]> Git Repo - linux.git/blob - kernel/events/core.c
perf: Use hrtimers for event multiplexing
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <[email protected]>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <[email protected]>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48         struct task_struct      *p;
49         int                     (*func)(void *info);
50         void                    *info;
51         int                     ret;
52 };
53
54 static void remote_function(void *data)
55 {
56         struct remote_function_call *tfc = data;
57         struct task_struct *p = tfc->p;
58
59         if (p) {
60                 tfc->ret = -EAGAIN;
61                 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62                         return;
63         }
64
65         tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:          the task to evaluate
71  * @func:       the function to be called
72  * @info:       the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *          -ESRCH  - when the process isn't running
79  *          -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84         struct remote_function_call data = {
85                 .p      = p,
86                 .func   = func,
87                 .info   = info,
88                 .ret    = -ESRCH, /* No such (running) process */
89         };
90
91         if (task_curr(p))
92                 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94         return data.ret;
95 }
96
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:       the function to be called
100  * @info:       the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108         struct remote_function_call data = {
109                 .p      = NULL,
110                 .func   = func,
111                 .info   = info,
112                 .ret    = -ENXIO, /* No such CPU */
113         };
114
115         smp_call_function_single(cpu, remote_function, &data, 1);
116
117         return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121                        PERF_FLAG_FD_OUTPUT  |\
122                        PERF_FLAG_PID_CGROUP)
123
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128         (PERF_SAMPLE_BRANCH_KERNEL |\
129          PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132         EVENT_FLEXIBLE = 0x1,
133         EVENT_PINNED = 0x2,
134         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152
153 /*
154  * perf event paranoia level:
155  *  -1 - not paranoid at all
156  *   0 - disallow raw tracepoint access for unpriv
157  *   1 - disallow cpu events for unpriv
158  *   2 - disallow kernel profiling for unpriv
159  */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164
165 /*
166  * max perf event sample rate
167  */
168 #define DEFAULT_MAX_SAMPLE_RATE 100000
169 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170 static int max_samples_per_tick __read_mostly =
171         DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172
173 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
174
175 int perf_proc_update_handler(struct ctl_table *table, int write,
176                 void __user *buffer, size_t *lenp,
177                 loff_t *ppos)
178 {
179         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
180
181         if (ret || !write)
182                 return ret;
183
184         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
185
186         return 0;
187 }
188
189 static atomic64_t perf_event_id;
190
191 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
192                               enum event_type_t event_type);
193
194 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
195                              enum event_type_t event_type,
196                              struct task_struct *task);
197
198 static void update_context_time(struct perf_event_context *ctx);
199 static u64 perf_event_time(struct perf_event *event);
200
201 static void ring_buffer_attach(struct perf_event *event,
202                                struct ring_buffer *rb);
203
204 void __weak perf_event_print_debug(void)        { }
205
206 extern __weak const char *perf_pmu_name(void)
207 {
208         return "pmu";
209 }
210
211 static inline u64 perf_clock(void)
212 {
213         return local_clock();
214 }
215
216 static inline struct perf_cpu_context *
217 __get_cpu_context(struct perf_event_context *ctx)
218 {
219         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
220 }
221
222 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
223                           struct perf_event_context *ctx)
224 {
225         raw_spin_lock(&cpuctx->ctx.lock);
226         if (ctx)
227                 raw_spin_lock(&ctx->lock);
228 }
229
230 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
231                             struct perf_event_context *ctx)
232 {
233         if (ctx)
234                 raw_spin_unlock(&ctx->lock);
235         raw_spin_unlock(&cpuctx->ctx.lock);
236 }
237
238 #ifdef CONFIG_CGROUP_PERF
239
240 /*
241  * perf_cgroup_info keeps track of time_enabled for a cgroup.
242  * This is a per-cpu dynamically allocated data structure.
243  */
244 struct perf_cgroup_info {
245         u64                             time;
246         u64                             timestamp;
247 };
248
249 struct perf_cgroup {
250         struct cgroup_subsys_state      css;
251         struct perf_cgroup_info __percpu *info;
252 };
253
254 /*
255  * Must ensure cgroup is pinned (css_get) before calling
256  * this function. In other words, we cannot call this function
257  * if there is no cgroup event for the current CPU context.
258  */
259 static inline struct perf_cgroup *
260 perf_cgroup_from_task(struct task_struct *task)
261 {
262         return container_of(task_subsys_state(task, perf_subsys_id),
263                         struct perf_cgroup, css);
264 }
265
266 static inline bool
267 perf_cgroup_match(struct perf_event *event)
268 {
269         struct perf_event_context *ctx = event->ctx;
270         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
271
272         /* @event doesn't care about cgroup */
273         if (!event->cgrp)
274                 return true;
275
276         /* wants specific cgroup scope but @cpuctx isn't associated with any */
277         if (!cpuctx->cgrp)
278                 return false;
279
280         /*
281          * Cgroup scoping is recursive.  An event enabled for a cgroup is
282          * also enabled for all its descendant cgroups.  If @cpuctx's
283          * cgroup is a descendant of @event's (the test covers identity
284          * case), it's a match.
285          */
286         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
287                                     event->cgrp->css.cgroup);
288 }
289
290 static inline bool perf_tryget_cgroup(struct perf_event *event)
291 {
292         return css_tryget(&event->cgrp->css);
293 }
294
295 static inline void perf_put_cgroup(struct perf_event *event)
296 {
297         css_put(&event->cgrp->css);
298 }
299
300 static inline void perf_detach_cgroup(struct perf_event *event)
301 {
302         perf_put_cgroup(event);
303         event->cgrp = NULL;
304 }
305
306 static inline int is_cgroup_event(struct perf_event *event)
307 {
308         return event->cgrp != NULL;
309 }
310
311 static inline u64 perf_cgroup_event_time(struct perf_event *event)
312 {
313         struct perf_cgroup_info *t;
314
315         t = per_cpu_ptr(event->cgrp->info, event->cpu);
316         return t->time;
317 }
318
319 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
320 {
321         struct perf_cgroup_info *info;
322         u64 now;
323
324         now = perf_clock();
325
326         info = this_cpu_ptr(cgrp->info);
327
328         info->time += now - info->timestamp;
329         info->timestamp = now;
330 }
331
332 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
333 {
334         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
335         if (cgrp_out)
336                 __update_cgrp_time(cgrp_out);
337 }
338
339 static inline void update_cgrp_time_from_event(struct perf_event *event)
340 {
341         struct perf_cgroup *cgrp;
342
343         /*
344          * ensure we access cgroup data only when needed and
345          * when we know the cgroup is pinned (css_get)
346          */
347         if (!is_cgroup_event(event))
348                 return;
349
350         cgrp = perf_cgroup_from_task(current);
351         /*
352          * Do not update time when cgroup is not active
353          */
354         if (cgrp == event->cgrp)
355                 __update_cgrp_time(event->cgrp);
356 }
357
358 static inline void
359 perf_cgroup_set_timestamp(struct task_struct *task,
360                           struct perf_event_context *ctx)
361 {
362         struct perf_cgroup *cgrp;
363         struct perf_cgroup_info *info;
364
365         /*
366          * ctx->lock held by caller
367          * ensure we do not access cgroup data
368          * unless we have the cgroup pinned (css_get)
369          */
370         if (!task || !ctx->nr_cgroups)
371                 return;
372
373         cgrp = perf_cgroup_from_task(task);
374         info = this_cpu_ptr(cgrp->info);
375         info->timestamp = ctx->timestamp;
376 }
377
378 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
379 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
380
381 /*
382  * reschedule events based on the cgroup constraint of task.
383  *
384  * mode SWOUT : schedule out everything
385  * mode SWIN : schedule in based on cgroup for next
386  */
387 void perf_cgroup_switch(struct task_struct *task, int mode)
388 {
389         struct perf_cpu_context *cpuctx;
390         struct pmu *pmu;
391         unsigned long flags;
392
393         /*
394          * disable interrupts to avoid geting nr_cgroup
395          * changes via __perf_event_disable(). Also
396          * avoids preemption.
397          */
398         local_irq_save(flags);
399
400         /*
401          * we reschedule only in the presence of cgroup
402          * constrained events.
403          */
404         rcu_read_lock();
405
406         list_for_each_entry_rcu(pmu, &pmus, entry) {
407                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
408                 if (cpuctx->unique_pmu != pmu)
409                         continue; /* ensure we process each cpuctx once */
410
411                 /*
412                  * perf_cgroup_events says at least one
413                  * context on this CPU has cgroup events.
414                  *
415                  * ctx->nr_cgroups reports the number of cgroup
416                  * events for a context.
