2 * Just-In-Time compiler for eBPF filters on 32bit ARM
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
12 #include <linux/bpf.h>
13 #include <linux/bitops.h>
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/filter.h>
17 #include <linux/netdevice.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/if_vlan.h>
22 #include <asm/cacheflush.h>
23 #include <asm/hwcap.h>
24 #include <asm/opcodes.h>
25 #include <asm/system_info.h>
27 #include "bpf_jit_32.h"
30 * eBPF prog stack layout:
33 * original ARM_SP => +-----+
34 * | | callee saved registers
35 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
36 * | ... | eBPF JIT scratch space
37 * eBPF fp register => +-----+
38 * (BPF_FP) | ... | eBPF prog stack
40 * |RSVD | JIT scratchpad
41 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
43 * | ... | Function call stack
48 * The callee saved registers depends on whether frame pointers are enabled.
49 * With frame pointers (to be compliant with the ABI):
52 * original ARM_SP => +--------------+ \
54 * current ARM_FP => +--------------+ } callee saved registers
59 * Without frame pointers:
62 * original ARM_SP => +--------------+
63 * | r4-r9,fp,lr | callee saved registers
64 * current ARM_FP => +--------------+
67 * When popping registers off the stack at the end of a BPF function, we
68 * reference them via the current ARM_FP register.
70 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
71 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
73 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
74 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
77 /* Stack layout - these are offsets from (top of stack - 4) */
98 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
99 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
100 * BPF_REG_FP and Tail call counts.
102 BPF_JIT_SCRATCH_REGS,
106 * Negative "register" values indicate the register is stored on the stack
107 * and are the offset from the top of the eBPF JIT scratch space.
109 #define STACK_OFFSET(k) (-4 - (k) * 4)
110 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
112 #ifdef CONFIG_FRAME_POINTER
113 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
115 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
118 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
119 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
120 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
122 #define FLAG_IMM_OVERFLOW (1 << 0)
125 * Map eBPF registers to ARM 32bit registers or stack scratch space.
127 * 1. First argument is passed using the arm 32bit registers and rest of the
128 * arguments are passed on stack scratch space.
129 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
130 * arguments are mapped to scratch space on stack.
131 * 3. We need two 64 bit temp registers to do complex operations on eBPF
134 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
135 * registers, we have to map each eBPF registers with two arm 32 bit regs or
136 * scratch memory space and we have to build eBPF 64 bit register from those.
139 static const s8 bpf2a32[][2] = {
140 /* return value from in-kernel function, and exit value from eBPF */
141 [BPF_REG_0] = {ARM_R1, ARM_R0},
142 /* arguments from eBPF program to in-kernel function */
143 [BPF_REG_1] = {ARM_R3, ARM_R2},
144 /* Stored on stack scratch space */
145 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
146 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
147 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
148 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
149 /* callee saved registers that in-kernel function will preserve */
150 [BPF_REG_6] = {ARM_R5, ARM_R4},
151 /* Stored on stack scratch space */
152 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
153 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
154 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
155 /* Read only Frame Pointer to access Stack */
156 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
157 /* Temporary Register for internal BPF JIT, can be used
158 * for constant blindings and others.
160 [TMP_REG_1] = {ARM_R7, ARM_R6},
161 [TMP_REG_2] = {ARM_R9, ARM_R8},
162 /* Tail call count. Stored on stack scratch space. */
163 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
164 /* temporary register for blinding constants.
165 * Stored on stack scratch space.
167 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
170 #define dst_lo dst[1]
171 #define dst_hi dst[0]
172 #define src_lo src[1]
173 #define src_hi src[0]
179 * idx : index of current last JITed instruction.
180 * prologue_bytes : bytes used in prologue.
181 * epilogue_offset : offset of epilogue starting.
182 * offsets : array of eBPF instruction offsets in
184 * target : final JITed code.
185 * epilogue_bytes : no of bytes used in epilogue.
186 * imm_count : no of immediate counts used for global
188 * imms : array of global variable addresses.
192 const struct bpf_prog *prog;
194 unsigned int prologue_bytes;
195 unsigned int epilogue_offset;
196 unsigned int cpu_architecture;
201 #if __LINUX_ARM_ARCH__ < 7
209 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
210 * (where the assembly routines like __aeabi_uidiv could cause problems).
212 static u32 jit_udiv32(u32 dividend, u32 divisor)
214 return dividend / divisor;
217 static u32 jit_mod32(u32 dividend, u32 divisor)
219 return dividend % divisor;
222 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
224 inst |= (cond << 28);
225 inst = __opcode_to_mem_arm(inst);
227 if (ctx->target != NULL)
228 ctx->target[ctx->idx] = inst;
234 * Emit an instruction that will be executed unconditionally.
236 static inline void emit(u32 inst, struct jit_ctx *ctx)
238 _emit(ARM_COND_AL, inst, ctx);
242 * This is rather horrid, but necessary to convert an integer constant
243 * to an immediate operand for the opcodes, and be able to detect at
244 * build time whether the constant can't be converted (iow, usable in
247 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
248 #define const_imm8m(x) \
251 if (!(v & ~0x000000ff)) \
252 r = imm12val(v, 0); \
253 else if (!(v & ~0xc000003f)) \
254 r = imm12val(v, 2); \
255 else if (!(v & ~0xf000000f)) \
256 r = imm12val(v, 4); \
257 else if (!(v & ~0xfc000003)) \
258 r = imm12val(v, 6); \
259 else if (!(v & ~0xff000000)) \
260 r = imm12val(v, 8); \
261 else if (!(v & ~0x3fc00000)) \
262 r = imm12val(v, 10); \
263 else if (!(v & ~0x0ff00000)) \
264 r = imm12val(v, 12); \
265 else if (!(v & ~0x03fc0000)) \
266 r = imm12val(v, 14); \
267 else if (!(v & ~0x00ff0000)) \
268 r = imm12val(v, 16); \
269 else if (!(v & ~0x003fc000)) \
270 r = imm12val(v, 18); \
271 else if (!(v & ~0x000ff000)) \
272 r = imm12val(v, 20); \
273 else if (!(v & ~0x0003fc00)) \
274 r = imm12val(v, 22); \
275 else if (!(v & ~0x0000ff00)) \
276 r = imm12val(v, 24); \
277 else if (!(v & ~0x00003fc0)) \
278 r = imm12val(v, 26); \
279 else if (!(v & ~0x00000ff0)) \
280 r = imm12val(v, 28); \
281 else if (!(v & ~0x000003fc)) \
282 r = imm12val(v, 30); \
288 * Checks if immediate value can be converted to imm12(12 bits) value.
