2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
51 #include <drm/amdgpu_drm.h>
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
64 MODULE_IMPORT_NS(DMA_BUF);
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 uint64_t size_in_page)
78 return ttm_range_man_init(&adev->mman.bdev, type,
83 * amdgpu_evict_flags - Compute placement flags
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
88 * Fill in placement data when ttm_bo_evict() is called
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
98 .mem_type = TTM_PL_SYSTEM,
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
121 switch (bo->resource->mem_type) {
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
156 case AMDGPU_PL_PREEMPT:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
161 *placement = abo->placement;
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
211 offset = mm_cur->start & ~PAGE_MASK;
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
246 flags |= AMDGPU_PTE_TMZ;
248 cpu_addr = &job->ibs[0].ptr[num_dw];
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
256 dma_addr_t dma_address;
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
264 dma_address += PAGE_SIZE;
268 dma_fence_put(amdgpu_job_submit(job));
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
299 uint32_t copy_flags = 0;
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size;
312 struct dma_fence *next;
314 /* Never copy more than 256MiB at once to avoid a timeout */
315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317 /* Map src to window 0 and dst to window 1. */
318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
319 0, ring, tmz, &cur_size, &from);
323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
324 1, ring, tmz, &cur_size, &to);
329 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
331 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
332 &next, false, true, copy_flags);
336 dma_fence_put(fence);
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
343 mutex_unlock(&adev->mman.gtt_window_lock);
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
386 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
390 } else if (wipe_fence) {
391 amdgpu_vram_mgr_set_cleared(bo->resource);
392 dma_fence_put(fence);
397 /* Always block for VM page tables before committing the new location */
398 if (bo->type == ttm_bo_type_kernel)
399 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
401 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
402 dma_fence_put(fence);
407 dma_fence_wait(fence, false);
408 dma_fence_put(fence);
413 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
414 * @adev: amdgpu device
415 * @res: the resource to check
417 * Returns: true if the full resource is CPU visible, false otherwise.
419 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
420 struct ttm_resource *res)
422 struct amdgpu_res_cursor cursor;
427 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
428 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
431 if (res->mem_type != TTM_PL_VRAM)
434 amdgpu_res_first(res, 0, res->size, &cursor);
435 while (cursor.remaining) {
436 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
438 amdgpu_res_next(&cursor, cursor.size);
445 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
447 * Called by amdgpu_bo_move()
449 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
450 struct ttm_resource *mem)
452 if (!amdgpu_res_cpu_visible(adev, mem))
455 /* ttm_resource_ioremap only supports contiguous memory */
456 if (mem->mem_type == TTM_PL_VRAM &&
457 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
464 * amdgpu_bo_move - Move a buffer object to a new memory location
466 * Called by ttm_bo_handle_move_mem()
468 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
469 struct ttm_operation_ctx *ctx,
470 struct ttm_resource *new_mem,
471 struct ttm_place *hop)
473 struct amdgpu_device *adev;
474 struct amdgpu_bo *abo;
475 struct ttm_resource *old_mem = bo->resource;
478 if (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
480 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
485 abo = ttm_to_amdgpu_bo(bo);
486 adev = amdgpu_ttm_adev(bo->bdev);
488 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
490 amdgpu_bo_move_notify(bo, evict, new_mem);
491 ttm_bo_move_null(bo, new_mem);
494 if (old_mem->mem_type == TTM_PL_SYSTEM &&
495 (new_mem->mem_type == TTM_PL_TT ||
496 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
497 amdgpu_bo_move_notify(bo, evict, new_mem);
498 ttm_bo_move_null(bo, new_mem);
501 if ((old_mem->mem_type == TTM_PL_TT ||
502 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
503 new_mem->mem_type == TTM_PL_SYSTEM) {
504 r = ttm_bo_wait_ctx(bo, ctx);
508 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
509 amdgpu_bo_move_notify(bo, evict, new_mem);
510 ttm_resource_free(bo, &bo->resource);
511 ttm_bo_assign_mem(bo, new_mem);
515 if (old_mem->mem_type == AMDGPU_PL_GDS ||
516 old_mem->mem_type == AMDGPU_PL_GWS ||
517 old_mem->mem_type == AMDGPU_PL_OA ||
518 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
519 new_mem->mem_type == AMDGPU_PL_GDS ||
520 new_mem->mem_type == AMDGPU_PL_GWS ||
521 new_mem->mem_type == AMDGPU_PL_OA ||
522 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
523 /* Nothing to save here */
524 amdgpu_bo_move_notify(bo, evict, new_mem);
525 ttm_bo_move_null(bo, new_mem);
529 if (bo->type == ttm_bo_type_device &&
530 new_mem->mem_type == TTM_PL_VRAM &&
531 old_mem->mem_type != TTM_PL_VRAM) {
532 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
533 * accesses the BO after it's moved.