417                  */
418                 if (cpuctx->ctx.nr_cgroups > 0) {
419                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
420                         perf_pmu_disable(cpuctx->ctx.pmu);
421
422                         if (mode & PERF_CGROUP_SWOUT) {
423                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
424                                 /*
425                                  * must not be done before ctxswout due
426                                  * to event_filter_match() in event_sched_out()
427                                  */
428                                 cpuctx->cgrp = NULL;
429                         }
430
431                         if (mode & PERF_CGROUP_SWIN) {
432                                 WARN_ON_ONCE(cpuctx->cgrp);
433                                 /*
434                                  * set cgrp before ctxsw in to allow
435                                  * event_filter_match() to not have to pass
436                                  * task around
437                                  */
438                                 cpuctx->cgrp = perf_cgroup_from_task(task);
439                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
440                         }
441                         perf_pmu_enable(cpuctx->ctx.pmu);
442                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
443                 }
444         }
445
446         rcu_read_unlock();
447
448         local_irq_restore(flags);
449 }
450
451 static inline void perf_cgroup_sched_out(struct task_struct *task,
452                                          struct task_struct *next)
453 {
454         struct perf_cgroup *cgrp1;
455         struct perf_cgroup *cgrp2 = NULL;
456
457         /*
458          * we come here when we know perf_cgroup_events > 0
459          */
460         cgrp1 = perf_cgroup_from_task(task);
461
462         /*
463          * next is NULL when called from perf_event_enable_on_exec()
464          * that will systematically cause a cgroup_switch()
465          */
466         if (next)
467                 cgrp2 = perf_cgroup_from_task(next);
468
469         /*
470          * only schedule out current cgroup events if we know
471          * that we are switching to a different cgroup. Otherwise,
472          * do no touch the cgroup events.
473          */
474         if (cgrp1 != cgrp2)
475                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
476 }
477
478 static inline void perf_cgroup_sched_in(struct task_struct *prev,
479                                         struct task_struct *task)
480 {
481         struct perf_cgroup *cgrp1;
482         struct perf_cgroup *cgrp2 = NULL;
483
484         /*
485          * we come here when we know perf_cgroup_events > 0
486          */
487         cgrp1 = perf_cgroup_from_task(task);
488
489         /* prev can never be NULL */
490         cgrp2 = perf_cgroup_from_task(prev);
491
492         /*
493          * only need to schedule in cgroup events if we are changing
494          * cgroup during ctxsw. Cgroup events were not scheduled
495          * out of ctxsw out if that was not the case.
496          */
497         if (cgrp1 != cgrp2)
498                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
499 }
500
501 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
502                                       struct perf_event_attr *attr,
503                                       struct perf_event *group_leader)
504 {
505         struct perf_cgroup *cgrp;
506         struct cgroup_subsys_state *css;
507         struct fd f = fdget(fd);
508         int ret = 0;
509
510         if (!f.file)
511                 return -EBADF;
512
513         css = cgroup_css_from_dir(f.file, perf_subsys_id);
514         if (IS_ERR(css)) {
515                 ret = PTR_ERR(css);
516                 goto out;
517         }
518
519         cgrp = container_of(css, struct perf_cgroup, css);
520         event->cgrp = cgrp;
521
522         /* must be done before we fput() the file */
523         if (!perf_tryget_cgroup(event)) {
524                 event->cgrp = NULL;
525                 ret = -ENOENT;
526                 goto out;
527         }
528
529         /*
530          * all events in a group must monitor
531          * the same cgroup because a task belongs
532          * to only one perf cgroup at a time
533          */
534         if (group_leader && group_leader->cgrp != cgrp) {
535                 perf_detach_cgroup(event);
536                 ret = -EINVAL;
537         }
538 out:
539         fdput(f);
540         return ret;
541 }
542
543 static inline void
544 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
545 {
546         struct perf_cgroup_info *t;
547         t = per_cpu_ptr(event->cgrp->info, event->cpu);
548         event->shadow_ctx_time = now - t->timestamp;
549 }
550
551 static inline void
552 perf_cgroup_defer_enabled(struct perf_event *event)
553 {
554         /*
555          * when the current task's perf cgroup does not match
556          * the event's, we need to remember to call the
557          * perf_mark_enable() function the first time a task with
558          * a matching perf cgroup is scheduled in.
559          */
560         if (is_cgroup_event(event) && !perf_cgroup_match(event))
561                 event->cgrp_defer_enabled = 1;
562 }
563
564 static inline void
565 perf_cgroup_mark_enabled(struct perf_event *event,
566                          struct perf_event_context *ctx)
567 {
568         struct perf_event *sub;
569         u64 tstamp = perf_event_time(event);
570
571         if (!event->cgrp_defer_enabled)
572                 return;
573
574         event->cgrp_defer_enabled = 0;
575
576         event->tstamp_enabled = tstamp - event->total_time_enabled;
577         list_for_each_entry(sub, &event->sibling_list, group_entry) {
578                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
579                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
580                         sub->cgrp_defer_enabled = 0;
581                 }
582         }
583 }
584 #else /* !CONFIG_CGROUP_PERF */
585
586 static inline bool
587 perf_cgroup_match(struct perf_event *event)
588 {
589         return true;
590 }
591
592 static inline void perf_detach_cgroup(struct perf_event *event)
593 {}
594
595 static inline int is_cgroup_event(struct perf_event *event)
596 {
597         return 0;
598 }
599
600 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
601 {
602         return 0;
603 }
604
605 static inline void update_cgrp_time_from_event(struct perf_event *event)
606 {
607 }
608
609 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
610 {
611 }
612
613 static inline void perf_cgroup_sched_out(struct task_struct *task,
614                                          struct task_struct *next)
615 {
616 }
617
618 static inline void perf_cgroup_sched_in(struct task_struct *prev,
619                                         struct task_struct *task)
620 {
621 }
622
623 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
624                                       struct perf_event_attr *attr,
625                                       struct perf_event *group_leader)
626 {
627         return -EINVAL;
628 }
629
630 static inline void
631 perf_cgroup_set_timestamp(struct task_struct *task,
632                           struct perf_event_context *ctx)
633 {
634 }
635
636 void
637 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
638 {
639 }
640
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 }
645
646 static inline u64 perf_cgroup_event_time(struct perf_event *event)
647 {
648         return 0;
649 }
650
651 static inline void
652 perf_cgroup_defer_enabled(struct perf_event *event)
653 {
654 }
655
656 static inline void
657 perf_cgroup_mark_enabled(struct perf_event *event,
658                          struct perf_event_context *ctx)
659 {
660 }
661 #endif
662
663 /*
664  * set default to be dependent on timer tick just
665  * like original code
666  */
667 #define PERF_CPU_HRTIMER (1000 / HZ)
668 /*
669  * function must be called with interrupts disbled
670  */
671 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
672 {
673         struct perf_cpu_context *cpuctx;
674         enum hrtimer_restart ret = HRTIMER_NORESTART;
675         int rotations = 0;
676
677         WARN_ON(!irqs_disabled());
678
679         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
680
681         rotations = perf_rotate_context(cpuctx);
682
683         /*
684          * arm timer if needed
685          */
686         if (rotations) {
687                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
688                 ret = HRTIMER_RESTART;
689         }
690
691         return ret;
692 }
693
694 /* CPU is going down */
695 void perf_cpu_hrtimer_cancel(int cpu)
696 {
697         struct perf_cpu_context *cpuctx;
698         struct pmu *pmu;
699         unsigned long flags;
700
701         if (WARN_ON(cpu != smp_processor_id()))
702                 return;
703
704         local_irq_save(flags);
705
706         rcu_read_lock();
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710
711                 if (pmu->task_ctx_nr == perf_sw_context)
712                         continue;
713
714                 hrtimer_cancel(&cpuctx->hrtimer);
715         }
716
717         rcu_read_unlock();
718
719         local_irq_restore(flags);
720 }
721
722 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
723 {
724         struct hrtimer *hr = &cpuctx->hrtimer;
725         struct pmu *pmu = cpuctx->ctx.pmu;
726
727         /* no multiplexing needed for SW PMU */
728         if (pmu->task_ctx_nr == perf_sw_context)
729                 return;
730
731         cpuctx->hrtimer_interval =
732                 ns_to_ktime(NSEC_PER_MSEC * PERF_CPU_HRTIMER);
733
734         hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
735         hr->function = perf_cpu_hrtimer_handler;
736 }
737
738 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
739 {
740         struct hrtimer *hr = &cpuctx->hrtimer;
741         struct pmu *pmu = cpuctx->ctx.pmu;
742
743         /* not for SW PMU */
744         if (pmu->task_ctx_nr == perf_sw_context)
745                 return;
746
747         if (hrtimer_active(hr))
748                 return;
749
750         if (!hrtimer_callback_running(hr))
751                 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
752                                          0, HRTIMER_MODE_REL_PINNED, 0);
753 }
754
755 void perf_pmu_disable(struct pmu *pmu)
756 {
757         int *count = this_cpu_ptr(pmu->pmu_disable_count);
758         if (!(*count)++)
759                 pmu->pmu_disable(pmu);
760 }
761
762 void perf_pmu_enable(struct pmu *pmu)
763 {
764         int *count = this_cpu_ptr(pmu->pmu_disable_count);
765         if (!--(*count))
766                 pmu->pmu_enable(pmu);
767 }
768
769 static DEFINE_PER_CPU(struct list_head, rotation_list);
770
771 /*
772  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
773  * because they're strictly cpu affine and rotate_start is called with IRQs
774  * disabled, while rotate_context is called from IRQ context.