290 static int imm8m(u32 x)
294 for (rot = 0; rot < 16; rot++)
295 if ((x & ~ror32(0xff, 2 * rot)) == 0)
296 return rol32(x, 2 * rot) | (rot << 8);
300 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
302 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
304 op |= rt << 12 | rn << 16;
306 op |= ARM_INST_LDST__U;
309 return op | (imm12 & ARM_INST_LDST__IMM12);
312 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
314 op |= rt << 12 | rn << 16;
316 op |= ARM_INST_LDST__U;
319 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
322 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
323 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
324 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
325 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
327 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
328 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
329 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
330 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
333 * Initializes the JIT space with undefined instructions.
335 static void jit_fill_hole(void *area, unsigned int size)
338 /* We are guaranteed to have aligned memory. */
339 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
340 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
343 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
344 /* EABI requires the stack to be aligned to 64-bit boundaries */
345 #define STACK_ALIGNMENT 8
347 /* Stack must be aligned to 32-bit boundaries */
348 #define STACK_ALIGNMENT 4
351 /* total stack size used in JITed code */
352 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
353 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
355 #if __LINUX_ARM_ARCH__ < 7
357 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
359 unsigned int i = 0, offset;
362 /* on the "fake" run we just count them (duplicates included) */
363 if (ctx->target == NULL) {
368 while ((i < ctx->imm_count) && ctx->imms[i]) {
369 if (ctx->imms[i] == k)
374 if (ctx->imms[i] == 0)
377 /* constants go just after the epilogue */
378 offset = ctx->offsets[ctx->prog->len - 1] * 4;
379 offset += ctx->prologue_bytes;
380 offset += ctx->epilogue_bytes;
383 ctx->target[offset / 4] = k;
385 /* PC in ARM mode == address of the instruction + 8 */
386 imm = offset - (8 + ctx->idx * 4);
390 * literal pool is too far, signal it into flags. we
391 * can only detect it on the second pass unfortunately.
393 ctx->flags |= FLAG_IMM_OVERFLOW;
400 #endif /* __LINUX_ARM_ARCH__ */
402 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
403 const struct jit_ctx *ctx) {
406 if (ctx->target == NULL)
408 to = ctx->offsets[bpf_to];
409 from = ctx->offsets[bpf_from];
411 return to - from - 1;
415 * Move an immediate that's not an imm8m to a core register.
417 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
419 #if __LINUX_ARM_ARCH__ < 7
420 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
422 emit(ARM_MOVW(rd, val & 0xffff), ctx);
424 emit(ARM_MOVT(rd, val >> 16), ctx);
428 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
430 int imm12 = imm8m(val);
433 emit(ARM_MOV_I(rd, imm12), ctx);
435 emit_mov_i_no8m(rd, val, ctx);
438 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
440 if (elf_hwcap & HWCAP_THUMB)
441 emit(ARM_BX(tgt_reg), ctx);
443 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
446 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
448 #if __LINUX_ARM_ARCH__ < 5
449 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
450 emit_bx_r(tgt_reg, ctx);
452 emit(ARM_BLX_R(tgt_reg), ctx);
456 static inline int epilogue_offset(const struct jit_ctx *ctx)
459 /* No need for 1st dummy run */
460 if (ctx->target == NULL)
462 to = ctx->epilogue_offset;
465 return to - from - 2;
468 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
470 const s8 *tmp = bpf2a32[TMP_REG_1];
472 #if __LINUX_ARM_ARCH__ == 7
473 if (elf_hwcap & HWCAP_IDIVA) {
475 emit(ARM_UDIV(rd, rm, rn), ctx);
477 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
478 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
485 * For BPF_ALU | BPF_DIV | BPF_K instructions
486 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
487 * function, we need to save it on caller side to save
488 * it from getting destroyed within callee.
489 * After the return from the callee, we restore ARM_R0
493 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
494 emit(ARM_MOV_R(ARM_R1, rn), ctx);
497 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
498 emit(ARM_MOV_R(ARM_R0, rm), ctx);
501 /* Call appropriate function */
502 emit_mov_i(ARM_IP, op == BPF_DIV ?
503 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
504 emit_blx_r(ARM_IP, ctx);
506 /* Save return value */
508 emit(ARM_MOV_R(rd, ARM_R0), ctx);
510 /* Restore ARM_R0 and ARM_R1 */
512 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
514 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
517 /* Is the translated BPF register on stack? */
518 static bool is_stacked(s8 reg)
523 /* If a BPF register is on the stack (stk is true), load it to the
524 * supplied temporary register and return the temporary register
525 * for subsequent operations, otherwise just use the CPU register.
527 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
529 if (is_stacked(reg)) {
530 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
536 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
539 if (is_stacked(reg[1])) {
540 if (__LINUX_ARM_ARCH__ >= 6 ||
541 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
542 emit(ARM_LDRD_I(tmp[1], ARM_FP,
543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
545 emit(ARM_LDR_I(tmp[1], ARM_FP,
546 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
547 emit(ARM_LDR_I(tmp[0], ARM_FP,
548 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
555 /* If a BPF register is on the stack (stk is true), save the register
556 * back to the stack. If the source register is not the same, then
557 * move it into the correct register.
