]> Git Repo - linux.git/blob - fs/f2fs/segment.c
mm, kmemleak: little optimization while scanning
[linux.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (test_opt(sbi, LFS))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189         struct f2fs_inode_info *fi = F2FS_I(inode);
190         struct inmem_pages *new;
191
192         f2fs_trace_pid(page);
193
194         set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195         SetPagePrivate(page);
196
197         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198
199         /* add atomic page indices to the list */
200         new->page = page;
201         INIT_LIST_HEAD(&new->list);
202
203         /* increase reference count with clean state */
204         mutex_lock(&fi->inmem_lock);
205         get_page(page);
206         list_add_tail(&new->list, &fi->inmem_pages);
207         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
208         if (list_empty(&fi->inmem_ilist))
209                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
210         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
211         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
212         mutex_unlock(&fi->inmem_lock);
213
214         trace_f2fs_register_inmem_page(page, INMEM);
215 }
216
217 static int __revoke_inmem_pages(struct inode *inode,
218                                 struct list_head *head, bool drop, bool recover)
219 {
220         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221         struct inmem_pages *cur, *tmp;
222         int err = 0;
223
224         list_for_each_entry_safe(cur, tmp, head, list) {
225                 struct page *page = cur->page;
226
227                 if (drop)
228                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230                 lock_page(page);
231
232                 f2fs_wait_on_page_writeback(page, DATA, true);
233
234                 if (recover) {
235                         struct dnode_of_data dn;
236                         struct node_info ni;
237
238                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240                         set_new_dnode(&dn, inode, NULL, NULL, 0);
241                         err = f2fs_get_dnode_of_data(&dn, page->index,
242                                                                 LOOKUP_NODE);
243                         if (err) {
244                                 if (err == -ENOMEM) {
245                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
246                                         cond_resched();
247                                         goto retry;
248                                 }
249                                 err = -EAGAIN;
250                                 goto next;
251                         }
252
253                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
254                         if (err) {
255                                 f2fs_put_dnode(&dn);
256                                 return err;
257                         }
258
259                         if (cur->old_addr == NEW_ADDR) {
260                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
261                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
262                         } else
263                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
264                                         cur->old_addr, ni.version, true, true);
265                         f2fs_put_dnode(&dn);
266                 }
267 next:
268                 /* we don't need to invalidate this in the sccessful status */
269                 if (drop || recover) {
270                         ClearPageUptodate(page);
271                         clear_cold_data(page);
272                 }
273                 set_page_private(page, 0);
274                 ClearPagePrivate(page);
275                 f2fs_put_page(page, 1);
276
277                 list_del(&cur->list);
278                 kmem_cache_free(inmem_entry_slab, cur);
279                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
280         }
281         return err;
282 }
283
284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
285 {
286         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
287         struct inode *inode;
288         struct f2fs_inode_info *fi;
289 next:
290         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
291         if (list_empty(head)) {
292                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
293                 return;
294         }
295         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
296         inode = igrab(&fi->vfs_inode);
297         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298
299         if (inode) {
300                 if (gc_failure) {
301                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
302                                 goto drop;
303                         goto skip;
304                 }
305 drop:
306                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
307                 f2fs_drop_inmem_pages(inode);
308                 iput(inode);
309         }
310 skip:
311         congestion_wait(BLK_RW_ASYNC, HZ/50);
312         cond_resched();
313         goto next;
314 }
315
316 void f2fs_drop_inmem_pages(struct inode *inode)
317 {
318         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
319         struct f2fs_inode_info *fi = F2FS_I(inode);
320
321         mutex_lock(&fi->inmem_lock);
322         __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
323         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
324         if (!list_empty(&fi->inmem_ilist))
325                 list_del_init(&fi->inmem_ilist);
326         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
327         mutex_unlock(&fi->inmem_lock);
328
329         clear_inode_flag(inode, FI_ATOMIC_FILE);
330         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
331         stat_dec_atomic_write(inode);
332 }
333
334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
335 {
336         struct f2fs_inode_info *fi = F2FS_I(inode);
337         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
338         struct list_head *head = &fi->inmem_pages;
339         struct inmem_pages *cur = NULL;
340
341         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
342
343         mutex_lock(&fi->inmem_lock);
344         list_for_each_entry(cur, head, list) {
345                 if (cur->page == page)
346                         break;
347         }
348
349         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
350         list_del(&cur->list);
351         mutex_unlock(&fi->inmem_lock);
352
353         dec_page_count(sbi, F2FS_INMEM_PAGES);
354         kmem_cache_free(inmem_entry_slab, cur);
355
356         ClearPageUptodate(page);
357         set_page_private(page, 0);
358         ClearPagePrivate(page);
359         f2fs_put_page(page, 0);
360
361         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
362 }
363
364 static int __f2fs_commit_inmem_pages(struct inode *inode)
365 {
366         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
367         struct f2fs_inode_info *fi = F2FS_I(inode);
368         struct inmem_pages *cur, *tmp;
369         struct f2fs_io_info fio = {
370                 .sbi = sbi,
371                 .ino = inode->i_ino,
372                 .type = DATA,
373                 .op = REQ_OP_WRITE,
374                 .op_flags = REQ_SYNC | REQ_PRIO,
375                 .io_type = FS_DATA_IO,
376         };
377         struct list_head revoke_list;
378         bool submit_bio = false;
379         int err = 0;
380
381         INIT_LIST_HEAD(&revoke_list);
382
383         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
384                 struct page *page = cur->page;
385
386                 lock_page(page);
387                 if (page->mapping == inode->i_mapping) {
388                         trace_f2fs_commit_inmem_page(page, INMEM);
389
390                         set_page_dirty(page);
391                         f2fs_wait_on_page_writeback(page, DATA, true);
392                         if (clear_page_dirty_for_io(page)) {
393                                 inode_dec_dirty_pages(inode);
394                                 f2fs_remove_dirty_inode(inode);
395                         }
396 retry:
397                         fio.page = page;
398                         fio.old_blkaddr = NULL_ADDR;
399                         fio.encrypted_page = NULL;
400                         fio.need_lock = LOCK_DONE;
401                         err = f2fs_do_write_data_page(&fio);
402                         if (err) {
403                                 if (err == -ENOMEM) {
404                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
405                                         cond_resched();
406                                         goto retry;
407                                 }
408                                 unlock_page(page);
409                                 break;
410                         }
411                         /* record old blkaddr for revoking */
412                         cur->old_addr = fio.old_blkaddr;
413                         submit_bio = true;
414                 }
415                 unlock_page(page);
416                 list_move_tail(&cur->list, &revoke_list);
417         }
418
419         if (submit_bio)
420                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
421
422         if (err) {
423                 /*
424                  * try to revoke all committed pages, but still we could fail
425                  * due to no memory or other reason, if that happened, EAGAIN
426                  * will be returned, which means in such case, transaction is
427                  * already not integrity, caller should use journal to do the
428                  * recovery or rewrite & commit last transaction. For other
429                  * error number, revoking was done by filesystem itself.
430                  */
431                 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
432
433                 /* drop all uncommitted pages */
434                 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
435         } else {
436                 __revoke_inmem_pages(inode, &revoke_list, false, false);
437         }
438
439         return err;
440 }
441
442 int f2fs_commit_inmem_pages(struct inode *inode)
443 {
444         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
445         struct f2fs_inode_info *fi = F2FS_I(inode);
446         int err;
447
448         f2fs_balance_fs(sbi, true);
449
450         down_write(&fi->i_gc_rwsem[WRITE]);
451
452         f2fs_lock_op(sbi);
453         set_inode_flag(inode, FI_ATOMIC_COMMIT);
454
455         mutex_lock(&fi->inmem_lock);
456         err = __f2fs_commit_inmem_pages(inode);
457
458         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
459         if (!list_empty(&fi->inmem_ilist))
460                 list_del_init(&fi->inmem_ilist);
461         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
462         mutex_unlock(&fi->inmem_lock);
463
464         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
465
466         f2fs_unlock_op(sbi);
467         up_write(&fi->i_gc_rwsem[WRITE]);
468
469         return err;
470 }
471
472 /*
473  * This function balances dirty node and dentry pages.
474  * In addition, it controls garbage collection.
475  */
476 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
477 {
478         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
479                 f2fs_show_injection_info(FAULT_CHECKPOINT);
480                 f2fs_stop_checkpoint(sbi, false);
481         }
482
483         /* balance_fs_bg is able to be pending */
484         if (need && excess_cached_nats(sbi))
485                 f2fs_balance_fs_bg(sbi);
486
487         if (f2fs_is_checkpoint_ready(sbi))
488                 return;
489
490         /*
491          * We should do GC or end up with checkpoint, if there are so many dirty
492          * dir/node pages without enough free segments.
493          */
494         if (has_not_enough_free_secs(sbi, 0, 0)) {
495                 mutex_lock(&sbi->gc_mutex);
496                 f2fs_gc(sbi, false, false, NULL_SEGNO);
497         }
498 }
499
500 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
501 {
502         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
503                 return;
504
505         /* try to shrink extent cache when there is no enough memory */
506         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
507                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
508
509         /* check the # of cached NAT entries */
510         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
511                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
512
513         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
514                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
515         else
516                 f2fs_build_free_nids(sbi, false, false);
517
518         if (!is_idle(sbi, REQ_TIME) &&
519                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
520                 return;
521
522         /* checkpoint is the only way to shrink partial cached entries */
523         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
524                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
525                         excess_prefree_segs(sbi) ||
526                         excess_dirty_nats(sbi) ||
527                         excess_dirty_nodes(sbi) ||
528                         f2fs_time_over(sbi, CP_TIME)) {
529                 if (test_opt(sbi, DATA_FLUSH)) {
530                         struct blk_plug plug;
531
532                         blk_start_plug(&plug);
533                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
534                         blk_finish_plug(&plug);
535                 }
536                 f2fs_sync_fs(sbi->sb, true);
537                 stat_inc_bg_cp_count(sbi->stat_info);
538         }
539 }
540
541 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
542                                 struct block_device *bdev)
543 {
544         struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
545         int ret;
546
547         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
548         bio_set_dev(bio, bdev);
549         ret = submit_bio_wait(bio);
550         bio_put(bio);
551
552         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553                                 test_opt(sbi, FLUSH_MERGE), ret);
554         return ret;
555 }
556
557 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
558 {
559         int ret = 0;
560         int i;
561
562         if (!sbi->s_ndevs)
563                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
564
565         for (i = 0; i < sbi->s_ndevs; i++) {
566                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
567                         continue;
568                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
569                 if (ret)
570                         break;
571         }
572         return ret;
573 }
574
575 static int issue_flush_thread(void *data)
576 {
577         struct f2fs_sb_info *sbi = data;
578         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
579         wait_queue_head_t *q = &fcc->flush_wait_queue;
580 repeat:
581         if (kthread_should_stop())
582                 return 0;
583
584         sb_start_intwrite(sbi->sb);
585
586         if (!llist_empty(&fcc->issue_list)) {
587                 struct flush_cmd *cmd, *next;
588                 int ret;
589
590                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
592
593                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
594
595                 ret = submit_flush_wait(sbi, cmd->ino);
596                 atomic_inc(&fcc->issued_flush);
597
598                 llist_for_each_entry_safe(cmd, next,
599                                           fcc->dispatch_list, llnode) {
600                         cmd->ret = ret;
601                         complete(&cmd->wait);
602                 }
603                 fcc->dispatch_list = NULL;
604         }
605
606         sb_end_intwrite(sbi->sb);
607
608         wait_event_interruptible(*q,
609                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
610         goto repeat;
611 }
612
613 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
614 {
615         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
616         struct flush_cmd cmd;
617         int ret;
618
619         if (test_opt(sbi, NOBARRIER))
620                 return 0;
621
622         if (!test_opt(sbi, FLUSH_MERGE)) {
623                 ret = submit_flush_wait(sbi, ino);
624                 atomic_inc(&fcc->issued_flush);
625                 return ret;
626         }
627
628         if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
629                 ret = submit_flush_wait(sbi, ino);
630                 atomic_dec(&fcc->issing_flush);
631
632                 atomic_inc(&fcc->issued_flush);
633                 return ret;
634         }
635
636         cmd.ino = ino;
637         init_completion(&cmd.wait);
638
639         llist_add(&cmd.llnode, &fcc->issue_list);
640
641         /* update issue_list before we wake up issue_flush thread */
642         smp_mb();
643
644         if (waitqueue_active(&fcc->flush_wait_queue))
645                 wake_up(&fcc->flush_wait_queue);
646
647         if (fcc->f2fs_issue_flush) {
648                 wait_for_completion(&cmd.wait);
649                 atomic_dec(&fcc->issing_flush);
650         } else {
651                 struct llist_node *list;
652
653                 list = llist_del_all(&fcc->issue_list);
654                 if (!list) {
655                         wait_for_completion(&cmd.wait);
656                         atomic_dec(&fcc->issing_flush);
657                 } else {
658                         struct flush_cmd *tmp, *next;
659
660                         ret = submit_flush_wait(sbi, ino);
661
662                         llist_for_each_entry_safe(tmp, next, list, llnode) {
663                                 if (tmp == &cmd) {
664                                         cmd.ret = ret;
665                                         atomic_dec(&fcc->issing_flush);
666                                         continue;
667                                 }
668                                 tmp->ret = ret;
669                                 complete(&tmp->wait);
670                         }
671                 }
672         }
673
674         return cmd.ret;
675 }
676
677 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
678 {
679         dev_t dev = sbi->sb->s_bdev->bd_dev;
680         struct flush_cmd_control *fcc;
681         int err = 0;
682
683         if (SM_I(sbi)->fcc_info) {
684                 fcc = SM_I(sbi)->fcc_info;
685                 if (fcc->f2fs_issue_flush)
686                         return err;
687                 goto init_thread;
688         }
689
690         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
691         if (!fcc)
692                 return -ENOMEM;
693         atomic_set(&fcc->issued_flush, 0);
694         atomic_set(&fcc->issing_flush, 0);
695         init_waitqueue_head(&fcc->flush_wait_queue);
696         init_llist_head(&fcc->issue_list);
697         SM_I(sbi)->fcc_info = fcc;
698         if (!test_opt(sbi, FLUSH_MERGE))
699                 return err;
700
701 init_thread:
702         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
703                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
704         if (IS_ERR(fcc->f2fs_issue_flush)) {
705                 err = PTR_ERR(fcc->f2fs_issue_flush);
706                 kfree(fcc);
707                 SM_I(sbi)->fcc_info = NULL;
708                 return err;
709         }
710
711         return err;
712 }
713
714 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
715 {
716         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
717
718         if (fcc && fcc->f2fs_issue_flush) {
719                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
720
721                 fcc->f2fs_issue_flush = NULL;
722                 kthread_stop(flush_thread);
723         }
724         if (free) {
725                 kfree(fcc);
726                 SM_I(sbi)->fcc_info = NULL;
727         }
728 }
729
730 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
731 {
732         int ret = 0, i;
733
734         if (!sbi->s_ndevs)
735                 return 0;
736
737         for (i = 1; i < sbi->s_ndevs; i++) {
738                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
739                         continue;
740                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
741                 if (ret)
742                         break;
743
744                 spin_lock(&sbi->dev_lock);
745                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
746                 spin_unlock(&sbi->dev_lock);
747         }
748
749         return ret;
750 }
751
752 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
753                 enum dirty_type dirty_type)
754 {
755         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
756
757         /* need not be added */
758         if (IS_CURSEG(sbi, segno))
759                 return;
760
761         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
762                 dirty_i->nr_dirty[dirty_type]++;
763
764         if (dirty_type == DIRTY) {
765                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
766                 enum dirty_type t = sentry->type;
767
768                 if (unlikely(t >= DIRTY)) {
769                         f2fs_bug_on(sbi, 1);
770                         return;
771                 }
772                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
773                         dirty_i->nr_dirty[t]++;
774         }
775 }
776
777 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778                 enum dirty_type dirty_type)
779 {
780         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781
782         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
783                 dirty_i->nr_dirty[dirty_type]--;
784
785         if (dirty_type == DIRTY) {
786                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
787                 enum dirty_type t = sentry->type;
788
789                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
790                         dirty_i->nr_dirty[t]--;
791
792                 if (get_valid_blocks(sbi, segno, true) == 0)
793                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
794                                                 dirty_i->victim_secmap);
795         }
796 }
797
798 /*
799  * Should not occur error such as -ENOMEM.
