fcc->issing_flush);
658 struct flush_cmd *tmp, *next;
660 ret = submit_flush_wait(sbi, ino);
662 llist_for_each_entry_safe(tmp, next, list, llnode) {
665 atomic_dec(&fcc->issing_flush);
669 complete(&tmp->wait);
677 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
679 dev_t dev = sbi->sb->s_bdev->bd_dev;
680 struct flush_cmd_control *fcc;
683 if (SM_I(sbi)->fcc_info) {
684 fcc = SM_I(sbi)->fcc_info;
685 if (fcc->f2fs_issue_flush)
690 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
693 atomic_set(&fcc->issued_flush, 0);
694 atomic_set(&fcc->issing_flush, 0);
695 init_waitqueue_head(&fcc->flush_wait_queue);
696 init_llist_head(&fcc->issue_list);
697 SM_I(sbi)->fcc_info = fcc;
698 if (!test_opt(sbi, FLUSH_MERGE))
702 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
703 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
704 if (IS_ERR(fcc->f2fs_issue_flush)) {
705 err = PTR_ERR(fcc->f2fs_issue_flush);
707 SM_I(sbi)->fcc_info = NULL;
714 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
716 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
718 if (fcc && fcc->f2fs_issue_flush) {
719 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
721 fcc->f2fs_issue_flush = NULL;
722 kthread_stop(flush_thread);
726 SM_I(sbi)->fcc_info = NULL;
730 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
737 for (i = 1; i < sbi->s_ndevs; i++) {
738 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
740 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
744 spin_lock(&sbi->dev_lock);
745 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
746 spin_unlock(&sbi->dev_lock);
752 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
753 enum dirty_type dirty_type)
755 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
757 /* need not be added */
758 if (IS_CURSEG(sbi, segno))
761 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
762 dirty_i->nr_dirty[dirty_type]++;
764 if (dirty_type == DIRTY) {
765 struct seg_entry *sentry = get_seg_entry(sbi, segno);
766 enum dirty_type t = sentry->type;
768 if (unlikely(t >= DIRTY)) {
772 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
773 dirty_i->nr_dirty[t]++;
777 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 enum dirty_type dirty_type)
780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
782 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
783 dirty_i->nr_dirty[dirty_type]--;
785 if (dirty_type == DIRTY) {
786 struct seg_entry *sentry = get_seg_entry(sbi, segno);
787 enum dirty_type t = sentry->type;
789 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
790 dirty_i->nr_dirty[t]--;
792 if (get_valid_blocks(sbi, segno, true) == 0)
793 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
794 dirty_i->victim_secmap);
799 * Should not occur error such as -ENOMEM.
800 * Adding dirty entry into seglist is not critical operation.
801 * If a given segment is one of current working segments, it won't be added.
803 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
805 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806 unsigned short valid_blocks, ckpt_valid_blocks;
808 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
811 mutex_lock(&dirty_i->seglist_lock);
813 valid_blocks = get_valid_blocks(sbi, segno, false);
814 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
816 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
817 ckpt_valid_blocks == sbi->blocks_per_seg)) {
818 __locate_dirty_segment(sbi, segno, PRE);
819 __remove_dirty_segment(sbi, segno, DIRTY);
820 } else if (valid_blocks < sbi->blocks_per_seg) {
821 __locate_dirty_segment(sbi, segno, DIRTY);
823 /* Recovery routine with SSR needs this */
824 __remove_dirty_segment(sbi, segno, DIRTY);
827 mutex_unlock(&dirty_i->seglist_lock);
830 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
831 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
836 mutex_lock(&dirty_i->seglist_lock);
837 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
838 if (get_valid_blocks(sbi, segno, false))
840 if (IS_CURSEG(sbi, segno))
842 __locate_dirty_segment(sbi, segno, PRE);
843 __remove_dirty_segment(sbi, segno, DIRTY);
845 mutex_unlock(&dirty_i->seglist_lock);
848 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
850 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
851 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
852 block_t holes[2] = {0, 0}; /* DATA and NODE */
853 struct seg_entry *se;
856 mutex_lock(&dirty_i->seglist_lock);
857 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
858 se = get_seg_entry(sbi, segno);
859 if (IS_NODESEG(se->type))
860 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
862 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
864 mutex_unlock(&dirty_i->seglist_lock);
866 if (holes[DATA] > ovp || holes[NODE] > ovp)
871 /* This is only used by SBI_CP_DISABLED */
872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875 unsigned int segno = 0;
877 mutex_lock(&dirty_i->seglist_lock);
878 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
879 if (get_valid_blocks(sbi, segno, false))
881 if (get_ckpt_valid_blocks(sbi, segno))
883 mutex_unlock(&dirty_i->seglist_lock);
886 mutex_unlock(&dirty_i->seglist_lock);
890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
891 struct block_device *bdev, block_t lstart,
892 block_t start, block_t len)
894 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
895 struct list_head *pend_list;
896 struct discard_cmd *dc;
898 f2fs_bug_on(sbi, !len);
900 pend_list = &dcc->pend_list[plist_idx(len)];
902 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
903 INIT_LIST_HEAD(&dc->list);
912 init_completion(&dc->wait);
913 list_add_tail(&dc->list, pend_list);
914 spin_lock_init(&dc->lock);
916 atomic_inc(&dcc->discard_cmd_cnt);
917 dcc->undiscard_blks += len;
922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
923 struct block_device *bdev, block_t lstart,
924 block_t start, block_t len,
925 struct rb_node *parent, struct rb_node **p,
928 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
929 struct discard_cmd *dc;
931 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
933 rb_link_node(&dc->rb_node, parent, p);
934 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
939 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
940 struct discard_cmd *dc)
942 if (dc->state == D_DONE)
943 atomic_sub(dc->issuing, &dcc->issing_discard);
946 rb_erase_cached(&dc->rb_node, &dcc->root);
947 dcc->undiscard_blks -= dc->len;
949 kmem_cache_free(discard_cmd_slab, dc);
951 atomic_dec(&dcc->discard_cmd_cnt);
954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
955 struct discard_cmd *dc)
957 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
960 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
962 spin_lock_irqsave(&dc->lock, flags);
964 spin_unlock_irqrestore(&dc->lock, flags);
967 spin_unlock_irqrestore(&dc->lock, flags);
969 f2fs_bug_on(sbi, dc->ref);
971 if (dc->error == -EOPNOTSUPP)
976 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
977 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
978 __detach_discard_cmd(dcc, dc);
981 static void f2fs_submit_discard_endio(struct bio *bio)
983 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
986 dc->error = blk_status_to_errno(bio->bi_status);
988 spin_lock_irqsave(&dc->lock, flags);
990 if (!dc->bio_ref && dc->state == D_SUBMIT) {
992 complete_all(&dc->wait);
994 spin_unlock_irqrestore(&dc->lock, flags);
998 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
999 block_t start, block_t end)
1001 #ifdef CONFIG_F2FS_CHECK_FS
1002 struct seg_entry *sentry;
1004 block_t blk = start;
1005 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1009 segno = GET_SEGNO(sbi, blk);
1010 sentry = get_seg_entry(sbi, segno);
1011 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1013 if (end < START_BLOCK(sbi, segno + 1))
1014 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1017 map = (unsigned long *)(sentry->cur_valid_map);
1018 offset = __find_rev_next_bit(map, size, offset);
1019 f2fs_bug_on(sbi, offset != size);
1020 blk = START_BLOCK(sbi, segno + 1);
1025 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1026 struct discard_policy *dpolicy,
1027 int discard_type, unsigned int granularity)
1030 dpolicy->type = discard_type;
1031 dpolicy->sync = true;
1032 dpolicy->ordered = false;
1033 dpolicy->granularity = granularity;
1035 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1036 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1038 if (discard_type == DPOLICY_BG) {
1039 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1040 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1041 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1042 dpolicy->io_aware = true;
1043 dpolicy->sync = false;
1044 dpolicy->ordered = true;
1045 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1046 dpolicy->granularity = 1;
1047 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1049 } else if (discard_type == DPOLICY_FORCE) {
1050 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1051 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1052 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1053 dpolicy->io_aware = false;
1054 } else if (discard_type == DPOLICY_FSTRIM) {
1055 dpolicy->io_aware = false;
1056 } else if (discard_type == DPOLICY_UMOUNT) {
1057 dpolicy->max_requests = UINT_MAX;
1058 dpolicy->io_aware = false;
1062 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1063 struct block_device *bdev, block_t lstart,
1064 block_t start, block_t len);
1065 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1066 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1067 struct discard_policy *dpolicy,
1068 struct discard_cmd *dc,
1069 unsigned int *issued)
1071 struct block_device *bdev = dc->bdev;
1072 struct request_queue *q = bdev_get_queue(bdev);
1073 unsigned int max_discard_blocks =
1074 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1075 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1076 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1077 &(dcc->fstrim_list) : &(dcc->wait_list);
1078 int flag = dpolicy->sync ? REQ_SYNC : 0;
1079 block_t lstart, start, len, total_len;
1082 if (dc->state != D_PREP)
1085 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1088 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1090 lstart = dc->lstart;
1097 while (total_len && *issued < dpolicy->max_requests && !err) {
1098 struct bio *bio = NULL;
1099 unsigned long flags;
1102 if (len > max_discard_blocks) {
1103 len = max_discard_blocks;
1108 if (*issued == dpolicy->max_requests)
1113 if (time_to_inject(sbi, FAULT_DISCARD)) {
1114 f2fs_show_injection_info(FAULT_DISCARD);
1118 err = __blkdev_issue_discard(bdev,
1119 SECTOR_FROM_BLOCK(start),
1120 SECTOR_FROM_BLOCK(len),
1124 spin_lock_irqsave(&dc->lock, flags);
1125 if (dc->state == D_PARTIAL)
1126 dc->state = D_SUBMIT;
1127 spin_unlock_irqrestore(&dc->lock, flags);
1132 f2fs_bug_on(sbi, !bio);
1135 * should keep before submission to avoid D_DONE
1138 spin_lock_irqsave(&dc->lock, flags);
1140 dc->state = D_SUBMIT;
1142 dc->state = D_PARTIAL;
1144 spin_unlock_irqrestore(&dc->lock, flags);
1146 atomic_inc(&dcc->issing_discard);
1148 list_move_tail(&dc->list, wait_list);
1150 /* sanity check on discard range */
1151 __check_sit_bitmap(sbi, start, start + len);
1153 bio->bi_private = dc;
1154 bio->bi_end_io = f2fs_submit_discard_endio;
1155 bio->bi_opf |= flag;
1158 atomic_inc(&dcc->issued_discard);