535 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
538 if (adev->mman.buffer_funcs_enabled &&
539 ((old_mem->mem_type == TTM_PL_SYSTEM &&
540 new_mem->mem_type == TTM_PL_VRAM) ||
541 (old_mem->mem_type == TTM_PL_VRAM &&
542 new_mem->mem_type == TTM_PL_SYSTEM))) {
545 hop->mem_type = TTM_PL_TT;
546 hop->flags = TTM_PL_FLAG_TEMPORARY;
550 amdgpu_bo_move_notify(bo, evict, new_mem);
551 if (adev->mman.buffer_funcs_enabled)
552 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
557 /* Check that all memory is CPU accessible */
558 if (!amdgpu_res_copyable(adev, old_mem) ||
559 !amdgpu_res_copyable(adev, new_mem)) {
560 pr_err("Move buffer fallback to memcpy unavailable\n");
564 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
569 /* update statistics after the move */
571 atomic64_inc(&adev->num_evictions);
572 atomic64_add(bo->base.size, &adev->num_bytes_moved);
577 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
579 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
581 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
582 struct ttm_resource *mem)
584 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
586 switch (mem->mem_type) {
591 case AMDGPU_PL_PREEMPT:
594 mem->bus.offset = mem->start << PAGE_SHIFT;
596 if (adev->mman.aper_base_kaddr &&
597 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
598 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
601 mem->bus.offset += adev->gmc.aper_base;
602 mem->bus.is_iomem = true;
604 case AMDGPU_PL_DOORBELL:
605 mem->bus.offset = mem->start << PAGE_SHIFT;
606 mem->bus.offset += adev->doorbell.base;
607 mem->bus.is_iomem = true;
608 mem->bus.caching = ttm_uncached;
616 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
617 unsigned long page_offset)
619 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
620 struct amdgpu_res_cursor cursor;
622 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
625 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
626 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
628 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
632 * amdgpu_ttm_domain_start - Returns GPU start address
633 * @adev: amdgpu device object
634 * @type: type of the memory
637 * GPU start address of a memory domain
640 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
644 return adev->gmc.gart_start;
646 return adev->gmc.vram_start;
653 * TTM backend functions.
655 struct amdgpu_ttm_tt {
657 struct drm_gem_object *gobj;
660 struct task_struct *usertask;
666 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
668 #ifdef CONFIG_DRM_AMDGPU_USERPTR
670 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
671 * memory and start HMM tracking CPU page table update
673 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
674 * once afterwards to stop HMM tracking
676 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
677 struct hmm_range **range)
679 struct ttm_tt *ttm = bo->tbo.ttm;
680 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
681 unsigned long start = gtt->userptr;
682 struct vm_area_struct *vma;
683 struct mm_struct *mm;
687 /* Make sure get_user_pages_done() can cleanup gracefully */
690 mm = bo->notifier.mm;
692 DRM_DEBUG_DRIVER("BO is not registered?\n");
696 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
700 vma = vma_lookup(mm, start);
701 if (unlikely(!vma)) {
705 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
711 readonly = amdgpu_ttm_tt_is_readonly(ttm);
712 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
713 readonly, NULL, pages, range);
715 mmap_read_unlock(mm);
717 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
724 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
726 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
727 struct hmm_range *range)
729 struct amdgpu_ttm_tt *gtt = (void *)ttm;
731 if (gtt && gtt->userptr && range)
732 amdgpu_hmm_range_get_pages_done(range);
736 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
737 * Check if the pages backing this ttm range have been invalidated
739 * Returns: true if pages are still valid
741 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
742 struct hmm_range *range)
744 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
746 if (!gtt || !gtt->userptr || !range)
749 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
750 gtt->userptr, ttm->num_pages);
752 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
754 return !amdgpu_hmm_range_get_pages_done(range);
759 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
761 * Called by amdgpu_cs_list_validate(). This creates the page list
762 * that backs user memory and will ultimately be mapped into the device
765 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
769 for (i = 0; i < ttm->num_pages; ++i)
770 ttm->pages[i] = pages ? pages[i] : NULL;
774 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
776 * Called by amdgpu_ttm_backend_bind()
778 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
781 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
782 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
783 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
784 enum dma_data_direction direction = write ?
785 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788 /* Allocate an SG array and squash pages into it */
789 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
790 (u64)ttm->num_pages << PAGE_SHIFT,
795 /* Map SG to device */
796 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
800 /* convert SG to linear array of pages and dma addresses */
801 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
813 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
815 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
818 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
819 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
820 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
821 enum dma_data_direction direction = write ?
822 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
824 /* double check that we don't free the table twice */
825 if (!ttm->sg || !ttm->sg->sgl)
828 /* unmap the pages mapped to the device */
829 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
830 sg_free_table(ttm->sg);
834 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
835 * MQDn+CtrlStackn where n is the number of XCCs per partition.
836 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
837 * and uses memory type default, UC. The rest of pages_per_xcc are
838 * Ctrl stack and modify their memory type to NC.
840 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
841 struct ttm_tt *ttm, uint64_t flags)
843 struct amdgpu_ttm_tt *gtt = (void *)ttm;
844 uint64_t total_pages = ttm->num_pages;
845 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
846 uint64_t page_idx, pages_per_xcc;
848 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
849 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
851 pages_per_xcc = total_pages;
852 do_div(pages_per_xcc, num_xcc);
854 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
855 /* MQD page: use default flags */
856 amdgpu_gart_bind(adev,
857 gtt->offset + (page_idx << PAGE_SHIFT),
858 1, >t->ttm.dma_address[page_idx], flags);
860 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
861 * the second page of the BO onward.