800  * Adding dirty entry into seglist is not critical operation.
801  * If a given segment is one of current working segments, it won't be added.
802  */
803 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
804 {
805         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806         unsigned short valid_blocks, ckpt_valid_blocks;
807
808         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
809                 return;
810
811         mutex_lock(&dirty_i->seglist_lock);
812
813         valid_blocks = get_valid_blocks(sbi, segno, false);
814         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
815
816         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
817                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
818                 __locate_dirty_segment(sbi, segno, PRE);
819                 __remove_dirty_segment(sbi, segno, DIRTY);
820         } else if (valid_blocks < sbi->blocks_per_seg) {
821                 __locate_dirty_segment(sbi, segno, DIRTY);
822         } else {
823                 /* Recovery routine with SSR needs this */
824                 __remove_dirty_segment(sbi, segno, DIRTY);
825         }
826
827         mutex_unlock(&dirty_i->seglist_lock);
828 }
829
830 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
831 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
832 {
833         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834         unsigned int segno;
835
836         mutex_lock(&dirty_i->seglist_lock);
837         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
838                 if (get_valid_blocks(sbi, segno, false))
839                         continue;
840                 if (IS_CURSEG(sbi, segno))
841                         continue;
842                 __locate_dirty_segment(sbi, segno, PRE);
843                 __remove_dirty_segment(sbi, segno, DIRTY);
844         }
845         mutex_unlock(&dirty_i->seglist_lock);
846 }
847
848 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
849 {
850         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
851         block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
852         block_t holes[2] = {0, 0};      /* DATA and NODE */
853         struct seg_entry *se;
854         unsigned int segno;
855
856         mutex_lock(&dirty_i->seglist_lock);
857         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
858                 se = get_seg_entry(sbi, segno);
859                 if (IS_NODESEG(se->type))
860                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
861                 else
862                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
863         }
864         mutex_unlock(&dirty_i->seglist_lock);
865
866         if (holes[DATA] > ovp || holes[NODE] > ovp)
867                 return -EAGAIN;
868         return 0;
869 }
870
871 /* This is only used by SBI_CP_DISABLED */
872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
873 {
874         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875         unsigned int segno = 0;
876
877         mutex_lock(&dirty_i->seglist_lock);
878         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
879                 if (get_valid_blocks(sbi, segno, false))
880                         continue;
881                 if (get_ckpt_valid_blocks(sbi, segno))
882                         continue;
883                 mutex_unlock(&dirty_i->seglist_lock);
884                 return segno;
885         }
886         mutex_unlock(&dirty_i->seglist_lock);
887         return NULL_SEGNO;
888 }
889
890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
891                 struct block_device *bdev, block_t lstart,
892                 block_t start, block_t len)
893 {
894         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
895         struct list_head *pend_list;
896         struct discard_cmd *dc;
897
898         f2fs_bug_on(sbi, !len);
899
900         pend_list = &dcc->pend_list[plist_idx(len)];
901
902         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
903         INIT_LIST_HEAD(&dc->list);
904         dc->bdev = bdev;
905         dc->lstart = lstart;
906         dc->start = start;
907         dc->len = len;
908         dc->ref = 0;
909         dc->state = D_PREP;
910         dc->issuing = 0;
911         dc->error = 0;
912         init_completion(&dc->wait);
913         list_add_tail(&dc->list, pend_list);
914         spin_lock_init(&dc->lock);
915         dc->bio_ref = 0;
916         atomic_inc(&dcc->discard_cmd_cnt);
917         dcc->undiscard_blks += len;
918
919         return dc;
920 }
921
922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
923                                 struct block_device *bdev, block_t lstart,
924                                 block_t start, block_t len,
925                                 struct rb_node *parent, struct rb_node **p,
926                                 bool leftmost)
927 {
928         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
929         struct discard_cmd *dc;
930
931         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
932
933         rb_link_node(&dc->rb_node, parent, p);
934         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
935
936         return dc;
937 }
938
939 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
940                                                         struct discard_cmd *dc)
941 {
942         if (dc->state == D_DONE)
943                 atomic_sub(dc->issuing, &dcc->issing_discard);
944
945         list_del(&dc->list);
946         rb_erase_cached(&dc->rb_node, &dcc->root);
947         dcc->undiscard_blks -= dc->len;
948
949         kmem_cache_free(discard_cmd_slab, dc);
950
951         atomic_dec(&dcc->discard_cmd_cnt);
952 }
953
954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
955                                                         struct discard_cmd *dc)
956 {
957         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
958         unsigned long flags;
959
960         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
961
962         spin_lock_irqsave(&dc->lock, flags);
963         if (dc->bio_ref) {
964                 spin_unlock_irqrestore(&dc->lock, flags);
965                 return;
966         }
967         spin_unlock_irqrestore(&dc->lock, flags);
968
969         f2fs_bug_on(sbi, dc->ref);
970
971         if (dc->error == -EOPNOTSUPP)
972                 dc->error = 0;
973
974         if (dc->error)
975                 printk_ratelimited(
976                         "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
977                         KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
978         __detach_discard_cmd(dcc, dc);
979 }
980
981 static void f2fs_submit_discard_endio(struct bio *bio)
982 {
983         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
984         unsigned long flags;
985
986         dc->error = blk_status_to_errno(bio->bi_status);
987
988         spin_lock_irqsave(&dc->lock, flags);
989         dc->bio_ref--;
990         if (!dc->bio_ref && dc->state == D_SUBMIT) {
991                 dc->state = D_DONE;
992                 complete_all(&dc->wait);
993         }
994         spin_unlock_irqrestore(&dc->lock, flags);
995         bio_put(bio);
996 }
997
998 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
999                                 block_t start, block_t end)
1000 {
1001 #ifdef CONFIG_F2FS_CHECK_FS
1002         struct seg_entry *sentry;
1003         unsigned int segno;
1004         block_t blk = start;
1005         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1006         unsigned long *map;
1007
1008         while (blk < end) {
1009                 segno = GET_SEGNO(sbi, blk);
1010                 sentry = get_seg_entry(sbi, segno);
1011                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1012
1013                 if (end < START_BLOCK(sbi, segno + 1))
1014                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1015                 else
1016                         size = max_blocks;
1017                 map = (unsigned long *)(sentry->cur_valid_map);
1018                 offset = __find_rev_next_bit(map, size, offset);
1019                 f2fs_bug_on(sbi, offset != size);
1020                 blk = START_BLOCK(sbi, segno + 1);
1021         }
1022 #endif
1023 }
1024
1025 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1026                                 struct discard_policy *dpolicy,
1027                                 int discard_type, unsigned int granularity)
1028 {
1029         /* common policy */
1030         dpolicy->type = discard_type;
1031         dpolicy->sync = true;
1032         dpolicy->ordered = false;
1033         dpolicy->granularity = granularity;
1034
1035         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1036         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1037
1038         if (discard_type == DPOLICY_BG) {
1039                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1040                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1041                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1042                 dpolicy->io_aware = true;
1043                 dpolicy->sync = false;
1044                 dpolicy->ordered = true;
1045                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1046                         dpolicy->granularity = 1;
1047                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1048                 }
1049         } else if (discard_type == DPOLICY_FORCE) {
1050                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1051                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1052                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1053                 dpolicy->io_aware = false;
1054         } else if (discard_type == DPOLICY_FSTRIM) {
1055                 dpolicy->io_aware = false;
1056         } else if (discard_type == DPOLICY_UMOUNT) {
1057                 dpolicy->max_requests = UINT_MAX;
1058                 dpolicy->io_aware = false;
1059         }
1060 }
1061
1062 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1063                                 struct block_device *bdev, block_t lstart,
1064                                 block_t start, block_t len);
1065 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1066 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1067                                                 struct discard_policy *dpolicy,
1068                                                 struct discard_cmd *dc,
1069                                                 unsigned int *issued)
1070 {
1071         struct block_device *bdev = dc->bdev;
1072         struct request_queue *q = bdev_get_queue(bdev);
1073         unsigned int max_discard_blocks =
1074                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1075         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1076         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1077                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1078         int flag = dpolicy->sync ? REQ_SYNC : 0;
1079         block_t lstart, start, len, total_len;
1080         int err = 0;
1081
1082         if (dc->state != D_PREP)
1083                 return 0;
1084
1085         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1086                 return 0;
1087
1088         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1089
1090         lstart = dc->lstart;
1091         start = dc->start;
1092         len = dc->len;
1093         total_len = len;
1094
1095         dc->len = 0;
1096
1097         while (total_len && *issued < dpolicy->max_requests && !err) {
1098                 struct bio *bio = NULL;
1099                 unsigned long flags;
1100                 bool last = true;
1101
1102                 if (len > max_discard_blocks) {
1103                         len = max_discard_blocks;
1104                         last = false;
1105                 }
1106
1107                 (*issued)++;
1108                 if (*issued == dpolicy->max_requests)
1109                         last = true;
1110
1111                 dc->len += len;
1112
1113                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1114                         f2fs_show_injection_info(FAULT_DISCARD);
1115                         err = -EIO;
1116                         goto submit;
1117                 }
1118                 err = __blkdev_issue_discard(bdev,
1119                                         SECTOR_FROM_BLOCK(start),
1120                                         SECTOR_FROM_BLOCK(len),
1121                                         GFP_NOFS, 0, &bio);
1122 submit:
1123                 if (err) {
1124                         spin_lock_irqsave(&dc->lock, flags);
1125                         if (dc->state == D_PARTIAL)
1126                                 dc->state = D_SUBMIT;
1127                         spin_unlock_irqrestore(&dc->lock, flags);
1128
1129                         break;
1130                 }
1131
1132                 f2fs_bug_on(sbi, !bio);
1133
1134                 /*
1135                  * should keep before submission to avoid D_DONE
1136                  * right away
1137                  */
1138                 spin_lock_irqsave(&dc->lock, flags);
1139                 if (last)
1140                         dc->state = D_SUBMIT;
1141                 else
1142                         dc->state = D_PARTIAL;
1143                 dc->bio_ref++;
1144                 spin_unlock_irqrestore(&dc->lock, flags);
1145
1146                 atomic_inc(&dcc->issing_discard);
1147                 dc->issuing++;
1148                 list_move_tail(&dc->list, wait_list);
1149
1150                 /* sanity check on discard range */
1151                 __check_sit_bitmap(sbi, start, start + len);
1152
1153                 bio->bi_private = dc;
1154                 bio->bi_end_io = f2fs_submit_discard_endio;
1155                 bio->bi_opf |= flag;
1156                 submit_bio(bio);
1157
1158                 atomic_inc(&dcc->issued_discard);
1159
1160                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1161
1162                 lstart += len;
1163                 start += len;
1164                 total_len -= len;
1165                 len = total_len;
1166         }
1167
1168         if (!err && len)
1169                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1170         return err;
1171 }
1172
1173 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1174                                 struct block_device *bdev, block_t lstart,
1175                                 block_t start, block_t len,
1176                                 struct rb_node **insert_p,
1177                                 struct rb_node *insert_parent)
1178 {
1179         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1180         struct rb_node **p;
1181         struct rb_node *parent = NULL;
1182         struct discard_cmd *dc = NULL;
1183         bool leftmost = true;
1184
1185         if (insert_p && insert_parent) {
1186                 parent = insert_parent;
1187                 p = insert_p;
1188                 goto do_insert;
1189         }
1190
1191         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1192                                                         lstart, &leftmost);
1193 do_insert:
1194         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1195                                                                 p, leftmost);
1196         if (!dc)
1197                 return NULL;
1198
1199         return dc;
1200 }
1201
1202 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1203                                                 struct discard_cmd *dc)
1204 {
1205         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1206 }
1207
1208 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1209                                 struct discard_cmd *dc, block_t blkaddr)
1210 {
1211         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1212         struct discard_info di = dc->di;
1213         bool modified = false;
1214
1215         if (dc->state == D_DONE || dc->len == 1) {
1216                 __remove_discard_cmd(sbi, dc);
1217                 return;
1218         }
1219
1220         dcc->undiscard_blks -= di.len;
1221
1222         if (blkaddr > di.lstart) {
1223                 dc->len = blkaddr - dc->lstart;
1224                 dcc->undiscard_blks += dc->len;
1225                 __relocate_discard_cmd(dcc, dc);
1226                 modified = true;
1227         }
1228
1229         if (blkaddr < di.lstart + di.len - 1) {
1230                 if (modified) {
1231                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1232                                         di.start + blkaddr + 1 - di.lstart,
1233                                         di.lstart + di.len - 1 - blkaddr,
1234                                         NULL, NULL);
1235                 } else {
1236                         dc->lstart++;
1237                         dc->len--;
1238                         dc->start++;
1239                         dcc->undiscard_blks += dc->len;
1240                         __relocate_discard_cmd(dcc, dc);
1241                 }
1242         }
1243 }
1244
1245 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1246                                 struct block_device *bdev, block_t lstart,
1247                                 block_t start, block_t len)
1248 {
1249         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1251         struct discard_cmd *dc;