559 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
562 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
564 emit(ARM_MOV_R(reg, src), ctx);
567 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
570 if (is_stacked(reg[1])) {
571 if (__LINUX_ARM_ARCH__ >= 6 ||
572 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
573 emit(ARM_STRD_I(src[1], ARM_FP,
574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
576 emit(ARM_STR_I(src[1], ARM_FP,
577 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
578 emit(ARM_STR_I(src[0], ARM_FP,
579 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
582 if (reg[1] != src[1])
583 emit(ARM_MOV_R(reg[1], src[1]), ctx);
584 if (reg[0] != src[0])
585 emit(ARM_MOV_R(reg[0], src[0]), ctx);
589 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
592 const s8 *tmp = bpf2a32[TMP_REG_1];
594 if (is_stacked(dst)) {
595 emit_mov_i(tmp[1], val, ctx);
596 arm_bpf_put_reg32(dst, tmp[1], ctx);
598 emit_mov_i(dst, val, ctx);
602 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
604 const s8 *tmp = bpf2a32[TMP_REG_1];
605 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
607 emit_mov_i(rd[1], (u32)val, ctx);
608 emit_mov_i(rd[0], val >> 32, ctx);
610 arm_bpf_put_reg64(dst, rd, ctx);
613 /* Sign extended move */
614 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
615 const u32 val, struct jit_ctx *ctx) {
618 if (is64 && (val & (1<<31)))
619 val64 |= 0xffffffff00000000ULL;
620 emit_a32_mov_i64(dst, val64, ctx);
623 static inline void emit_a32_add_r(const u8 dst, const u8 src,
624 const bool is64, const bool hi,
625 struct jit_ctx *ctx) {
627 * adds dst_lo, dst_lo, src_lo
628 * adc dst_hi, dst_hi, src_hi
630 * add dst_lo, dst_lo, src_lo
633 emit(ARM_ADDS_R(dst, dst, src), ctx);
635 emit(ARM_ADC_R(dst, dst, src), ctx);
637 emit(ARM_ADD_R(dst, dst, src), ctx);
640 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
641 const bool is64, const bool hi,
642 struct jit_ctx *ctx) {
644 * subs dst_lo, dst_lo, src_lo
645 * sbc dst_hi, dst_hi, src_hi
647 * sub dst_lo, dst_lo, src_lo
650 emit(ARM_SUBS_R(dst, dst, src), ctx);
652 emit(ARM_SBC_R(dst, dst, src), ctx);
654 emit(ARM_SUB_R(dst, dst, src), ctx);
657 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
658 const bool hi, const u8 op, struct jit_ctx *ctx){
659 switch (BPF_OP(op)) {
660 /* dst = dst + src */
662 emit_a32_add_r(dst, src, is64, hi, ctx);
664 /* dst = dst - src */
666 emit_a32_sub_r(dst, src, is64, hi, ctx);
668 /* dst = dst | src */
670 emit(ARM_ORR_R(dst, dst, src), ctx);
672 /* dst = dst & src */
674 emit(ARM_AND_R(dst, dst, src), ctx);
676 /* dst = dst ^ src */
678 emit(ARM_EOR_R(dst, dst, src), ctx);
680 /* dst = dst * src */
682 emit(ARM_MUL(dst, dst, src), ctx);
684 /* dst = dst << src */
686 emit(ARM_LSL_R(dst, dst, src), ctx);
688 /* dst = dst >> src */
690 emit(ARM_LSR_R(dst, dst, src), ctx);
692 /* dst = dst >> src (signed)*/
694 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
699 /* ALU operation (32 bit)
702 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
703 struct jit_ctx *ctx, const bool is64,
704 const bool hi, const u8 op) {
705 const s8 *tmp = bpf2a32[TMP_REG_1];
708 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
709 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
711 emit_alu_r(rd, rn, is64, hi, op, ctx);
712 arm_bpf_put_reg32(dst, rd, ctx);
715 /* ALU operation (64 bit) */
716 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
717 const s8 src[], struct jit_ctx *ctx,
719 const s8 *tmp = bpf2a32[TMP_REG_1];
720 const s8 *tmp2 = bpf2a32[TMP_REG_2];
723 rd = arm_bpf_get_reg64(dst, tmp, ctx);
727 rs = arm_bpf_get_reg64(src, tmp2, ctx);
730 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
731 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
735 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
738 emit_alu_r(rd[1], rs, true, false, op, ctx);
739 emit_a32_mov_i(rd[0], 0, ctx);
742 arm_bpf_put_reg64(dst, rd, ctx);
745 /* dst = src (4 bytes)*/
746 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
747 struct jit_ctx *ctx) {
748 const s8 *tmp = bpf2a32[TMP_REG_1];
751 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
752 arm_bpf_put_reg32(dst, rt, ctx);
756 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
758 struct jit_ctx *ctx) {
760 emit_a32_mov_r(dst_lo, src_lo, ctx);
761 /* Zero out high 4 bytes */
762 emit_a32_mov_i(dst_hi, 0, ctx);
763 } else if (__LINUX_ARM_ARCH__ < 6 &&
764 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
765 /* complete 8 byte move */
766 emit_a32_mov_r(dst_lo, src_lo, ctx);
767 emit_a32_mov_r(dst_hi, src_hi, ctx);
768 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
769 const u8 *tmp = bpf2a32[TMP_REG_1];
771 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
772 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
773 } else if (is_stacked(src_lo)) {
774 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
775 } else if (is_stacked(dst_lo)) {
776 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
778 emit(ARM_MOV_R(dst[0], src[0]), ctx);
779 emit(ARM_MOV_R(dst[1], src[1]), ctx);
783 /* Shift operations */
784 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
785 struct jit_ctx *ctx, const u8 op) {
786 const s8 *tmp = bpf2a32[TMP_REG_1];
789 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
791 /* Do shift operation */
794 emit(ARM_LSL_I(rd, rd, val), ctx);
797 emit(ARM_LSR_I(rd, rd, val), ctx);
800 emit(ARM_RSB_I(rd, rd, val), ctx);
804 arm_bpf_put_reg32(dst, rd, ctx);
807 /* dst = ~dst (64 bit) */
808 static inline void emit_a32_neg64(const s8 dst[],
809 struct jit_ctx *ctx){
810 const s8 *tmp = bpf2a32[TMP_REG_1];
814 rd = arm_bpf_get_reg64(dst, tmp, ctx);
816 /* Do Negate Operation */
817 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
818 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
820 arm_bpf_put_reg64(dst, rd, ctx);
823 /* dst = dst << src */
824 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
825 struct jit_ctx *ctx) {
826 const s8 *tmp = bpf2a32[TMP_REG_1];
827 const s8 *tmp2 = bpf2a32[TMP_REG_2];
832 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
833 rd = arm_bpf_get_reg64(dst, tmp, ctx);
835 /* Do LSH operation */
836 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
837 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
838 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
839 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
840 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
841 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