863 amdgpu_gart_bind(adev,
864 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
866 >t->ttm.dma_address[page_idx + 1],
871 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
872 struct ttm_buffer_object *tbo,
875 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
876 struct ttm_tt *ttm = tbo->ttm;
877 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
879 if (amdgpu_bo_encrypted(abo))
880 flags |= AMDGPU_PTE_TMZ;
882 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
883 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
885 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
886 gtt->ttm.dma_address, flags);
892 * amdgpu_ttm_backend_bind - Bind GTT memory
894 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
895 * This handles binding GTT memory to the device address space.
897 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
899 struct ttm_resource *bo_mem)
901 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
902 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
913 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
915 DRM_ERROR("failed to pin userptr\n");
918 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
920 struct dma_buf_attachment *attach;
921 struct sg_table *sgt;
923 attach = gtt->gobj->import_attach;
924 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
931 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
935 if (!ttm->num_pages) {
936 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
937 ttm->num_pages, bo_mem, ttm);
940 if (bo_mem->mem_type != TTM_PL_TT ||
941 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
942 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
946 /* compute PTE flags relevant to this BO memory */
947 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
949 /* bind pages into GART page tables */
950 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
951 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
952 gtt->ttm.dma_address, flags);
958 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
959 * through AGP or GART aperture.
961 * If bo is accessible through AGP aperture, then use AGP aperture
962 * to access bo; otherwise allocate logical space in GART aperture
963 * and map bo to GART aperture.
965 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
967 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
968 struct ttm_operation_ctx ctx = { false, false };
969 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
970 struct ttm_placement placement;
971 struct ttm_place placements;
972 struct ttm_resource *tmp;
973 uint64_t addr, flags;
976 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
979 addr = amdgpu_gmc_agp_addr(bo);
980 if (addr != AMDGPU_BO_INVALID_OFFSET)
983 /* allocate GART space */
984 placement.num_placement = 1;
985 placement.placement = &placements;
987 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
988 placements.mem_type = TTM_PL_TT;
989 placements.flags = bo->resource->placement;
991 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
995 /* compute PTE flags for this buffer object */
996 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
999 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1000 amdgpu_ttm_gart_bind(adev, bo, flags);
1001 amdgpu_gart_invalidate_tlb(adev);
1002 ttm_resource_free(bo, &bo->resource);
1003 ttm_bo_assign_mem(bo, tmp);
1009 * amdgpu_ttm_recover_gart - Rebind GTT pages
1011 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1012 * rebind GTT pages during a GPU reset.
1014 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1016 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1022 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1023 amdgpu_ttm_gart_bind(adev, tbo, flags);
1027 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1029 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1032 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1035 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1036 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1038 /* if the pages have userptr pinning then clear that first */
1040 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1041 } else if (ttm->sg && gtt->gobj->import_attach) {
1042 struct dma_buf_attachment *attach;
1044 attach = gtt->gobj->import_attach;
1045 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1052 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1055 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1056 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1060 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1063 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1066 put_task_struct(gtt->usertask);
1068 ttm_tt_fini(>t->ttm);
1073 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1075 * @bo: The buffer object to create a GTT ttm_tt object around
1076 * @page_flags: Page flags to be added to the ttm_tt object
1078 * Called by ttm_tt_create().
1080 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1081 uint32_t page_flags)
1083 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1084 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1085 struct amdgpu_ttm_tt *gtt;
1086 enum ttm_caching caching;
1088 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1092 gtt->gobj = &bo->base;
1093 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1094 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1096 gtt->pool_id = abo->xcp_id;
1098 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1099 caching = ttm_write_combined;
1101 caching = ttm_cached;
1103 /* allocate space for the uninitialized page entries */
1104 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1112 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1114 * Map the pages of a ttm_tt object to an address space visible
1115 * to the underlying device.
1117 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1119 struct ttm_operation_ctx *ctx)
1121 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1122 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1123 struct ttm_pool *pool;
1127 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1129 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1135 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1138 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1139 pool = &adev->mman.ttm_pools[gtt->pool_id];
1141 pool = &adev->mman.bdev.pool;
1142 ret = ttm_pool_alloc(pool, ttm, ctx);
1146 for (i = 0; i < ttm->num_pages; ++i)
1147 ttm->pages[i]->mapping = bdev->dev_mapping;
1153 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1155 * Unmaps pages of a ttm_tt object from the device address space and
1156 * unpopulates the page array backing it.
1158 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1161 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1162 struct amdgpu_device *adev;
1163 struct ttm_pool *pool;
1166 amdgpu_ttm_backend_unbind(bdev, ttm);
1169 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1175 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1178 for (i = 0; i < ttm->num_pages; ++i)
1179 ttm->pages[i]->mapping = NULL;
1181 adev = amdgpu_ttm_adev(bdev);
1183 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1184 pool = &adev->mman.ttm_pools[gtt->pool_id];
1186 pool = &adev->mman.bdev.pool;
1188 return ttm_pool_free(pool, ttm);
1192 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1195 * @tbo: The ttm_buffer_object that contains the userptr
1196 * @user_addr: The returned value
1198 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1199 uint64_t *user_addr)
1201 struct amdgpu_ttm_tt *gtt;
1206 gtt = (void *)tbo->ttm;
1207 *user_addr = gtt->userptr;
1212 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1215 * @bo: The ttm_buffer_object to bind this userptr to
1216 * @addr: The address in the current tasks VM space to use
1217 * @flags: Requirements of userptr object.
1219 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1220 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1221 * initialize GPU VM for a KFD process.