1252         struct discard_info di = {0};
1253         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1254         struct request_queue *q = bdev_get_queue(bdev);
1255         unsigned int max_discard_blocks =
1256                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1257         block_t end = lstart + len;
1258
1259         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1260                                         NULL, lstart,
1261                                         (struct rb_entry **)&prev_dc,
1262                                         (struct rb_entry **)&next_dc,
1263                                         &insert_p, &insert_parent, true, NULL);
1264         if (dc)
1265                 prev_dc = dc;
1266
1267         if (!prev_dc) {
1268                 di.lstart = lstart;
1269                 di.len = next_dc ? next_dc->lstart - lstart : len;
1270                 di.len = min(di.len, len);
1271                 di.start = start;
1272         }
1273
1274         while (1) {
1275                 struct rb_node *node;
1276                 bool merged = false;
1277                 struct discard_cmd *tdc = NULL;
1278
1279                 if (prev_dc) {
1280                         di.lstart = prev_dc->lstart + prev_dc->len;
1281                         if (di.lstart < lstart)
1282                                 di.lstart = lstart;
1283                         if (di.lstart >= end)
1284                                 break;
1285
1286                         if (!next_dc || next_dc->lstart > end)
1287                                 di.len = end - di.lstart;
1288                         else
1289                                 di.len = next_dc->lstart - di.lstart;
1290                         di.start = start + di.lstart - lstart;
1291                 }
1292
1293                 if (!di.len)
1294                         goto next;
1295
1296                 if (prev_dc && prev_dc->state == D_PREP &&
1297                         prev_dc->bdev == bdev &&
1298                         __is_discard_back_mergeable(&di, &prev_dc->di,
1299                                                         max_discard_blocks)) {
1300                         prev_dc->di.len += di.len;
1301                         dcc->undiscard_blks += di.len;
1302                         __relocate_discard_cmd(dcc, prev_dc);
1303                         di = prev_dc->di;
1304                         tdc = prev_dc;
1305                         merged = true;
1306                 }
1307
1308                 if (next_dc && next_dc->state == D_PREP &&
1309                         next_dc->bdev == bdev &&
1310                         __is_discard_front_mergeable(&di, &next_dc->di,
1311                                                         max_discard_blocks)) {
1312                         next_dc->di.lstart = di.lstart;
1313                         next_dc->di.len += di.len;
1314                         next_dc->di.start = di.start;
1315                         dcc->undiscard_blks += di.len;
1316                         __relocate_discard_cmd(dcc, next_dc);
1317                         if (tdc)
1318                                 __remove_discard_cmd(sbi, tdc);
1319                         merged = true;
1320                 }
1321
1322                 if (!merged) {
1323                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1324                                                         di.len, NULL, NULL);
1325                 }
1326  next:
1327                 prev_dc = next_dc;
1328                 if (!prev_dc)
1329                         break;
1330
1331                 node = rb_next(&prev_dc->rb_node);
1332                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1333         }
1334 }
1335
1336 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1337                 struct block_device *bdev, block_t blkstart, block_t blklen)
1338 {
1339         block_t lblkstart = blkstart;
1340
1341         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1342
1343         if (sbi->s_ndevs) {
1344                 int devi = f2fs_target_device_index(sbi, blkstart);
1345
1346                 blkstart -= FDEV(devi).start_blk;
1347         }
1348         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1349         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1350         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1351         return 0;
1352 }
1353
1354 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1355                                         struct discard_policy *dpolicy)
1356 {
1357         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1358         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1359         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1360         struct discard_cmd *dc;
1361         struct blk_plug plug;
1362         unsigned int pos = dcc->next_pos;
1363         unsigned int issued = 0;
1364         bool io_interrupted = false;
1365
1366         mutex_lock(&dcc->cmd_lock);
1367         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1368                                         NULL, pos,
1369                                         (struct rb_entry **)&prev_dc,
1370                                         (struct rb_entry **)&next_dc,
1371                                         &insert_p, &insert_parent, true, NULL);
1372         if (!dc)
1373                 dc = next_dc;
1374
1375         blk_start_plug(&plug);
1376
1377         while (dc) {
1378                 struct rb_node *node;
1379                 int err = 0;
1380
1381                 if (dc->state != D_PREP)
1382                         goto next;
1383
1384                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1385                         io_interrupted = true;
1386                         break;
1387                 }
1388
1389                 dcc->next_pos = dc->lstart + dc->len;
1390                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1391
1392                 if (issued >= dpolicy->max_requests)
1393                         break;
1394 next:
1395                 node = rb_next(&dc->rb_node);
1396                 if (err)
1397                         __remove_discard_cmd(sbi, dc);
1398                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1399         }
1400
1401         blk_finish_plug(&plug);
1402
1403         if (!dc)
1404                 dcc->next_pos = 0;
1405
1406         mutex_unlock(&dcc->cmd_lock);
1407
1408         if (!issued && io_interrupted)
1409                 issued = -1;
1410
1411         return issued;
1412 }
1413
1414 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1415                                         struct discard_policy *dpolicy)
1416 {
1417         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1418         struct list_head *pend_list;
1419         struct discard_cmd *dc, *tmp;
1420         struct blk_plug plug;
1421         int i, issued = 0;
1422         bool io_interrupted = false;
1423
1424         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1425                 if (i + 1 < dpolicy->granularity)
1426                         break;
1427
1428                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1429                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1430
1431                 pend_list = &dcc->pend_list[i];
1432
1433                 mutex_lock(&dcc->cmd_lock);
1434                 if (list_empty(pend_list))
1435                         goto next;
1436                 if (unlikely(dcc->rbtree_check))
1437                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1438                                                                 &dcc->root));
1439                 blk_start_plug(&plug);
1440                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1441                         f2fs_bug_on(sbi, dc->state != D_PREP);
1442
1443                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1444                                                 !is_idle(sbi, DISCARD_TIME)) {
1445                                 io_interrupted = true;
1446                                 break;
1447                         }
1448
1449                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1450
1451                         if (issued >= dpolicy->max_requests)
1452                                 break;
1453                 }
1454                 blk_finish_plug(&plug);
1455 next:
1456                 mutex_unlock(&dcc->cmd_lock);
1457
1458                 if (issued >= dpolicy->max_requests || io_interrupted)
1459                         break;
1460         }
1461
1462         if (!issued && io_interrupted)
1463                 issued = -1;
1464
1465         return issued;
1466 }
1467
1468 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1469 {
1470         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1471         struct list_head *pend_list;
1472         struct discard_cmd *dc, *tmp;
1473         int i;
1474         bool dropped = false;
1475
1476         mutex_lock(&dcc->cmd_lock);
1477         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478                 pend_list = &dcc->pend_list[i];
1479                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1480                         f2fs_bug_on(sbi, dc->state != D_PREP);
1481                         __remove_discard_cmd(sbi, dc);
1482                         dropped = true;
1483                 }
1484         }
1485         mutex_unlock(&dcc->cmd_lock);
1486
1487         return dropped;
1488 }
1489
1490 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1491 {
1492         __drop_discard_cmd(sbi);
1493 }
1494
1495 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1496                                                         struct discard_cmd *dc)
1497 {
1498         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1499         unsigned int len = 0;
1500
1501         wait_for_completion_io(&dc->wait);
1502         mutex_lock(&dcc->cmd_lock);
1503         f2fs_bug_on(sbi, dc->state != D_DONE);
1504         dc->ref--;
1505         if (!dc->ref) {
1506                 if (!dc->error)
1507                         len = dc->len;
1508                 __remove_discard_cmd(sbi, dc);
1509         }
1510         mutex_unlock(&dcc->cmd_lock);
1511
1512         return len;
1513 }
1514
1515 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1516                                                 struct discard_policy *dpolicy,
1517                                                 block_t start, block_t end)
1518 {
1519         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1520         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1521                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1522         struct discard_cmd *dc, *tmp;
1523         bool need_wait;
1524         unsigned int trimmed = 0;
1525
1526 next:
1527         need_wait = false;
1528
1529         mutex_lock(&dcc->cmd_lock);
1530         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1531                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1532                         continue;
1533                 if (dc->len < dpolicy->granularity)
1534                         continue;
1535                 if (dc->state == D_DONE && !dc->ref) {
1536                         wait_for_completion_io(&dc->wait);
1537                         if (!dc->error)
1538                                 trimmed += dc->len;
1539                         __remove_discard_cmd(sbi, dc);
1540                 } else {
1541                         dc->ref++;
1542                         need_wait = true;
1543                         break;
1544                 }
1545         }
1546         mutex_unlock(&dcc->cmd_lock);
1547
1548         if (need_wait) {
1549                 trimmed += __wait_one_discard_bio(sbi, dc);
1550                 goto next;
1551         }
1552
1553         return trimmed;
1554 }
1555
1556 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1557                                                 struct discard_policy *dpolicy)
1558 {
1559         struct discard_policy dp;
1560         unsigned int discard_blks;
1561
1562         if (dpolicy)
1563                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1564
1565         /* wait all */
1566         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1567         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1568         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1569         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1570
1571         return discard_blks;
1572 }
1573
1574 /* This should be covered by global mutex, &sit_i->sentry_lock */
1575 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1576 {
1577         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1578         struct discard_cmd *dc;
1579         bool need_wait = false;
1580
1581         mutex_lock(&dcc->cmd_lock);
1582         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1583                                                         NULL, blkaddr);
1584         if (dc) {
1585                 if (dc->state == D_PREP) {
1586                         __punch_discard_cmd(sbi, dc, blkaddr);
1587                 } else {
1588                         dc->ref++;
1589                         need_wait = true;
1590                 }
1591         }
1592         mutex_unlock(&dcc->cmd_lock);
1593
1594         if (need_wait)
1595                 __wait_one_discard_bio(sbi, dc);
1596 }
1597
1598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1599 {
1600         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1601
1602         if (dcc && dcc->f2fs_issue_discard) {
1603                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1604
1605                 dcc->f2fs_issue_discard = NULL;
1606                 kthread_stop(discard_thread);
1607         }
1608 }
1609
1610 /* This comes from f2fs_put_super */
1611 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1612 {
1613         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1614         struct discard_policy dpolicy;
1615         bool dropped;
1616
1617         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1618                                         dcc->discard_granularity);
1619         __issue_discard_cmd(sbi, &dpolicy);
1620         dropped = __drop_discard_cmd(sbi);
1621
1622         /* just to make sure there is no pending discard commands */
1623         __wait_all_discard_cmd(sbi, NULL);
1624
1625         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1626         return dropped;
1627 }
1628
1629 static int issue_discard_thread(void *data)
1630 {
1631         struct f2fs_sb_info *sbi = data;
1632         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1633         wait_queue_head_t *q = &dcc->discard_wait_queue;
1634         struct discard_policy dpolicy;
1635         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1636         int issued;
1637
1638         set_freezable();
1639
1640         do {
1641                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1642                                         dcc->discard_granularity);
1643
1644                 wait_event_interruptible_timeout(*q,
1645                                 kthread_should_stop() || freezing(current) ||
1646                                 dcc->discard_wake,
1647                                 msecs_to_jiffies(wait_ms));
1648
1649                 if (dcc->discard_wake)
1650                         dcc->discard_wake = 0;
1651
1652                 if (try_to_freeze())
1653                         continue;
1654                 if (f2fs_readonly(sbi->sb))
1655                         continue;
1656                 if (kthread_should_stop())
1657                         return 0;
1658                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1659                         wait_ms = dpolicy.max_interval;
1660                         continue;
1661                 }
1662
1663                 if (sbi->gc_mode == GC_URGENT)
1664                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1665
1666                 sb_start_intwrite(sbi->sb);
1667
1668                 issued = __issue_discard_cmd(sbi, &dpolicy);
1669                 if (issued > 0) {
1670                         __wait_all_discard_cmd(sbi, &dpolicy);
1671                         wait_ms = dpolicy.min_interval;
1672                 } else if (issued == -1){
1673                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1674                         if (!wait_ms)
1675                                 wait_ms = dpolicy.mid_interval;
1676                 } else {
1677                         wait_ms = dpolicy.max_interval;
1678                 }
1679
1680                 sb_end_intwrite(sbi->sb);
1681
1682         } while (!kthread_should_stop());
1683         return 0;
1684 }
1685
1686 #ifdef CONFIG_BLK_DEV_ZONED
1687 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1688                 struct block_device *bdev, block_t blkstart, block_t blklen)
1689 {
1690         sector_t sector, nr_sects;
1691         block_t lblkstart = blkstart;
1692         int devi = 0;
1693
1694         if (sbi->s_ndevs) {
1695                 devi = f2fs_target_device_index(sbi, blkstart);
1696                 blkstart -= FDEV(devi).start_blk;
1697         }
1698
1699         /*
1700          * We need to know the type of the zone: for conventional zones,
1701          * use regular discard if the drive supports it. For sequential
1702          * zones, reset the zone write pointer.