1160 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1169 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1173 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1174 struct block_device *bdev, block_t lstart,
1175 block_t start, block_t len,
1176 struct rb_node **insert_p,
1177 struct rb_node *insert_parent)
1179 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1181 struct rb_node *parent = NULL;
1182 struct discard_cmd *dc = NULL;
1183 bool leftmost = true;
1185 if (insert_p && insert_parent) {
1186 parent = insert_parent;
1191 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1194 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1202 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1203 struct discard_cmd *dc)
1205 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1208 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1209 struct discard_cmd *dc, block_t blkaddr)
1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1212 struct discard_info di = dc->di;
1213 bool modified = false;
1215 if (dc->state == D_DONE || dc->len == 1) {
1216 __remove_discard_cmd(sbi, dc);
1220 dcc->undiscard_blks -= di.len;
1222 if (blkaddr > di.lstart) {
1223 dc->len = blkaddr - dc->lstart;
1224 dcc->undiscard_blks += dc->len;
1225 __relocate_discard_cmd(dcc, dc);
1229 if (blkaddr < di.lstart + di.len - 1) {
1231 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1232 di.start + blkaddr + 1 - di.lstart,
1233 di.lstart + di.len - 1 - blkaddr,
1239 dcc->undiscard_blks += dc->len;
1240 __relocate_discard_cmd(dcc, dc);
1245 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1246 struct block_device *bdev, block_t lstart,
1247 block_t start, block_t len)
1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1251 struct discard_cmd *dc;
1252 struct discard_info di = {0};
1253 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1254 struct request_queue *q = bdev_get_queue(bdev);
1255 unsigned int max_discard_blocks =
1256 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1257 block_t end = lstart + len;
1259 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1261 (struct rb_entry **)&prev_dc,
1262 (struct rb_entry **)&next_dc,
1263 &insert_p, &insert_parent, true, NULL);
1269 di.len = next_dc ? next_dc->lstart - lstart : len;
1270 di.len = min(di.len, len);
1275 struct rb_node *node;
1276 bool merged = false;
1277 struct discard_cmd *tdc = NULL;
1280 di.lstart = prev_dc->lstart + prev_dc->len;
1281 if (di.lstart < lstart)
1283 if (di.lstart >= end)
1286 if (!next_dc || next_dc->lstart > end)
1287 di.len = end - di.lstart;
1289 di.len = next_dc->lstart - di.lstart;
1290 di.start = start + di.lstart - lstart;
1296 if (prev_dc && prev_dc->state == D_PREP &&
1297 prev_dc->bdev == bdev &&
1298 __is_discard_back_mergeable(&di, &prev_dc->di,
1299 max_discard_blocks)) {
1300 prev_dc->di.len += di.len;
1301 dcc->undiscard_blks += di.len;
1302 __relocate_discard_cmd(dcc, prev_dc);
1308 if (next_dc && next_dc->state == D_PREP &&
1309 next_dc->bdev == bdev &&
1310 __is_discard_front_mergeable(&di, &next_dc->di,
1311 max_discard_blocks)) {
1312 next_dc->di.lstart = di.lstart;
1313 next_dc->di.len += di.len;
1314 next_dc->di.start = di.start;
1315 dcc->undiscard_blks += di.len;
1316 __relocate_discard_cmd(dcc, next_dc);
1318 __remove_discard_cmd(sbi, tdc);
1323 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1324 di.len, NULL, NULL);
1331 node = rb_next(&prev_dc->rb_node);
1332 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1336 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1337 struct block_device *bdev, block_t blkstart, block_t blklen)
1339 block_t lblkstart = blkstart;
1341 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1344 int devi = f2fs_target_device_index(sbi, blkstart);
1346 blkstart -= FDEV(devi).start_blk;
1348 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1349 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1350 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1354 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1355 struct discard_policy *dpolicy)
1357 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1358 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1359 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1360 struct discard_cmd *dc;
1361 struct blk_plug plug;
1362 unsigned int pos = dcc->next_pos;
1363 unsigned int issued = 0;
1364 bool io_interrupted = false;
1366 mutex_lock(&dcc->cmd_lock);
1367 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1369 (struct rb_entry **)&prev_dc,
1370 (struct rb_entry **)&next_dc,
1371 &insert_p, &insert_parent, true, NULL);
1375 blk_start_plug(&plug);
1378 struct rb_node *node;
1381 if (dc->state != D_PREP)
1384 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1385 io_interrupted = true;
1389 dcc->next_pos = dc->lstart + dc->len;
1390 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1392 if (issued >= dpolicy->max_requests)
1395 node = rb_next(&dc->rb_node);
1397 __remove_discard_cmd(sbi, dc);
1398 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1401 blk_finish_plug(&plug);
1406 mutex_unlock(&dcc->cmd_lock);
1408 if (!issued && io_interrupted)
1414 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1415 struct discard_policy *dpolicy)
1417 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1418 struct list_head *pend_list;
1419 struct discard_cmd *dc, *tmp;
1420 struct blk_plug plug;
1422 bool io_interrupted = false;
1424 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1425 if (i + 1 < dpolicy->granularity)
1428 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1429 return __issue_discard_cmd_orderly(sbi, dpolicy);
1431 pend_list = &dcc->pend_list[i];
1433 mutex_lock(&dcc->cmd_lock);
1434 if (list_empty(pend_list))
1436 if (unlikely(dcc->rbtree_check))
1437 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1439 blk_start_plug(&plug);
1440 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1441 f2fs_bug_on(sbi, dc->state != D_PREP);
1443 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1444 !is_idle(sbi, DISCARD_TIME)) {
1445 io_interrupted = true;
1449 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1451 if (issued >= dpolicy->max_requests)
1454 blk_finish_plug(&plug);
1456 mutex_unlock(&dcc->cmd_lock);
1458 if (issued >= dpolicy->max_requests || io_interrupted)
1462 if (!issued && io_interrupted)
1468 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1470 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1471 struct list_head *pend_list;
1472 struct discard_cmd *dc, *tmp;
1474 bool dropped = false;
1476 mutex_lock(&dcc->cmd_lock);
1477 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478 pend_list = &dcc->pend_list[i];
1479 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1480 f2fs_bug_on(sbi, dc->state != D_PREP);
1481 __remove_discard_cmd(sbi, dc);
1485 mutex_unlock(&dcc->cmd_lock);
1490 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1492 __drop_discard_cmd(sbi);
1495 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1496 struct discard_cmd *dc)
1498 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1499 unsigned int len = 0;
1501 wait_for_completion_io(&dc->wait);
1502 mutex_lock(&dcc->cmd_lock);
1503 f2fs_bug_on(sbi, dc->state != D_DONE);
1508 __remove_discard_cmd(sbi, dc);
1510 mutex_unlock(&dcc->cmd_lock);
1515 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1516 struct discard_policy *dpolicy,
1517 block_t start, block_t end)
1519 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1520 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1521 &(dcc->fstrim_list) : &(dcc->wait_list);
1522 struct discard_cmd *dc, *tmp;
1524 unsigned int trimmed = 0;
1529 mutex_lock(&dcc->cmd_lock);
1530 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1531 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1533 if (dc->len < dpolicy->granularity)
1535 if (dc->state == D_DONE && !dc->ref) {
1536 wait_for_completion_io(&dc->wait);
1539 __remove_discard_cmd(sbi, dc);
1546 mutex_unlock(&dcc->cmd_lock);
1549 trimmed += __wait_one_discard_bio(sbi, dc);
1556 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1557 struct discard_policy *dpolicy)
1559 struct discard_policy dp;
1560 unsigned int discard_blks;
1563 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1566 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1567 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1568 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1569 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1571 return discard_blks;
1574 /* This should be covered by global mutex, &sit_i->sentry_lock */
1575 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1577 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1578 struct discard_cmd *dc;
1579 bool need_wait = false;
1581 mutex_lock(&dcc->cmd_lock);
1582 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1585 if (dc->state == D_PREP) {
1586 __punch_discard_cmd(sbi, dc, blkaddr);
1592 mutex_unlock(&dcc->cmd_lock);
1595 __wait_one_discard_bio(sbi, dc);
1598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1600 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1602 if (dcc && dcc->f2fs_issue_discard) {
1603 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1605 dcc->f2fs_issue_discard = NULL;
1606 kthread_stop(discard_thread);
1610 /* This comes from f2fs_put_super */
1611 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1613 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1614 struct discard_policy dpolicy;
1617 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1618 dcc->discard_granularity);
1619 __issue_discard_cmd(sbi, &dpolicy);
1620 dropped = __drop_discard_cmd(sbi);
1622 /* just to make sure there is no pending discard commands */
1623 __wait_all_discard_cmd(sbi, NULL);
1625 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1629 static int issue_discard_thread(void *data)
1631 struct f2fs_sb_info *sbi = data;
1632 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1633 wait_queue_head_t *q = &dcc->discard_wait_queue;
1634 struct discard_policy dpolicy;
1635 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1641 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1642 dcc->discard_granularity);
1644 wait_event_interruptible_timeout(*q,
1645 kthread_should_stop() || freezing(current) ||
1647 msecs_to_jiffies(wait_ms));
1649 if (dcc->discard_wake)
1650 dcc->discard_wake = 0;
1652 if (try_to_freeze())
1654 if (f2fs_readonly(sbi->sb))
1656 if (kthread_should_stop())
1658 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1659 wait_ms = dpolicy.max_interval;
1663 if (sbi->gc_mode == GC_URGENT)
1664 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1666 sb_start_intwrite(sbi->sb);
1668 issued = __issue_discard_cmd(sbi, &dpolicy);
1670 __wait_all_discard_cmd(sbi, &dpolicy);
1671 wait_ms = dpolicy.min_interval;
1672 } else if (issued == -1){
1673 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1675 wait_ms = dpolicy.mid_interval;
1677 wait_ms = dpolicy.max_interval;
1680 sb_end_intwrite(sbi->sb);
1682 } while (!kthread_should_stop());
1686 #ifdef CONFIG_BLK_DEV_ZONED
1687 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1688 struct block_device *bdev, block_t blkstart, block_t blklen)
1690 sector_t sector, nr_sects;
1691 block_t lblkstart = blkstart;
1695 devi = f2fs_target_device_index(sbi, blkstart);
1696 blkstart -= FDEV(devi).start_blk;
1700 * We need to know the type of the zone: for conventional zones,
1701 * use regular discard if the drive supports it. For sequential
1702 * zones, reset the zone write pointer.