775  */
776 static void perf_pmu_rotate_start(struct pmu *pmu)
777 {
778         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
779         struct list_head *head = &__get_cpu_var(rotation_list);
780
781         WARN_ON(!irqs_disabled());
782
783         if (list_empty(&cpuctx->rotation_list)) {
784                 int was_empty = list_empty(head);
785                 list_add(&cpuctx->rotation_list, head);
786                 if (was_empty)
787                         tick_nohz_full_kick();
788         }
789 }
790
791 static void get_ctx(struct perf_event_context *ctx)
792 {
793         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
794 }
795
796 static void put_ctx(struct perf_event_context *ctx)
797 {
798         if (atomic_dec_and_test(&ctx->refcount)) {
799                 if (ctx->parent_ctx)
800                         put_ctx(ctx->parent_ctx);
801                 if (ctx->task)
802                         put_task_struct(ctx->task);
803                 kfree_rcu(ctx, rcu_head);
804         }
805 }
806
807 static void unclone_ctx(struct perf_event_context *ctx)
808 {
809         if (ctx->parent_ctx) {
810                 put_ctx(ctx->parent_ctx);
811                 ctx->parent_ctx = NULL;
812         }
813 }
814
815 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
816 {
817         /*
818          * only top level events have the pid namespace they were created in
819          */
820         if (event->parent)
821                 event = event->parent;
822
823         return task_tgid_nr_ns(p, event->ns);
824 }
825
826 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
827 {
828         /*
829          * only top level events have the pid namespace they were created in
830          */
831         if (event->parent)
832                 event = event->parent;
833
834         return task_pid_nr_ns(p, event->ns);
835 }
836
837 /*
838  * If we inherit events we want to return the parent event id
839  * to userspace.
840  */
841 static u64 primary_event_id(struct perf_event *event)
842 {
843         u64 id = event->id;
844
845         if (event->parent)
846                 id = event->parent->id;
847
848         return id;
849 }
850
851 /*
852  * Get the perf_event_context for a task and lock it.
853  * This has to cope with with the fact that until it is locked,
854  * the context could get moved to another task.
855  */
856 static struct perf_event_context *
857 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
858 {
859         struct perf_event_context *ctx;
860
861         rcu_read_lock();
862 retry:
863         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
864         if (ctx) {
865                 /*
866                  * If this context is a clone of another, it might
867                  * get swapped for another underneath us by
868                  * perf_event_task_sched_out, though the
869                  * rcu_read_lock() protects us from any context
870                  * getting freed.  Lock the context and check if it
871                  * got swapped before we could get the lock, and retry
872                  * if so.  If we locked the right context, then it
873                  * can't get swapped on us any more.
874                  */
875                 raw_spin_lock_irqsave(&ctx->lock, *flags);
876                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
877                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
878                         goto retry;
879                 }
880
881                 if (!atomic_inc_not_zero(&ctx->refcount)) {
882                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883                         ctx = NULL;
884                 }
885         }
886         rcu_read_unlock();
887         return ctx;
888 }
889
890 /*
891  * Get the context for a task and increment its pin_count so it
892  * can't get swapped to another task.  This also increments its
893  * reference count so that the context can't get freed.
894  */
895 static struct perf_event_context *
896 perf_pin_task_context(struct task_struct *task, int ctxn)
897 {
898         struct perf_event_context *ctx;
899         unsigned long flags;
900
901         ctx = perf_lock_task_context(task, ctxn, &flags);
902         if (ctx) {
903                 ++ctx->pin_count;
904                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
905         }
906         return ctx;
907 }
908
909 static void perf_unpin_context(struct perf_event_context *ctx)
910 {
911         unsigned long flags;
912
913         raw_spin_lock_irqsave(&ctx->lock, flags);
914         --ctx->pin_count;
915         raw_spin_unlock_irqrestore(&ctx->lock, flags);
916 }
917
918 /*
919  * Update the record of the current time in a context.
920  */
921 static void update_context_time(struct perf_event_context *ctx)
922 {
923         u64 now = perf_clock();
924
925         ctx->time += now - ctx->timestamp;
926         ctx->timestamp = now;
927 }
928
929 static u64 perf_event_time(struct perf_event *event)
930 {
931         struct perf_event_context *ctx = event->ctx;
932
933         if (is_cgroup_event(event))
934                 return perf_cgroup_event_time(event);
935
936         return ctx ? ctx->time : 0;
937 }
938
939 /*
940  * Update the total_time_enabled and total_time_running fields for a event.
941  * The caller of this function needs to hold the ctx->lock.
942  */
943 static void update_event_times(struct perf_event *event)
944 {
945         struct perf_event_context *ctx = event->ctx;
946         u64 run_end;
947
948         if (event->state < PERF_EVENT_STATE_INACTIVE ||
949             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
950                 return;
951         /*
952          * in cgroup mode, time_enabled represents
953          * the time the event was enabled AND active
954          * tasks were in the monitored cgroup. This is
955          * independent of the activity of the context as
956          * there may be a mix of cgroup and non-cgroup events.
957          *
958          * That is why we treat cgroup events differently
959          * here.
960          */
961         if (is_cgroup_event(event))
962                 run_end = perf_cgroup_event_time(event);
963         else if (ctx->is_active)
964                 run_end = ctx->time;
965         else
966                 run_end = event->tstamp_stopped;
967
968         event->total_time_enabled = run_end - event->tstamp_enabled;
969
970         if (event->state == PERF_EVENT_STATE_INACTIVE)
971                 run_end = event->tstamp_stopped;
972         else
973                 run_end = perf_event_time(event);
974
975         event->total_time_running = run_end - event->tstamp_running;
976
977 }
978
979 /*
980  * Update total_time_enabled and total_time_running for all events in a group.
981  */
982 static void update_group_times(struct perf_event *leader)
983 {
984         struct perf_event *event;
985
986         update_event_times(leader);
987         list_for_each_entry(event, &leader->sibling_list, group_entry)
988                 update_event_times(event);
989 }
990
991 static struct list_head *
992 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
993 {
994         if (event->attr.pinned)
995                 return &ctx->pinned_groups;
996         else
997                 return &ctx->flexible_groups;
998 }
999
1000 /*
1001  * Add a event from the lists for its context.
1002  * Must be called with ctx->mutex and ctx->lock held.
1003  */
1004 static void
1005 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1006 {
1007         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1008         event->attach_state |= PERF_ATTACH_CONTEXT;
1009
1010         /*
1011          * If we're a stand alone event or group leader, we go to the context
1012          * list, group events are kept attached to the group so that
1013          * perf_group_detach can, at all times, locate all siblings.
1014          */
1015         if (event->group_leader == event) {
1016                 struct list_head *list;
1017
1018                 if (is_software_event(event))
1019                         event->group_flags |= PERF_GROUP_SOFTWARE;
1020
1021                 list = ctx_group_list(event, ctx);
1022                 list_add_tail(&event->group_entry, list);
1023         }
1024
1025         if (is_cgroup_event(event))
1026                 ctx->nr_cgroups++;
1027
1028         if (has_branch_stack(event))
1029                 ctx->nr_branch_stack++;
1030
1031         list_add_rcu(&event->event_entry, &ctx->event_list);
1032         if (!ctx->nr_events)
1033                 perf_pmu_rotate_start(ctx->pmu);
1034         ctx->nr_events++;
1035         if (event->attr.inherit_stat)
1036                 ctx->nr_stat++;
1037 }
1038
1039 /*
1040  * Initialize event state based on the perf_event_attr::disabled.