843 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
844 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
847 /* dst = dst >> src (signed)*/
848 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
849 struct jit_ctx *ctx) {
850 const s8 *tmp = bpf2a32[TMP_REG_1];
851 const s8 *tmp2 = bpf2a32[TMP_REG_2];
856 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
857 rd = arm_bpf_get_reg64(dst, tmp, ctx);
859 /* Do the ARSH operation */
860 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
861 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
862 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
863 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
864 _emit(ARM_COND_MI, ARM_B(0), ctx);
865 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
866 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
868 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
869 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
872 /* dst = dst >> src */
873 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
874 struct jit_ctx *ctx) {
875 const s8 *tmp = bpf2a32[TMP_REG_1];
876 const s8 *tmp2 = bpf2a32[TMP_REG_2];
881 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
882 rd = arm_bpf_get_reg64(dst, tmp, ctx);
884 /* Do RSH operation */
885 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
886 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
887 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
888 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
889 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
890 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
892 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
893 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
896 /* dst = dst << val */
897 static inline void emit_a32_lsh_i64(const s8 dst[],
898 const u32 val, struct jit_ctx *ctx){
899 const s8 *tmp = bpf2a32[TMP_REG_1];
900 const s8 *tmp2 = bpf2a32[TMP_REG_2];
904 rd = arm_bpf_get_reg64(dst, tmp, ctx);
906 /* Do LSH operation */
908 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
909 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
910 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
913 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
915 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
916 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
919 arm_bpf_put_reg64(dst, rd, ctx);
922 /* dst = dst >> val */
923 static inline void emit_a32_rsh_i64(const s8 dst[],
924 const u32 val, struct jit_ctx *ctx) {
925 const s8 *tmp = bpf2a32[TMP_REG_1];
926 const s8 *tmp2 = bpf2a32[TMP_REG_2];
930 rd = arm_bpf_get_reg64(dst, tmp, ctx);
932 /* Do LSR operation */
934 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
935 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
936 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
937 } else if (val == 32) {
938 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
939 emit(ARM_MOV_I(rd[0], 0), ctx);
941 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
942 emit(ARM_MOV_I(rd[0], 0), ctx);
945 arm_bpf_put_reg64(dst, rd, ctx);
948 /* dst = dst >> val (signed) */
949 static inline void emit_a32_arsh_i64(const s8 dst[],
950 const u32 val, struct jit_ctx *ctx){
951 const s8 *tmp = bpf2a32[TMP_REG_1];
952 const s8 *tmp2 = bpf2a32[TMP_REG_2];
956 rd = arm_bpf_get_reg64(dst, tmp, ctx);
958 /* Do ARSH operation */
960 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
961 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
962 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
963 } else if (val == 32) {
964 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
965 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
967 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
968 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
971 arm_bpf_put_reg64(dst, rd, ctx);
974 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
975 struct jit_ctx *ctx) {
976 const s8 *tmp = bpf2a32[TMP_REG_1];
977 const s8 *tmp2 = bpf2a32[TMP_REG_2];
980 /* Setup operands for multiplication */
981 rd = arm_bpf_get_reg64(dst, tmp, ctx);
982 rt = arm_bpf_get_reg64(src, tmp2, ctx);
984 /* Do Multiplication */
985 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
986 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
987 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
989 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
990 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
992 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
993 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
996 /* *(size *)(dst + off) = src */
997 static inline void emit_str_r(const s8 dst, const s8 src[],
998 s32 off, struct jit_ctx *ctx, const u8 sz){
999 const s8 *tmp = bpf2a32[TMP_REG_1];
1003 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1010 if (off < 0 || off > off_max) {
1011 emit_a32_mov_i(tmp[0], off, ctx);
1012 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1019 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1022 /* Store a HalfWord */
1023 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1027 emit(ARM_STR_I(src_lo, rd, off), ctx);
1030 /* Store a Double Word */
1031 emit(ARM_STR_I(src_lo, rd, off), ctx);
1032 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1037 /* dst = *(size*)(src + off) */
1038 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1039 s32 off, struct jit_ctx *ctx, const u8 sz){
1040 const s8 *tmp = bpf2a32[TMP_REG_1];
1041 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1050 if (off < 0 || off > off_max) {
1051 emit_a32_mov_i(tmp[0], off, ctx);
1052 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1055 } else if (rd[1] == rm) {
1056 emit(ARM_MOV_R(tmp[0], rm), ctx);
1062 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1063 emit_a32_mov_i(rd[0], 0, ctx);
1066 /* Load a HalfWord */
1067 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1068 emit_a32_mov_i(rd[0], 0, ctx);
1072 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1073 emit_a32_mov_i(rd[0], 0, ctx);
1076 /* Load a Double Word */
1077 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1078 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1081 arm_bpf_put_reg64(dst, rd, ctx);
1084 /* Arithmatic Operation */
1085 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1086 const u8 rn, struct jit_ctx *ctx, u8 op) {
1089 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1090 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1091 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1099 emit(ARM_CMP_R(rd, rm), ctx);