1704 switch (get_blkz_type(sbi, bdev, blkstart)) {
1706 case BLK_ZONE_TYPE_CONVENTIONAL:
1707 if (!blk_queue_discard(bdev_get_queue(bdev)))
1709 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1710 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1711 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1712 sector = SECTOR_FROM_BLOCK(blkstart);
1713 nr_sects = SECTOR_FROM_BLOCK(blklen);
1715 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1716 nr_sects != bdev_zone_sectors(bdev)) {
1717 f2fs_msg(sbi->sb, KERN_INFO,
1718 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1719 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1723 trace_f2fs_issue_reset_zone(bdev, blkstart);
1724 return blkdev_reset_zones(bdev, sector,
1725 nr_sects, GFP_NOFS);
1727 /* Unknown zone type: broken device ? */
1733 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1734 struct block_device *bdev, block_t blkstart, block_t blklen)
1736 #ifdef CONFIG_BLK_DEV_ZONED
1737 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1738 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1739 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1741 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1744 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1745 block_t blkstart, block_t blklen)
1747 sector_t start = blkstart, len = 0;
1748 struct block_device *bdev;
1749 struct seg_entry *se;
1750 unsigned int offset;
1754 bdev = f2fs_target_device(sbi, blkstart, NULL);
1756 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1758 struct block_device *bdev2 =
1759 f2fs_target_device(sbi, i, NULL);
1761 if (bdev2 != bdev) {
1762 err = __issue_discard_async(sbi, bdev,
1772 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1773 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1775 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1776 sbi->discard_blks--;
1780 err = __issue_discard_async(sbi, bdev, start, len);
1784 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1787 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1788 int max_blocks = sbi->blocks_per_seg;
1789 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1790 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1791 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1792 unsigned long *discard_map = (unsigned long *)se->discard_map;
1793 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1794 unsigned int start = 0, end = -1;
1795 bool force = (cpc->reason & CP_DISCARD);
1796 struct discard_entry *de = NULL;
1797 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1800 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1804 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1805 SM_I(sbi)->dcc_info->nr_discards >=
1806 SM_I(sbi)->dcc_info->max_discards)
1810 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1811 for (i = 0; i < entries; i++)
1812 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1813 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1815 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1816 SM_I(sbi)->dcc_info->max_discards) {
1817 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1818 if (start >= max_blocks)
1821 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1822 if (force && start && end != max_blocks
1823 && (end - start) < cpc->trim_minlen)
1830 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1832 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1833 list_add_tail(&de->list, head);
1836 for (i = start; i < end; i++)
1837 __set_bit_le(i, (void *)de->discard_map);
1839 SM_I(sbi)->dcc_info->nr_discards += end - start;
1844 static void release_discard_addr(struct discard_entry *entry)
1846 list_del(&entry->list);
1847 kmem_cache_free(discard_entry_slab, entry);
1850 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1852 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1853 struct discard_entry *entry, *this;
1856 list_for_each_entry_safe(entry, this, head, list)
1857 release_discard_addr(entry);
1861 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1863 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1865 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1868 mutex_lock(&dirty_i->seglist_lock);
1869 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1870 __set_test_and_free(sbi, segno);
1871 mutex_unlock(&dirty_i->seglist_lock);
1874 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1875 struct cp_control *cpc)
1877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1878 struct list_head *head = &dcc->entry_list;
1879 struct discard_entry *entry, *this;
1880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1881 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1882 unsigned int start = 0, end = -1;
1883 unsigned int secno, start_segno;
1884 bool force = (cpc->reason & CP_DISCARD);
1885 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1887 mutex_lock(&dirty_i->seglist_lock);
1892 if (need_align && end != -1)
1894 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1895 if (start >= MAIN_SEGS(sbi))
1897 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1901 start = rounddown(start, sbi->segs_per_sec);
1902 end = roundup(end, sbi->segs_per_sec);
1905 for (i = start; i < end; i++) {
1906 if (test_and_clear_bit(i, prefree_map))
1907 dirty_i->nr_dirty[PRE]--;
1910 if (!f2fs_realtime_discard_enable(sbi))
1913 if (force && start >= cpc->trim_start &&
1914 (end - 1) <= cpc->trim_end)
1917 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1918 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1919 (end - start) << sbi->log_blocks_per_seg);
1923 secno = GET_SEC_FROM_SEG(sbi, start);
1924 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1925 if (!IS_CURSEC(sbi, secno) &&
1926 !get_valid_blocks(sbi, start, true))
1927 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1928 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1930 start = start_segno + sbi->segs_per_sec;
1936 mutex_unlock(&dirty_i->seglist_lock);
1938 /* send small discards */
1939 list_for_each_entry_safe(entry, this, head, list) {
1940 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1941 bool is_valid = test_bit_le(0, entry->discard_map);
1945 next_pos = find_next_zero_bit_le(entry->discard_map,
1946 sbi->blocks_per_seg, cur_pos);
1947 len = next_pos - cur_pos;
1949 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1950 (force && len < cpc->trim_minlen))
1953 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1957 next_pos = find_next_bit_le(entry->discard_map,
1958 sbi->blocks_per_seg, cur_pos);
1962 is_valid = !is_valid;
1964 if (cur_pos < sbi->blocks_per_seg)
1967 release_discard_addr(entry);
1968 dcc->nr_discards -= total_len;
1971 wake_up_discard_thread(sbi, false);
1974 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1976 dev_t dev = sbi->sb->s_bdev->bd_dev;
1977 struct discard_cmd_control *dcc;
1980 if (SM_I(sbi)->dcc_info) {
1981 dcc = SM_I(sbi)->dcc_info;
1985 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1989 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1990 INIT_LIST_HEAD(&dcc->entry_list);
1991 for (i = 0; i < MAX_PLIST_NUM; i++)
1992 INIT_LIST_HEAD(&dcc->pend_list[i]);
1993 INIT_LIST_HEAD(&dcc->wait_list);
1994 INIT_LIST_HEAD(&dcc->fstrim_list);
1995 mutex_init(&dcc->cmd_lock);
1996 atomic_set(&dcc->issued_discard, 0);
1997 atomic_set(&dcc->issing_discard, 0);
1998 atomic_set(&dcc->discard_cmd_cnt, 0);
1999 dcc->nr_discards = 0;
2000 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2001 dcc->undiscard_blks = 0;
2003 dcc->root = RB_ROOT_CACHED;
2004 dcc->rbtree_check = false;
2006 init_waitqueue_head(&dcc->discard_wait_queue);
2007 SM_I(sbi)->dcc_info = dcc;
2009 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2010 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2011 if (IS_ERR(dcc->f2fs_issue_discard)) {
2012 err = PTR_ERR(dcc->f2fs_issue_discard);
2014 SM_I(sbi)->dcc_info = NULL;
2021 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2023 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2028 f2fs_stop_discard_thread(sbi);
2031 SM_I(sbi)->dcc_info = NULL;
2034 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2036 struct sit_info *sit_i = SIT_I(sbi);
2038 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2039 sit_i->dirty_sentries++;
2046 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2047 unsigned int segno, int modified)
2049 struct seg_entry *se = get_seg_entry(sbi, segno);
2052 __mark_sit_entry_dirty(sbi, segno);
2055 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2057 struct seg_entry *se;
2058 unsigned int segno, offset;
2059 long int new_vblocks;
2061 #ifdef CONFIG_F2FS_CHECK_FS
2065 segno = GET_SEGNO(sbi, blkaddr);
2067 se = get_seg_entry(sbi, segno);
2068 new_vblocks = se->valid_blocks + del;
2069 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2071 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2072 (new_vblocks > sbi->blocks_per_seg)));
2074 se->valid_blocks = new_vblocks;
2075 se->mtime = get_mtime(sbi, false);
2076 if (se->mtime > SIT_I(sbi)->max_mtime)
2077 SIT_I(sbi)->max_mtime = se->mtime;
2079 /* Update valid block bitmap */
2081 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2082 #ifdef CONFIG_F2FS_CHECK_FS
2083 mir_exist = f2fs_test_and_set_bit(offset,
2084 se->cur_valid_map_mir);
2085 if (unlikely(exist != mir_exist)) {
2086 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2087 "when setting bitmap, blk:%u, old bit:%d",
2089 f2fs_bug_on(sbi, 1);
2092 if (unlikely(exist)) {
2093 f2fs_msg(sbi->sb, KERN_ERR,
2094 "Bitmap was wrongly set, blk:%u", blkaddr);
2095 f2fs_bug_on(sbi, 1);
2100 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2101 sbi->discard_blks--;
2103 /* don't overwrite by SSR to keep node chain */
2104 if (IS_NODESEG(se->type) &&
2105 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2106 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2107 se->ckpt_valid_blocks++;
2110 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2111 #ifdef CONFIG_F2FS_CHECK_FS
2112 mir_exist = f2fs_test_and_clear_bit(offset,
2113 se->cur_valid_map_mir);
2114 if (unlikely(exist != mir_exist)) {
2115 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2116 "when clearing bitmap, blk:%u, old bit:%d",
2118 f2fs_bug_on(sbi, 1);
2121 if (unlikely(!exist)) {
2122 f2fs_msg(sbi->sb, KERN_ERR,
2123 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2124 f2fs_bug_on(sbi, 1);
2127 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2129 * If checkpoints are off, we must not reuse data that
2130 * was used in the previous checkpoint. If it was used
2131 * before, we must track that to know how much space we
2134 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2135 sbi->unusable_block_count++;
2138 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2139 sbi->discard_blks++;
2141 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2142 se->ckpt_valid_blocks += del;
2144 __mark_sit_entry_dirty(sbi, segno);