1223 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1224 uint64_t addr, uint32_t flags)
1226 struct amdgpu_ttm_tt *gtt;
1229 /* TODO: We want a separate TTM object type for userptrs */
1230 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1231 if (bo->ttm == NULL)
1235 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1236 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1238 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1239 gtt->userptr = addr;
1240 gtt->userflags = flags;
1243 put_task_struct(gtt->usertask);
1244 gtt->usertask = current->group_leader;
1245 get_task_struct(gtt->usertask);
1251 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1253 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1255 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 if (gtt->usertask == NULL)
1263 return gtt->usertask->mm;
1267 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1268 * address range for the current task.
1271 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1272 unsigned long end, unsigned long *userptr)
1274 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1277 if (gtt == NULL || !gtt->userptr)
1280 /* Return false if no part of the ttm_tt object lies within
1283 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1284 if (gtt->userptr > end || gtt->userptr + size <= start)
1288 *userptr = gtt->userptr;
1293 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1295 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1297 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1299 if (gtt == NULL || !gtt->userptr)
1306 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1308 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1310 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1315 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1319 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1321 * @ttm: The ttm_tt object to compute the flags for
1322 * @mem: The memory registry backing this ttm_tt object
1324 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1326 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1330 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1331 flags |= AMDGPU_PTE_VALID;
1333 if (mem && (mem->mem_type == TTM_PL_TT ||
1334 mem->mem_type == AMDGPU_PL_DOORBELL ||
1335 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1336 flags |= AMDGPU_PTE_SYSTEM;
1338 if (ttm->caching == ttm_cached)
1339 flags |= AMDGPU_PTE_SNOOPED;
1342 if (mem && mem->mem_type == TTM_PL_VRAM &&
1343 mem->bus.caching == ttm_cached)
1344 flags |= AMDGPU_PTE_SNOOPED;
1350 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1352 * @adev: amdgpu_device pointer
1353 * @ttm: The ttm_tt object to compute the flags for
1354 * @mem: The memory registry backing this ttm_tt object
1356 * Figure out the flags to use for a VM PTE (Page Table Entry).
1358 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1359 struct ttm_resource *mem)
1361 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1363 flags |= adev->gart.gart_pte_flags;
1364 flags |= AMDGPU_PTE_READABLE;
1366 if (!amdgpu_ttm_tt_is_readonly(ttm))
1367 flags |= AMDGPU_PTE_WRITEABLE;
1373 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1376 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1377 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1378 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1379 * used to clean out a memory space.
1381 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1382 const struct ttm_place *place)
1384 struct dma_resv_iter resv_cursor;
1385 struct dma_fence *f;
1387 if (!amdgpu_bo_is_amdgpu_bo(bo))
1388 return ttm_bo_eviction_valuable(bo, place);
1391 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1394 if (bo->type == ttm_bo_type_kernel &&
1395 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1398 /* If bo is a KFD BO, check if the bo belongs to the current process.
1399 * If true, then return false as any KFD process needs all its BOs to
1400 * be resident to run successfully
1402 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1403 DMA_RESV_USAGE_BOOKKEEP, f) {
1404 if (amdkfd_fence_check_mm(f, current->mm))
1408 /* Preemptible BOs don't own system resources managed by the
1409 * driver (pages, VRAM, GART space). They point to resources
1410 * owned by someone else (e.g. pageable memory in user mode
1411 * or a DMABuf). They are used in a preemptible context so we
1412 * can guarantee no deadlocks and good QoS in case of MMU
1413 * notifiers or DMABuf move notifiers from the resource owner.
1415 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1418 if (bo->resource->mem_type == TTM_PL_TT &&
1419 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1422 return ttm_bo_eviction_valuable(bo, place);
1425 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1426 void *buf, size_t size, bool write)
1429 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1430 uint64_t bytes = 4 - (pos & 0x3);
1431 uint32_t shift = (pos & 0x3) * 8;
1432 uint32_t mask = 0xffffffff << shift;
1436 mask &= 0xffffffff >> (bytes - size) * 8;
1440 if (mask != 0xffffffff) {
1441 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1444 value |= (*(uint32_t *)buf << shift) & mask;
1445 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1447 value = (value & mask) >> shift;
1448 memcpy(buf, &value, bytes);
1451 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1460 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1461 unsigned long offset, void *buf,
1464 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1465 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1466 struct amdgpu_res_cursor src_mm;
1467 struct amdgpu_job *job;
1468 struct dma_fence *fence;
1469 uint64_t src_addr, dst_addr;
1470 unsigned int num_dw;
1473 if (len != PAGE_SIZE)
1476 if (!adev->mman.sdma_access_ptr)
1479 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1483 memcpy(adev->mman.sdma_access_ptr, buf, len);
1485 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1486 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1487 AMDGPU_FENCE_OWNER_UNDEFINED,
1488 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1493 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1494 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1496 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1498 swap(src_addr, dst_addr);
1500 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1503 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1504 WARN_ON(job->ibs[0].length_dw > num_dw);
1506 fence = amdgpu_job_submit(job);
1508 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1510 dma_fence_put(fence);
1513 memcpy(buf, adev->mman.sdma_access_ptr, len);
1520 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1522 * @bo: The buffer object to read/write
1523 * @offset: Offset into buffer object
1524 * @buf: Secondary buffer to write/read from
1525 * @len: Length in bytes of access
1526 * @write: true if writing
1528 * This is used to access VRAM that backs a buffer object via MMIO
1529 * access for debugging purposes.