1041  */
1042 static inline void perf_event__state_init(struct perf_event *event)
1043 {
1044         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1045                                               PERF_EVENT_STATE_INACTIVE;
1046 }
1047
1048 /*
1049  * Called at perf_event creation and when events are attached/detached from a
1050  * group.
1051  */
1052 static void perf_event__read_size(struct perf_event *event)
1053 {
1054         int entry = sizeof(u64); /* value */
1055         int size = 0;
1056         int nr = 1;
1057
1058         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1059                 size += sizeof(u64);
1060
1061         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1062                 size += sizeof(u64);
1063
1064         if (event->attr.read_format & PERF_FORMAT_ID)
1065                 entry += sizeof(u64);
1066
1067         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1068                 nr += event->group_leader->nr_siblings;
1069                 size += sizeof(u64);
1070         }
1071
1072         size += entry * nr;
1073         event->read_size = size;
1074 }
1075
1076 static void perf_event__header_size(struct perf_event *event)
1077 {
1078         struct perf_sample_data *data;
1079         u64 sample_type = event->attr.sample_type;
1080         u16 size = 0;
1081
1082         perf_event__read_size(event);
1083
1084         if (sample_type & PERF_SAMPLE_IP)
1085                 size += sizeof(data->ip);
1086
1087         if (sample_type & PERF_SAMPLE_ADDR)
1088                 size += sizeof(data->addr);
1089
1090         if (sample_type & PERF_SAMPLE_PERIOD)
1091                 size += sizeof(data->period);
1092
1093         if (sample_type & PERF_SAMPLE_WEIGHT)
1094                 size += sizeof(data->weight);
1095
1096         if (sample_type & PERF_SAMPLE_READ)
1097                 size += event->read_size;
1098
1099         if (sample_type & PERF_SAMPLE_DATA_SRC)
1100                 size += sizeof(data->data_src.val);
1101
1102         event->header_size = size;
1103 }
1104
1105 static void perf_event__id_header_size(struct perf_event *event)
1106 {
1107         struct perf_sample_data *data;
1108         u64 sample_type = event->attr.sample_type;
1109         u16 size = 0;
1110
1111         if (sample_type & PERF_SAMPLE_TID)
1112                 size += sizeof(data->tid_entry);
1113
1114         if (sample_type & PERF_SAMPLE_TIME)
1115                 size += sizeof(data->time);
1116
1117         if (sample_type & PERF_SAMPLE_ID)
1118                 size += sizeof(data->id);
1119
1120         if (sample_type & PERF_SAMPLE_STREAM_ID)
1121                 size += sizeof(data->stream_id);
1122
1123         if (sample_type & PERF_SAMPLE_CPU)
1124                 size += sizeof(data->cpu_entry);
1125
1126         event->id_header_size = size;
1127 }
1128
1129 static void perf_group_attach(struct perf_event *event)
1130 {
1131         struct perf_event *group_leader = event->group_leader, *pos;
1132
1133         /*
1134          * We can have double attach due to group movement in perf_event_open.
1135          */
1136         if (event->attach_state & PERF_ATTACH_GROUP)
1137                 return;
1138
1139         event->attach_state |= PERF_ATTACH_GROUP;
1140
1141         if (group_leader == event)
1142                 return;
1143
1144         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1145                         !is_software_event(event))
1146                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1147
1148         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1149         group_leader->nr_siblings++;
1150
1151         perf_event__header_size(group_leader);
1152
1153         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1154                 perf_event__header_size(pos);
1155 }
1156
1157 /*
1158  * Remove a event from the lists for its context.
1159  * Must be called with ctx->mutex and ctx->lock held.
1160  */
1161 static void
1162 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1163 {
1164         struct perf_cpu_context *cpuctx;
1165         /*
1166          * We can have double detach due to exit/hot-unplug + close.
1167          */
1168         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1169                 return;
1170
1171         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1172
1173         if (is_cgroup_event(event)) {
1174                 ctx->nr_cgroups--;
1175                 cpuctx = __get_cpu_context(ctx);
1176                 /*
1177                  * if there are no more cgroup events
1178                  * then cler cgrp to avoid stale pointer
1179                  * in update_cgrp_time_from_cpuctx()
1180                  */
1181                 if (!ctx->nr_cgroups)
1182                         cpuctx->cgrp = NULL;
1183         }
1184
1185         if (has_branch_stack(event))
1186                 ctx->nr_branch_stack--;
1187
1188         ctx->nr_events--;
1189         if (event->attr.inherit_stat)
1190                 ctx->nr_stat--;
1191
1192         list_del_rcu(&event->event_entry);
1193
1194         if (event->group_leader == event)
1195                 list_del_init(&event->group_entry);
1196
1197         update_group_times(event);
1198
1199         /*
1200          * If event was in error state, then keep it
1201          * that way, otherwise bogus counts will be
1202          * returned on read(). The only way to get out
1203          * of error state is by explicit re-enabling
1204          * of the event
1205          */
1206         if (event->state > PERF_EVENT_STATE_OFF)
1207                 event->state = PERF_EVENT_STATE_OFF;
1208 }
1209
1210 static void perf_group_detach(struct perf_event *event)
1211 {
1212         struct perf_event *sibling, *tmp;
1213         struct list_head *list = NULL;
1214
1215         /*
1216          * We can have double detach due to exit/hot-unplug + close.
1217          */
1218         if (!(event->attach_state & PERF_ATTACH_GROUP))
1219                 return;
1220
1221         event->attach_state &= ~PERF_ATTACH_GROUP;
1222
1223         /*
1224          * If this is a sibling, remove it from its group.
1225          */
1226         if (event->group_leader != event) {
1227                 list_del_init(&event->group_entry);
1228                 event->group_leader->nr_siblings--;
1229                 goto out;
1230         }
1231
1232         if (!list_empty(&event->group_entry))
1233                 list = &event->group_entry;
1234
1235         /*
1236          * If this was a group event with sibling events then
1237          * upgrade the siblings to singleton events by adding them
1238          * to whatever list we are on.
1239          */
1240         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1241                 if (list)
1242                         list_move_tail(&sibling->group_entry, list);
1243                 sibling->group_leader = sibling;
1244
1245                 /* Inherit group flags from the previous leader */
1246                 sibling->group_flags = event->group_flags;
1247         }
1248
1249 out:
1250         perf_event__header_size(event->group_leader);
1251
1252         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1253                 perf_event__header_size(tmp);
1254 }
1255
1256 static inline int
1257 event_filter_match(struct perf_event *event)
1258 {
1259         return (event->cpu == -1 || event->cpu == smp_processor_id())
1260             && perf_cgroup_match(event);
1261 }
1262
1263 static void
1264 event_sched_out(struct perf_event *event,
1265                   struct perf_cpu_context *cpuctx,
1266                   struct perf_event_context *ctx)
1267 {
1268         u64 tstamp = perf_event_time(event);
1269         u64 delta;
1270         /*
1271          * An event which could not be activated because of
1272          * filter mismatch still needs to have its timings
1273          * maintained, otherwise bogus information is return
1274          * via read() for time_enabled, time_running:
1275          */
1276         if (event->state == PERF_EVENT_STATE_INACTIVE
1277             && !event_filter_match(event)) {
1278                 delta = tstamp - event->tstamp_stopped;
1279                 event->tstamp_running += delta;
1280                 event->tstamp_stopped = tstamp;
1281         }
1282
1283         if (event->state != PERF_EVENT_STATE_ACTIVE)
1284                 return;
1285
1286         event->state = PERF_EVENT_STATE_INACTIVE;
1287         if (event->pending_disable) {
1288                 event->pending_disable = 0;
1289                 event->state = PERF_EVENT_STATE_OFF;
1290         }
1291         event->tstamp_stopped = tstamp;
1292         event->pmu->del(event, 0);
1293         event->oncpu = -1;
1294
1295         if (!is_software_event(event))
1296                 cpuctx->active_oncpu--;
1297         ctx->nr_active--;
1298         if (event->attr.freq && event->attr.sample_freq)
1299                 ctx->nr_freq--;
1300         if (event->attr.exclusive || !cpuctx->active_oncpu)
1301                 cpuctx->exclusive = 0;
1302 }
1303
1304 static void
1305 group_sched_out(struct perf_event *group_event,
1306                 struct perf_cpu_context *cpuctx,
1307                 struct perf_event_context *ctx)
1308 {
1309         struct perf_event *event;
1310         int state = group_event->state;
1311
1312         event_sched_out(group_event, cpuctx, ctx);
1313
1314         /*
1315          * Schedule out siblings (if any):
1316          */
1317         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1318                 event_sched_out(event, cpuctx, ctx);
1319
1320         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1321                 cpuctx->exclusive = 0;
1322 }
1323
1324 /*
1325  * Cross CPU call to remove a performance event
1326  *
1327  * We disable the event on the hardware level first. After that we
1328  * remove it from the context list.