1703          */
1704         switch (get_blkz_type(sbi, bdev, blkstart)) {
1705
1706         case BLK_ZONE_TYPE_CONVENTIONAL:
1707                 if (!blk_queue_discard(bdev_get_queue(bdev)))
1708                         return 0;
1709                 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1710         case BLK_ZONE_TYPE_SEQWRITE_REQ:
1711         case BLK_ZONE_TYPE_SEQWRITE_PREF:
1712                 sector = SECTOR_FROM_BLOCK(blkstart);
1713                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1714
1715                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1716                                 nr_sects != bdev_zone_sectors(bdev)) {
1717                         f2fs_msg(sbi->sb, KERN_INFO,
1718                                 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1719                                 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1720                                 blkstart, blklen);
1721                         return -EIO;
1722                 }
1723                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1724                 return blkdev_reset_zones(bdev, sector,
1725                                           nr_sects, GFP_NOFS);
1726         default:
1727                 /* Unknown zone type: broken device ? */
1728                 return -EIO;
1729         }
1730 }
1731 #endif
1732
1733 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1734                 struct block_device *bdev, block_t blkstart, block_t blklen)
1735 {
1736 #ifdef CONFIG_BLK_DEV_ZONED
1737         if (f2fs_sb_has_blkzoned(sbi->sb) &&
1738                                 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1739                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1740 #endif
1741         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1742 }
1743
1744 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1745                                 block_t blkstart, block_t blklen)
1746 {
1747         sector_t start = blkstart, len = 0;
1748         struct block_device *bdev;
1749         struct seg_entry *se;
1750         unsigned int offset;
1751         block_t i;
1752         int err = 0;
1753
1754         bdev = f2fs_target_device(sbi, blkstart, NULL);
1755
1756         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1757                 if (i != start) {
1758                         struct block_device *bdev2 =
1759                                 f2fs_target_device(sbi, i, NULL);
1760
1761                         if (bdev2 != bdev) {
1762                                 err = __issue_discard_async(sbi, bdev,
1763                                                 start, len);
1764                                 if (err)
1765                                         return err;
1766                                 bdev = bdev2;
1767                                 start = i;
1768                                 len = 0;
1769                         }
1770                 }
1771
1772                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1773                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1774
1775                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1776                         sbi->discard_blks--;
1777         }
1778
1779         if (len)
1780                 err = __issue_discard_async(sbi, bdev, start, len);
1781         return err;
1782 }
1783
1784 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1785                                                         bool check_only)
1786 {
1787         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1788         int max_blocks = sbi->blocks_per_seg;
1789         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1790         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1791         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1792         unsigned long *discard_map = (unsigned long *)se->discard_map;
1793         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1794         unsigned int start = 0, end = -1;
1795         bool force = (cpc->reason & CP_DISCARD);
1796         struct discard_entry *de = NULL;
1797         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1798         int i;
1799
1800         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1801                 return false;
1802
1803         if (!force) {
1804                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1805                         SM_I(sbi)->dcc_info->nr_discards >=
1806                                 SM_I(sbi)->dcc_info->max_discards)
1807                         return false;
1808         }
1809
1810         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1811         for (i = 0; i < entries; i++)
1812                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1813                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1814
1815         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1816                                 SM_I(sbi)->dcc_info->max_discards) {
1817                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1818                 if (start >= max_blocks)
1819                         break;
1820
1821                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1822                 if (force && start && end != max_blocks
1823                                         && (end - start) < cpc->trim_minlen)
1824                         continue;
1825
1826                 if (check_only)
1827                         return true;
1828
1829                 if (!de) {
1830                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1831                                                                 GFP_F2FS_ZERO);
1832                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1833                         list_add_tail(&de->list, head);
1834                 }
1835
1836                 for (i = start; i < end; i++)
1837                         __set_bit_le(i, (void *)de->discard_map);
1838
1839                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1840         }
1841         return false;
1842 }
1843
1844 static void release_discard_addr(struct discard_entry *entry)
1845 {
1846         list_del(&entry->list);
1847         kmem_cache_free(discard_entry_slab, entry);
1848 }
1849
1850 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1851 {
1852         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1853         struct discard_entry *entry, *this;
1854
1855         /* drop caches */
1856         list_for_each_entry_safe(entry, this, head, list)
1857                 release_discard_addr(entry);
1858 }
1859
1860 /*
1861  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1862  */
1863 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1864 {
1865         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1866         unsigned int segno;
1867
1868         mutex_lock(&dirty_i->seglist_lock);
1869         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1870                 __set_test_and_free(sbi, segno);
1871         mutex_unlock(&dirty_i->seglist_lock);
1872 }
1873
1874 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1875                                                 struct cp_control *cpc)
1876 {
1877         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1878         struct list_head *head = &dcc->entry_list;
1879         struct discard_entry *entry, *this;
1880         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1881         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1882         unsigned int start = 0, end = -1;
1883         unsigned int secno, start_segno;
1884         bool force = (cpc->reason & CP_DISCARD);
1885         bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1886
1887         mutex_lock(&dirty_i->seglist_lock);
1888
1889         while (1) {
1890                 int i;
1891
1892                 if (need_align && end != -1)
1893                         end--;
1894                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1895                 if (start >= MAIN_SEGS(sbi))
1896                         break;
1897                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1898                                                                 start + 1);
1899
1900                 if (need_align) {
1901                         start = rounddown(start, sbi->segs_per_sec);
1902                         end = roundup(end, sbi->segs_per_sec);
1903                 }
1904
1905                 for (i = start; i < end; i++) {
1906                         if (test_and_clear_bit(i, prefree_map))
1907                                 dirty_i->nr_dirty[PRE]--;
1908                 }
1909
1910                 if (!f2fs_realtime_discard_enable(sbi))
1911                         continue;
1912
1913                 if (force && start >= cpc->trim_start &&
1914                                         (end - 1) <= cpc->trim_end)
1915                                 continue;
1916
1917                 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1918                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1919                                 (end - start) << sbi->log_blocks_per_seg);
1920                         continue;
1921                 }
1922 next:
1923                 secno = GET_SEC_FROM_SEG(sbi, start);
1924                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1925                 if (!IS_CURSEC(sbi, secno) &&
1926                         !get_valid_blocks(sbi, start, true))
1927                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1928                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1929
1930                 start = start_segno + sbi->segs_per_sec;
1931                 if (start < end)
1932                         goto next;
1933                 else
1934                         end = start - 1;
1935         }
1936         mutex_unlock(&dirty_i->seglist_lock);
1937
1938         /* send small discards */
1939         list_for_each_entry_safe(entry, this, head, list) {
1940                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1941                 bool is_valid = test_bit_le(0, entry->discard_map);
1942
1943 find_next:
1944                 if (is_valid) {
1945                         next_pos = find_next_zero_bit_le(entry->discard_map,
1946                                         sbi->blocks_per_seg, cur_pos);
1947                         len = next_pos - cur_pos;
1948
1949                         if (f2fs_sb_has_blkzoned(sbi->sb) ||
1950                             (force && len < cpc->trim_minlen))
1951                                 goto skip;
1952
1953                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1954                                                                         len);
1955                         total_len += len;
1956                 } else {
1957                         next_pos = find_next_bit_le(entry->discard_map,
1958                                         sbi->blocks_per_seg, cur_pos);
1959                 }
1960 skip:
1961                 cur_pos = next_pos;
1962                 is_valid = !is_valid;
1963
1964                 if (cur_pos < sbi->blocks_per_seg)
1965                         goto find_next;
1966
1967                 release_discard_addr(entry);
1968                 dcc->nr_discards -= total_len;
1969         }
1970
1971         wake_up_discard_thread(sbi, false);
1972 }
1973
1974 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1975 {
1976         dev_t dev = sbi->sb->s_bdev->bd_dev;
1977         struct discard_cmd_control *dcc;
1978         int err = 0, i;
1979
1980         if (SM_I(sbi)->dcc_info) {
1981                 dcc = SM_I(sbi)->dcc_info;
1982                 goto init_thread;
1983         }
1984
1985         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1986         if (!dcc)
1987                 return -ENOMEM;
1988
1989         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1990         INIT_LIST_HEAD(&dcc->entry_list);
1991         for (i = 0; i < MAX_PLIST_NUM; i++)
1992                 INIT_LIST_HEAD(&dcc->pend_list[i]);
1993         INIT_LIST_HEAD(&dcc->wait_list);
1994         INIT_LIST_HEAD(&dcc->fstrim_list);
1995         mutex_init(&dcc->cmd_lock);
1996         atomic_set(&dcc->issued_discard, 0);
1997         atomic_set(&dcc->issing_discard, 0);
1998         atomic_set(&dcc->discard_cmd_cnt, 0);
1999         dcc->nr_discards = 0;
2000         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2001         dcc->undiscard_blks = 0;
2002         dcc->next_pos = 0;
2003         dcc->root = RB_ROOT_CACHED;
2004         dcc->rbtree_check = false;
2005
2006         init_waitqueue_head(&dcc->discard_wait_queue);
2007         SM_I(sbi)->dcc_info = dcc;
2008 init_thread:
2009         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2010                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2011         if (IS_ERR(dcc->f2fs_issue_discard)) {
2012                 err = PTR_ERR(dcc->f2fs_issue_discard);
2013                 kfree(dcc);
2014                 SM_I(sbi)->dcc_info = NULL;
2015                 return err;
2016         }
2017
2018         return err;
2019 }
2020
2021 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2022 {
2023         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2024
2025         if (!dcc)
2026                 return;
2027
2028         f2fs_stop_discard_thread(sbi);
2029
2030         kfree(dcc);
2031         SM_I(sbi)->dcc_info = NULL;
2032 }
2033
2034 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2035 {
2036         struct sit_info *sit_i = SIT_I(sbi);
2037
2038         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2039                 sit_i->dirty_sentries++;
2040                 return false;
2041         }
2042
2043         return true;
2044 }
2045
2046 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2047                                         unsigned int segno, int modified)
2048 {
2049         struct seg_entry *se = get_seg_entry(sbi, segno);
2050         se->type = type;
2051         if (modified)
2052                 __mark_sit_entry_dirty(sbi, segno);
2053 }
2054
2055 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2056 {
2057         struct seg_entry *se;
2058         unsigned int segno, offset;
2059         long int new_vblocks;
2060         bool exist;
2061 #ifdef CONFIG_F2FS_CHECK_FS
2062         bool mir_exist;
2063 #endif
2064
2065         segno = GET_SEGNO(sbi, blkaddr);
2066
2067         se = get_seg_entry(sbi, segno);
2068         new_vblocks = se->valid_blocks + del;
2069         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2070
2071         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2072                                 (new_vblocks > sbi->blocks_per_seg)));
2073
2074         se->valid_blocks = new_vblocks;
2075         se->mtime = get_mtime(sbi, false);
2076         if (se->mtime > SIT_I(sbi)->max_mtime)
2077                 SIT_I(sbi)->max_mtime = se->mtime;
2078
2079         /* Update valid block bitmap */
2080         if (del > 0) {
2081                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2082 #ifdef CONFIG_F2FS_CHECK_FS
2083                 mir_exist = f2fs_test_and_set_bit(offset,
2084                                                 se->cur_valid_map_mir);
2085                 if (unlikely(exist != mir_exist)) {
2086                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2087                                 "when setting bitmap, blk:%u, old bit:%d",
2088                                 blkaddr, exist);
2089                         f2fs_bug_on(sbi, 1);
2090                 }
2091 #endif
2092                 if (unlikely(exist)) {
2093                         f2fs_msg(sbi->sb, KERN_ERR,
2094                                 "Bitmap was wrongly set, blk:%u", blkaddr);
2095                         f2fs_bug_on(sbi, 1);
2096                         se->valid_blocks--;
2097                         del = 0;
2098                 }
2099
2100                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2101                         sbi->discard_blks--;
2102
2103                 /* don't overwrite by SSR to keep node chain */
2104                 if (IS_NODESEG(se->type) &&
2105                                 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2106                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2107                                 se->ckpt_valid_blocks++;
2108                 }
2109         } else {
2110                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2111 #ifdef CONFIG_F2FS_CHECK_FS
2112                 mir_exist = f2fs_test_and_clear_bit(offset,
2113                                                 se->cur_valid_map_mir);
2114                 if (unlikely(exist != mir_exist)) {
2115                         f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2116                                 "when clearing bitmap, blk:%u, old bit:%d",
2117                                 blkaddr, exist);
2118                         f2fs_bug_on(sbi, 1);
2119                 }
2120 #endif
2121                 if (unlikely(!exist)) {
2122                         f2fs_msg(sbi->sb, KERN_ERR,
2123                                 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2124                         f2fs_bug_on(sbi, 1);
2125                         se->valid_blocks++;
2126                         del = 0;
2127                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2128                         /*
2129                          * If checkpoints are off, we must not reuse data that
2130                          * was used in the previous checkpoint. If it was used
2131                          * before, we must track that to know how much space we
2132                          * really have.
2133                          */
2134                         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2135                                 sbi->unusable_block_count++;
2136                 }
2137
2138                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2139                         sbi->discard_blks++;
2140         }
2141         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2142                 se->ckpt_valid_blocks += del;
2143
2144         __mark_sit_entry_dirty(sbi, segno);
2145
2146         /* update total number of valid blocks to be written in ckpt area */
2147         SIT_I(sbi)->written_valid_blocks += del;
2148
2149         if (sbi->segs_per_sec > 1)
2150                 get_sec_entry(sbi, segno)->valid_blocks += del;
2151 }
2152
2153 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2154 {
2155         unsigned int segno = GET_SEGNO(sbi, addr);
2156         struct sit_info *sit_i = SIT_I(sbi);
2157
2158         f2fs_bug_on(sbi, addr == NULL_ADDR);
2159         if (addr == NEW_ADDR)
2160                 return;
2161
2162         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2163
2164         /* add it into sit main buffer */
2165         down_write(&sit_i->sentry_lock);
2166
2167         update_sit_entry(sbi, addr, -1);
2168
2169         /* add it into dirty seglist */
2170         locate_dirty_segment(sbi, segno);
2171
2172         up_write(&sit_i->sentry_lock);
2173 }
2174
2175 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2176 {
2177         struct sit_info *sit_i = SIT_I(sbi);
2178         unsigned int segno, offset;
2179         struct seg_entry *se;
2180         bool is_cp = false;
2181
2182         if (!is_valid_data_blkaddr(sbi, blkaddr))
2183                 return true;
2184
2185         down_read(&sit_i->sentry_lock);
2186
2187         segno = GET_SEGNO(sbi, blkaddr);
2188         se = get_seg_entry(sbi, segno);
2189         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2190
2191         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2192                 is_cp = true;
2193
2194         up_read(&sit_i->sentry_lock);
2195
2196         return is_cp;
2197 }
2198
2199 /*
2200  * This function should be resided under the curseg_mutex lock
2201  */
2202 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2203                                         struct f2fs_summary *sum)
2204 {
2205         struct curseg_info *curseg = CURSEG_I(sbi, type);
2206         void *addr = curseg->sum_blk;
2207         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2208         memcpy(addr, sum, sizeof(struct f2fs_summary));
2209 }
2210
2211 /*
2212  * Calculate the number of current summary pages for writing
2213  */
2214 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2215 {
2216         int valid_sum_count = 0;
2217         int i, sum_in_page;
2218
2219         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2220                 if (sbi->ckpt->alloc_type[i] == SSR)
2221                         valid_sum_count += sbi->blocks_per_seg;
2222                 else {
2223                         if (for_ra)
2224                                 valid_sum_count += le16_to_cpu(
2225                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2226                         else
2227                                 valid_sum_count += curseg_blkoff(sbi, i);
2228                 }
2229         }
2230
2231         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2232                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2233         if (valid_sum_count <= sum_in_page)
2234                 return 1;
2235         else if ((valid_sum_count - sum_in_page) <=
2236                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2237                 return 2;
2238         return 3;
2239 }
2240
2241 /*
2242  * Caller should put this summary page
2243  */
2244 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2245 {
2246         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2247 }
2248
2249 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2250                                         void *src, block_t blk_addr)
2251 {
2252         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2253
2254         memcpy(page_address(page), src, PAGE_SIZE);
2255         set_page_dirty(page);
2256         f2fs_put_page(page, 1);
2257 }
2258
2259 static void write_sum_page(struct f2fs_sb_info *sbi,
2260                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2261 {
2262         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2263 }
2264
2265 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2266                                                 int type, block_t blk_addr)
2267 {
2268         struct curseg_info *curseg = CURSEG_I(sbi, type);
2269         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2270         struct f2fs_summary_block *src = curseg->sum_blk;
2271         struct f2fs_summary_block *dst;
2272
2273         dst = (struct f2fs_summary_block *)page_address(page);
2274         memset(dst, 0, PAGE_SIZE);
2275
2276         mutex_lock(&curseg->curseg_mutex);
2277
2278         down_read(&curseg->journal_rwsem);
2279         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2280         up_read(&curseg->journal_rwsem);
2281
2282         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2283         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2284
2285         mutex_unlock(&curseg->curseg_mutex);
2286
2287         set_page_dirty(page);
2288         f2fs_put_page(page, 1);
2289 }
2290
2291 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2292 {
2293         struct curseg_info *curseg = CURSEG_I(sbi, type);
2294         unsigned int segno = curseg->segno + 1;
2295         struct free_segmap_info *free_i = FREE_I(sbi);
2296
2297         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2298                 return !test_bit(segno, free_i->free_segmap);
2299         return 0;
2300 }
2301
2302 /*
2303  * Find a new segment from the free segments bitmap to right order
2304  * This function should be returned with success, otherwise BUG
2305  */
2306 static void get_new_segment(struct f2fs_sb_info *sbi,
2307                         unsigned int *newseg, bool new_sec, int dir)
2308 {
2309         struct free_segmap_info *free_i = FREE_I(sbi);
2310         unsigned int segno, secno, zoneno;
2311         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2312         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2313         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2314         unsigned int left_start = hint;
2315         bool init = true;
2316         int go_left = 0;
2317         int i;
2318
2319         spin_lock(&free_i->segmap_lock);
2320
2321         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2322                 segno = find_next_zero_bit(free_i->free_segmap,
2323                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2324                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2325                         goto got_it;
2326         }
2327 find_other_zone:
2328         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2329         if (secno >= MAIN_SECS(sbi)) {
2330                 if (dir == ALLOC_RIGHT) {
2331                         secno = find_next_zero_bit(free_i->free_secmap,
2332                                                         MAIN_SECS(sbi), 0);
2333                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2334                 } else {
2335                         go_left = 1;
2336                         left_start = hint - 1;
2337                 }
2338         }
2339         if (go_left == 0)
2340                 goto skip_left;
2341
2342         while (test_bit(left_start, free_i->free_secmap)) {
2343                 if (left_start > 0) {
2344                         left_start--;
2345                         continue;
2346                 }
2347                 left_start = find_next_zero_bit(free_i->free_secmap,
2348                                                         MAIN_SECS(sbi), 0);
2349                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2350                 break;
2351         }
2352         secno = left_start;
2353 skip_left:
2354         segno = GET_SEG_FROM_SEC(sbi, secno);
2355         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2356
2357         /* give up on finding another zone */
2358         if (!init)
2359                 goto got_it;
2360         if (sbi->secs_per_zone == 1)
2361                 goto got_it;
2362         if (zoneno == old_zoneno)
2363                 goto got_it;
2364         if (dir == ALLOC_LEFT) {
2365                 if (!go_left && zoneno + 1 >= total_zones)
2366                         goto got_it;
2367                 if (go_left && zoneno == 0)
2368                         goto got_it;
2369         }
2370         for (i = 0; i < NR_CURSEG_TYPE; i++)
2371                 if (CURSEG_I(sbi, i)->zone == zoneno)
2372                         break;
2373
2374         if (i < NR_CURSEG_TYPE) {
2375                 /* zone is in user, try another */
2376                 if (go_left)
2377                         hint = zoneno * sbi->secs_per_zone - 1;
2378                 else if (zoneno + 1 >= total_zones)
2379                         hint = 0;
2380                 else
2381                         hint = (zoneno + 1) * sbi->secs_per_zone;
2382                 init = false;
2383                 goto find_other_zone;
2384         }
2385 got_it:
2386         /* set it as dirty segment in free segmap */
2387         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2388         __set_inuse(sbi, segno);
2389         *newseg = segno;
2390         spin_unlock(&free_i->segmap_lock);
2391 }
2392
2393 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2394 {
2395         struct curseg_info *curseg = CURSEG_I(sbi, type);
2396         struct summary_footer *sum_footer;
2397
2398         curseg->segno = curseg->next_segno;
2399         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2400         curseg->next_blkoff = 0;
2401         curseg->next_segno = NULL_SEGNO;
2402
2403         sum_footer = &(curseg->sum_blk->footer);
2404         memset(sum_footer, 0, sizeof(struct summary_footer));
2405         if (IS_DATASEG(type))
2406                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2407         if (IS_NODESEG(type))
2408                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2409         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2410 }
2411
2412 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2413 {
2414         /* if segs_per_sec is large than 1, we need to keep original policy. */
2415         if (sbi->segs_per_sec != 1)
2416                 return CURSEG_I(sbi, type)->segno;
2417
2418         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2419                 return 0;
2420
2421         if (test_opt(sbi, NOHEAP) &&
2422                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2423                 return 0;
2424
2425         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2426                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2427
2428         /* find segments from 0 to reuse freed segments */
2429         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2430                 return 0;
2431
2432         return CURSEG_I(sbi, type)->segno;
2433 }
2434
2435 /*
2436  * Allocate a current working segment.