1100 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1104 emit(ARM_CMP_R(rn, rt), ctx);
1105 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1109 emit(ARM_CMP_R(rt, rn), ctx);
1110 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1115 static int out_offset = -1; /* initialized on the first pass of build_body() */
1116 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1119 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1120 const s8 *r2 = bpf2a32[BPF_REG_2];
1121 const s8 *r3 = bpf2a32[BPF_REG_3];
1122 const s8 *tmp = bpf2a32[TMP_REG_1];
1123 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1124 const s8 *tcc = bpf2a32[TCALL_CNT];
1126 const int idx0 = ctx->idx;
1127 #define cur_offset (ctx->idx - idx0)
1128 #define jmp_offset (out_offset - (cur_offset) - 2)
1130 s8 r_array, r_index;
1133 /* if (index >= array->map.max_entries)
1136 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1137 ARM_INST_LDST__IMM12);
1138 off = offsetof(struct bpf_array, map.max_entries);
1139 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1140 /* index is 32-bit for arrays */
1141 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1142 /* array->map.max_entries */
1143 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1144 /* index >= array->map.max_entries */
1145 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1146 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1148 /* tmp2[0] = array, tmp2[1] = index */
1150 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1154 lo = (u32)MAX_TAIL_CALL_CNT;
1155 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1156 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1157 emit(ARM_CMP_I(tc[0], hi), ctx);
1158 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1159 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1160 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1161 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1162 arm_bpf_put_reg64(tcc, tmp, ctx);
1164 /* prog = array->ptrs[index]
1168 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1169 off = imm8m(offsetof(struct bpf_array, ptrs));
1170 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1171 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1172 emit(ARM_CMP_I(tmp[1], 0), ctx);
1173 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1175 /* goto *(prog->bpf_func + prologue_size); */
1176 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1177 ARM_INST_LDST__IMM12);
1178 off = offsetof(struct bpf_prog, bpf_func);
1179 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1180 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1181 emit_bx_r(tmp[1], ctx);
1184 if (out_offset == -1)
1185 out_offset = cur_offset;
1186 if (cur_offset != out_offset) {
1187 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1188 cur_offset, out_offset);
1196 /* 0xabcd => 0xcdab */
1197 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1199 #if __LINUX_ARM_ARCH__ < 6
1200 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1202 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1203 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1204 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1205 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1207 emit(ARM_REV16(rd, rn), ctx);
1211 /* 0xabcdefgh => 0xghefcdab */
1212 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1214 #if __LINUX_ARM_ARCH__ < 6
1215 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1217 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1218 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1219 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1221 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1222 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1223 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1224 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1225 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1226 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1227 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1230 emit(ARM_REV(rd, rn), ctx);
1234 // push the scratch stack register on top of the stack
1235 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1237 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1241 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1243 reg_set = (1 << rt[1]) | (1 << rt[0]);
1244 emit(ARM_PUSH(reg_set), ctx);
1247 static void build_prologue(struct jit_ctx *ctx)
1249 const s8 r0 = bpf2a32[BPF_REG_0][1];
1250 const s8 r2 = bpf2a32[BPF_REG_1][1];
1251 const s8 r3 = bpf2a32[BPF_REG_1][0];
1252 const s8 r4 = bpf2a32[BPF_REG_6][1];
1253 const s8 fplo = bpf2a32[BPF_REG_FP][1];
1254 const s8 fphi = bpf2a32[BPF_REG_FP][0];
1255 const s8 *tcc = bpf2a32[TCALL_CNT];
1257 /* Save callee saved registers. */
1258 #ifdef CONFIG_FRAME_POINTER
1259 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1260 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1261 emit(ARM_PUSH(reg_set), ctx);
1262 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1264 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1265 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1267 /* Save frame pointer for later */
1268 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1270 ctx->stack_size = imm8m(STACK_SIZE);
1272 /* Set up function call stack */
1273 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1275 /* Set up BPF prog stack base register */
1276 emit_a32_mov_r(fplo, ARM_IP, ctx);
1277 emit_a32_mov_i(fphi, 0, ctx);
1280 emit(ARM_MOV_I(r4, 0), ctx);
1282 /* Move BPF_CTX to BPF_R1 */
1283 emit(ARM_MOV_R(r3, r4), ctx);
1284 emit(ARM_MOV_R(r2, r0), ctx);
1285 /* Initialize Tail Count */
1286 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1287 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
1288 /* end of prologue */
1291 /* restore callee saved registers. */
1292 static void build_epilogue(struct jit_ctx *ctx)
1294 #ifdef CONFIG_FRAME_POINTER
1295 /* When using frame pointers, some additional registers need to
1297 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1298 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1299 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1301 /* Restore callee saved registers. */
1302 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1303 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1308 * Convert an eBPF instruction to native instruction, i.e
1309 * JITs an eBPF instruction.
1311 * 0 - Successfully JITed an 8-byte eBPF instruction
1312 * >0 - Successfully JITed a 16-byte eBPF instruction
1313 * <0 - Failed to JIT.