1329  */
1330 static int __perf_remove_from_context(void *info)
1331 {
1332         struct perf_event *event = info;
1333         struct perf_event_context *ctx = event->ctx;
1334         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1335
1336         raw_spin_lock(&ctx->lock);
1337         event_sched_out(event, cpuctx, ctx);
1338         list_del_event(event, ctx);
1339         if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1340                 ctx->is_active = 0;
1341                 cpuctx->task_ctx = NULL;
1342         }
1343         raw_spin_unlock(&ctx->lock);
1344
1345         return 0;
1346 }
1347
1348
1349 /*
1350  * Remove the event from a task's (or a CPU's) list of events.
1351  *
1352  * CPU events are removed with a smp call. For task events we only
1353  * call when the task is on a CPU.
1354  *
1355  * If event->ctx is a cloned context, callers must make sure that
1356  * every task struct that event->ctx->task could possibly point to
1357  * remains valid.  This is OK when called from perf_release since
1358  * that only calls us on the top-level context, which can't be a clone.
1359  * When called from perf_event_exit_task, it's OK because the
1360  * context has been detached from its task.
1361  */
1362 static void perf_remove_from_context(struct perf_event *event)
1363 {
1364         struct perf_event_context *ctx = event->ctx;
1365         struct task_struct *task = ctx->task;
1366
1367         lockdep_assert_held(&ctx->mutex);
1368
1369         if (!task) {
1370                 /*
1371                  * Per cpu events are removed via an smp call and
1372                  * the removal is always successful.
1373                  */
1374                 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1375                 return;
1376         }
1377
1378 retry:
1379         if (!task_function_call(task, __perf_remove_from_context, event))
1380                 return;
1381
1382         raw_spin_lock_irq(&ctx->lock);
1383         /*
1384          * If we failed to find a running task, but find the context active now
1385          * that we've acquired the ctx->lock, retry.
1386          */
1387         if (ctx->is_active) {
1388                 raw_spin_unlock_irq(&ctx->lock);
1389                 goto retry;
1390         }
1391
1392         /*
1393          * Since the task isn't running, its safe to remove the event, us
1394          * holding the ctx->lock ensures the task won't get scheduled in.
1395          */
1396         list_del_event(event, ctx);
1397         raw_spin_unlock_irq(&ctx->lock);
1398 }
1399
1400 /*
1401  * Cross CPU call to disable a performance event
1402  */
1403 int __perf_event_disable(void *info)
1404 {
1405         struct perf_event *event = info;
1406         struct perf_event_context *ctx = event->ctx;
1407         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1408
1409         /*
1410          * If this is a per-task event, need to check whether this
1411          * event's task is the current task on this cpu.
1412          *
1413          * Can trigger due to concurrent perf_event_context_sched_out()
1414          * flipping contexts around.
1415          */
1416         if (ctx->task && cpuctx->task_ctx != ctx)
1417                 return -EINVAL;
1418
1419         raw_spin_lock(&ctx->lock);
1420
1421         /*
1422          * If the event is on, turn it off.
1423          * If it is in error state, leave it in error state.
1424          */
1425         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1426                 update_context_time(ctx);
1427                 update_cgrp_time_from_event(event);
1428                 update_group_times(event);
1429                 if (event == event->group_leader)
1430                         group_sched_out(event, cpuctx, ctx);
1431                 else
1432                         event_sched_out(event, cpuctx, ctx);
1433                 event->state = PERF_EVENT_STATE_OFF;
1434         }
1435
1436         raw_spin_unlock(&ctx->lock);
1437
1438         return 0;
1439 }
1440
1441 /*
1442  * Disable a event.
1443  *
1444  * If event->ctx is a cloned context, callers must make sure that
1445  * every task struct that event->ctx->task could possibly point to
1446  * remains valid.  This condition is satisifed when called through
1447  * perf_event_for_each_child or perf_event_for_each because they
1448  * hold the top-level event's child_mutex, so any descendant that
1449  * goes to exit will block in sync_child_event.
1450  * When called from perf_pending_event it's OK because event->ctx
1451  * is the current context on this CPU and preemption is disabled,
1452  * hence we can't get into perf_event_task_sched_out for this context.
1453  */
1454 void perf_event_disable(struct perf_event *event)
1455 {
1456         struct perf_event_context *ctx = event->ctx;
1457         struct task_struct *task = ctx->task;
1458
1459         if (!task) {
1460                 /*
1461                  * Disable the event on the cpu that it's on
1462                  */
1463                 cpu_function_call(event->cpu, __perf_event_disable, event);
1464                 return;
1465         }
1466
1467 retry:
1468         if (!task_function_call(task, __perf_event_disable, event))
1469                 return;
1470
1471         raw_spin_lock_irq(&ctx->lock);
1472         /*
1473          * If the event is still active, we need to retry the cross-call.
1474          */
1475         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1476                 raw_spin_unlock_irq(&ctx->lock);
1477                 /*
1478                  * Reload the task pointer, it might have been changed by
1479                  * a concurrent perf_event_context_sched_out().
1480                  */
1481                 task = ctx->task;
1482                 goto retry;
1483         }
1484
1485         /*
1486          * Since we have the lock this context can't be scheduled
1487          * in, so we can change the state safely.
1488          */
1489         if (event->state == PERF_EVENT_STATE_INACTIVE) {
1490                 update_group_times(event);
1491                 event->state = PERF_EVENT_STATE_OFF;
1492         }
1493         raw_spin_unlock_irq(&ctx->lock);
1494 }
1495 EXPORT_SYMBOL_GPL(perf_event_disable);
1496
1497 static void perf_set_shadow_time(struct perf_event *event,
1498                                  struct perf_event_context *ctx,
1499                                  u64 tstamp)
1500 {
1501         /*
1502          * use the correct time source for the time snapshot
1503          *
1504          * We could get by without this by leveraging the
1505          * fact that to get to this function, the caller
1506          * has most likely already called update_context_time()
1507          * and update_cgrp_time_xx() and thus both timestamp
1508          * are identical (or very close). Given that tstamp is,
1509          * already adjusted for cgroup, we could say that:
1510          *    tstamp - ctx->timestamp
1511          * is equivalent to
1512          *    tstamp - cgrp->timestamp.
1513          *
1514          * Then, in perf_output_read(), the calculation would
1515          * work with no changes because:
1516          * - event is guaranteed scheduled in
1517          * - no scheduled out in between
1518          * - thus the timestamp would be the same
1519          *
1520          * But this is a bit hairy.
1521          *
1522          * So instead, we have an explicit cgroup call to remain
1523          * within the time time source all along. We believe it
1524          * is cleaner and simpler to understand.
1525          */
1526         if (is_cgroup_event(event))
1527                 perf_cgroup_set_shadow_time(event, tstamp);
1528         else
1529                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1530 }
1531
1532 #define MAX_INTERRUPTS (~0ULL)
1533
1534 static void perf_log_throttle(struct perf_event *event, int enable);
1535
1536 static int
1537 event_sched_in(struct perf_event *event,
1538                  struct perf_cpu_context *cpuctx,
1539                  struct perf_event_context *ctx)
1540 {
1541         u64 tstamp = perf_event_time(event);
1542
1543         if (event->state <= PERF_EVENT_STATE_OFF)
1544                 return 0;
1545
1546         event->state = PERF_EVENT_STATE_ACTIVE;
1547         event->oncpu = smp_processor_id();
1548
1549         /*
1550          * Unthrottle events, since we scheduled we might have missed several
1551          * ticks already, also for a heavily scheduling task there is little
1552          * guarantee it'll get a tick in a timely manner.