2437  * This function always allocates a free segment in LFS manner.
2438  */
2439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2440 {
2441         struct curseg_info *curseg = CURSEG_I(sbi, type);
2442         unsigned int segno = curseg->segno;
2443         int dir = ALLOC_LEFT;
2444
2445         write_sum_page(sbi, curseg->sum_blk,
2446                                 GET_SUM_BLOCK(sbi, segno));
2447         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2448                 dir = ALLOC_RIGHT;
2449
2450         if (test_opt(sbi, NOHEAP))
2451                 dir = ALLOC_RIGHT;
2452
2453         segno = __get_next_segno(sbi, type);
2454         get_new_segment(sbi, &segno, new_sec, dir);
2455         curseg->next_segno = segno;
2456         reset_curseg(sbi, type, 1);
2457         curseg->alloc_type = LFS;
2458 }
2459
2460 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2461                         struct curseg_info *seg, block_t start)
2462 {
2463         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2464         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2465         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2466         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2467         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2468         int i, pos;
2469
2470         for (i = 0; i < entries; i++)
2471                 target_map[i] = ckpt_map[i] | cur_map[i];
2472
2473         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2474
2475         seg->next_blkoff = pos;
2476 }
2477
2478 /*
2479  * If a segment is written by LFS manner, next block offset is just obtained
2480  * by increasing the current block offset. However, if a segment is written by
2481  * SSR manner, next block offset obtained by calling __next_free_blkoff
2482  */
2483 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2484                                 struct curseg_info *seg)
2485 {
2486         if (seg->alloc_type == SSR)
2487                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2488         else
2489                 seg->next_blkoff++;
2490 }
2491
2492 /*
2493  * This function always allocates a used segment(from dirty seglist) by SSR
2494  * manner, so it should recover the existing segment information of valid blocks
2495  */
2496 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2497 {
2498         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2499         struct curseg_info *curseg = CURSEG_I(sbi, type);
2500         unsigned int new_segno = curseg->next_segno;
2501         struct f2fs_summary_block *sum_node;
2502         struct page *sum_page;
2503
2504         write_sum_page(sbi, curseg->sum_blk,
2505                                 GET_SUM_BLOCK(sbi, curseg->segno));
2506         __set_test_and_inuse(sbi, new_segno);
2507
2508         mutex_lock(&dirty_i->seglist_lock);
2509         __remove_dirty_segment(sbi, new_segno, PRE);
2510         __remove_dirty_segment(sbi, new_segno, DIRTY);
2511         mutex_unlock(&dirty_i->seglist_lock);
2512
2513         reset_curseg(sbi, type, 1);
2514         curseg->alloc_type = SSR;
2515         __next_free_blkoff(sbi, curseg, 0);
2516
2517         sum_page = f2fs_get_sum_page(sbi, new_segno);
2518         f2fs_bug_on(sbi, IS_ERR(sum_page));
2519         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2520         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2521         f2fs_put_page(sum_page, 1);
2522 }
2523
2524 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2525 {
2526         struct curseg_info *curseg = CURSEG_I(sbi, type);
2527         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2528         unsigned segno = NULL_SEGNO;
2529         int i, cnt;
2530         bool reversed = false;
2531
2532         /* f2fs_need_SSR() already forces to do this */
2533         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2534                 curseg->next_segno = segno;
2535                 return 1;
2536         }
2537
2538         /* For node segments, let's do SSR more intensively */
2539         if (IS_NODESEG(type)) {
2540                 if (type >= CURSEG_WARM_NODE) {
2541                         reversed = true;
2542                         i = CURSEG_COLD_NODE;
2543                 } else {
2544                         i = CURSEG_HOT_NODE;
2545                 }
2546                 cnt = NR_CURSEG_NODE_TYPE;
2547         } else {
2548                 if (type >= CURSEG_WARM_DATA) {
2549                         reversed = true;
2550                         i = CURSEG_COLD_DATA;
2551                 } else {
2552                         i = CURSEG_HOT_DATA;
2553                 }
2554                 cnt = NR_CURSEG_DATA_TYPE;
2555         }
2556
2557         for (; cnt-- > 0; reversed ? i-- : i++) {
2558                 if (i == type)
2559                         continue;
2560                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2561                         curseg->next_segno = segno;
2562                         return 1;
2563                 }
2564         }
2565
2566         /* find valid_blocks=0 in dirty list */
2567         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2568                 segno = get_free_segment(sbi);
2569                 if (segno != NULL_SEGNO) {
2570                         curseg->next_segno = segno;
2571                         return 1;
2572                 }
2573         }
2574         return 0;
2575 }
2576
2577 /*
2578  * flush out current segment and replace it with new segment
2579  * This function should be returned with success, otherwise BUG
2580  */
2581 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2582                                                 int type, bool force)
2583 {
2584         struct curseg_info *curseg = CURSEG_I(sbi, type);
2585
2586         if (force)
2587                 new_curseg(sbi, type, true);
2588         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2589                                         type == CURSEG_WARM_NODE)
2590                 new_curseg(sbi, type, false);
2591         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2592                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2593                 new_curseg(sbi, type, false);
2594         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2595                 change_curseg(sbi, type);
2596         else
2597                 new_curseg(sbi, type, false);
2598
2599         stat_inc_seg_type(sbi, curseg);
2600 }
2601
2602 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2603 {
2604         struct curseg_info *curseg;
2605         unsigned int old_segno;
2606         int i;
2607
2608         down_write(&SIT_I(sbi)->sentry_lock);
2609
2610         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2611                 curseg = CURSEG_I(sbi, i);
2612                 old_segno = curseg->segno;
2613                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2614                 locate_dirty_segment(sbi, old_segno);
2615         }
2616
2617         up_write(&SIT_I(sbi)->sentry_lock);
2618 }
2619
2620 static const struct segment_allocation default_salloc_ops = {
2621         .allocate_segment = allocate_segment_by_default,
2622 };
2623
2624 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2625                                                 struct cp_control *cpc)
2626 {
2627         __u64 trim_start = cpc->trim_start;
2628         bool has_candidate = false;
2629
2630         down_write(&SIT_I(sbi)->sentry_lock);
2631         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2632                 if (add_discard_addrs(sbi, cpc, true)) {
2633                         has_candidate = true;
2634                         break;
2635                 }
2636         }
2637         up_write(&SIT_I(sbi)->sentry_lock);
2638
2639         cpc->trim_start = trim_start;
2640         return has_candidate;
2641 }
2642
2643 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2644                                         struct discard_policy *dpolicy,
2645                                         unsigned int start, unsigned int end)
2646 {
2647         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2648         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2649         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2650         struct discard_cmd *dc;
2651         struct blk_plug plug;
2652         int issued;
2653         unsigned int trimmed = 0;
2654
2655 next:
2656         issued = 0;
2657
2658         mutex_lock(&dcc->cmd_lock);
2659         if (unlikely(dcc->rbtree_check))
2660                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2661                                                                 &dcc->root));
2662
2663         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2664                                         NULL, start,
2665                                         (struct rb_entry **)&prev_dc,
2666                                         (struct rb_entry **)&next_dc,
2667                                         &insert_p, &insert_parent, true, NULL);
2668         if (!dc)
2669                 dc = next_dc;
2670
2671         blk_start_plug(&plug);
2672
2673         while (dc && dc->lstart <= end) {
2674                 struct rb_node *node;
2675                 int err = 0;
2676
2677                 if (dc->len < dpolicy->granularity)
2678                         goto skip;
2679
2680                 if (dc->state != D_PREP) {
2681                         list_move_tail(&dc->list, &dcc->fstrim_list);
2682                         goto skip;
2683                 }
2684
2685                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2686
2687                 if (issued >= dpolicy->max_requests) {
2688                         start = dc->lstart + dc->len;
2689
2690                         if (err)
2691                                 __remove_discard_cmd(sbi, dc);
2692
2693                         blk_finish_plug(&plug);
2694                         mutex_unlock(&dcc->cmd_lock);
2695                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2696                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2697                         goto next;
2698                 }
2699 skip:
2700                 node = rb_next(&dc->rb_node);
2701                 if (err)
2702                         __remove_discard_cmd(sbi, dc);
2703                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2704
2705                 if (fatal_signal_pending(current))
2706                         break;
2707         }
2708
2709         blk_finish_plug(&plug);
2710         mutex_unlock(&dcc->cmd_lock);
2711
2712         return trimmed;
2713 }
2714
2715 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2716 {
2717         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2718         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2719         unsigned int start_segno, end_segno;
2720         block_t start_block, end_block;
2721         struct cp_control cpc;
2722         struct discard_policy dpolicy;
2723         unsigned long long trimmed = 0;
2724         int err = 0;
2725         bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2726
2727         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2728                 return -EINVAL;
2729
2730         if (end < MAIN_BLKADDR(sbi))
2731                 goto out;
2732
2733         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2734                 f2fs_msg(sbi->sb, KERN_WARNING,
2735                         "Found FS corruption, run fsck to fix.");
2736                 return -EIO;
2737         }
2738
2739         /* start/end segment number in main_area */
2740         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2741         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2742                                                 GET_SEGNO(sbi, end);
2743         if (need_align) {
2744                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2745                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2746         }
2747
2748         cpc.reason = CP_DISCARD;
2749         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2750         cpc.trim_start = start_segno;
2751         cpc.trim_end = end_segno;
2752
2753         if (sbi->discard_blks == 0)
2754                 goto out;
2755
2756         mutex_lock(&sbi->gc_mutex);
2757         err = f2fs_write_checkpoint(sbi, &cpc);
2758         mutex_unlock(&sbi->gc_mutex);
2759         if (err)
2760                 goto out;
2761
2762         /*
2763          * We filed discard candidates, but actually we don't need to wait for
2764          * all of them, since they'll be issued in idle time along with runtime
2765          * discard option. User configuration looks like using runtime discard
2766          * or periodic fstrim instead of it.
2767          */
2768         if (f2fs_realtime_discard_enable(sbi))
2769                 goto out;
2770
2771         start_block = START_BLOCK(sbi, start_segno);
2772         end_block = START_BLOCK(sbi, end_segno + 1);
2773
2774         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2775         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2776                                         start_block, end_block);
2777
2778         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2779                                         start_block, end_block);
2780 out:
2781         if (!err)
2782                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2783         return err;
2784 }
2785
2786 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2787 {
2788         struct curseg_info *curseg = CURSEG_I(sbi, type);
2789         if (curseg->next_blkoff < sbi->blocks_per_seg)
2790                 return true;
2791         return false;
2792 }
2793
2794 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2795 {
2796         switch (hint) {
2797         case WRITE_LIFE_SHORT:
2798                 return CURSEG_HOT_DATA;
2799         case WRITE_LIFE_EXTREME:
2800                 return CURSEG_COLD_DATA;
2801         default:
2802                 return CURSEG_WARM_DATA;
2803         }
2804 }
2805
2806 /* This returns write hints for each segment type. This hints will be
2807  * passed down to block layer. There are mapping tables which depend on
2808  * the mount option 'whint_mode'.