1531 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1532 unsigned long offset, void *buf, int len,
1535 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1536 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1537 struct amdgpu_res_cursor cursor;
1540 if (bo->resource->mem_type != TTM_PL_VRAM)
1543 if (amdgpu_device_has_timeouts_enabled(adev) &&
1544 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1547 amdgpu_res_first(bo->resource, offset, len, &cursor);
1548 while (cursor.remaining) {
1549 size_t count, size = cursor.size;
1550 loff_t pos = cursor.start;
1552 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1555 /* using MM to access rest vram and handle un-aligned address */
1558 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1563 amdgpu_res_next(&cursor, cursor.size);
1570 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1572 amdgpu_bo_move_notify(bo, false, NULL);
1575 static struct ttm_device_funcs amdgpu_bo_driver = {
1576 .ttm_tt_create = &amdgpu_ttm_tt_create,
1577 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1578 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1579 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1580 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1581 .evict_flags = &amdgpu_evict_flags,
1582 .move = &amdgpu_bo_move,
1583 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1584 .release_notify = &amdgpu_bo_release_notify,
1585 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1586 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1587 .access_memory = &amdgpu_ttm_access_memory,
1591 * Firmware Reservation functions
1594 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1596 * @adev: amdgpu_device pointer
1598 * free fw reserved vram if it has been reserved.
1600 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1602 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1603 NULL, &adev->mman.fw_vram_usage_va);
1607 * Driver Reservation functions
1610 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1612 * @adev: amdgpu_device pointer
1614 * free drv reserved vram if it has been reserved.
1616 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1618 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1620 &adev->mman.drv_vram_usage_va);
1624 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1626 * @adev: amdgpu_device pointer
1628 * create bo vram reservation from fw.
1630 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1632 uint64_t vram_size = adev->gmc.visible_vram_size;
1634 adev->mman.fw_vram_usage_va = NULL;
1635 adev->mman.fw_vram_usage_reserved_bo = NULL;
1637 if (adev->mman.fw_vram_usage_size == 0 ||
1638 adev->mman.fw_vram_usage_size > vram_size)
1641 return amdgpu_bo_create_kernel_at(adev,
1642 adev->mman.fw_vram_usage_start_offset,
1643 adev->mman.fw_vram_usage_size,
1644 &adev->mman.fw_vram_usage_reserved_bo,
1645 &adev->mman.fw_vram_usage_va);
1649 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1651 * @adev: amdgpu_device pointer
1653 * create bo vram reservation from drv.
1655 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1657 u64 vram_size = adev->gmc.visible_vram_size;
1659 adev->mman.drv_vram_usage_va = NULL;
1660 adev->mman.drv_vram_usage_reserved_bo = NULL;
1662 if (adev->mman.drv_vram_usage_size == 0 ||
1663 adev->mman.drv_vram_usage_size > vram_size)
1666 return amdgpu_bo_create_kernel_at(adev,
1667 adev->mman.drv_vram_usage_start_offset,
1668 adev->mman.drv_vram_usage_size,
1669 &adev->mman.drv_vram_usage_reserved_bo,
1670 &adev->mman.drv_vram_usage_va);
1674 * Memoy training reservation functions
1678 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1680 * @adev: amdgpu_device pointer
1682 * free memory training reserved vram if it has been reserved.
1684 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1686 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1688 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1689 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1695 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1696 uint32_t reserve_size)
1698 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1700 memset(ctx, 0, sizeof(*ctx));
1702 ctx->c2p_train_data_offset =
1703 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1704 ctx->p2c_train_data_offset =
1705 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1706 ctx->train_data_size =
1707 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1709 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1710 ctx->train_data_size,
1711 ctx->p2c_train_data_offset,
1712 ctx->c2p_train_data_offset);
1716 * reserve TMR memory at the top of VRAM which holds
1717 * IP Discovery data and is protected by PSP.
1719 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1722 bool mem_train_support = false;
1723 uint32_t reserve_size = 0;
1726 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1727 if (amdgpu_atomfirmware_mem_training_supported(adev))
1728 mem_train_support = true;
1730 DRM_DEBUG("memory training does not support!\n");
1734 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1735 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1737 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1738 * discovery data and G6 memory training data respectively
1742 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1745 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1746 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1747 else if (!reserve_size)
1748 reserve_size = DISCOVERY_TMR_OFFSET;
1750 if (mem_train_support) {
1751 /* reserve vram for mem train according to TMR location */
1752 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1753 ret = amdgpu_bo_create_kernel_at(adev,
1754 ctx->c2p_train_data_offset,
1755 ctx->train_data_size,
1759 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1760 amdgpu_ttm_training_reserve_vram_fini(adev);
1763 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1766 if (!adev->gmc.is_app_apu) {
1767 ret = amdgpu_bo_create_kernel_at(
1768 adev, adev->gmc.real_vram_size - reserve_size,
1769 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1771 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1772 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1777 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1783 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1787 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1790 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1791 sizeof(*adev->mman.ttm_pools),
1793 if (!adev->mman.ttm_pools)
1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1797 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1798 adev->gmc.mem_partitions[i].numa.node,
1804 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1808 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1811 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1812 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1814 kfree(adev->mman.ttm_pools);
1815 adev->mman.ttm_pools = NULL;
1819 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1820 * gtt/vram related fields.