2146 /* update total number of valid blocks to be written in ckpt area */
2147 SIT_I(sbi)->written_valid_blocks += del;
2149 if (sbi->segs_per_sec > 1)
2150 get_sec_entry(sbi, segno)->valid_blocks += del;
2153 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2155 unsigned int segno = GET_SEGNO(sbi, addr);
2156 struct sit_info *sit_i = SIT_I(sbi);
2158 f2fs_bug_on(sbi, addr == NULL_ADDR);
2159 if (addr == NEW_ADDR)
2162 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2164 /* add it into sit main buffer */
2165 down_write(&sit_i->sentry_lock);
2167 update_sit_entry(sbi, addr, -1);
2169 /* add it into dirty seglist */
2170 locate_dirty_segment(sbi, segno);
2172 up_write(&sit_i->sentry_lock);
2175 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2177 struct sit_info *sit_i = SIT_I(sbi);
2178 unsigned int segno, offset;
2179 struct seg_entry *se;
2182 if (!is_valid_data_blkaddr(sbi, blkaddr))
2185 down_read(&sit_i->sentry_lock);
2187 segno = GET_SEGNO(sbi, blkaddr);
2188 se = get_seg_entry(sbi, segno);
2189 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2191 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2194 up_read(&sit_i->sentry_lock);
2200 * This function should be resided under the curseg_mutex lock
2202 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2203 struct f2fs_summary *sum)
2205 struct curseg_info *curseg = CURSEG_I(sbi, type);
2206 void *addr = curseg->sum_blk;
2207 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2208 memcpy(addr, sum, sizeof(struct f2fs_summary));
2212 * Calculate the number of current summary pages for writing
2214 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2216 int valid_sum_count = 0;
2219 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2220 if (sbi->ckpt->alloc_type[i] == SSR)
2221 valid_sum_count += sbi->blocks_per_seg;
2224 valid_sum_count += le16_to_cpu(
2225 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2227 valid_sum_count += curseg_blkoff(sbi, i);
2231 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2232 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2233 if (valid_sum_count <= sum_in_page)
2235 else if ((valid_sum_count - sum_in_page) <=
2236 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2242 * Caller should put this summary page
2244 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2246 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2249 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2250 void *src, block_t blk_addr)
2252 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2254 memcpy(page_address(page), src, PAGE_SIZE);
2255 set_page_dirty(page);
2256 f2fs_put_page(page, 1);
2259 static void write_sum_page(struct f2fs_sb_info *sbi,
2260 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2262 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2265 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2266 int type, block_t blk_addr)
2268 struct curseg_info *curseg = CURSEG_I(sbi, type);
2269 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2270 struct f2fs_summary_block *src = curseg->sum_blk;
2271 struct f2fs_summary_block *dst;
2273 dst = (struct f2fs_summary_block *)page_address(page);
2274 memset(dst, 0, PAGE_SIZE);
2276 mutex_lock(&curseg->curseg_mutex);
2278 down_read(&curseg->journal_rwsem);
2279 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2280 up_read(&curseg->journal_rwsem);
2282 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2283 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2285 mutex_unlock(&curseg->curseg_mutex);
2287 set_page_dirty(page);
2288 f2fs_put_page(page, 1);
2291 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2293 struct curseg_info *curseg = CURSEG_I(sbi, type);
2294 unsigned int segno = curseg->segno + 1;
2295 struct free_segmap_info *free_i = FREE_I(sbi);
2297 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2298 return !test_bit(segno, free_i->free_segmap);
2303 * Find a new segment from the free segments bitmap to right order
2304 * This function should be returned with success, otherwise BUG
2306 static void get_new_segment(struct f2fs_sb_info *sbi,
2307 unsigned int *newseg, bool new_sec, int dir)
2309 struct free_segmap_info *free_i = FREE_I(sbi);
2310 unsigned int segno, secno, zoneno;
2311 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2312 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2313 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2314 unsigned int left_start = hint;
2319 spin_lock(&free_i->segmap_lock);
2321 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2322 segno = find_next_zero_bit(free_i->free_segmap,
2323 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2324 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2328 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2329 if (secno >= MAIN_SECS(sbi)) {
2330 if (dir == ALLOC_RIGHT) {
2331 secno = find_next_zero_bit(free_i->free_secmap,
2333 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2336 left_start = hint - 1;
2342 while (test_bit(left_start, free_i->free_secmap)) {
2343 if (left_start > 0) {
2347 left_start = find_next_zero_bit(free_i->free_secmap,
2349 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2354 segno = GET_SEG_FROM_SEC(sbi, secno);
2355 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2357 /* give up on finding another zone */
2360 if (sbi->secs_per_zone == 1)
2362 if (zoneno == old_zoneno)
2364 if (dir == ALLOC_LEFT) {
2365 if (!go_left && zoneno + 1 >= total_zones)
2367 if (go_left && zoneno == 0)
2370 for (i = 0; i < NR_CURSEG_TYPE; i++)
2371 if (CURSEG_I(sbi, i)->zone == zoneno)
2374 if (i < NR_CURSEG_TYPE) {
2375 /* zone is in user, try another */
2377 hint = zoneno * sbi->secs_per_zone - 1;
2378 else if (zoneno + 1 >= total_zones)
2381 hint = (zoneno + 1) * sbi->secs_per_zone;
2383 goto find_other_zone;
2386 /* set it as dirty segment in free segmap */
2387 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2388 __set_inuse(sbi, segno);
2390 spin_unlock(&free_i->segmap_lock);
2393 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2395 struct curseg_info *curseg = CURSEG_I(sbi, type);
2396 struct summary_footer *sum_footer;
2398 curseg->segno = curseg->next_segno;
2399 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2400 curseg->next_blkoff = 0;
2401 curseg->next_segno = NULL_SEGNO;
2403 sum_footer = &(curseg->sum_blk->footer);
2404 memset(sum_footer, 0, sizeof(struct summary_footer));
2405 if (IS_DATASEG(type))
2406 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2407 if (IS_NODESEG(type))
2408 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2409 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2412 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2414 /* if segs_per_sec is large than 1, we need to keep original policy. */
2415 if (sbi->segs_per_sec != 1)
2416 return CURSEG_I(sbi, type)->segno;
2418 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2421 if (test_opt(sbi, NOHEAP) &&
2422 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2425 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2426 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2428 /* find segments from 0 to reuse freed segments */
2429 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2432 return CURSEG_I(sbi, type)->segno;
2436 * Allocate a current working segment.
2437 * This function always allocates a free segment in LFS manner.
2439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2441 struct curseg_info *curseg = CURSEG_I(sbi, type);
2442 unsigned int segno = curseg->segno;
2443 int dir = ALLOC_LEFT;
2445 write_sum_page(sbi, curseg->sum_blk,
2446 GET_SUM_BLOCK(sbi, segno));
2447 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2450 if (test_opt(sbi, NOHEAP))
2453 segno = __get_next_segno(sbi, type);
2454 get_new_segment(sbi, &segno, new_sec, dir);
2455 curseg->next_segno = segno;
2456 reset_curseg(sbi, type, 1);
2457 curseg->alloc_type = LFS;
2460 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2461 struct curseg_info *seg, block_t start)
2463 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2464 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2465 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2466 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2467 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2470 for (i = 0; i < entries; i++)
2471 target_map[i] = ckpt_map[i] | cur_map[i];
2473 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2475 seg->next_blkoff = pos;
2479 * If a segment is written by LFS manner, next block offset is just obtained
2480 * by increasing the current block offset. However, if a segment is written by
2481 * SSR manner, next block offset obtained by calling __next_free_blkoff
2483 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2484 struct curseg_info *seg)
2486 if (seg->alloc_type == SSR)
2487 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2493 * This function always allocates a used segment(from dirty seglist) by SSR
2494 * manner, so it should recover the existing segment information of valid blocks
2496 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2498 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2499 struct curseg_info *curseg = CURSEG_I(sbi, type);
2500 unsigned int new_segno = curseg->next_segno;
2501 struct f2fs_summary_block *sum_node;
2502 struct page *sum_page;
2504 write_sum_page(sbi, curseg->sum_blk,
2505 GET_SUM_BLOCK(sbi, curseg->segno));
2506 __set_test_and_inuse(sbi, new_segno);
2508 mutex_lock(&dirty_i->seglist_lock);
2509 __remove_dirty_segment(sbi, new_segno, PRE);
2510 __remove_dirty_segment(sbi, new_segno, DIRTY);
2511 mutex_unlock(&dirty_i->seglist_lock);
2513 reset_curseg(sbi, type, 1);
2514 curseg->alloc_type = SSR;
2515 __next_free_blkoff(sbi, curseg, 0);
2517 sum_page = f2fs_get_sum_page(sbi, new_segno);
2518 f2fs_bug_on(sbi, IS_ERR(sum_page));
2519 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2520 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2521 f2fs_put_page(sum_page, 1);
2524 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2526 struct curseg_info *curseg = CURSEG_I(sbi, type);
2527 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2528 unsigned segno = NULL_SEGNO;
2530 bool reversed = false;
2532 /* f2fs_need_SSR() already forces to do this */
2533 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2534 curseg->next_segno = segno;
2538 /* For node segments, let's do SSR more intensively */
2539 if (IS_NODESEG(type)) {
2540 if (type >= CURSEG_WARM_NODE) {
2542 i = CURSEG_COLD_NODE;
2544 i = CURSEG_HOT_NODE;
2546 cnt = NR_CURSEG_NODE_TYPE;
2548 if (type >= CURSEG_WARM_DATA) {
2550 i = CURSEG_COLD_DATA;
2552 i = CURSEG_HOT_DATA;
2554 cnt = NR_CURSEG_DATA_TYPE;
2557 for (; cnt-- > 0; reversed ? i-- : i++) {
2560 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2561 curseg->next_segno = segno;
2566 /* find valid_blocks=0 in dirty list */
2567 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2568 segno = get_free_segment(sbi);