1315 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1317 const u8 code = insn->code;
1318 const s8 *dst = bpf2a32[insn->dst_reg];
1319 const s8 *src = bpf2a32[insn->src_reg];
1320 const s8 *tmp = bpf2a32[TMP_REG_1];
1321 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1322 const s16 off = insn->off;
1323 const s32 imm = insn->imm;
1324 const int i = insn - ctx->prog->insnsi;
1325 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1327 s8 rd_lo, rt, rm, rn;
1330 #define check_imm(bits, imm) do { \
1331 if ((imm) >= (1 << ((bits) - 1)) || \
1332 (imm) < -(1 << ((bits) - 1))) { \
1333 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1338 #define check_imm24(imm) check_imm(24, imm)
1341 /* ALU operations */
1344 case BPF_ALU | BPF_MOV | BPF_K:
1345 case BPF_ALU | BPF_MOV | BPF_X:
1346 case BPF_ALU64 | BPF_MOV | BPF_K:
1347 case BPF_ALU64 | BPF_MOV | BPF_X:
1348 switch (BPF_SRC(code)) {
1350 emit_a32_mov_r64(is64, dst, src, ctx);
1353 /* Sign-extend immediate value to destination reg */
1354 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1358 /* dst = dst + src/imm */
1359 /* dst = dst - src/imm */
1360 /* dst = dst | src/imm */
1361 /* dst = dst & src/imm */
1362 /* dst = dst ^ src/imm */
1363 /* dst = dst * src/imm */
1364 /* dst = dst << src */
1365 /* dst = dst >> src */
1366 case BPF_ALU | BPF_ADD | BPF_K:
1367 case BPF_ALU | BPF_ADD | BPF_X:
1368 case BPF_ALU | BPF_SUB | BPF_K:
1369 case BPF_ALU | BPF_SUB | BPF_X:
1370 case BPF_ALU | BPF_OR | BPF_K:
1371 case BPF_ALU | BPF_OR | BPF_X:
1372 case BPF_ALU | BPF_AND | BPF_K:
1373 case BPF_ALU | BPF_AND | BPF_X:
1374 case BPF_ALU | BPF_XOR | BPF_K:
1375 case BPF_ALU | BPF_XOR | BPF_X:
1376 case BPF_ALU | BPF_MUL | BPF_K:
1377 case BPF_ALU | BPF_MUL | BPF_X:
1378 case BPF_ALU | BPF_LSH | BPF_X:
1379 case BPF_ALU | BPF_RSH | BPF_X:
1380 case BPF_ALU | BPF_ARSH | BPF_K:
1381 case BPF_ALU | BPF_ARSH | BPF_X:
1382 case BPF_ALU64 | BPF_ADD | BPF_K:
1383 case BPF_ALU64 | BPF_ADD | BPF_X:
1384 case BPF_ALU64 | BPF_SUB | BPF_K:
1385 case BPF_ALU64 | BPF_SUB | BPF_X:
1386 case BPF_ALU64 | BPF_OR | BPF_K:
1387 case BPF_ALU64 | BPF_OR | BPF_X:
1388 case BPF_ALU64 | BPF_AND | BPF_K:
1389 case BPF_ALU64 | BPF_AND | BPF_X:
1390 case BPF_ALU64 | BPF_XOR | BPF_K:
1391 case BPF_ALU64 | BPF_XOR | BPF_X:
1392 switch (BPF_SRC(code)) {
1394 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1397 /* Move immediate value to the temporary register
1398 * and then do the ALU operation on the temporary
1399 * register as this will sign-extend the immediate
1400 * value into temporary reg and then it would be
1401 * safe to do the operation on it.
1403 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1404 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1408 /* dst = dst / src(imm) */
1409 /* dst = dst % src(imm) */
1410 case BPF_ALU | BPF_DIV | BPF_K:
1411 case BPF_ALU | BPF_DIV | BPF_X:
1412 case BPF_ALU | BPF_MOD | BPF_K:
1413 case BPF_ALU | BPF_MOD | BPF_X:
1414 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1415 switch (BPF_SRC(code)) {
1417 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1421 emit_a32_mov_i(rt, imm, ctx);
1427 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1428 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1429 emit_a32_mov_i(dst_hi, 0, ctx);
1431 case BPF_ALU64 | BPF_DIV | BPF_K:
1432 case BPF_ALU64 | BPF_DIV | BPF_X:
1433 case BPF_ALU64 | BPF_MOD | BPF_K:
1434 case BPF_ALU64 | BPF_MOD | BPF_X:
1436 /* dst = dst >> imm */
1437 /* dst = dst << imm */
1438 case BPF_ALU | BPF_RSH | BPF_K:
1439 case BPF_ALU | BPF_LSH | BPF_K:
1440 if (unlikely(imm > 31))
1443 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1444 emit_a32_mov_i(dst_hi, 0, ctx);
1446 /* dst = dst << imm */
1447 case BPF_ALU64 | BPF_LSH | BPF_K:
1448 if (unlikely(imm > 63))
1450 emit_a32_lsh_i64(dst, imm, ctx);
1452 /* dst = dst >> imm */
1453 case BPF_ALU64 | BPF_RSH | BPF_K:
1454 if (unlikely(imm > 63))
1456 emit_a32_rsh_i64(dst, imm, ctx);
1458 /* dst = dst << src */
1459 case BPF_ALU64 | BPF_LSH | BPF_X:
1460 emit_a32_lsh_r64(dst, src, ctx);
1462 /* dst = dst >> src */
1463 case BPF_ALU64 | BPF_RSH | BPF_X:
1464 emit_a32_rsh_r64(dst, src, ctx);
1466 /* dst = dst >> src (signed) */
1467 case BPF_ALU64 | BPF_ARSH | BPF_X:
1468 emit_a32_arsh_r64(dst, src, ctx);
1470 /* dst = dst >> imm (signed) */
1471 case BPF_ALU64 | BPF_ARSH | BPF_K:
1472 if (unlikely(imm > 63))
1474 emit_a32_arsh_i64(dst, imm, ctx);
1477 case BPF_ALU | BPF_NEG:
1478 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1479 emit_a32_mov_i(dst_hi, 0, ctx);
1481 /* dst = ~dst (64 bit) */
1482 case BPF_ALU64 | BPF_NEG:
1483 emit_a32_neg64(dst, ctx);
1485 /* dst = dst * src/imm */
1486 case BPF_ALU64 | BPF_MUL | BPF_X:
1487 case BPF_ALU64 | BPF_MUL | BPF_K:
1488 switch (BPF_SRC(code)) {
1490 emit_a32_mul_r64(dst, src, ctx);
1493 /* Move immediate value to the temporary register
1494 * and then do the multiplication on it as this
1495 * will sign-extend the immediate value into temp
1496 * reg then it would be safe to do the operation
1499 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1500 emit_a32_mul_r64(dst, tmp2, ctx);
1504 /* dst = htole(dst) */
1505 /* dst = htobe(dst) */
1506 case BPF_ALU | BPF_END | BPF_FROM_LE:
1507 case BPF_ALU | BPF_END | BPF_FROM_BE:
1508 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1509 if (BPF_SRC(code) == BPF_FROM_LE)
1510 goto emit_bswap_uxt;
1513 emit_rev16(rd[1], rd[1], ctx);
1514 goto emit_bswap_uxt;
1516 emit_rev32(rd[1], rd[1], ctx);
1517 goto emit_bswap_uxt;
1519 emit_rev32(ARM_LR, rd[1], ctx);
1520 emit_rev32(rd[1], rd[0], ctx);