2809  *
2810  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2811  *
2812  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2813  *
2814  * User                  F2FS                     Block
2815  * ----                  ----                     -----
2816  *                       META                     WRITE_LIFE_NOT_SET
2817  *                       HOT_NODE                 "
2818  *                       WARM_NODE                "
2819  *                       COLD_NODE                "
2820  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2821  * extension list        "                        "
2822  *
2823  * -- buffered io
2824  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2825  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2826  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2827  * WRITE_LIFE_NONE       "                        "
2828  * WRITE_LIFE_MEDIUM     "                        "
2829  * WRITE_LIFE_LONG       "                        "
2830  *
2831  * -- direct io
2832  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2833  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2834  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2835  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2836  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2837  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2838  *
2839  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2840  *
2841  * User                  F2FS                     Block
2842  * ----                  ----                     -----
2843  *                       META                     WRITE_LIFE_MEDIUM;
2844  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2845  *                       WARM_NODE                "
2846  *                       COLD_NODE                WRITE_LIFE_NONE
2847  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2848  * extension list        "                        "
2849  *
2850  * -- buffered io
2851  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2852  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2853  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2854  * WRITE_LIFE_NONE       "                        "
2855  * WRITE_LIFE_MEDIUM     "                        "
2856  * WRITE_LIFE_LONG       "                        "
2857  *
2858  * -- direct io
2859  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2860  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2861  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2862  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2863  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2864  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2865  */
2866
2867 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2868                                 enum page_type type, enum temp_type temp)
2869 {
2870         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2871                 if (type == DATA) {
2872                         if (temp == WARM)
2873                                 return WRITE_LIFE_NOT_SET;
2874                         else if (temp == HOT)
2875                                 return WRITE_LIFE_SHORT;
2876                         else if (temp == COLD)
2877                                 return WRITE_LIFE_EXTREME;
2878                 } else {
2879                         return WRITE_LIFE_NOT_SET;
2880                 }
2881         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2882                 if (type == DATA) {
2883                         if (temp == WARM)
2884                                 return WRITE_LIFE_LONG;
2885                         else if (temp == HOT)
2886                                 return WRITE_LIFE_SHORT;
2887                         else if (temp == COLD)
2888                                 return WRITE_LIFE_EXTREME;
2889                 } else if (type == NODE) {
2890                         if (temp == WARM || temp == HOT)
2891                                 return WRITE_LIFE_NOT_SET;
2892                         else if (temp == COLD)
2893                                 return WRITE_LIFE_NONE;
2894                 } else if (type == META) {
2895                         return WRITE_LIFE_MEDIUM;
2896                 }
2897         }
2898         return WRITE_LIFE_NOT_SET;
2899 }
2900
2901 static int __get_segment_type_2(struct f2fs_io_info *fio)
2902 {
2903         if (fio->type == DATA)
2904                 return CURSEG_HOT_DATA;
2905         else
2906                 return CURSEG_HOT_NODE;
2907 }
2908
2909 static int __get_segment_type_4(struct f2fs_io_info *fio)
2910 {
2911         if (fio->type == DATA) {
2912                 struct inode *inode = fio->page->mapping->host;
2913
2914                 if (S_ISDIR(inode->i_mode))
2915                         return CURSEG_HOT_DATA;
2916                 else
2917                         return CURSEG_COLD_DATA;
2918         } else {
2919                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2920                         return CURSEG_WARM_NODE;
2921                 else
2922                         return CURSEG_COLD_NODE;
2923         }
2924 }
2925
2926 static int __get_segment_type_6(struct f2fs_io_info *fio)
2927 {
2928         if (fio->type == DATA) {
2929                 struct inode *inode = fio->page->mapping->host;
2930
2931                 if (is_cold_data(fio->page) || file_is_cold(inode))
2932                         return CURSEG_COLD_DATA;
2933                 if (file_is_hot(inode) ||
2934                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
2935                                 f2fs_is_atomic_file(inode) ||
2936                                 f2fs_is_volatile_file(inode))
2937                         return CURSEG_HOT_DATA;
2938                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2939         } else {
2940                 if (IS_DNODE(fio->page))
2941                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2942                                                 CURSEG_HOT_NODE;
2943                 return CURSEG_COLD_NODE;
2944         }
2945 }
2946
2947 static int __get_segment_type(struct f2fs_io_info *fio)
2948 {
2949         int type = 0;
2950
2951         switch (F2FS_OPTION(fio->sbi).active_logs) {
2952         case 2:
2953                 type = __get_segment_type_2(fio);
2954                 break;
2955         case 4:
2956                 type = __get_segment_type_4(fio);
2957                 break;
2958         case 6:
2959                 type = __get_segment_type_6(fio);
2960                 break;
2961         default:
2962                 f2fs_bug_on(fio->sbi, true);
2963         }
2964
2965         if (IS_HOT(type))
2966                 fio->temp = HOT;
2967         else if (IS_WARM(type))
2968                 fio->temp = WARM;
2969         else
2970                 fio->temp = COLD;
2971         return type;
2972 }
2973
2974 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2975                 block_t old_blkaddr, block_t *new_blkaddr,
2976                 struct f2fs_summary *sum, int type,
2977                 struct f2fs_io_info *fio, bool add_list)
2978 {
2979         struct sit_info *sit_i = SIT_I(sbi);
2980         struct curseg_info *curseg = CURSEG_I(sbi, type);
2981
2982         down_read(&SM_I(sbi)->curseg_lock);
2983
2984         mutex_lock(&curseg->curseg_mutex);
2985         down_write(&sit_i->sentry_lock);
2986
2987         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2988
2989         f2fs_wait_discard_bio(sbi, *new_blkaddr);
2990
2991         /*
2992          * __add_sum_entry should be resided under the curseg_mutex
2993          * because, this function updates a summary entry in the
2994          * current summary block.
2995          */
2996         __add_sum_entry(sbi, type, sum);
2997
2998         __refresh_next_blkoff(sbi, curseg);
2999
3000         stat_inc_block_count(sbi, curseg);
3001
3002         /*
3003          * SIT information should be updated before segment allocation,
3004          * since SSR needs latest valid block information.
3005          */
3006         update_sit_entry(sbi, *new_blkaddr, 1);
3007         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3008                 update_sit_entry(sbi, old_blkaddr, -1);
3009
3010         if (!__has_curseg_space(sbi, type))
3011                 sit_i->s_ops->allocate_segment(sbi, type, false);
3012
3013         /*
3014          * segment dirty status should be updated after segment allocation,
3015          * so we just need to update status only one time after previous
3016          * segment being closed.
3017          */
3018         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3019         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3020
3021         up_write(&sit_i->sentry_lock);
3022
3023         if (page && IS_NODESEG(type)) {
3024                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3025
3026                 f2fs_inode_chksum_set(sbi, page);
3027         }
3028
3029         if (add_list) {
3030                 struct f2fs_bio_info *io;
3031
3032                 INIT_LIST_HEAD(&fio->list);
3033                 fio->in_list = true;
3034                 fio->retry = false;
3035                 io = sbi->write_io[fio->type] + fio->temp;
3036                 spin_lock(&io->io_lock);
3037                 list_add_tail(&fio->list, &io->io_list);
3038                 spin_unlock(&io->io_lock);
3039         }
3040
3041         mutex_unlock(&curseg->curseg_mutex);
3042
3043         up_read(&SM_I(sbi)->curseg_lock);
3044 }
3045
3046 static void update_device_state(struct f2fs_io_info *fio)
3047 {
3048         struct f2fs_sb_info *sbi = fio->sbi;
3049         unsigned int devidx;
3050
3051         if (!sbi->s_ndevs)
3052                 return;
3053
3054         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3055
3056         /* update device state for fsync */
3057         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3058
3059         /* update device state for checkpoint */
3060         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3061                 spin_lock(&sbi->dev_lock);
3062                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3063                 spin_unlock(&sbi->dev_lock);
3064         }
3065 }
3066
3067 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3068 {
3069         int type = __get_segment_type(fio);
3070         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3071
3072         if (keep_order)
3073                 down_read(&fio->sbi->io_order_lock);
3074 reallocate:
3075         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3076                         &fio->new_blkaddr, sum, type, fio, true);
3077         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3078                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3079                                         fio->old_blkaddr, fio->old_blkaddr);
3080
3081         /* writeout dirty page into bdev */
3082         f2fs_submit_page_write(fio);
3083         if (fio->retry) {
3084                 fio->old_blkaddr = fio->new_blkaddr;
3085                 goto reallocate;
3086         }
3087
3088         update_device_state(fio);
3089
3090         if (keep_order)
3091                 up_read(&fio->sbi->io_order_lock);
3092 }
3093
3094 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3095                                         enum iostat_type io_type)
3096 {
3097         struct f2fs_io_info fio = {
3098                 .sbi = sbi,
3099                 .type = META,
3100                 .temp = HOT,
3101                 .op = REQ_OP_WRITE,
3102                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3103                 .old_blkaddr = page->index,
3104                 .new_blkaddr = page->index,
3105                 .page = page,
3106                 .encrypted_page = NULL,
3107                 .in_list = false,
3108         };
3109
3110         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3111                 fio.op_flags &= ~REQ_META;
3112
3113         set_page_writeback(page);
3114         ClearPageError(page);
3115         f2fs_submit_page_write(&fio);
3116
3117         stat_inc_meta_count(sbi, page->index);
3118         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3119 }
3120
3121 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3122 {
3123         struct f2fs_summary sum;
3124
3125         set_summary(&sum, nid, 0, 0);
3126         do_write_page(&sum, fio);
3127
3128         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3129 }
3130
3131 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3132                                         struct f2fs_io_info *fio)
3133 {
3134         struct f2fs_sb_info *sbi = fio->sbi;
3135         struct f2fs_summary sum;
3136
3137         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3138         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3139         do_write_page(&sum, fio);
3140         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3141
3142         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3143 }
3144
3145 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3146 {
3147         int err;
3148         struct f2fs_sb_info *sbi = fio->sbi;
3149
3150         fio->new_blkaddr = fio->old_blkaddr;
3151         /* i/o temperature is needed for passing down write hints */
3152         __get_segment_type(fio);
3153
3154         f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3155                         GET_SEGNO(sbi, fio->new_blkaddr))->type));
3156
3157         stat_inc_inplace_blocks(fio->sbi);
3158
3159         err = f2fs_submit_page_bio(fio);
3160         if (!err)
3161                 update_device_state(fio);
3162
3163         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3164
3165         return err;
3166 }
3167
3168 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3169                                                 unsigned int segno)
3170 {
3171         int i;
3172
3173         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3174                 if (CURSEG_I(sbi, i)->segno == segno)
3175                         break;
3176         }
3177         return i;
3178 }
3179
3180 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3181                                 block_t old_blkaddr, block_t new_blkaddr,
3182                                 bool recover_curseg, bool recover_newaddr)
3183 {
3184         struct sit_info *sit_i = SIT_I(sbi);
3185         struct curseg_info *curseg;
3186         unsigned int segno, old_cursegno;
3187         struct seg_entry *se;
3188         int type;
3189         unsigned short old_blkoff;
3190
3191         segno = GET_SEGNO(sbi, new_blkaddr);
3192         se = get_seg_entry(sbi, segno);
3193         type = se->type;
3194
3195         down_write(&SM_I(sbi)->curseg_lock);
3196
3197         if (!recover_curseg) {
3198                 /* for recovery flow */
3199                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3200                         if (old_blkaddr == NULL_ADDR)
3201                                 type = CURSEG_COLD_DATA;
3202                         else
3203                                 type = CURSEG_WARM_DATA;
3204                 }
3205         } else {
3206                 if (IS_CURSEG(sbi, segno)) {
3207                         /* se->type is volatile as SSR allocation */
3208                         type = __f2fs_get_curseg(sbi, segno);
3209                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3210                 } else {
3211                         type = CURSEG_WARM_DATA;
3212                 }
3213         }
3214
3215         f2fs_bug_on(sbi, !IS_DATASEG(type));
3216         curseg = CURSEG_I(sbi, type);
3217
3218         mutex_lock(&curseg->curseg_mutex);
3219         down_write(&sit_i->sentry_lock);
3220
3221         old_cursegno = curseg->segno;
3222         old_blkoff = curseg->next_blkoff;
3223
3224         /* change the current segment */
3225         if (segno != curseg->segno) {
3226                 curseg->next_segno = segno;
3227                 change_curseg(sbi, type);
3228         }
3229
3230         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3231         __add_sum_entry(sbi, type, sum);
3232
3233         if (!recover_curseg || recover_newaddr)
3234                 update_sit_entry(sbi, new_blkaddr, 1);
3235         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3236                 invalidate_mapping_pages(META_MAPPING(sbi),
3237                                         old_blkaddr, old_blkaddr);
3238                 update_sit_entry(sbi, old_blkaddr, -1);
3239         }
3240
3241         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3242         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3243
3244         locate_dirty_segment(sbi, old_cursegno);
3245
3246         if (recover_curseg) {
3247                 if (old_cursegno != curseg->segno) {
3248                         curseg->next_segno = old_cursegno;
3249                         change_curseg(sbi, type);
3250                 }
3251                 curseg->next_blkoff = old_blkoff;
3252         }
3253
3254         up_write(&sit_i->sentry_lock);
3255         mutex_unlock(&curseg->curseg_mutex);
3256         up_write(&SM_I(sbi)->curseg_lock);
3257 }
3258
3259 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3260                                 block_t old_addr, block_t new_addr,
3261                                 unsigned char version, bool recover_curseg,
3262                                 bool recover_newaddr)
3263 {
3264         struct f2fs_summary sum;
3265
3266         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3267
3268         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3269                                         recover_curseg, recover_newaddr);
3270
3271         f2fs_update_data_blkaddr(dn, new_addr);
3272 }
3273
3274 void f2fs_wait_on_page_writeback(struct page *page,
3275                                 enum page_type type, bool ordered)
3276 {
3277         if (PageWriteback(page)) {
3278                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3279
3280                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3281                 if (ordered)
3282                         wait_on_page_writeback(page);
3283                 else
3284                         wait_for_stable_page(page);
3285         }
3286 }
3287
3288 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3289 {
3290         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3291         struct page *cpage;
3292
3293         if (!f2fs_post_read_required(inode))
3294                 return;
3295
3296         if (!is_valid_data_blkaddr(sbi, blkaddr))
3297                 return;
3298
3299         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3300         if (cpage) {
3301                 f2fs_wait_on_page_writeback(cpage, DATA, true);
3302                 f2fs_put_page(cpage, 1);
3303         }
3304 }
3305
3306 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3307                                                                 block_t len)
3308 {
3309         block_t i;
3310
3311         for (i = 0; i < len; i++)
3312                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3313 }
3314
3315 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3316 {
3317         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3318         struct curseg_info *seg_i;
3319         unsigned char *kaddr;
3320         struct page *page;
3321         block_t start;
3322         int i, j, offset;
3323
3324         start = start_sum_block(sbi);
3325
3326         page = f2fs_get_meta_page(sbi, start++);
3327         if (IS_ERR(page))
3328                 return PTR_ERR(page);
3329         kaddr = (unsigned char *)page_address(page);
3330
3331         /* Step 1: restore nat cache */
3332         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3333         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3334
3335         /* Step 2: restore sit cache */
3336         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3337         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3338         offset = 2 * SUM_JOURNAL_SIZE;
3339
3340         /* Step 3: restore summary entries */
3341         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3342                 unsigned short blk_off;
3343                 unsigned int segno;
3344
3345                 seg_i = CURSEG_I(sbi, i);
3346                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3347                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3348                 seg_i->next_segno = segno;
3349                 reset_curseg(sbi, i, 0);
3350                 seg_i->alloc_type = ckpt->alloc_type[i];
3351                 seg_i->next_blkoff = blk_off;
3352
3353                 if (seg_i->alloc_type == SSR)
3354                         blk_off = sbi->blocks_per_seg;
3355
3356                 for (j = 0; j < blk_off; j++) {
3357                         struct f2fs_summary *s;
3358                         s = (struct f2fs_summary *)(kaddr + offset);
3359                         seg_i->sum_blk->entries[j] = *s;
3360                         offset += SUMMARY_SIZE;