2569 if (segno != NULL_SEGNO) {
2570 curseg->next_segno = segno;
2578 * flush out current segment and replace it with new segment
2579 * This function should be returned with success, otherwise BUG
2581 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2582 int type, bool force)
2584 struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 new_curseg(sbi, type, true);
2588 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2589 type == CURSEG_WARM_NODE)
2590 new_curseg(sbi, type, false);
2591 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2592 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2593 new_curseg(sbi, type, false);
2594 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2595 change_curseg(sbi, type);
2597 new_curseg(sbi, type, false);
2599 stat_inc_seg_type(sbi, curseg);
2602 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2604 struct curseg_info *curseg;
2605 unsigned int old_segno;
2608 down_write(&SIT_I(sbi)->sentry_lock);
2610 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2611 curseg = CURSEG_I(sbi, i);
2612 old_segno = curseg->segno;
2613 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2614 locate_dirty_segment(sbi, old_segno);
2617 up_write(&SIT_I(sbi)->sentry_lock);
2620 static const struct segment_allocation default_salloc_ops = {
2621 .allocate_segment = allocate_segment_by_default,
2624 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2625 struct cp_control *cpc)
2627 __u64 trim_start = cpc->trim_start;
2628 bool has_candidate = false;
2630 down_write(&SIT_I(sbi)->sentry_lock);
2631 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2632 if (add_discard_addrs(sbi, cpc, true)) {
2633 has_candidate = true;
2637 up_write(&SIT_I(sbi)->sentry_lock);
2639 cpc->trim_start = trim_start;
2640 return has_candidate;
2643 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2644 struct discard_policy *dpolicy,
2645 unsigned int start, unsigned int end)
2647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2648 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2649 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2650 struct discard_cmd *dc;
2651 struct blk_plug plug;
2653 unsigned int trimmed = 0;
2658 mutex_lock(&dcc->cmd_lock);
2659 if (unlikely(dcc->rbtree_check))
2660 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2663 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2665 (struct rb_entry **)&prev_dc,
2666 (struct rb_entry **)&next_dc,
2667 &insert_p, &insert_parent, true, NULL);
2671 blk_start_plug(&plug);
2673 while (dc && dc->lstart <= end) {
2674 struct rb_node *node;
2677 if (dc->len < dpolicy->granularity)
2680 if (dc->state != D_PREP) {
2681 list_move_tail(&dc->list, &dcc->fstrim_list);
2685 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2687 if (issued >= dpolicy->max_requests) {
2688 start = dc->lstart + dc->len;
2691 __remove_discard_cmd(sbi, dc);
2693 blk_finish_plug(&plug);
2694 mutex_unlock(&dcc->cmd_lock);
2695 trimmed += __wait_all_discard_cmd(sbi, NULL);
2696 congestion_wait(BLK_RW_ASYNC, HZ/50);
2700 node = rb_next(&dc->rb_node);
2702 __remove_discard_cmd(sbi, dc);
2703 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2705 if (fatal_signal_pending(current))
2709 blk_finish_plug(&plug);
2710 mutex_unlock(&dcc->cmd_lock);
2715 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2717 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2718 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2719 unsigned int start_segno, end_segno;
2720 block_t start_block, end_block;
2721 struct cp_control cpc;
2722 struct discard_policy dpolicy;
2723 unsigned long long trimmed = 0;
2725 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2727 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2730 if (end < MAIN_BLKADDR(sbi))
2733 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2734 f2fs_msg(sbi->sb, KERN_WARNING,
2735 "Found FS corruption, run fsck to fix.");
2739 /* start/end segment number in main_area */
2740 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2741 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2742 GET_SEGNO(sbi, end);
2744 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2745 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2748 cpc.reason = CP_DISCARD;
2749 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2750 cpc.trim_start = start_segno;
2751 cpc.trim_end = end_segno;
2753 if (sbi->discard_blks == 0)
2756 mutex_lock(&sbi->gc_mutex);
2757 err = f2fs_write_checkpoint(sbi, &cpc);
2758 mutex_unlock(&sbi->gc_mutex);
2763 * We filed discard candidates, but actually we don't need to wait for
2764 * all of them, since they'll be issued in idle time along with runtime
2765 * discard option. User configuration looks like using runtime discard
2766 * or periodic fstrim instead of it.
2768 if (f2fs_realtime_discard_enable(sbi))
2771 start_block = START_BLOCK(sbi, start_segno);
2772 end_block = START_BLOCK(sbi, end_segno + 1);
2774 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2775 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2776 start_block, end_block);
2778 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2779 start_block, end_block);
2782 range->len = F2FS_BLK_TO_BYTES(trimmed);
2786 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2788 struct curseg_info *curseg = CURSEG_I(sbi, type);
2789 if (curseg->next_blkoff < sbi->blocks_per_seg)
2794 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2797 case WRITE_LIFE_SHORT:
2798 return CURSEG_HOT_DATA;
2799 case WRITE_LIFE_EXTREME:
2800 return CURSEG_COLD_DATA;
2802 return CURSEG_WARM_DATA;
2806 /* This returns write hints for each segment type. This hints will be
2807 * passed down to block layer. There are mapping tables which depend on
2808 * the mount option 'whint_mode'.
2810 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2812 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2816 * META WRITE_LIFE_NOT_SET
2820 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2821 * extension list " "
2824 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2825 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2826 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2827 * WRITE_LIFE_NONE " "
2828 * WRITE_LIFE_MEDIUM " "
2829 * WRITE_LIFE_LONG " "
2832 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2833 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2834 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2835 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2836 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2837 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2839 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2843 * META WRITE_LIFE_MEDIUM;
2844 * HOT_NODE WRITE_LIFE_NOT_SET
2846 * COLD_NODE WRITE_LIFE_NONE
2847 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2848 * extension list " "
2851 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2852 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2853 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2854 * WRITE_LIFE_NONE " "
2855 * WRITE_LIFE_MEDIUM " "
2856 * WRITE_LIFE_LONG " "
2859 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2860 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2861 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2862 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2863 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2864 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2867 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2868 enum page_type type, enum temp_type temp)
2870 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2873 return WRITE_LIFE_NOT_SET;
2874 else if (temp == HOT)
2875 return WRITE_LIFE_SHORT;
2876 else if (temp == COLD)
2877 return WRITE_LIFE_EXTREME;
2879 return WRITE_LIFE_NOT_SET;
2881 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2884 return WRITE_LIFE_LONG;
2885 else if (temp == HOT)
2886 return WRITE_LIFE_SHORT;
2887 else if (temp == COLD)
2888 return WRITE_LIFE_EXTREME;
2889 } else if (type == NODE) {
2890 if (temp == WARM || temp == HOT)
2891 return WRITE_LIFE_NOT_SET;
2892 else if (temp == COLD)
2893 return WRITE_LIFE_NONE;
2894 } else if (type == META) {
2895 return WRITE_LIFE_MEDIUM;
2898 return WRITE_LIFE_NOT_SET;
2901 static int __get_segment_type_2(struct f2fs_io_info *fio)
2903 if (fio->type == DATA)
2904 return CURSEG_HOT_DATA;
2906 return CURSEG_HOT_NODE;
2909 static int __get_segment_type_4(struct f2fs_io_info *fio)
2911 if (fio->type == DATA) {
2912 struct inode *inode = fio->page->mapping->host;
2914 if (S_ISDIR(inode->i_mode))
2915 return CURSEG_HOT_DATA;
2917 return CURSEG_COLD_DATA;
2919 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2920 return CURSEG_WARM_NODE;
2922 return CURSEG_COLD_NODE;
2926 static int __get_segment_type_6(struct f2fs_io_info *fio)
2928 if (fio->type == DATA) {
2929 struct inode *inode = fio->page->mapping->host;
2931 if (is_cold_data(fio->page) || file_is_cold(inode))
2932 return CURSEG_COLD_DATA;
2933 if (file_is_hot(inode) ||
2934 is_inode_flag_set(inode, FI_HOT_DATA) ||
2935 f2fs_is_atomic_file(inode) ||
2936 f2fs_is_volatile_file(inode))
2937 return CURSEG_HOT_DATA;
2938 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2940 if (IS_DNODE(fio->page))
2941 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2943 return CURSEG_COLD_NODE;
2947 static int __get_segment_type(struct f2fs_io_info *fio)
2951 switch (F2FS_OPTION(fio->sbi).active_logs) {
2953 type = __get_segment_type_2(fio);
2956 type = __get_segment_type_4(fio);
2959 type = __get_segment_type_6(fio);
2962 f2fs_bug_on(fio->sbi, true);
2967 else if (IS_WARM(type))
2974 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2975 block_t old_blkaddr, block_t *new_blkaddr,
2976 struct f2fs_summary *sum, int type,
2977 struct f2fs_io_info *fio, bool add_list)
2979 struct sit_info *sit_i = SIT_I(sbi);
2980 struct curseg_info *curseg = CURSEG_I(sbi, type);
2982 down_read(&SM_I(sbi)->curseg_lock);
2984 mutex_lock(&curseg->curseg_mutex);
2985 down_write(&sit_i->sentry_lock);
2987 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2989 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2992 * __add_sum_entry should be resided under the curseg_mutex
2993 * because, this function updates a summary entry in the
2994 * current summary block.
2996 __add_sum_entry(sbi, type, sum);
2998 __refresh_next_blkoff(sbi, curseg);
3000 stat_inc_block_count(sbi, curseg);
3003 * SIT information should be updated before segment allocation,
3004 * since SSR needs latest valid block information.
3006 update_sit_entry(sbi, *new_blkaddr, 1);
3007 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3008 update_sit_entry(sbi, old_blkaddr, -1);
3010 if (!__has_curseg_space(sbi, type))
3011 sit_i->s_ops->allocate_segment(sbi, type, false);
3014 * segment dirty status should be updated after segment allocation,
3015 * so we just need to update status only one time after previous
3016 * segment being closed.