1521 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1528 /* zero-extend 16 bits into 64 bits */
1529 #if __LINUX_ARM_ARCH__ < 6
1530 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1531 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1533 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1535 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1538 /* zero-extend 32 bits into 64 bits */
1539 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1546 arm_bpf_put_reg64(dst, rd, ctx);
1549 case BPF_LD | BPF_IMM | BPF_DW:
1551 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1553 emit_a32_mov_i64(dst, val, ctx);
1557 /* LDX: dst = *(size *)(src + off) */
1558 case BPF_LDX | BPF_MEM | BPF_W:
1559 case BPF_LDX | BPF_MEM | BPF_H:
1560 case BPF_LDX | BPF_MEM | BPF_B:
1561 case BPF_LDX | BPF_MEM | BPF_DW:
1562 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1563 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1565 /* ST: *(size *)(dst + off) = imm */
1566 case BPF_ST | BPF_MEM | BPF_W:
1567 case BPF_ST | BPF_MEM | BPF_H:
1568 case BPF_ST | BPF_MEM | BPF_B:
1569 case BPF_ST | BPF_MEM | BPF_DW:
1570 switch (BPF_SIZE(code)) {
1572 /* Sign-extend immediate value into temp reg */
1573 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1578 emit_a32_mov_i(tmp2[1], imm, ctx);
1581 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1583 /* STX XADD: lock *(u32 *)(dst + off) += src */
1584 case BPF_STX | BPF_XADD | BPF_W:
1585 /* STX XADD: lock *(u64 *)(dst + off) += src */
1586 case BPF_STX | BPF_XADD | BPF_DW:
1588 /* STX: *(size *)(dst + off) = src */
1589 case BPF_STX | BPF_MEM | BPF_W:
1590 case BPF_STX | BPF_MEM | BPF_H:
1591 case BPF_STX | BPF_MEM | BPF_B:
1592 case BPF_STX | BPF_MEM | BPF_DW:
1593 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1594 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1596 /* PC += off if dst == src */
1597 /* PC += off if dst > src */
1598 /* PC += off if dst >= src */
1599 /* PC += off if dst < src */
1600 /* PC += off if dst <= src */
1601 /* PC += off if dst != src */
1602 /* PC += off if dst > src (signed) */
1603 /* PC += off if dst >= src (signed) */
1604 /* PC += off if dst < src (signed) */
1605 /* PC += off if dst <= src (signed) */
1606 /* PC += off if dst & src */
1607 case BPF_JMP | BPF_JEQ | BPF_X:
1608 case BPF_JMP | BPF_JGT | BPF_X:
1609 case BPF_JMP | BPF_JGE | BPF_X:
1610 case BPF_JMP | BPF_JNE | BPF_X:
1611 case BPF_JMP | BPF_JSGT | BPF_X:
1612 case BPF_JMP | BPF_JSGE | BPF_X:
1613 case BPF_JMP | BPF_JSET | BPF_X:
1614 case BPF_JMP | BPF_JLE | BPF_X:
1615 case BPF_JMP | BPF_JLT | BPF_X:
1616 case BPF_JMP | BPF_JSLT | BPF_X:
1617 case BPF_JMP | BPF_JSLE | BPF_X:
1618 /* Setup source registers */
1619 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1620 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1622 /* PC += off if dst == imm */
1623 /* PC += off if dst > imm */
1624 /* PC += off if dst >= imm */
1625 /* PC += off if dst < imm */
1626 /* PC += off if dst <= imm */
1627 /* PC += off if dst != imm */
1628 /* PC += off if dst > imm (signed) */
1629 /* PC += off if dst >= imm (signed) */
1630 /* PC += off if dst < imm (signed) */
1631 /* PC += off if dst <= imm (signed) */
1632 /* PC += off if dst & imm */
1633 case BPF_JMP | BPF_JEQ | BPF_K:
1634 case BPF_JMP | BPF_JGT | BPF_K:
1635 case BPF_JMP | BPF_JGE | BPF_K:
1636 case BPF_JMP | BPF_JNE | BPF_K:
1637 case BPF_JMP | BPF_JSGT | BPF_K:
1638 case BPF_JMP | BPF_JSGE | BPF_K:
1639 case BPF_JMP | BPF_JSET | BPF_K:
1640 case BPF_JMP | BPF_JLT | BPF_K:
1641 case BPF_JMP | BPF_JLE | BPF_K:
1642 case BPF_JMP | BPF_JSLT | BPF_K:
1643 case BPF_JMP | BPF_JSLE | BPF_K:
1648 /* Sign-extend immediate value */
1649 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1651 /* Setup destination register */
1652 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1654 /* Check for the condition */
1655 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code));
1657 /* Setup JUMP instruction */
1658 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1659 switch (BPF_OP(code)) {
1662 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1665 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1668 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1671 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1674 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1677 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1680 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1683 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1686 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1689 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1694 case BPF_JMP | BPF_JA:
1698 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1699 check_imm24(jmp_offset);
1700 emit(ARM_B(jmp_offset), ctx);
1704 case BPF_JMP | BPF_TAIL_CALL:
1705 if (emit_bpf_tail_call(ctx))
1709 case BPF_JMP | BPF_CALL:
1711 const s8 *r0 = bpf2a32[BPF_REG_0];
1712 const s8 *r1 = bpf2a32[BPF_REG_1];
1713 const s8 *r2 = bpf2a32[BPF_REG_2];
1714 const s8 *r3 = bpf2a32[BPF_REG_3];
1715 const s8 *r4 = bpf2a32[BPF_REG_4];
1716 const s8 *r5 = bpf2a32[BPF_REG_5];
1717 const u32 func = (u32)__bpf_call_base + (u32)imm;
1719 emit_a32_mov_r64(true, r0, r1, ctx);
1720 emit_a32_mov_r64(true, r1, r2, ctx);
1721 emit_push_r64(r5, ctx);
1722 emit_push_r64(r4, ctx);
1723 emit_push_r64(r3, ctx);
1725 emit_a32_mov_i(tmp[1], func, ctx);
1726 emit_blx_r(tmp[1], ctx);
1728 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1731 /* function return */
1732 case BPF_JMP | BPF_EXIT:
1733 /* Optimization: when last instruction is EXIT
1734 * simply fallthrough to epilogue.