1822 * This initializes all of the memory space pools that the TTM layer
1823 * will need such as the GTT space (system memory mapped to the device),
1824 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1825 * can be mapped per VMID.
1827 int amdgpu_ttm_init(struct amdgpu_device *adev)
1832 mutex_init(&adev->mman.gtt_window_lock);
1834 /* No others user of address space so set it to 0 */
1835 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1836 adev_to_drm(adev)->anon_inode->i_mapping,
1837 adev_to_drm(adev)->vma_offset_manager,
1839 dma_addressing_limited(adev->dev));
1841 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1845 r = amdgpu_ttm_pools_init(adev);
1847 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1850 adev->mman.initialized = true;
1852 /* Initialize VRAM pool with all of VRAM divided into pages */
1853 r = amdgpu_vram_mgr_init(adev);
1855 DRM_ERROR("Failed initializing VRAM heap.\n");
1859 /* Change the size here instead of the init above so only lpfn is affected */
1860 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1863 if (adev->gmc.xgmi.connected_to_cpu)
1864 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1865 adev->gmc.visible_vram_size);
1867 else if (adev->gmc.is_app_apu)
1869 "No need to ioremap when real vram size is 0\n");
1872 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1873 adev->gmc.visible_vram_size);
1877 *The reserved vram for firmware must be pinned to the specified
1878 *place on the VRAM, so reserve it early.
1880 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1885 *The reserved vram for driver must be pinned to the specified
1886 *place on the VRAM, so reserve it early.
1888 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1893 * only NAVI10 and onwards ASIC support for IP discovery.
1894 * If IP discovery enabled, a block of memory should be
1895 * reserved for IP discovey.
1897 if (adev->mman.discovery_bin) {
1898 r = amdgpu_ttm_reserve_tmr(adev);
1903 /* allocate memory as required for VGA
1904 * This is used for VGA emulation and pre-OS scanout buffers to
1905 * avoid display artifacts while transitioning between pre-OS
1908 if (!adev->gmc.is_app_apu) {
1909 r = amdgpu_bo_create_kernel_at(adev, 0,
1910 adev->mman.stolen_vga_size,
1911 &adev->mman.stolen_vga_memory,
1916 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1917 adev->mman.stolen_extended_size,
1918 &adev->mman.stolen_extended_memory,
1924 r = amdgpu_bo_create_kernel_at(adev,
1925 adev->mman.stolen_reserved_offset,
1926 adev->mman.stolen_reserved_size,
1927 &adev->mman.stolen_reserved_memory,
1932 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1935 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1936 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1938 /* Compute GTT size, either based on TTM limit
1939 * or whatever the user passed on module init.
1941 if (amdgpu_gtt_size == -1)
1942 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1944 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1946 /* Initialize GTT memory pool */
1947 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1949 DRM_ERROR("Failed initializing GTT heap.\n");
1952 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1953 (unsigned int)(gtt_size / (1024 * 1024)));
1955 /* Initiailize doorbell pool on PCI BAR */
1956 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1958 DRM_ERROR("Failed initializing doorbell heap.\n");
1962 /* Create a boorbell page for kernel usages */
1963 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1965 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1969 /* Initialize preemptible memory pool */
1970 r = amdgpu_preempt_mgr_init(adev);
1972 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1976 /* Initialize various on-chip memory pools */
1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1979 DRM_ERROR("Failed initializing GDS heap.\n");
1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1985 DRM_ERROR("Failed initializing gws heap.\n");
1989 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1991 DRM_ERROR("Failed initializing oa heap.\n");
1994 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1995 AMDGPU_GEM_DOMAIN_GTT,
1996 &adev->mman.sdma_access_bo, NULL,
1997 &adev->mman.sdma_access_ptr))
1998 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2004 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2006 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2010 if (!adev->mman.initialized)
2013 amdgpu_ttm_pools_fini(adev);
2015 amdgpu_ttm_training_reserve_vram_fini(adev);
2016 /* return the stolen vga memory back to VRAM */
2017 if (!adev->gmc.is_app_apu) {
2018 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2019 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2020 /* return the FW reserved memory back to VRAM */
2021 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2023 if (adev->mman.stolen_reserved_size)
2024 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2027 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2028 &adev->mman.sdma_access_ptr);
2029 amdgpu_ttm_fw_reserve_vram_fini(adev);
2030 amdgpu_ttm_drv_reserve_vram_fini(adev);
2032 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2034 if (adev->mman.aper_base_kaddr)
2035 iounmap(adev->mman.aper_base_kaddr);
2036 adev->mman.aper_base_kaddr = NULL;
2041 amdgpu_vram_mgr_fini(adev);
2042 amdgpu_gtt_mgr_fini(adev);
2043 amdgpu_preempt_mgr_fini(adev);
2044 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2045 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2046 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2047 ttm_device_fini(&adev->mman.bdev);
2048 adev->mman.initialized = false;
2049 DRM_INFO("amdgpu: ttm finalized\n");
2053 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2055 * @adev: amdgpu_device pointer
2056 * @enable: true when we can use buffer functions.
2058 * Enable/disable use of buffer functions during suspend/resume. This should
2059 * only be called at bootup or when userspace isn't running.