3018 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3019 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3021 up_write(&sit_i->sentry_lock);
3023 if (page && IS_NODESEG(type)) {
3024 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3026 f2fs_inode_chksum_set(sbi, page);
3030 struct f2fs_bio_info *io;
3032 INIT_LIST_HEAD(&fio->list);
3033 fio->in_list = true;
3035 io = sbi->write_io[fio->type] + fio->temp;
3036 spin_lock(&io->io_lock);
3037 list_add_tail(&fio->list, &io->io_list);
3038 spin_unlock(&io->io_lock);
3041 mutex_unlock(&curseg->curseg_mutex);
3043 up_read(&SM_I(sbi)->curseg_lock);
3046 static void update_device_state(struct f2fs_io_info *fio)
3048 struct f2fs_sb_info *sbi = fio->sbi;
3049 unsigned int devidx;
3054 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3056 /* update device state for fsync */
3057 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3059 /* update device state for checkpoint */
3060 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3061 spin_lock(&sbi->dev_lock);
3062 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3063 spin_unlock(&sbi->dev_lock);
3067 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3069 int type = __get_segment_type(fio);
3070 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3073 down_read(&fio->sbi->io_order_lock);
3075 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3076 &fio->new_blkaddr, sum, type, fio, true);
3077 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3078 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3079 fio->old_blkaddr, fio->old_blkaddr);
3081 /* writeout dirty page into bdev */
3082 f2fs_submit_page_write(fio);
3084 fio->old_blkaddr = fio->new_blkaddr;
3088 update_device_state(fio);
3091 up_read(&fio->sbi->io_order_lock);
3094 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3095 enum iostat_type io_type)
3097 struct f2fs_io_info fio = {
3102 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3103 .old_blkaddr = page->index,
3104 .new_blkaddr = page->index,
3106 .encrypted_page = NULL,
3110 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3111 fio.op_flags &= ~REQ_META;
3113 set_page_writeback(page);
3114 ClearPageError(page);
3115 f2fs_submit_page_write(&fio);
3117 stat_inc_meta_count(sbi, page->index);
3118 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3121 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3123 struct f2fs_summary sum;
3125 set_summary(&sum, nid, 0, 0);
3126 do_write_page(&sum, fio);
3128 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3131 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3132 struct f2fs_io_info *fio)
3134 struct f2fs_sb_info *sbi = fio->sbi;
3135 struct f2fs_summary sum;
3137 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3138 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3139 do_write_page(&sum, fio);
3140 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3142 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3145 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3148 struct f2fs_sb_info *sbi = fio->sbi;
3150 fio->new_blkaddr = fio->old_blkaddr;
3151 /* i/o temperature is needed for passing down write hints */
3152 __get_segment_type(fio);
3154 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3155 GET_SEGNO(sbi, fio->new_blkaddr))->type));
3157 stat_inc_inplace_blocks(fio->sbi);
3159 err = f2fs_submit_page_bio(fio);
3161 update_device_state(fio);
3163 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3168 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3173 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3174 if (CURSEG_I(sbi, i)->segno == segno)
3180 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3181 block_t old_blkaddr, block_t new_blkaddr,
3182 bool recover_curseg, bool recover_newaddr)
3184 struct sit_info *sit_i = SIT_I(sbi);
3185 struct curseg_info *curseg;
3186 unsigned int segno, old_cursegno;
3187 struct seg_entry *se;
3189 unsigned short old_blkoff;
3191 segno = GET_SEGNO(sbi, new_blkaddr);
3192 se = get_seg_entry(sbi, segno);
3195 down_write(&SM_I(sbi)->curseg_lock);
3197 if (!recover_curseg) {
3198 /* for recovery flow */
3199 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3200 if (old_blkaddr == NULL_ADDR)
3201 type = CURSEG_COLD_DATA;
3203 type = CURSEG_WARM_DATA;
3206 if (IS_CURSEG(sbi, segno)) {
3207 /* se->type is volatile as SSR allocation */
3208 type = __f2fs_get_curseg(sbi, segno);
3209 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3211 type = CURSEG_WARM_DATA;
3215 f2fs_bug_on(sbi, !IS_DATASEG(type));
3216 curseg = CURSEG_I(sbi, type);
3218 mutex_lock(&curseg->curseg_mutex);
3219 down_write(&sit_i->sentry_lock);
3221 old_cursegno = curseg->segno;
3222 old_blkoff = curseg->next_blkoff;
3224 /* change the current segment */
3225 if (segno != curseg->segno) {
3226 curseg->next_segno = segno;
3227 change_curseg(sbi, type);
3230 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3231 __add_sum_entry(sbi, type, sum);
3233 if (!recover_curseg || recover_newaddr)
3234 update_sit_entry(sbi, new_blkaddr, 1);
3235 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3236 invalidate_mapping_pages(META_MAPPING(sbi),
3237 old_blkaddr, old_blkaddr);
3238 update_sit_entry(sbi, old_blkaddr, -1);
3241 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3242 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3244 locate_dirty_segment(sbi, old_cursegno);
3246 if (recover_curseg) {
3247 if (old_cursegno != curseg->segno) {
3248 curseg->next_segno = old_cursegno;
3249 change_curseg(sbi, type);
3251 curseg->next_blkoff = old_blkoff;
3254 up_write(&sit_i->sentry_lock);
3255 mutex_unlock(&curseg->curseg_mutex);
3256 up_write(&SM_I(sbi)->curseg_lock);
3259 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3260 block_t old_addr, block_t new_addr,
3261 unsigned char version, bool recover_curseg,
3262 bool recover_newaddr)
3264 struct f2fs_summary sum;
3266 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3268 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3269 recover_curseg, recover_newaddr);
3271 f2fs_update_data_blkaddr(dn, new_addr);
3274 void f2fs_wait_on_page_writeback(struct page *page,
3275 enum page_type type, bool ordered)
3277 if (PageWriteback(page)) {
3278 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3280 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3282 wait_on_page_writeback(page);
3284 wait_for_stable_page(page);
3288 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3290 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3293 if (!f2fs_post_read_required(inode))
3296 if (!is_valid_data_blkaddr(sbi, blkaddr))
3299 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3301 f2fs_wait_on_page_writeback(cpage, DATA, true);
3302 f2fs_put_page(cpage, 1);
3306 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3311 for (i = 0; i < len; i++)
3312 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3315 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3318 struct curseg_info *seg_i;
3319 unsigned char *kaddr;
3324 start = start_sum_block(sbi);
3326 page = f2fs_get_meta_page(sbi, start++);
3328 return PTR_ERR(page);
3329 kaddr = (unsigned char *)page_address(page);
3331 /* Step 1: restore nat cache */
3332 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3333 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3335 /* Step 2: restore sit cache */
3336 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3337 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3338 offset = 2 * SUM_JOURNAL_SIZE;
3340 /* Step 3: restore summary entries */
3341 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3342 unsigned short blk_off;
3345 seg_i = CURSEG_I(sbi, i);
3346 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3347 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3348 seg_i->next_segno = segno;
3349 reset_curseg(sbi, i, 0);
3350 seg_i->alloc_type = ckpt->alloc_type[i];
3351 seg_i->next_blkoff = blk_off;
3353 if (seg_i->alloc_type == SSR)
3354 blk_off = sbi->blocks_per_seg;
3356 for (j = 0; j < blk_off; j++) {
3357 struct f2fs_summary *s;
3358 s = (struct f2fs_summary *)(kaddr + offset);
3359 seg_i->sum_blk->entries[j] = *s;
3360 offset += SUMMARY_SIZE;
3361 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3365 f2fs_put_page(page, 1);
3368 page = f2fs_get_meta_page(sbi, start++);
3370 return PTR_ERR(page);
3371 kaddr = (unsigned char *)page_address(page);
3375 f2fs_put_page(page, 1);
3379 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3381 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3382 struct f2fs_summary_block *sum;
3383 struct curseg_info *curseg;
3385 unsigned short blk_off;
3386 unsigned int segno = 0;
3387 block_t blk_addr = 0;
3390 /* get segment number and block addr */
3391 if (IS_DATASEG(type)) {
3392 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3393 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3395 if (__exist_node_summaries(sbi))
3396 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3398 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3400 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3402 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3404 if (__exist_node_summaries(sbi))
3405 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3406 type - CURSEG_HOT_NODE);
3408 blk_addr = GET_SUM_BLOCK(sbi, segno);
3411 new = f2fs_get_meta_page(sbi, blk_addr);
3413 return PTR_ERR(new);
3414 sum = (struct f2fs_summary_block *)page_address(new);
3416 if (IS_NODESEG(type)) {
3417 if (__exist_node_summaries(sbi)) {
3418 struct f2fs_summary *ns = &sum->entries[0];
3420 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3422 ns->ofs_in_node = 0;
3425 err = f2fs_restore_node_summary(sbi, segno, sum);
3431 /* set uncompleted segment to curseg */
3432 curseg = CURSEG_I(sbi, type);
3433 mutex_lock(&curseg->curseg_mutex);
3435 /* update journal info */
3436 down_write(&curseg->journal_rwsem);
3437 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3438 up_write(&curseg->journal_rwsem);
3440 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3441 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3442 curseg->next_segno = segno;
3443 reset_curseg(sbi, type, 0);
3444 curseg->alloc_type = ckpt->alloc_type[type];
3445 curseg->next_blkoff = blk_off;
3446 mutex_unlock(&curseg->curseg_mutex);
3448 f2fs_put_page(new, 1);
3452 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3454 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3455 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3456 int type = CURSEG_HOT_DATA;
3459 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3460 int npages = f2fs_npages_for_summary_flush(sbi, true);
3463 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3466 /* restore for compacted data summary */
3467 err = read_compacted_summaries(sbi);
3470 type = CURSEG_HOT_NODE;
3473 if (__exist_node_summaries(sbi))
3474 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3475 NR_CURSEG_TYPE - type, META_CP, true);
3477 for (; type <= CURSEG_COLD_NODE; type++) {
3478 err = read_normal_summaries(sbi, type);
3483 /* sanity check for summary blocks */
3484 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3485 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3491 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3494 unsigned char *kaddr;
3495 struct f2fs_summary *summary;
3496 struct curseg_info *seg_i;
3497 int written_size = 0;