1553          */
1554         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1555                 perf_log_throttle(event, 1);
1556                 event->hw.interrupts = 0;
1557         }
1558
1559         /*
1560          * The new state must be visible before we turn it on in the hardware:
1561          */
1562         smp_wmb();
1563
1564         if (event->pmu->add(event, PERF_EF_START)) {
1565                 event->state = PERF_EVENT_STATE_INACTIVE;
1566                 event->oncpu = -1;
1567                 return -EAGAIN;
1568         }
1569
1570         event->tstamp_running += tstamp - event->tstamp_stopped;
1571
1572         perf_set_shadow_time(event, ctx, tstamp);
1573
1574         if (!is_software_event(event))
1575                 cpuctx->active_oncpu++;
1576         ctx->nr_active++;
1577         if (event->attr.freq && event->attr.sample_freq)
1578                 ctx->nr_freq++;
1579
1580         if (event->attr.exclusive)
1581                 cpuctx->exclusive = 1;
1582
1583         return 0;
1584 }
1585
1586 static int
1587 group_sched_in(struct perf_event *group_event,
1588                struct perf_cpu_context *cpuctx,
1589                struct perf_event_context *ctx)
1590 {
1591         struct perf_event *event, *partial_group = NULL;
1592         struct pmu *pmu = group_event->pmu;
1593         u64 now = ctx->time;
1594         bool simulate = false;
1595
1596         if (group_event->state == PERF_EVENT_STATE_OFF)
1597                 return 0;
1598
1599         pmu->start_txn(pmu);
1600
1601         if (event_sched_in(group_event, cpuctx, ctx)) {
1602                 pmu->cancel_txn(pmu);
1603                 perf_cpu_hrtimer_restart(cpuctx);
1604                 return -EAGAIN;
1605         }
1606
1607         /*
1608          * Schedule in siblings as one group (if any):
1609          */
1610         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1611                 if (event_sched_in(event, cpuctx, ctx)) {
1612                         partial_group = event;
1613                         goto group_error;
1614                 }
1615         }
1616
1617         if (!pmu->commit_txn(pmu))
1618                 return 0;
1619
1620 group_error:
1621         /*
1622          * Groups can be scheduled in as one unit only, so undo any
1623          * partial group before returning:
1624          * The events up to the failed event are scheduled out normally,
1625          * tstamp_stopped will be updated.
1626          *
1627          * The failed events and the remaining siblings need to have
1628          * their timings updated as if they had gone thru event_sched_in()
1629          * and event_sched_out(). This is required to get consistent timings
1630          * across the group. This also takes care of the case where the group
1631          * could never be scheduled by ensuring tstamp_stopped is set to mark
1632          * the time the event was actually stopped, such that time delta
1633          * calculation in update_event_times() is correct.
1634          */
1635         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1636                 if (event == partial_group)
1637                         simulate = true;
1638
1639                 if (simulate) {
1640                         event->tstamp_running += now - event->tstamp_stopped;
1641                         event->tstamp_stopped = now;
1642                 } else {
1643                         event_sched_out(event, cpuctx, ctx);
1644                 }
1645         }
1646         event_sched_out(group_event, cpuctx, ctx);
1647
1648         pmu->cancel_txn(pmu);
1649
1650         perf_cpu_hrtimer_restart(cpuctx);
1651
1652         return -EAGAIN;
1653 }
1654
1655 /*
1656  * Work out whether we can put this event group on the CPU now.
1657  */
1658 static int group_can_go_on(struct perf_event *event,
1659                            struct perf_cpu_context *cpuctx,
1660                            int can_add_hw)
1661 {
1662         /*
1663          * Groups consisting entirely of software events can always go on.
1664          */
1665         if (event->group_flags & PERF_GROUP_SOFTWARE)
1666                 return 1;
1667         /*
1668          * If an exclusive group is already on, no other hardware
1669          * events can go on.
1670          */
1671         if (cpuctx->exclusive)
1672                 return 0;
1673         /*
1674          * If this group is exclusive and there are already
1675          * events on the CPU, it can't go on.
1676          */
1677         if (event->attr.exclusive && cpuctx->active_oncpu)
1678                 return 0;
1679         /*
1680          * Otherwise, try to add it if all previous groups were able
1681          * to go on.
1682          */
1683         return can_add_hw;
1684 }
1685
1686 static void add_event_to_ctx(struct perf_event *event,
1687                                struct perf_event_context *ctx)
1688 {
1689         u64 tstamp = perf_event_time(event);
1690
1691         list_add_event(event, ctx);
1692         perf_group_attach(event);
1693         event->tstamp_enabled = tstamp;
1694         event->tstamp_running = tstamp;
1695         event->tstamp_stopped = tstamp;
1696 }
1697
1698 static void task_ctx_sched_out(struct perf_event_context *ctx);
1699 static void
1700 ctx_sched_in(struct perf_event_context *ctx,
1701              struct perf_cpu_context *cpuctx,
1702              enum event_type_t event_type,
1703              struct task_struct *task);
1704
1705 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1706                                 struct perf_event_context *ctx,
1707                                 struct task_struct *task)
1708 {
1709         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1710         if (ctx)
1711                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1712         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1713         if (ctx)
1714                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1715 }
1716
1717 /*
1718  * Cross CPU call to install and enable a performance event
1719  *
1720  * Must be called with ctx->mutex held
1721  */
1722 static int  __perf_install_in_context(void *info)
1723 {
1724         struct perf_event *event = info;
1725         struct perf_event_context *ctx = event->ctx;
1726         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1727         struct perf_event_context *task_ctx = cpuctx->task_ctx;
1728         struct task_struct *task = current;
1729
1730         perf_ctx_lock(cpuctx, task_ctx);
1731         perf_pmu_disable(cpuctx->ctx.pmu);
1732
1733         /*
1734          * If there was an active task_ctx schedule it out.
1735          */
1736         if (task_ctx)
1737                 task_ctx_sched_out(task_ctx);
1738
1739         /*
1740          * If the context we're installing events in is not the
1741          * active task_ctx, flip them.
1742          */
1743         if (ctx->task && task_ctx != ctx) {
1744                 if (task_ctx)
1745                         raw_spin_unlock(&task_ctx->lock);
1746                 raw_spin_lock(&ctx->lock);
1747                 task_ctx = ctx;
1748         }
1749
1750         if (task_ctx) {
1751                 cpuctx->task_ctx = task_ctx;
1752                 task = task_ctx->task;
1753         }
1754
1755         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1756
1757         update_context_time(ctx);
1758         /*
1759          * update cgrp time only if current cgrp
1760          * matches event->cgrp. Must be done before
1761          * calling add_event_to_ctx()
1762          */
1763         update_cgrp_time_from_event(event);
1764
1765         add_event_to_ctx(event, ctx);
1766
1767         /*
1768          * Schedule everything back in
1769          */
1770         perf_event_sched_in(cpuctx, task_ctx, task);
1771
1772         perf_pmu_enable(cpuctx->ctx.pmu);
1773         perf_ctx_unlock(cpuctx, task_ctx);
1774
1775         return 0;
1776 }
1777
1778 /*
1779  * Attach a performance event to a context
1780  *
1781  * First we add the event to the list with the hardware enable bit
1782  * in event->hw_config cleared.
1783  *
1784  * If the event is attached to a task which is on a CPU we use a smp
1785  * call to enable it in the task context. The task might have been
1786  * scheduled away, but we check this in the smp call again.
1787  */
1788 static void
1789 perf_install_in_context(struct perf_event_context *ctx,
1790                         struct perf_event *event,
1791                         int cpu)
1792 {
1793         struct task_struct *task = ctx->task;
1794
1795         lockdep_assert_held(&ctx->mutex);
1796
1797         event->ctx = ctx;
1798         if (event->cpu != -1)
1799                 event->cpu = cpu;
1800
1801         if (!task) {
1802                 /*
1803                  * Per cpu events are installed via an smp call and
1804                  * the install is always successful.
1805                  */
1806                 cpu_function_call(cpu, __perf_install_in_context, event);
1807                 return;
1808         }
1809
1810 retry:
1811         if (!task_function_call(task, __perf_install_in_context, event))
1812                 return;
1813
1814         raw_spin_lock_irq(&ctx->lock);
1815         /*
1816          * If we failed to find a running task, but find the context active now
1817          * that we've acquired the ctx->lock, retry.
1818          */
1819         if (ctx->is_active) {
1820                 raw_spin_unlock_irq(&ctx->lock);
1821                 goto retry;
1822         }
1823
1824         /*
1825          * Since the task isn't running, its safe to add the event, us holding
1826          * the ctx->lock ensures the task won't get scheduled in.
1827          */
1828         add_event_to_ctx(event, ctx);
1829         raw_spin_unlock_irq(&ctx->lock);
1830 }
1831
1832 /*
1833  * Put a event into inactive state and update time fields.
1834  * Enabling the leader of a group effectively enables all
1835  * the group members that aren't explicitly disabled, so we
1836  * have to update their ->tstamp_enabled also.
1837  * Note: this works for group members as well as group leaders
1838  * since the non-leader members' sibling_lists will be empty.