2061 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2063 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2067 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2068 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2072 struct amdgpu_ring *ring;
2073 struct drm_gpu_scheduler *sched;
2075 ring = adev->mman.buffer_funcs_ring;
2076 sched = &ring->sched;
2077 r = drm_sched_entity_init(&adev->mman.high_pr,
2078 DRM_SCHED_PRIORITY_KERNEL, &sched,
2081 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2086 r = drm_sched_entity_init(&adev->mman.low_pr,
2087 DRM_SCHED_PRIORITY_NORMAL, &sched,
2090 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2092 goto error_free_entity;
2095 drm_sched_entity_destroy(&adev->mman.high_pr);
2096 drm_sched_entity_destroy(&adev->mman.low_pr);
2097 dma_fence_put(man->move);
2101 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2103 size = adev->gmc.real_vram_size;
2105 size = adev->gmc.visible_vram_size;
2107 adev->mman.buffer_funcs_enabled = enable;
2112 drm_sched_entity_destroy(&adev->mman.high_pr);
2115 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2117 unsigned int num_dw,
2118 struct dma_resv *resv,
2119 bool vm_needs_flush,
2120 struct amdgpu_job **job,
2123 enum amdgpu_ib_pool_type pool = direct_submit ?
2124 AMDGPU_IB_POOL_DIRECT :
2125 AMDGPU_IB_POOL_DELAYED;
2127 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2128 &adev->mman.high_pr;
2129 r = amdgpu_job_alloc_with_ib(adev, entity,
2130 AMDGPU_FENCE_OWNER_UNDEFINED,
2131 num_dw * 4, pool, job);
2135 if (vm_needs_flush) {
2136 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2139 (*job)->vm_needs_flush = true;
2144 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2145 DMA_RESV_USAGE_BOOKKEEP);
2148 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2149 uint64_t dst_offset, uint32_t byte_count,
2150 struct dma_resv *resv,
2151 struct dma_fence **fence, bool direct_submit,
2152 bool vm_needs_flush, uint32_t copy_flags)
2154 struct amdgpu_device *adev = ring->adev;
2155 unsigned int num_loops, num_dw;
2156 struct amdgpu_job *job;
2161 if (!direct_submit && !ring->sched.ready) {
2162 DRM_ERROR("Trying to move memory with ring turned off.\n");
2166 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2167 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2168 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2169 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2170 resv, vm_needs_flush, &job, false);
2174 for (i = 0; i < num_loops; i++) {
2175 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2177 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2178 dst_offset, cur_size_in_bytes, copy_flags);
2179 src_offset += cur_size_in_bytes;
2180 dst_offset += cur_size_in_bytes;
2181 byte_count -= cur_size_in_bytes;
2184 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2185 WARN_ON(job->ibs[0].length_dw > num_dw);
2187 r = amdgpu_job_submit_direct(job, ring, fence);
2189 *fence = amdgpu_job_submit(job);
2196 amdgpu_job_free(job);
2197 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2201 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2202 uint64_t dst_addr, uint32_t byte_count,
2203 struct dma_resv *resv,
2204 struct dma_fence **fence,
2205 bool vm_needs_flush, bool delayed)
2207 struct amdgpu_device *adev = ring->adev;
2208 unsigned int num_loops, num_dw;
2209 struct amdgpu_job *job;
2214 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2215 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2216 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2217 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2222 for (i = 0; i < num_loops; i++) {
2223 uint32_t cur_size = min(byte_count, max_bytes);
2225 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2228 dst_addr += cur_size;
2229 byte_count -= cur_size;
2232 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2233 WARN_ON(job->ibs[0].length_dw > num_dw);
2234 *fence = amdgpu_job_submit(job);
2239 * amdgpu_ttm_clear_buffer - clear memory buffers
2240 * @bo: amdgpu buffer object
2241 * @resv: reservation object
2242 * @fence: dma_fence associated with the operation
2244 * Clear the memory buffer resource.
2247 * 0 for success or a negative error code on failure.
2249 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2250 struct dma_resv *resv,
2251 struct dma_fence **fence)
2253 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2254 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2255 struct amdgpu_res_cursor cursor;
2259 if (!adev->mman.buffer_funcs_enabled)
2265 *fence = dma_fence_get_stub();
2267 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2269 mutex_lock(&adev->mman.gtt_window_lock);
2270 while (cursor.remaining) {
2271 struct dma_fence *next = NULL;
2274 if (amdgpu_res_cleared(&cursor)) {
2275 amdgpu_res_next(&cursor, cursor.size);
2279 /* Never clear more than 256MiB at once to avoid timeouts */
2280 size = min(cursor.size, 256ULL << 20);
2282 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2283 1, ring, false, &size, &addr);
2287 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2292 dma_fence_put(*fence);
2295 amdgpu_res_next(&cursor, size);
2298 mutex_unlock(&adev->mman.gtt_window_lock);
2303 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2305 struct dma_resv *resv,
2306 struct dma_fence **f,
2309 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2310 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2311 struct dma_fence *fence = NULL;
2312 struct amdgpu_res_cursor dst;
2315 if (!adev->mman.buffer_funcs_enabled) {
2316 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2320 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2322 mutex_lock(&adev->mman.gtt_window_lock);
2323 while (dst.remaining) {
2324 struct dma_fence *next;
2325 uint64_t cur_size, to;
2327 /* Never fill more than 256MiB at once to avoid timeouts */
2328 cur_size = min(dst.size, 256ULL << 20);
2330 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2331 1, ring, false, &cur_size, &to);
2335 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2336 &next, true, delayed);
2340 dma_fence_put(fence);
2343 amdgpu_res_next(&dst, cur_size);
2346 mutex_unlock(&adev->mman.gtt_window_lock);
2348 *f = dma_fence_get(fence);
2349 dma_fence_put(fence);
2354 * amdgpu_ttm_evict_resources - evict memory buffers
2355 * @adev: amdgpu device object
2356 * @mem_type: evicted BO's memory type
2358 * Evicts all @mem_type buffers on the lru list of the memory type.