3500 page = f2fs_grab_meta_page(sbi, blkaddr++);
3501 kaddr = (unsigned char *)page_address(page);
3502 memset(kaddr, 0, PAGE_SIZE);
3504 /* Step 1: write nat cache */
3505 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3506 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3507 written_size += SUM_JOURNAL_SIZE;
3509 /* Step 2: write sit cache */
3510 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3511 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3512 written_size += SUM_JOURNAL_SIZE;
3514 /* Step 3: write summary entries */
3515 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3516 unsigned short blkoff;
3517 seg_i = CURSEG_I(sbi, i);
3518 if (sbi->ckpt->alloc_type[i] == SSR)
3519 blkoff = sbi->blocks_per_seg;
3521 blkoff = curseg_blkoff(sbi, i);
3523 for (j = 0; j < blkoff; j++) {
3525 page = f2fs_grab_meta_page(sbi, blkaddr++);
3526 kaddr = (unsigned char *)page_address(page);
3527 memset(kaddr, 0, PAGE_SIZE);
3530 summary = (struct f2fs_summary *)(kaddr + written_size);
3531 *summary = seg_i->sum_blk->entries[j];
3532 written_size += SUMMARY_SIZE;
3534 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3538 set_page_dirty(page);
3539 f2fs_put_page(page, 1);
3544 set_page_dirty(page);
3545 f2fs_put_page(page, 1);
3549 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3550 block_t blkaddr, int type)
3553 if (IS_DATASEG(type))
3554 end = type + NR_CURSEG_DATA_TYPE;
3556 end = type + NR_CURSEG_NODE_TYPE;
3558 for (i = type; i < end; i++)
3559 write_current_sum_page(sbi, i, blkaddr + (i - type));
3562 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3564 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3565 write_compacted_summaries(sbi, start_blk);
3567 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3570 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3572 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3575 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3576 unsigned int val, int alloc)
3580 if (type == NAT_JOURNAL) {
3581 for (i = 0; i < nats_in_cursum(journal); i++) {
3582 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3585 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3586 return update_nats_in_cursum(journal, 1);
3587 } else if (type == SIT_JOURNAL) {
3588 for (i = 0; i < sits_in_cursum(journal); i++)
3589 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3591 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3592 return update_sits_in_cursum(journal, 1);
3597 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3600 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3603 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3606 struct sit_info *sit_i = SIT_I(sbi);
3608 pgoff_t src_off, dst_off;
3610 src_off = current_sit_addr(sbi, start);
3611 dst_off = next_sit_addr(sbi, src_off);
3613 page = f2fs_grab_meta_page(sbi, dst_off);
3614 seg_info_to_sit_page(sbi, page, start);
3616 set_page_dirty(page);
3617 set_to_next_sit(sit_i, start);
3622 static struct sit_entry_set *grab_sit_entry_set(void)
3624 struct sit_entry_set *ses =
3625 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3628 INIT_LIST_HEAD(&ses->set_list);
3632 static void release_sit_entry_set(struct sit_entry_set *ses)
3634 list_del(&ses->set_list);
3635 kmem_cache_free(sit_entry_set_slab, ses);
3638 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3639 struct list_head *head)
3641 struct sit_entry_set *next = ses;
3643 if (list_is_last(&ses->set_list, head))
3646 list_for_each_entry_continue(next, head, set_list)
3647 if (ses->entry_cnt <= next->entry_cnt)
3650 list_move_tail(&ses->set_list, &next->set_list);
3653 static void add_sit_entry(unsigned int segno, struct list_head *head)
3655 struct sit_entry_set *ses;
3656 unsigned int start_segno = START_SEGNO(segno);
3658 list_for_each_entry(ses, head, set_list) {
3659 if (ses->start_segno == start_segno) {
3661 adjust_sit_entry_set(ses, head);
3666 ses = grab_sit_entry_set();
3668 ses->start_segno = start_segno;
3670 list_add(&ses->set_list, head);
3673 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3675 struct f2fs_sm_info *sm_info = SM_I(sbi);
3676 struct list_head *set_list = &sm_info->sit_entry_set;
3677 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3680 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3681 add_sit_entry(segno, set_list);
3684 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3686 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3687 struct f2fs_journal *journal = curseg->journal;
3690 down_write(&curseg->journal_rwsem);
3691 for (i = 0; i < sits_in_cursum(journal); i++) {
3695 segno = le32_to_cpu(segno_in_journal(journal, i));
3696 dirtied = __mark_sit_entry_dirty(sbi, segno);
3699 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3701 update_sits_in_cursum(journal, -i);
3702 up_write(&curseg->journal_rwsem);
3706 * CP calls this function, which flushes SIT entries including sit_journal,
3707 * and moves prefree segs to free segs.
3709 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3711 struct sit_info *sit_i = SIT_I(sbi);
3712 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3713 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3714 struct f2fs_journal *journal = curseg->journal;
3715 struct sit_entry_set *ses, *tmp;
3716 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3717 bool to_journal = true;
3718 struct seg_entry *se;
3720 down_write(&sit_i->sentry_lock);
3722 if (!sit_i->dirty_sentries)
3726 * add and account sit entries of dirty bitmap in sit entry
3729 add_sits_in_set(sbi);
3732 * if there are no enough space in journal to store dirty sit
3733 * entries, remove all entries from journal and add and account
3734 * them in sit entry set.
3736 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3737 remove_sits_in_journal(sbi);
3740 * there are two steps to flush sit entries:
3741 * #1, flush sit entries to journal in current cold data summary block.
3742 * #2, flush sit entries to sit page.
3744 list_for_each_entry_safe(ses, tmp, head, set_list) {
3745 struct page *page = NULL;
3746 struct f2fs_sit_block *raw_sit = NULL;
3747 unsigned int start_segno = ses->start_segno;
3748 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3749 (unsigned long)MAIN_SEGS(sbi));
3750 unsigned int segno = start_segno;
3753 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3757 down_write(&curseg->journal_rwsem);
3759 page = get_next_sit_page(sbi, start_segno);
3760 raw_sit = page_address(page);
3763 /* flush dirty sit entries in region of current sit set */
3764 for_each_set_bit_from(segno, bitmap, end) {
3765 int offset, sit_offset;
3767 se = get_seg_entry(sbi, segno);
3768 #ifdef CONFIG_F2FS_CHECK_FS
3769 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3770 SIT_VBLOCK_MAP_SIZE))
3771 f2fs_bug_on(sbi, 1);
3774 /* add discard candidates */
3775 if (!(cpc->reason & CP_DISCARD)) {
3776 cpc->trim_start = segno;
3777 add_discard_addrs(sbi, cpc, false);
3781 offset = f2fs_lookup_journal_in_cursum(journal,
3782 SIT_JOURNAL, segno, 1);
3783 f2fs_bug_on(sbi, offset < 0);
3784 segno_in_journal(journal, offset) =
3786 seg_info_to_raw_sit(se,
3787 &sit_in_journal(journal, offset));
3788 check_block_count(sbi, segno,
3789 &sit_in_journal(journal, offset));
3791 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3792 seg_info_to_raw_sit(se,
3793 &raw_sit->entries[sit_offset]);
3794 check_block_count(sbi, segno,
3795 &raw_sit->entries[sit_offset]);
3798 __clear_bit(segno, bitmap);
3799 sit_i->dirty_sentries--;
3804 up_write(&curseg->journal_rwsem);
3806 f2fs_put_page(page, 1);
3808 f2fs_bug_on(sbi, ses->entry_cnt);
3809 release_sit_entry_set(ses);
3812 f2fs_bug_on(sbi, !list_empty(head));
3813 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3815 if (cpc->reason & CP_DISCARD) {
3816 __u64 trim_start = cpc->trim_start;
3818 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3819 add_discard_addrs(sbi, cpc, false);
3821 cpc->trim_start = trim_start;
3823 up_write(&sit_i->sentry_lock);
3825 set_prefree_as_free_segments(sbi);
3828 static int build_sit_info(struct f2fs_sb_info *sbi)
3830 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3831 struct sit_info *sit_i;
3832 unsigned int sit_segs, start;
3834 unsigned int bitmap_size;
3836 /* allocate memory for SIT information */
3837 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3841 SM_I(sbi)->sit_info = sit_i;
3844 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3847 if (!sit_i->sentries)
3850 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3851 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3853 if (!sit_i->dirty_sentries_bitmap)
3856 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3857 sit_i->sentries[start].cur_valid_map
3858 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3859 sit_i->sentries[start].ckpt_valid_map
3860 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3861 if (!sit_i->sentries[start].cur_valid_map ||
3862 !sit_i->sentries[start].ckpt_valid_map)
3865 #ifdef CONFIG_F2FS_CHECK_FS
3866 sit_i->sentries[start].cur_valid_map_mir
3867 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3868 if (!sit_i->sentries[start].cur_valid_map_mir)
3872 sit_i->sentries[start].discard_map
3873 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3875 if (!sit_i->sentries[start].discard_map)
3879 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3880 if (!sit_i->tmp_map)
3883 if (sbi->segs_per_sec > 1) {
3884 sit_i->sec_entries =
3885 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3888 if (!sit_i->sec_entries)
3892 /* get information related with SIT */
3893 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3895 /* setup SIT bitmap from ckeckpoint pack */
3896 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3897 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3899 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3900 if (!sit_i->sit_bitmap)
3903 #ifdef CONFIG_F2FS_CHECK_FS
3904 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3905 if (!sit_i->sit_bitmap_mir)
3909 /* init SIT information */
3910 sit_i->s_ops = &default_salloc_ops;
3912 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3913 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3914 sit_i->written_valid_blocks = 0;
3915 sit_i->bitmap_size = bitmap_size;
3916 sit_i->dirty_sentries = 0;
3917 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3918 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3919 sit_i->mounted_time = ktime_get_real_seconds();
3920 init_rwsem(&sit_i->sentry_lock);
3924 static int build_free_segmap(struct f2fs_sb_info *sbi)
3926 struct free_segmap_info *free_i;
3927 unsigned int bitmap_size, sec_bitmap_size;
3929 /* allocate memory for free segmap information */
3930 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3934 SM_I(sbi)->free_info = free_i;
3936 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3937 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3938 if (!free_i->free_segmap)
3941 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3942 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3943 if (!free_i->free_secmap)
3946 /* set all segments as dirty temporarily */
3947 memset(free_i->free_segmap, 0xff, bitmap_size);
3948 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3950 /* init free segmap information */
3951 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3952 free_i->free_segments = 0;
3953 free_i->free_sections = 0;
3954 spin_lock_init(&free_i->segmap_lock);