1839  */
1840 static void __perf_event_mark_enabled(struct perf_event *event)
1841 {
1842         struct perf_event *sub;
1843         u64 tstamp = perf_event_time(event);
1844
1845         event->state = PERF_EVENT_STATE_INACTIVE;
1846         event->tstamp_enabled = tstamp - event->total_time_enabled;
1847         list_for_each_entry(sub, &event->sibling_list, group_entry) {
1848                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1849                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1850         }
1851 }
1852
1853 /*
1854  * Cross CPU call to enable a performance event
1855  */
1856 static int __perf_event_enable(void *info)
1857 {
1858         struct perf_event *event = info;
1859         struct perf_event_context *ctx = event->ctx;
1860         struct perf_event *leader = event->group_leader;
1861         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1862         int err;
1863
1864         if (WARN_ON_ONCE(!ctx->is_active))
1865                 return -EINVAL;
1866
1867         raw_spin_lock(&ctx->lock);
1868         update_context_time(ctx);
1869
1870         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1871                 goto unlock;
1872
1873         /*
1874          * set current task's cgroup time reference point
1875          */
1876         perf_cgroup_set_timestamp(current, ctx);
1877
1878         __perf_event_mark_enabled(event);
1879
1880         if (!event_filter_match(event)) {
1881                 if (is_cgroup_event(event))
1882                         perf_cgroup_defer_enabled(event);
1883                 goto unlock;
1884         }
1885
1886         /*
1887          * If the event is in a group and isn't the group leader,
1888          * then don't put it on unless the group is on.
1889          */
1890         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1891                 goto unlock;
1892
1893         if (!group_can_go_on(event, cpuctx, 1)) {
1894                 err = -EEXIST;
1895         } else {
1896                 if (event == leader)
1897                         err = group_sched_in(event, cpuctx, ctx);
1898                 else
1899                         err = event_sched_in(event, cpuctx, ctx);
1900         }
1901
1902         if (err) {
1903                 /*
1904                  * If this event can't go on and it's part of a
1905                  * group, then the whole group has to come off.
1906                  */
1907                 if (leader != event) {
1908                         group_sched_out(leader, cpuctx, ctx);
1909                         perf_cpu_hrtimer_restart(cpuctx);
1910                 }
1911                 if (leader->attr.pinned) {
1912                         update_group_times(leader);
1913                         leader->state = PERF_EVENT_STATE_ERROR;
1914                 }
1915         }
1916
1917 unlock:
1918         raw_spin_unlock(&ctx->lock);
1919
1920         return 0;
1921 }
1922
1923 /*
1924  * Enable a event.
1925  *
1926  * If event->ctx is a cloned context, callers must make sure that
1927  * every task struct that event->ctx->task could possibly point to
1928  * remains valid.  This condition is satisfied when called through
1929  * perf_event_for_each_child or perf_event_for_each as described
1930  * for perf_event_disable.
1931  */
1932 void perf_event_enable(struct perf_event *event)
1933 {
1934         struct perf_event_context *ctx = event->ctx;
1935         struct task_struct *task = ctx->task;
1936
1937         if (!task) {
1938                 /*
1939                  * Enable the event on the cpu that it's on
1940                  */
1941                 cpu_function_call(event->cpu, __perf_event_enable, event);
1942                 return;
1943         }
1944
1945         raw_spin_lock_irq(&ctx->lock);
1946         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1947                 goto out;
1948
1949         /*
1950          * If the event is in error state, clear that first.
1951          * That way, if we see the event in error state below, we
1952          * know that it has gone back into error state, as distinct
1953          * from the task having been scheduled away before the
1954          * cross-call arrived.
1955          */
1956         if (event->state == PERF_EVENT_STATE_ERROR)
1957                 event->state = PERF_EVENT_STATE_OFF;
1958
1959 retry:
1960         if (!ctx->is_active) {
1961                 __perf_event_mark_enabled(event);
1962                 goto out;
1963         }
1964
1965         raw_spin_unlock_irq(&ctx->lock);
1966
1967         if (!task_function_call(task, __perf_event_enable, event))
1968                 return;
1969
1970         raw_spin_lock_irq(&ctx->lock);
1971
1972         /*
1973          * If the context is active and the event is still off,
1974          * we need to retry the cross-call.
1975          */
1976         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1977                 /*
1978                  * task could have been flipped by a concurrent
1979                  * perf_event_context_sched_out()
1980                  */
1981                 task = ctx->task;
1982                 goto retry;
1983         }
1984
1985 out:
1986         raw_spin_unlock_irq(&ctx->lock);
1987 }
1988 EXPORT_SYMBOL_GPL(perf_event_enable);
1989
1990 int perf_event_refresh(struct perf_event *event, int refresh)
1991 {
1992         /*
1993          * not supported on inherited events
1994          */
1995         if (event->attr.inherit || !is_sampling_event(event))
1996                 return -EINVAL;
1997
1998         atomic_add(refresh, &event->event_limit);
1999         perf_event_enable(event);
2000
2001         return 0;
2002 }
2003 EXPORT_SYMBOL_GPL(perf_event_refresh);
2004
2005 static void ctx_sched_out(struct perf_event_context *ctx,
2006                           struct perf_cpu_context *cpuctx,
2007                           enum event_type_t event_type)
2008 {
2009         struct perf_event *event;
2010         int is_active = ctx->is_active;
2011
2012         ctx->is_active &= ~event_type;
2013         if (likely(!ctx->nr_events))
2014                 return;
2015
2016         update_context_time(ctx);
2017         update_cgrp_time_from_cpuctx(cpuctx);
2018         if (!ctx->nr_active)
2019                 return;
2020
2021         perf_pmu_disable(ctx->pmu);
2022         if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2023                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2024                         group_sched_out(event, cpuctx, ctx);
2025         }
2026
2027         if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2028                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2029                         group_sched_out(event, cpuctx, ctx);
2030         }
2031         perf_pmu_enable(ctx->pmu);
2032 }
2033
2034 /*
2035  * Test whether two contexts are equivalent, i.e. whether they
2036  * have both been cloned from the same version of the same context
2037  * and they both have the same number of enabled events.
2038  * If the number of enabled events is the same, then the set
2039  * of enabled events should be the same, because these are both
2040  * inherited contexts, therefore we can't access individual events
2041  * in them directly with an fd; we can only enable/disable all
2042  * events via prctl, or enable/disable all events in a family
2043  * via ioctl, which will have the same effect on both contexts.
2044  */
2045 static int context_equiv(struct perf_event_context *ctx1,
2046                          struct perf_event_context *ctx2)
2047 {
2048         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2049                 && ctx1->parent_gen == ctx2->parent_gen
2050                 && !ctx1->pin_count && !ctx2->pin_count;
2051 }
2052
2053 static void __perf_event_sync_stat(struct perf_event *event,
2054                                      struct perf_event *next_event)
2055 {
2056         u64 value;
2057
2058         if (!event->attr.inherit_stat)
2059                 return;
2060
2061         /*
2062          * Update the event value, we cannot use perf_event_read()
2063          * because we're in the middle of a context switch and have IRQs
2064          * disabled, which upsets smp_call_function_single(), however
2065          * we know the event must be on the current CPU, therefore we
2066          * don't need to use it.
2067          */
2068         switch (event->state) {
2069         case PERF_EVENT_STATE_ACTIVE:
2070                 event->pmu->read(event);
2071                 /* fall-through */
2072
2073         case PERF_EVENT_STATE_INACTIVE:
2074                 update_event_times(event);
2075                 break;
2076
2077         default:
2078                 break;
2079         }
2080
2081         /*
2082          * In order to keep per-task stats reliable we need to flip the event
2083          * values when we flip the contexts.
2084          */
2085         value = local64_read(&next_event->count);
2086         value = local64_xchg(&event->count, value);
2087         local64_set(&next_event->count, value);
2088
2089         swap(event->total_time_enabled, next_event->total_time_enabled);
2090         swap(event->total_time_running, next_event->total_time_running);
2091
2092         /*
2093          * Since we swizzled the values, update the user visible data too.