3361                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3362                                                 SUM_FOOTER_SIZE)
3363                                 continue;
3364
3365                         f2fs_put_page(page, 1);
3366                         page = NULL;
3367
3368                         page = f2fs_get_meta_page(sbi, start++);
3369                         if (IS_ERR(page))
3370                                 return PTR_ERR(page);
3371                         kaddr = (unsigned char *)page_address(page);
3372                         offset = 0;
3373                 }
3374         }
3375         f2fs_put_page(page, 1);
3376         return 0;
3377 }
3378
3379 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3380 {
3381         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3382         struct f2fs_summary_block *sum;
3383         struct curseg_info *curseg;
3384         struct page *new;
3385         unsigned short blk_off;
3386         unsigned int segno = 0;
3387         block_t blk_addr = 0;
3388         int err = 0;
3389
3390         /* get segment number and block addr */
3391         if (IS_DATASEG(type)) {
3392                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3393                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3394                                                         CURSEG_HOT_DATA]);
3395                 if (__exist_node_summaries(sbi))
3396                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3397                 else
3398                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3399         } else {
3400                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3401                                                         CURSEG_HOT_NODE]);
3402                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3403                                                         CURSEG_HOT_NODE]);
3404                 if (__exist_node_summaries(sbi))
3405                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3406                                                         type - CURSEG_HOT_NODE);
3407                 else
3408                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3409         }
3410
3411         new = f2fs_get_meta_page(sbi, blk_addr);
3412         if (IS_ERR(new))
3413                 return PTR_ERR(new);
3414         sum = (struct f2fs_summary_block *)page_address(new);
3415
3416         if (IS_NODESEG(type)) {
3417                 if (__exist_node_summaries(sbi)) {
3418                         struct f2fs_summary *ns = &sum->entries[0];
3419                         int i;
3420                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3421                                 ns->version = 0;
3422                                 ns->ofs_in_node = 0;
3423                         }
3424                 } else {
3425                         err = f2fs_restore_node_summary(sbi, segno, sum);
3426                         if (err)
3427                                 goto out;
3428                 }
3429         }
3430
3431         /* set uncompleted segment to curseg */
3432         curseg = CURSEG_I(sbi, type);
3433         mutex_lock(&curseg->curseg_mutex);
3434
3435         /* update journal info */
3436         down_write(&curseg->journal_rwsem);
3437         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3438         up_write(&curseg->journal_rwsem);
3439
3440         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3441         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3442         curseg->next_segno = segno;
3443         reset_curseg(sbi, type, 0);
3444         curseg->alloc_type = ckpt->alloc_type[type];
3445         curseg->next_blkoff = blk_off;
3446         mutex_unlock(&curseg->curseg_mutex);
3447 out:
3448         f2fs_put_page(new, 1);
3449         return err;
3450 }
3451
3452 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3453 {
3454         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3455         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3456         int type = CURSEG_HOT_DATA;
3457         int err;
3458
3459         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3460                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3461
3462                 if (npages >= 2)
3463                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3464                                                         META_CP, true);
3465
3466                 /* restore for compacted data summary */
3467                 err = read_compacted_summaries(sbi);
3468                 if (err)
3469                         return err;
3470                 type = CURSEG_HOT_NODE;
3471         }
3472
3473         if (__exist_node_summaries(sbi))
3474                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3475                                         NR_CURSEG_TYPE - type, META_CP, true);
3476
3477         for (; type <= CURSEG_COLD_NODE; type++) {
3478                 err = read_normal_summaries(sbi, type);
3479                 if (err)
3480                         return err;
3481         }
3482
3483         /* sanity check for summary blocks */
3484         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3485                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3486                 return -EINVAL;
3487
3488         return 0;
3489 }
3490
3491 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3492 {
3493         struct page *page;
3494         unsigned char *kaddr;
3495         struct f2fs_summary *summary;
3496         struct curseg_info *seg_i;
3497         int written_size = 0;
3498         int i, j;
3499
3500         page = f2fs_grab_meta_page(sbi, blkaddr++);
3501         kaddr = (unsigned char *)page_address(page);
3502         memset(kaddr, 0, PAGE_SIZE);
3503
3504         /* Step 1: write nat cache */
3505         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3506         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3507         written_size += SUM_JOURNAL_SIZE;
3508
3509         /* Step 2: write sit cache */
3510         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3511         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3512         written_size += SUM_JOURNAL_SIZE;
3513
3514         /* Step 3: write summary entries */
3515         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3516                 unsigned short blkoff;
3517                 seg_i = CURSEG_I(sbi, i);
3518                 if (sbi->ckpt->alloc_type[i] == SSR)
3519                         blkoff = sbi->blocks_per_seg;
3520                 else
3521                         blkoff = curseg_blkoff(sbi, i);
3522
3523                 for (j = 0; j < blkoff; j++) {
3524                         if (!page) {
3525                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3526                                 kaddr = (unsigned char *)page_address(page);
3527                                 memset(kaddr, 0, PAGE_SIZE);
3528                                 written_size = 0;
3529                         }
3530                         summary = (struct f2fs_summary *)(kaddr + written_size);
3531                         *summary = seg_i->sum_blk->entries[j];
3532                         written_size += SUMMARY_SIZE;
3533
3534                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3535                                                         SUM_FOOTER_SIZE)
3536                                 continue;
3537
3538                         set_page_dirty(page);
3539                         f2fs_put_page(page, 1);
3540                         page = NULL;
3541                 }
3542         }
3543         if (page) {
3544                 set_page_dirty(page);
3545                 f2fs_put_page(page, 1);
3546         }
3547 }
3548
3549 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3550                                         block_t blkaddr, int type)
3551 {
3552         int i, end;
3553         if (IS_DATASEG(type))
3554                 end = type + NR_CURSEG_DATA_TYPE;
3555         else
3556                 end = type + NR_CURSEG_NODE_TYPE;
3557
3558         for (i = type; i < end; i++)
3559                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3560 }
3561
3562 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3563 {
3564         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3565                 write_compacted_summaries(sbi, start_blk);
3566         else
3567                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3568 }
3569
3570 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3571 {
3572         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3573 }
3574
3575 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3576                                         unsigned int val, int alloc)
3577 {
3578         int i;
3579
3580         if (type == NAT_JOURNAL) {
3581                 for (i = 0; i < nats_in_cursum(journal); i++) {
3582                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3583                                 return i;
3584                 }
3585                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3586                         return update_nats_in_cursum(journal, 1);
3587         } else if (type == SIT_JOURNAL) {
3588                 for (i = 0; i < sits_in_cursum(journal); i++)
3589                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3590                                 return i;
3591                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3592                         return update_sits_in_cursum(journal, 1);
3593         }
3594         return -1;
3595 }
3596
3597 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3598                                         unsigned int segno)
3599 {
3600         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3601 }
3602
3603 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3604                                         unsigned int start)
3605 {
3606         struct sit_info *sit_i = SIT_I(sbi);
3607         struct page *page;
3608         pgoff_t src_off, dst_off;
3609
3610         src_off = current_sit_addr(sbi, start);
3611         dst_off = next_sit_addr(sbi, src_off);
3612
3613         page = f2fs_grab_meta_page(sbi, dst_off);
3614         seg_info_to_sit_page(sbi, page, start);
3615
3616         set_page_dirty(page);
3617         set_to_next_sit(sit_i, start);
3618
3619         return page;
3620 }
3621
3622 static struct sit_entry_set *grab_sit_entry_set(void)
3623 {
3624         struct sit_entry_set *ses =
3625                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3626
3627         ses->entry_cnt = 0;
3628         INIT_LIST_HEAD(&ses->set_list);
3629         return ses;
3630 }
3631
3632 static void release_sit_entry_set(struct sit_entry_set *ses)
3633 {
3634         list_del(&ses->set_list);
3635         kmem_cache_free(sit_entry_set_slab, ses);
3636 }
3637
3638 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3639                                                 struct list_head *head)
3640 {
3641         struct sit_entry_set *next = ses;
3642
3643         if (list_is_last(&ses->set_list, head))
3644                 return;
3645
3646         list_for_each_entry_continue(next, head, set_list)
3647                 if (ses->entry_cnt <= next->entry_cnt)
3648                         break;
3649
3650         list_move_tail(&ses->set_list, &next->set_list);
3651 }
3652
3653 static void add_sit_entry(unsigned int segno, struct list_head *head)
3654 {
3655         struct sit_entry_set *ses;
3656         unsigned int start_segno = START_SEGNO(segno);
3657
3658         list_for_each_entry(ses, head, set_list) {
3659                 if (ses->start_segno == start_segno) {
3660                         ses->entry_cnt++;
3661                         adjust_sit_entry_set(ses, head);
3662                         return;
3663                 }
3664         }
3665
3666         ses = grab_sit_entry_set();
3667
3668         ses->start_segno = start_segno;
3669         ses->entry_cnt++;
3670         list_add(&ses->set_list, head);
3671 }
3672
3673 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3674 {
3675         struct f2fs_sm_info *sm_info = SM_I(sbi);
3676         struct list_head *set_list = &sm_info->sit_entry_set;
3677         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3678         unsigned int segno;
3679
3680         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3681                 add_sit_entry(segno, set_list);
3682 }
3683
3684 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3685 {
3686         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3687         struct f2fs_journal *journal = curseg->journal;
3688         int i;
3689
3690         down_write(&curseg->journal_rwsem);
3691         for (i = 0; i < sits_in_cursum(journal); i++) {
3692                 unsigned int segno;
3693                 bool dirtied;
3694
3695                 segno = le32_to_cpu(segno_in_journal(journal, i));
3696                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3697
3698                 if (!dirtied)
3699                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3700         }
3701         update_sits_in_cursum(journal, -i);
3702         up_write(&curseg->journal_rwsem);
3703 }
3704
3705 /*
3706  * CP calls this function, which flushes SIT entries including sit_journal,
3707  * and moves prefree segs to free segs.
3708  */
3709 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3710 {
3711         struct sit_info *sit_i = SIT_I(sbi);
3712         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3713         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3714         struct f2fs_journal *journal = curseg->journal;
3715         struct sit_entry_set *ses, *tmp;
3716         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3717         bool to_journal = true;
3718         struct seg_entry *se;
3719
3720         down_write(&sit_i->sentry_lock);
3721
3722         if (!sit_i->dirty_sentries)
3723                 goto out;
3724
3725         /*
3726          * add and account sit entries of dirty bitmap in sit entry
3727          * set temporarily
3728          */
3729         add_sits_in_set(sbi);
3730
3731         /*
3732          * if there are no enough space in journal to store dirty sit
3733          * entries, remove all entries from journal and add and account
3734          * them in sit entry set.
3735          */
3736         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3737                 remove_sits_in_journal(sbi);
3738
3739         /*
3740          * there are two steps to flush sit entries:
3741          * #1, flush sit entries to journal in current cold data summary block.
3742          * #2, flush sit entries to sit page.
3743          */
3744         list_for_each_entry_safe(ses, tmp, head, set_list) {
3745                 struct page *page = NULL;
3746                 struct f2fs_sit_block *raw_sit = NULL;
3747                 unsigned int start_segno = ses->start_segno;
3748                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3749                                                 (unsigned long)MAIN_SEGS(sbi));
3750                 unsigned int segno = start_segno;
3751
3752                 if (to_journal &&
3753                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3754                         to_journal = false;
3755
3756                 if (to_journal) {
3757                         down_write(&curseg->journal_rwsem);
3758                 } else {
3759                         page = get_next_sit_page(sbi, start_segno);
3760                         raw_sit = page_address(page);
3761                 }
3762
3763                 /* flush dirty sit entries in region of current sit set */
3764                 for_each_set_bit_from(segno, bitmap, end) {
3765                         int offset, sit_offset;
3766
3767                         se = get_seg_entry(sbi, segno);
3768 #ifdef CONFIG_F2FS_CHECK_FS
3769                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3770                                                 SIT_VBLOCK_MAP_SIZE))
3771                                 f2fs_bug_on(sbi, 1);
3772 #endif
3773
3774                         /* add discard candidates */
3775                         if (!(cpc->reason & CP_DISCARD)) {
3776                                 cpc->trim_start = segno;
3777                                 add_discard_addrs(sbi, cpc, false);
3778                         }
3779
3780                         if (to_journal) {
3781                                 offset = f2fs_lookup_journal_in_cursum(journal,
3782                                                         SIT_JOURNAL, segno, 1);
3783                                 f2fs_bug_on(sbi, offset < 0);
3784                                 segno_in_journal(journal, offset) =
3785                                                         cpu_to_le32(segno);
3786                                 seg_info_to_raw_sit(se,
3787                                         &sit_in_journal(journal, offset));
3788                                 check_block_count(sbi, segno,
3789                                         &sit_in_journal(journal, offset));
3790                         } else {
3791                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3792                                 seg_info_to_raw_sit(se,
3793                                                 &raw_sit->entries[sit_offset]);
3794                                 check_block_count(sbi, segno,
3795                                                 &raw_sit->entries[sit_offset]);
3796                         }
3797
3798                         __clear_bit(segno, bitmap);
3799                         sit_i->dirty_sentries--;
3800                         ses->entry_cnt--;
3801                 }
3802
3803                 if (to_journal)
3804                         up_write(&curseg->journal_rwsem);
3805                 else
3806                         f2fs_put_page(page, 1);
3807
3808                 f2fs_bug_on(sbi, ses->entry_cnt);
3809                 release_sit_entry_set(ses);
3810         }
3811
3812         f2fs_bug_on(sbi, !list_empty(head));
3813         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3814 out:
3815         if (cpc->reason & CP_DISCARD) {
3816                 __u64 trim_start = cpc->trim_start;
3817
3818                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3819                         add_discard_addrs(sbi, cpc, false);
3820
3821                 cpc->trim_start = trim_start;
3822         }
3823         up_write(&sit_i->sentry_lock);
3824
3825         set_prefree_as_free_segments(sbi);
3826 }
3827
3828 static int build_sit_info(struct f2fs_sb_info *sbi)
3829 {
3830         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3831         struct sit_info *sit_i;
3832         unsigned int sit_segs, start;
3833         char *src_bitmap;
3834         unsigned int bitmap_size;
3835
3836         /* allocate memory for SIT information */
3837         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3838         if (!sit_i)
3839                 return -ENOMEM;
3840
3841         SM_I(sbi)->sit_info = sit_i;
3842
3843         sit_i->sentries =
3844                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3845                                               MAIN_SEGS(sbi)),
3846                               GFP_KERNEL);
3847         if (!sit_i->sentries)
3848                 return -ENOMEM;
3849
3850         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3851         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3852                                                                 GFP_KERNEL);
3853         if (!sit_i->dirty_sentries_bitmap)
3854                 return -ENOMEM;
3855
3856         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3857                 sit_i->sentries[start].cur_valid_map
3858                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3859                 sit_i->sentries[start].ckpt_valid_map
3860                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3861                 if (!sit_i->sentries[start].cur_valid_map ||
3862                                 !sit_i->sentries[start].ckpt_valid_map)
3863                         return -ENOMEM;
3864
3865 #ifdef CONFIG_F2FS_CHECK_FS
3866                 sit_i->sentries[start].cur_valid_map_mir
3867                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3868                 if (!sit_i->sentries[start].cur_valid_map_mir)
3869                         return -ENOMEM;
3870 #endif
3871
3872                 sit_i->sentries[start].discard_map
3873                         = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3874                                                         GFP_KERNEL);
3875                 if (!sit_i->sentries[start].discard_map)
3876                         return -ENOMEM;
3877         }
3878
3879         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3880         if (!sit_i->tmp_map)
3881                 return -ENOMEM;
3882
3883         if (sbi->segs_per_sec > 1) {
3884                 sit_i->sec_entries =
3885                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3886                                                       MAIN_SECS(sbi)),