3958 static int build_curseg(struct f2fs_sb_info *sbi)
3960 struct curseg_info *array;
3963 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3968 SM_I(sbi)->curseg_array = array;
3970 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3971 mutex_init(&array[i].curseg_mutex);
3972 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3973 if (!array[i].sum_blk)
3975 init_rwsem(&array[i].journal_rwsem);
3976 array[i].journal = f2fs_kzalloc(sbi,
3977 sizeof(struct f2fs_journal), GFP_KERNEL);
3978 if (!array[i].journal)
3980 array[i].segno = NULL_SEGNO;
3981 array[i].next_blkoff = 0;
3983 return restore_curseg_summaries(sbi);
3986 static int build_sit_entries(struct f2fs_sb_info *sbi)
3988 struct sit_info *sit_i = SIT_I(sbi);
3989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3990 struct f2fs_journal *journal = curseg->journal;
3991 struct seg_entry *se;
3992 struct f2fs_sit_entry sit;
3993 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3994 unsigned int i, start, end;
3995 unsigned int readed, start_blk = 0;
3997 block_t total_node_blocks = 0;
4000 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4003 start = start_blk * sit_i->sents_per_block;
4004 end = (start_blk + readed) * sit_i->sents_per_block;
4006 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4007 struct f2fs_sit_block *sit_blk;
4010 se = &sit_i->sentries[start];
4011 page = get_current_sit_page(sbi, start);
4013 return PTR_ERR(page);
4014 sit_blk = (struct f2fs_sit_block *)page_address(page);
4015 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4016 f2fs_put_page(page, 1);
4018 err = check_block_count(sbi, start, &sit);
4021 seg_info_from_raw_sit(se, &sit);
4022 if (IS_NODESEG(se->type))
4023 total_node_blocks += se->valid_blocks;
4025 /* build discard map only one time */
4026 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4027 memset(se->discard_map, 0xff,
4028 SIT_VBLOCK_MAP_SIZE);
4030 memcpy(se->discard_map,
4032 SIT_VBLOCK_MAP_SIZE);
4033 sbi->discard_blks +=
4034 sbi->blocks_per_seg -
4038 if (sbi->segs_per_sec > 1)
4039 get_sec_entry(sbi, start)->valid_blocks +=
4042 start_blk += readed;
4043 } while (start_blk < sit_blk_cnt);
4045 down_read(&curseg->journal_rwsem);
4046 for (i = 0; i < sits_in_cursum(journal); i++) {
4047 unsigned int old_valid_blocks;
4049 start = le32_to_cpu(segno_in_journal(journal, i));
4050 if (start >= MAIN_SEGS(sbi)) {
4051 f2fs_msg(sbi->sb, KERN_ERR,
4052 "Wrong journal entry on segno %u",
4054 set_sbi_flag(sbi, SBI_NEED_FSCK);
4059 se = &sit_i->sentries[start];
4060 sit = sit_in_journal(journal, i);
4062 old_valid_blocks = se->valid_blocks;
4063 if (IS_NODESEG(se->type))
4064 total_node_blocks -= old_valid_blocks;
4066 err = check_block_count(sbi, start, &sit);
4069 seg_info_from_raw_sit(se, &sit);
4070 if (IS_NODESEG(se->type))
4071 total_node_blocks += se->valid_blocks;
4073 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4074 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4076 memcpy(se->discard_map, se->cur_valid_map,
4077 SIT_VBLOCK_MAP_SIZE);
4078 sbi->discard_blks += old_valid_blocks;
4079 sbi->discard_blks -= se->valid_blocks;
4082 if (sbi->segs_per_sec > 1) {
4083 get_sec_entry(sbi, start)->valid_blocks +=
4085 get_sec_entry(sbi, start)->valid_blocks -=
4089 up_read(&curseg->journal_rwsem);
4091 if (!err && total_node_blocks != valid_node_count(sbi)) {
4092 f2fs_msg(sbi->sb, KERN_ERR,
4093 "SIT is corrupted node# %u vs %u",
4094 total_node_blocks, valid_node_count(sbi));
4095 set_sbi_flag(sbi, SBI_NEED_FSCK);
4102 static void init_free_segmap(struct f2fs_sb_info *sbi)
4107 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4108 struct seg_entry *sentry = get_seg_entry(sbi, start);
4109 if (!sentry->valid_blocks)
4110 __set_free(sbi, start);
4112 SIT_I(sbi)->written_valid_blocks +=
4113 sentry->valid_blocks;
4116 /* set use the current segments */
4117 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4118 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4119 __set_test_and_inuse(sbi, curseg_t->segno);
4123 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4125 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4126 struct free_segmap_info *free_i = FREE_I(sbi);
4127 unsigned int segno = 0, offset = 0;
4128 unsigned short valid_blocks;
4131 /* find dirty segment based on free segmap */
4132 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4133 if (segno >= MAIN_SEGS(sbi))
4136 valid_blocks = get_valid_blocks(sbi, segno, false);
4137 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4139 if (valid_blocks > sbi->blocks_per_seg) {
4140 f2fs_bug_on(sbi, 1);
4143 mutex_lock(&dirty_i->seglist_lock);
4144 __locate_dirty_segment(sbi, segno, DIRTY);
4145 mutex_unlock(&dirty_i->seglist_lock);
4149 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4151 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4152 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4154 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4155 if (!dirty_i->victim_secmap)
4160 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4162 struct dirty_seglist_info *dirty_i;
4163 unsigned int bitmap_size, i;
4165 /* allocate memory for dirty segments list information */
4166 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4171 SM_I(sbi)->dirty_info = dirty_i;
4172 mutex_init(&dirty_i->seglist_lock);
4174 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4176 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4177 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4179 if (!dirty_i->dirty_segmap[i])
4183 init_dirty_segmap(sbi);
4184 return init_victim_secmap(sbi);
4188 * Update min, max modified time for cost-benefit GC algorithm
4190 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4192 struct sit_info *sit_i = SIT_I(sbi);
4195 down_write(&sit_i->sentry_lock);
4197 sit_i->min_mtime = ULLONG_MAX;
4199 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4201 unsigned long long mtime = 0;
4203 for (i = 0; i < sbi->segs_per_sec; i++)
4204 mtime += get_seg_entry(sbi, segno + i)->mtime;
4206 mtime = div_u64(mtime, sbi->segs_per_sec);
4208 if (sit_i->min_mtime > mtime)
4209 sit_i->min_mtime = mtime;
4211 sit_i->max_mtime = get_mtime(sbi, false);
4212 up_write(&sit_i->sentry_lock);
4215 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4217 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4218 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4219 struct f2fs_sm_info *sm_info;
4222 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4227 sbi->sm_info = sm_info;
4228 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4229 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4230 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4231 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4232 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4233 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4234 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4235 sm_info->rec_prefree_segments = sm_info->main_segments *
4236 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4237 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4238 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4240 if (!test_opt(sbi, LFS))
4241 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4242 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4243 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4244 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4245 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4246 sm_info->min_ssr_sections = reserved_sections(sbi);
4248 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4250 init_rwsem(&sm_info->curseg_lock);
4252 if (!f2fs_readonly(sbi->sb)) {
4253 err = f2fs_create_flush_cmd_control(sbi);
4258 err = create_discard_cmd_control(sbi);
4262 err = build_sit_info(sbi);
4265 err = build_free_segmap(sbi);
4268 err = build_curseg(sbi);
4272 /* reinit free segmap based on SIT */
4273 err = build_sit_entries(sbi);
4277 init_free_segmap(sbi);
4278 err = build_dirty_segmap(sbi);
4282 init_min_max_mtime(sbi);
4286 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4287 enum dirty_type dirty_type)
4289 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4291 mutex_lock(&dirty_i->seglist_lock);
4292 kvfree(dirty_i->dirty_segmap[dirty_type]);
4293 dirty_i->nr_dirty[dirty_type] = 0;
4294 mutex_unlock(&dirty_i->seglist_lock);
4297 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4299 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4300 kvfree(dirty_i->victim_secmap);
4303 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4305 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4311 /* discard pre-free/dirty segments list */
4312 for (i = 0; i < NR_DIRTY_TYPE; i++)
4313 discard_dirty_segmap(sbi, i);
4315 destroy_victim_secmap(sbi);
4316 SM_I(sbi)->dirty_info = NULL;
4320 static void destroy_curseg(struct f2fs_sb_info *sbi)
4322 struct curseg_info *array = SM_I(sbi)->curseg_array;
4327 SM_I(sbi)->curseg_array = NULL;
4328 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4329 kfree(array[i].sum_blk);
4330 kfree(array[i].journal);
4335 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4337 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4340 SM_I(sbi)->free_info = NULL;
4341 kvfree(free_i->free_segmap);
4342 kvfree(free_i->free_secmap);
4346 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4348 struct sit_info *sit_i = SIT_I(sbi);
4354 if (sit_i->sentries) {
4355 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4356 kfree(sit_i->sentries[start].cur_valid_map);
4357 #ifdef CONFIG_F2FS_CHECK_FS
4358 kfree(sit_i->sentries[start].cur_valid_map_mir);
4360 kfree(sit_i->sentries[start].ckpt_valid_map);
4361 kfree(sit_i->sentries[start].discard_map);
4364 kfree(sit_i->tmp_map);
4366 kvfree(sit_i->sentries);
4367 kvfree(sit_i->sec_entries);
4368 kvfree(sit_i->dirty_sentries_bitmap);
4370 SM_I(sbi)->sit_info = NULL;
4371 kfree(sit_i->sit_bitmap);
4372 #ifdef CONFIG_F2FS_CHECK_FS
4373 kfree(sit_i->sit_bitmap_mir);
4378 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4380 struct f2fs_sm_info *sm_info = SM_I(sbi);
4384 f2fs_destroy_flush_cmd_control(sbi, true);
4385 destroy_discard_cmd_control(sbi);
4386 destroy_dirty_segmap(sbi);
4387 destroy_curseg(sbi);
4388 destroy_free_segmap(sbi);
4389 destroy_sit_info(sbi);
4390 sbi->sm_info = NULL;
4394 int __init f2fs_create_segment_manager_caches(void)
4396 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4397 sizeof(struct discard_entry));
4398 if (!discard_entry_slab)
4401 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4402 sizeof(struct discard_cmd));
4403 if (!discard_cmd_slab)
4404 goto destroy_discard_entry;
4406 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4407 sizeof(struct sit_entry_set));
4408 if (!sit_entry_set_slab)
4409 goto destroy_discard_cmd;
4411 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4412 sizeof(struct inmem_pages));
4413 if (!inmem_entry_slab)
4414 goto destroy_sit_entry_set;
4417 destroy_sit_entry_set:
4418 kmem_cache_destroy(sit_entry_set_slab);
4419 destroy_discard_cmd:
4420 kmem_cache_destroy(discard_cmd_slab);
4421 destroy_discard_entry:
4422 kmem_cache_destroy(discard_entry_slab);
4427 void f2fs_destroy_segment_manager_caches(void)
4429 kmem_cache_destroy(sit_entry_set_slab);
4430 kmem_cache_destroy(discard_cmd_slab);
4431 kmem_cache_destroy(discard_entry_slab);
4432 kmem_cache_destroy(inmem_entry_slab);