1736 if (i == ctx->prog->len - 1)
1738 jmp_offset = epilogue_offset(ctx);
1739 check_imm24(jmp_offset);
1740 emit(ARM_B(jmp_offset), ctx);
1743 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1746 pr_err_once("unknown opcode %02x\n", code);
1750 if (ctx->flags & FLAG_IMM_OVERFLOW)
1752 * this instruction generated an overflow when
1753 * trying to access the literal pool, so
1754 * delegate this filter to the kernel interpreter.
1760 static int build_body(struct jit_ctx *ctx)
1762 const struct bpf_prog *prog = ctx->prog;
1765 for (i = 0; i < prog->len; i++) {
1766 const struct bpf_insn *insn = &(prog->insnsi[i]);
1769 ret = build_insn(insn, ctx);
1771 /* It's used with loading the 64 bit immediate value. */
1774 if (ctx->target == NULL)
1775 ctx->offsets[i] = ctx->idx;
1779 if (ctx->target == NULL)
1780 ctx->offsets[i] = ctx->idx;
1782 /* If unsuccesfull, return with error code */
1789 static int validate_code(struct jit_ctx *ctx)
1793 for (i = 0; i < ctx->idx; i++) {
1794 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1801 void bpf_jit_compile(struct bpf_prog *prog)
1803 /* Nothing to do here. We support Internal BPF. */
1806 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1808 struct bpf_prog *tmp, *orig_prog = prog;
1809 struct bpf_binary_header *header;
1810 bool tmp_blinded = false;
1812 unsigned int tmp_idx;
1813 unsigned int image_size;
1816 /* If BPF JIT was not enabled then we must fall back to
1819 if (!prog->jit_requested)
1822 /* If constant blinding was enabled and we failed during blinding
1823 * then we must fall back to the interpreter. Otherwise, we save
1824 * the new JITed code.
1826 tmp = bpf_jit_blind_constants(prog);
1835 memset(&ctx, 0, sizeof(ctx));
1837 ctx.cpu_architecture = cpu_architecture();
1839 /* Not able to allocate memory for offsets[] , then
1840 * we must fall back to the interpreter
1842 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1843 if (ctx.offsets == NULL) {
1848 /* 1) fake pass to find in the length of the JITed code,
1849 * to compute ctx->offsets and other context variables
1850 * needed to compute final JITed code.
1851 * Also, calculate random starting pointer/start of JITed code
1852 * which is prefixed by random number of fault instructions.
1854 * If the first pass fails then there is no chance of it
1855 * being successful in the second pass, so just fall back
1856 * to the interpreter.
1858 if (build_body(&ctx)) {
1864 build_prologue(&ctx);
1865 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1867 ctx.epilogue_offset = ctx.idx;
1869 #if __LINUX_ARM_ARCH__ < 7
1871 build_epilogue(&ctx);
1872 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1874 ctx.idx += ctx.imm_count;
1875 if (ctx.imm_count) {
1876 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1877 if (ctx.imms == NULL) {
1883 /* there's nothing about the epilogue on ARMv7 */
1884 build_epilogue(&ctx);
1886 /* Now we can get the actual image size of the JITed arm code.
1887 * Currently, we are not considering the THUMB-2 instructions
1888 * for jit, although it can decrease the size of the image.
1890 * As each arm instruction is of length 32bit, we are translating
1891 * number of JITed intructions into the size required to store these
1894 image_size = sizeof(u32) * ctx.idx;
1896 /* Now we know the size of the structure to make */
1897 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1898 sizeof(u32), jit_fill_hole);
1899 /* Not able to allocate memory for the structure then
1900 * we must fall back to the interpretation
1902 if (header == NULL) {
1907 /* 2.) Actual pass to generate final JIT code */
1908 ctx.target = (u32 *) image_ptr;
1911 build_prologue(&ctx);
1913 /* If building the body of the JITed code fails somehow,
1914 * we fall back to the interpretation.
1916 if (build_body(&ctx) < 0) {
1918 bpf_jit_binary_free(header);
1922 build_epilogue(&ctx);
1924 /* 3.) Extra pass to validate JITed Code */
1925 if (validate_code(&ctx)) {
1927 bpf_jit_binary_free(header);
1931 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1933 if (bpf_jit_enable > 1)
1934 /* there are 2 passes here */
1935 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1937 bpf_jit_binary_lock_ro(header);
1938 prog->bpf_func = (void *)ctx.target;
1940 prog->jited_len = image_size;
1943 #if __LINUX_ARM_ARCH__ < 7
1951 bpf_jit_prog_release_other(prog, prog == orig_prog ?