2361 * 0 for success or a negative error code on failure.
2363 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2365 struct ttm_resource_manager *man;
2373 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2376 DRM_ERROR("Trying to evict invalid memory type\n");
2380 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2383 #if defined(CONFIG_DEBUG_FS)
2385 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2387 struct amdgpu_device *adev = m->private;
2389 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2392 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2395 * amdgpu_ttm_vram_read - Linear read access to VRAM
2397 * Accesses VRAM via MMIO for debugging purposes.
2399 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2400 size_t size, loff_t *pos)
2402 struct amdgpu_device *adev = file_inode(f)->i_private;
2405 if (size & 0x3 || *pos & 0x3)
2408 if (*pos >= adev->gmc.mc_vram_size)
2411 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2413 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2414 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2416 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2417 if (copy_to_user(buf, value, bytes))
2430 * amdgpu_ttm_vram_write - Linear write access to VRAM
2432 * Accesses VRAM via MMIO for debugging purposes.
2434 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2435 size_t size, loff_t *pos)
2437 struct amdgpu_device *adev = file_inode(f)->i_private;
2441 if (size & 0x3 || *pos & 0x3)
2444 if (*pos >= adev->gmc.mc_vram_size)
2450 if (*pos >= adev->gmc.mc_vram_size)
2453 r = get_user(value, (uint32_t *)buf);
2457 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2468 static const struct file_operations amdgpu_ttm_vram_fops = {
2469 .owner = THIS_MODULE,
2470 .read = amdgpu_ttm_vram_read,
2471 .write = amdgpu_ttm_vram_write,
2472 .llseek = default_llseek,
2476 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2478 * This function is used to read memory that has been mapped to the
2479 * GPU and the known addresses are not physical addresses but instead
2480 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2482 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2483 size_t size, loff_t *pos)
2485 struct amdgpu_device *adev = file_inode(f)->i_private;
2486 struct iommu_domain *dom;
2490 /* retrieve the IOMMU domain if any for this device */
2491 dom = iommu_get_domain_for_dev(adev->dev);
2494 phys_addr_t addr = *pos & PAGE_MASK;
2495 loff_t off = *pos & ~PAGE_MASK;
2496 size_t bytes = PAGE_SIZE - off;
2501 bytes = min(bytes, size);
2503 /* Translate the bus address to a physical address. If
2504 * the domain is NULL it means there is no IOMMU active
2505 * and the address translation is the identity
2507 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2509 pfn = addr >> PAGE_SHIFT;
2510 if (!pfn_valid(pfn))
2513 p = pfn_to_page(pfn);
2514 if (p->mapping != adev->mman.bdev.dev_mapping)
2517 ptr = kmap_local_page(p);
2518 r = copy_to_user(buf, ptr + off, bytes);
2532 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2534 * This function is used to write memory that has been mapped to the
2535 * GPU and the known addresses are not physical addresses but instead
2536 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2538 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2539 size_t size, loff_t *pos)
2541 struct amdgpu_device *adev = file_inode(f)->i_private;
2542 struct iommu_domain *dom;
2546 dom = iommu_get_domain_for_dev(adev->dev);
2549 phys_addr_t addr = *pos & PAGE_MASK;
2550 loff_t off = *pos & ~PAGE_MASK;
2551 size_t bytes = PAGE_SIZE - off;
2556 bytes = min(bytes, size);
2558 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2560 pfn = addr >> PAGE_SHIFT;
2561 if (!pfn_valid(pfn))
2564 p = pfn_to_page(pfn);
2565 if (p->mapping != adev->mman.bdev.dev_mapping)
2568 ptr = kmap_local_page(p);
2569 r = copy_from_user(ptr + off, buf, bytes);
2582 static const struct file_operations amdgpu_ttm_iomem_fops = {
2583 .owner = THIS_MODULE,
2584 .read = amdgpu_iomem_read,
2585 .write = amdgpu_iomem_write,
2586 .llseek = default_llseek
2591 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2593 #if defined(CONFIG_DEBUG_FS)
2594 struct drm_minor *minor = adev_to_drm(adev)->primary;
2595 struct dentry *root = minor->debugfs_root;
2597 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2598 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2599 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2600 &amdgpu_ttm_iomem_fops);
2601 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2602 &amdgpu_ttm_page_pool_fops);
2603 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2605 root, "amdgpu_vram_mm");
2606 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2608 root, "amdgpu_gtt_mm");
2609 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2611 root, "amdgpu_gds_mm");
2612 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2614 root, "amdgpu_gws_mm");
2615 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617 root, "amdgpu_oa_mm");