3887                                       GFP_KERNEL);
3888                 if (!sit_i->sec_entries)
3889                         return -ENOMEM;
3890         }
3891
3892         /* get information related with SIT */
3893         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3894
3895         /* setup SIT bitmap from ckeckpoint pack */
3896         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3897         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3898
3899         sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3900         if (!sit_i->sit_bitmap)
3901                 return -ENOMEM;
3902
3903 #ifdef CONFIG_F2FS_CHECK_FS
3904         sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3905         if (!sit_i->sit_bitmap_mir)
3906                 return -ENOMEM;
3907 #endif
3908
3909         /* init SIT information */
3910         sit_i->s_ops = &default_salloc_ops;
3911
3912         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3913         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3914         sit_i->written_valid_blocks = 0;
3915         sit_i->bitmap_size = bitmap_size;
3916         sit_i->dirty_sentries = 0;
3917         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3918         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3919         sit_i->mounted_time = ktime_get_real_seconds();
3920         init_rwsem(&sit_i->sentry_lock);
3921         return 0;
3922 }
3923
3924 static int build_free_segmap(struct f2fs_sb_info *sbi)
3925 {
3926         struct free_segmap_info *free_i;
3927         unsigned int bitmap_size, sec_bitmap_size;
3928
3929         /* allocate memory for free segmap information */
3930         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3931         if (!free_i)
3932                 return -ENOMEM;
3933
3934         SM_I(sbi)->free_info = free_i;
3935
3936         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3937         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3938         if (!free_i->free_segmap)
3939                 return -ENOMEM;
3940
3941         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3942         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3943         if (!free_i->free_secmap)
3944                 return -ENOMEM;
3945
3946         /* set all segments as dirty temporarily */
3947         memset(free_i->free_segmap, 0xff, bitmap_size);
3948         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3949
3950         /* init free segmap information */
3951         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3952         free_i->free_segments = 0;
3953         free_i->free_sections = 0;
3954         spin_lock_init(&free_i->segmap_lock);
3955         return 0;
3956 }
3957
3958 static int build_curseg(struct f2fs_sb_info *sbi)
3959 {
3960         struct curseg_info *array;
3961         int i;
3962
3963         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3964                              GFP_KERNEL);
3965         if (!array)
3966                 return -ENOMEM;
3967
3968         SM_I(sbi)->curseg_array = array;
3969
3970         for (i = 0; i < NR_CURSEG_TYPE; i++) {
3971                 mutex_init(&array[i].curseg_mutex);
3972                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3973                 if (!array[i].sum_blk)
3974                         return -ENOMEM;
3975                 init_rwsem(&array[i].journal_rwsem);
3976                 array[i].journal = f2fs_kzalloc(sbi,
3977                                 sizeof(struct f2fs_journal), GFP_KERNEL);
3978                 if (!array[i].journal)
3979                         return -ENOMEM;
3980                 array[i].segno = NULL_SEGNO;
3981                 array[i].next_blkoff = 0;
3982         }
3983         return restore_curseg_summaries(sbi);
3984 }
3985
3986 static int build_sit_entries(struct f2fs_sb_info *sbi)
3987 {
3988         struct sit_info *sit_i = SIT_I(sbi);
3989         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3990         struct f2fs_journal *journal = curseg->journal;
3991         struct seg_entry *se;
3992         struct f2fs_sit_entry sit;
3993         int sit_blk_cnt = SIT_BLK_CNT(sbi);
3994         unsigned int i, start, end;
3995         unsigned int readed, start_blk = 0;
3996         int err = 0;
3997         block_t total_node_blocks = 0;
3998
3999         do {
4000                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4001                                                         META_SIT, true);
4002
4003                 start = start_blk * sit_i->sents_per_block;
4004                 end = (start_blk + readed) * sit_i->sents_per_block;
4005
4006                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4007                         struct f2fs_sit_block *sit_blk;
4008                         struct page *page;
4009
4010                         se = &sit_i->sentries[start];
4011                         page = get_current_sit_page(sbi, start);
4012                         if (IS_ERR(page))
4013                                 return PTR_ERR(page);
4014                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4015                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4016                         f2fs_put_page(page, 1);
4017
4018                         err = check_block_count(sbi, start, &sit);
4019                         if (err)
4020                                 return err;
4021                         seg_info_from_raw_sit(se, &sit);
4022                         if (IS_NODESEG(se->type))
4023                                 total_node_blocks += se->valid_blocks;
4024
4025                         /* build discard map only one time */
4026                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4027                                 memset(se->discard_map, 0xff,
4028                                         SIT_VBLOCK_MAP_SIZE);
4029                         } else {
4030                                 memcpy(se->discard_map,
4031                                         se->cur_valid_map,
4032                                         SIT_VBLOCK_MAP_SIZE);
4033                                 sbi->discard_blks +=
4034                                         sbi->blocks_per_seg -
4035                                         se->valid_blocks;
4036                         }
4037
4038                         if (sbi->segs_per_sec > 1)
4039                                 get_sec_entry(sbi, start)->valid_blocks +=
4040                                                         se->valid_blocks;
4041                 }
4042                 start_blk += readed;
4043         } while (start_blk < sit_blk_cnt);
4044
4045         down_read(&curseg->journal_rwsem);
4046         for (i = 0; i < sits_in_cursum(journal); i++) {
4047                 unsigned int old_valid_blocks;
4048
4049                 start = le32_to_cpu(segno_in_journal(journal, i));
4050                 if (start >= MAIN_SEGS(sbi)) {
4051                         f2fs_msg(sbi->sb, KERN_ERR,
4052                                         "Wrong journal entry on segno %u",
4053                                         start);
4054                         set_sbi_flag(sbi, SBI_NEED_FSCK);
4055                         err = -EINVAL;
4056                         break;
4057                 }
4058
4059                 se = &sit_i->sentries[start];
4060                 sit = sit_in_journal(journal, i);
4061
4062                 old_valid_blocks = se->valid_blocks;
4063                 if (IS_NODESEG(se->type))
4064                         total_node_blocks -= old_valid_blocks;
4065
4066                 err = check_block_count(sbi, start, &sit);
4067                 if (err)
4068                         break;
4069                 seg_info_from_raw_sit(se, &sit);
4070                 if (IS_NODESEG(se->type))
4071                         total_node_blocks += se->valid_blocks;
4072
4073                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4074                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4075                 } else {
4076                         memcpy(se->discard_map, se->cur_valid_map,
4077                                                 SIT_VBLOCK_MAP_SIZE);
4078                         sbi->discard_blks += old_valid_blocks;
4079                         sbi->discard_blks -= se->valid_blocks;
4080                 }
4081
4082                 if (sbi->segs_per_sec > 1) {
4083                         get_sec_entry(sbi, start)->valid_blocks +=
4084                                                         se->valid_blocks;
4085                         get_sec_entry(sbi, start)->valid_blocks -=
4086                                                         old_valid_blocks;
4087                 }
4088         }
4089         up_read(&curseg->journal_rwsem);
4090
4091         if (!err && total_node_blocks != valid_node_count(sbi)) {
4092                 f2fs_msg(sbi->sb, KERN_ERR,
4093                         "SIT is corrupted node# %u vs %u",
4094                         total_node_blocks, valid_node_count(sbi));
4095                 set_sbi_flag(sbi, SBI_NEED_FSCK);
4096                 err = -EINVAL;
4097         }
4098
4099         return err;
4100 }
4101
4102 static void init_free_segmap(struct f2fs_sb_info *sbi)
4103 {
4104         unsigned int start;
4105         int type;
4106
4107         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4108                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4109                 if (!sentry->valid_blocks)
4110                         __set_free(sbi, start);
4111                 else
4112                         SIT_I(sbi)->written_valid_blocks +=
4113                                                 sentry->valid_blocks;
4114         }
4115
4116         /* set use the current segments */
4117         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4118                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4119                 __set_test_and_inuse(sbi, curseg_t->segno);
4120         }
4121 }
4122
4123 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4124 {
4125         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4126         struct free_segmap_info *free_i = FREE_I(sbi);
4127         unsigned int segno = 0, offset = 0;
4128         unsigned short valid_blocks;
4129
4130         while (1) {
4131                 /* find dirty segment based on free segmap */
4132                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4133                 if (segno >= MAIN_SEGS(sbi))
4134                         break;
4135                 offset = segno + 1;
4136                 valid_blocks = get_valid_blocks(sbi, segno, false);
4137                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4138                         continue;
4139                 if (valid_blocks > sbi->blocks_per_seg) {
4140                         f2fs_bug_on(sbi, 1);
4141                         continue;
4142                 }
4143                 mutex_lock(&dirty_i->seglist_lock);
4144                 __locate_dirty_segment(sbi, segno, DIRTY);
4145                 mutex_unlock(&dirty_i->seglist_lock);
4146         }
4147 }
4148
4149 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4150 {
4151         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4152         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4153
4154         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4155         if (!dirty_i->victim_secmap)
4156                 return -ENOMEM;
4157         return 0;
4158 }
4159
4160 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4161 {
4162         struct dirty_seglist_info *dirty_i;
4163         unsigned int bitmap_size, i;
4164
4165         /* allocate memory for dirty segments list information */
4166         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4167                                                                 GFP_KERNEL);
4168         if (!dirty_i)
4169                 return -ENOMEM;
4170
4171         SM_I(sbi)->dirty_info = dirty_i;
4172         mutex_init(&dirty_i->seglist_lock);
4173
4174         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4175
4176         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4177                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4178                                                                 GFP_KERNEL);
4179                 if (!dirty_i->dirty_segmap[i])
4180                         return -ENOMEM;
4181         }
4182
4183         init_dirty_segmap(sbi);
4184         return init_victim_secmap(sbi);
4185 }
4186
4187 /*
4188  * Update min, max modified time for cost-benefit GC algorithm
4189  */
4190 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4191 {
4192         struct sit_info *sit_i = SIT_I(sbi);
4193         unsigned int segno;
4194
4195         down_write(&sit_i->sentry_lock);
4196
4197         sit_i->min_mtime = ULLONG_MAX;
4198
4199         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4200                 unsigned int i;
4201                 unsigned long long mtime = 0;
4202
4203                 for (i = 0; i < sbi->segs_per_sec; i++)
4204                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4205
4206                 mtime = div_u64(mtime, sbi->segs_per_sec);
4207
4208                 if (sit_i->min_mtime > mtime)
4209                         sit_i->min_mtime = mtime;
4210         }
4211         sit_i->max_mtime = get_mtime(sbi, false);
4212         up_write(&sit_i->sentry_lock);
4213 }
4214
4215 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4216 {
4217         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4218         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4219         struct f2fs_sm_info *sm_info;
4220         int err;
4221
4222         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4223         if (!sm_info)
4224                 return -ENOMEM;
4225
4226         /* init sm info */
4227         sbi->sm_info = sm_info;
4228         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4229         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4230         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4231         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4232         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4233         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4234         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4235         sm_info->rec_prefree_segments = sm_info->main_segments *
4236                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4237         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4238                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4239
4240         if (!test_opt(sbi, LFS))
4241                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4242         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4243         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4244         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4245         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4246         sm_info->min_ssr_sections = reserved_sections(sbi);
4247
4248         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4249
4250         init_rwsem(&sm_info->curseg_lock);
4251
4252         if (!f2fs_readonly(sbi->sb)) {
4253                 err = f2fs_create_flush_cmd_control(sbi);
4254                 if (err)
4255                         return err;
4256         }
4257
4258         err = create_discard_cmd_control(sbi);
4259         if (err)
4260                 return err;
4261
4262         err = build_sit_info(sbi);
4263         if (err)
4264                 return err;
4265         err = build_free_segmap(sbi);
4266         if (err)
4267                 return err;
4268         err = build_curseg(sbi);
4269         if (err)
4270                 return err;
4271
4272         /* reinit free segmap based on SIT */
4273         err = build_sit_entries(sbi);
4274         if (err)
4275                 return err;
4276
4277         init_free_segmap(sbi);
4278         err = build_dirty_segmap(sbi);
4279         if (err)
4280                 return err;
4281
4282         init_min_max_mtime(sbi);
4283         return 0;
4284 }
4285
4286 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4287                 enum dirty_type dirty_type)
4288 {
4289         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4290
4291         mutex_lock(&dirty_i->seglist_lock);
4292         kvfree(dirty_i->dirty_segmap[dirty_type]);
4293         dirty_i->nr_dirty[dirty_type] = 0;
4294         mutex_unlock(&dirty_i->seglist_lock);
4295 }
4296
4297 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4298 {
4299         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4300         kvfree(dirty_i->victim_secmap);
4301 }
4302
4303 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4304 {
4305         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4306         int i;
4307
4308         if (!dirty_i)
4309                 return;
4310
4311         /* discard pre-free/dirty segments list */
4312         for (i = 0; i < NR_DIRTY_TYPE; i++)
4313                 discard_dirty_segmap(sbi, i);
4314
4315         destroy_victim_secmap(sbi);
4316         SM_I(sbi)->dirty_info = NULL;
4317         kfree(dirty_i);
4318 }
4319
4320 static void destroy_curseg(struct f2fs_sb_info *sbi)
4321 {
4322         struct curseg_info *array = SM_I(sbi)->curseg_array;
4323         int i;
4324
4325         if (!array)
4326                 return;
4327         SM_I(sbi)->curseg_array = NULL;
4328         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4329                 kfree(array[i].sum_blk);
4330                 kfree(array[i].journal);
4331         }
4332         kfree(array);
4333 }
4334
4335 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4336 {
4337         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4338         if (!free_i)
4339                 return;
4340         SM_I(sbi)->free_info = NULL;
4341         kvfree(free_i->free_segmap);
4342         kvfree(free_i->free_secmap);
4343         kfree(free_i);
4344 }
4345
4346 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4347 {
4348         struct sit_info *sit_i = SIT_I(sbi);
4349         unsigned int start;
4350
4351         if (!sit_i)
4352                 return;
4353
4354         if (sit_i->sentries) {
4355                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4356                         kfree(sit_i->sentries[start].cur_valid_map);
4357 #ifdef CONFIG_F2FS_CHECK_FS
4358                         kfree(sit_i->sentries[start].cur_valid_map_mir);
4359 #endif
4360                         kfree(sit_i->sentries[start].ckpt_valid_map);
4361                         kfree(sit_i->sentries[start].discard_map);
4362                 }
4363         }
4364         kfree(sit_i->tmp_map);
4365
4366         kvfree(sit_i->sentries);
4367         kvfree(sit_i->sec_entries);
4368         kvfree(sit_i->dirty_sentries_bitmap);
4369
4370         SM_I(sbi)->sit_info = NULL;
4371         kfree(sit_i->sit_bitmap);
4372 #ifdef CONFIG_F2FS_CHECK_FS
4373         kfree(sit_i->sit_bitmap_mir);
4374 #endif
4375         kfree(sit_i);
4376 }
4377
4378 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4379 {
4380         struct f2fs_sm_info *sm_info = SM_I(sbi);
4381
4382         if (!sm_info)
4383                 return;
4384         f2fs_destroy_flush_cmd_control(sbi, true);
4385         destroy_discard_cmd_control(sbi);
4386         destroy_dirty_segmap(sbi);
4387         destroy_curseg(sbi);
4388         destroy_free_segmap(sbi);
4389         destroy_sit_info(sbi);
4390         sbi->sm_info = NULL;
4391         kfree(sm_info);
4392 }
4393
4394 int __init f2fs_create_segment_manager_caches(void)
4395 {
4396         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4397                         sizeof(struct discard_entry));
4398         if (!discard_entry_slab)
4399                 goto fail;
4400
4401         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4402                         sizeof(struct discard_cmd));
4403         if (!discard_cmd_slab)
4404                 goto destroy_discard_entry;
4405
4406         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4407                         sizeof(struct sit_entry_set));
4408         if (!sit_entry_set_slab)
4409                 goto destroy_discard_cmd;
4410
4411         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4412                         sizeof(struct inmem_pages));
4413         if (!inmem_entry_slab)
4414                 goto destroy_sit_entry_set;
4415         return 0;
4416
4417 destroy_sit_entry_set:
4418         kmem_cache_destroy(sit_entry_set_slab);
4419 destroy_discard_cmd:
4420         kmem_cache_destroy(discard_cmd_slab);
4421 destroy_discard_entry:
4422         kmem_cache_destroy(discard_entry_slab);
4423 fail:
4424         return -ENOMEM;
4425 }
4426
4427 void f2fs_destroy_segment_manager_caches(void)
4428 {
4429         kmem_cache_destroy(sit_entry_set_slab);
4430         kmem_cache_destroy(discard_cmd_slab);
4431         kmem_cache_destroy(discard_entry_slab);
4432         kmem_cache_destroy(inmem_entry_slab);
4433 }
This page took 0.285089 seconds and 4 git commands to generate.