2094          */
2095         perf_event_update_userpage(event);
2096         perf_event_update_userpage(next_event);
2097 }
2098
2099 #define list_next_entry(pos, member) \
2100         list_entry(pos->member.next, typeof(*pos), member)
2101
2102 static void perf_event_sync_stat(struct perf_event_context *ctx,
2103                                    struct perf_event_context *next_ctx)
2104 {
2105         struct perf_event *event, *next_event;
2106
2107         if (!ctx->nr_stat)
2108                 return;
2109
2110         update_context_time(ctx);
2111
2112         event = list_first_entry(&ctx->event_list,
2113                                    struct perf_event, event_entry);
2114
2115         next_event = list_first_entry(&next_ctx->event_list,
2116                                         struct perf_event, event_entry);
2117
2118         while (&event->event_entry != &ctx->event_list &&
2119                &next_event->event_entry != &next_ctx->event_list) {
2120
2121                 __perf_event_sync_stat(event, next_event);
2122
2123                 event = list_next_entry(event, event_entry);
2124                 next_event = list_next_entry(next_event, event_entry);
2125         }
2126 }
2127
2128 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2129                                          struct task_struct *next)
2130 {
2131         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2132         struct perf_event_context *next_ctx;
2133         struct perf_event_context *parent;
2134         struct perf_cpu_context *cpuctx;
2135         int do_switch = 1;
2136
2137         if (likely(!ctx))
2138                 return;
2139
2140         cpuctx = __get_cpu_context(ctx);
2141         if (!cpuctx->task_ctx)
2142                 return;
2143
2144         rcu_read_lock();
2145         parent = rcu_dereference(ctx->parent_ctx);
2146         next_ctx = next->perf_event_ctxp[ctxn];
2147         if (parent && next_ctx &&
2148             rcu_dereference(next_ctx->parent_ctx) == parent) {
2149                 /*
2150                  * Looks like the two contexts are clones, so we might be
2151                  * able to optimize the context switch.  We lock both
2152                  * contexts and check that they are clones under the
2153                  * lock (including re-checking that neither has been
2154                  * uncloned in the meantime).  It doesn't matter which
2155                  * order we take the locks because no other cpu could
2156                  * be trying to lock both of these tasks.
2157                  */
2158                 raw_spin_lock(&ctx->lock);
2159                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2160                 if (context_equiv(ctx, next_ctx)) {
2161                         /*
2162                          * XXX do we need a memory barrier of sorts
2163                          * wrt to rcu_dereference() of perf_event_ctxp
2164                          */
2165                         task->perf_event_ctxp[ctxn] = next_ctx;
2166                         next->perf_event_ctxp[ctxn] = ctx;
2167                         ctx->task = next;
2168                         next_ctx->task = task;
2169                         do_switch = 0;
2170
2171                         perf_event_sync_stat(ctx, next_ctx);
2172                 }
2173                 raw_spin_unlock(&next_ctx->lock);
2174                 raw_spin_unlock(&ctx->lock);
2175         }
2176         rcu_read_unlock();
2177
2178         if (do_switch) {
2179                 raw_spin_lock(&ctx->lock);
2180                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2181                 cpuctx->task_ctx = NULL;
2182                 raw_spin_unlock(&ctx->lock);
2183         }
2184 }
2185
2186 #define for_each_task_context_nr(ctxn)                                  \
2187         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2188
2189 /*
2190  * Called from scheduler to remove the events of the current task,
2191  * with interrupts disabled.
2192  *
2193  * We stop each event and update the event value in event->count.
2194  *
2195  * This does not protect us against NMI, but disable()
2196  * sets the disabled bit in the control field of event _before_
2197  * accessing the event control register. If a NMI hits, then it will
2198  * not restart the event.
2199  */
2200 void __perf_event_task_sched_out(struct task_struct *task,
2201                                  struct task_struct *next)
2202 {
2203         int ctxn;
2204
2205         for_each_task_context_nr(ctxn)
2206                 perf_event_context_sched_out(task, ctxn, next);
2207
2208         /*
2209          * if cgroup events exist on this CPU, then we need
2210          * to check if we have to switch out PMU state.
2211          * cgroup event are system-wide mode only
2212          */
2213         if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2214                 perf_cgroup_sched_out(task, next);
2215 }
2216
2217 static void task_ctx_sched_out(struct perf_event_context *ctx)
2218 {
2219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220
2221         if (!cpuctx->task_ctx)
2222                 return;
2223
2224         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2225                 return;
2226
2227         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2228         cpuctx->task_ctx = NULL;
2229 }
2230
2231 /*
2232  * Called with IRQs disabled
2233  */
2234 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235                               enum event_type_t event_type)
2236 {
2237         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2238 }
2239
2240 static void
2241 ctx_pinned_sched_in(struct perf_event_context *ctx,
2242                     struct perf_cpu_context *cpuctx)
2243 {
2244         struct perf_event *event;
2245
2246         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2247                 if (event->state <= PERF_EVENT_STATE_OFF)
2248                         continue;
2249                 if (!event_filter_match(event))
2250                         continue;
2251
2252                 /* may need to reset tstamp_enabled */
2253                 if (is_cgroup_event(event))
2254                         perf_cgroup_mark_enabled(event, ctx);
2255
2256                 if (group_can_go_on(event, cpuctx, 1))
2257                         group_sched_in(event, cpuctx, ctx);
2258
2259                 /*
2260                  * If this pinned group hasn't been scheduled,
2261                  * put it in error state.
2262                  */
2263                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2264                         update_group_times(event);
2265                         event->state = PERF_EVENT_STATE_ERROR;
2266                 }
2267         }
2268 }
2269
2270 static void
2271 ctx_flexible_sched_in(struct perf_event_context *ctx,
2272                       struct perf_cpu_context *cpuctx)
2273 {
2274         struct perf_event *event;
2275         int can_add_hw = 1;
2276
2277         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2278                 /* Ignore events in OFF or ERROR state */
2279                 if (event->state <= PERF_EVENT_STATE_OFF)
2280                         continue;
2281                 /*
2282                  * Listen to the 'cpu' scheduling filter constraint
2283                  * of events:
2284                  */
2285                 if (!event_filter_match(event))
2286                         continue;
2287
2288                 /* may need to reset tstamp_enabled */
2289                 if (is_cgroup_event(event))
2290                         perf_cgroup_mark_enabled(event, ctx);
2291
2292                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2293                         if (group_sched_in(event, cpuctx, ctx))
2294                                 can_add_hw = 0;
2295                 }
2296         }
2297 }
2298
2299 static void
2300 ctx_sched_in(struct perf_event_context *ctx,
2301              struct perf_cpu_context *cpuctx,
2302              enum event_type_t event_type,
2303              struct task_struct *task)
2304 {
2305         u64 now;
2306         int is_active = ctx->is_active;
2307
2308         ctx->is_active |= event_type;
2309         if (likely(!ctx->nr_events))
2310                 return;
2311
2312         now = perf_clock();
2313         ctx->timestamp = now;
2314         perf_cgroup_set_timestamp(task, ctx);
2315         /*
2316          * First go through the list and put on any pinned groups
2317          * in order to give them the best chance of going on.
2318          */
2319         if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2320                 ctx_pinned_sched_in(ctx, cpuctx);
2321
2322         /* Then walk through the lower prio flexible groups */
2323         if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2324                 ctx_flexible_sched_in(ctx, cpuctx);
2325 }
2326
2327 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2328                              enum event_type_t event_type,
2329                              struct task_struct *task)
2330 {
2331         struct perf_event_context *ctx = &cpuctx->ctx;
2332
2333         ctx_sched_in(ctx, cpuctx, event_type, task);
2334 }
2335
2336 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2337                                         struct task_struct *task)
2338 {
2339         struct perf_cpu_context *cpuctx;
2340
2341         cpuctx = __get_cpu_context(ctx);
2342         if (cpuctx->task_ctx == ctx)
2343                 return;
2344
2345         perf_ctx_lock(cpuctx, ctx);
2346         perf_pmu_disable(ctx->pmu);
2347         /*
2348          * We want to keep the following priority order:
2349          * cpu pinned (that don't need to move), task pinned,
2350          * cpu flexible, task flexible.
2351          */
2352         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2353
2354         if (ctx->nr_events)
2355                 cpuctx->task_ctx = ctx;
2356
2357         perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2358
2359         perf_pmu_enable(ctx->pmu);
2360         perf_ctx_unlock(cpuctx, ctx);
2361
2362         /*
2363          * Since these rotations are per-cpu, we need to ensure the
2364          * cpu-context we got scheduled on is actually rotating.
2365          */
2366         perf_pmu_rotate_start(ctx->pmu);
2367 }
2368
2369 /*
2370  * When sampling the branck stack in system-wide, it may be necessary
2371  * to flush the stack on context switch. This happens when the branch
2372  * stack does not tag its entries with the pid of the current task.
2373  * Otherwise it becomes impossible to associate a branch entry with a
2374  * task. This ambiguity is more likely to appear when the branch stack
2375  * supports priv level filtering and the user sets it to monitor only
2376  * at the user level (which could be a useful measurement in system-wide
2377  * mode). In that case, the risk is high of having a branch stack with
2378  * branch from multiple tasks. Flushing may mean dropping the existing
2379  * entries or stashing them somewhere in the PMU specific code layer.
2380  *
2381  * This function provides the context switch callback to the lower code
2382  * layer. It is invoked ONLY when there is at least one system-wide context
2383  * with at least one active event using taken branch sampling.
2384  */
2385 static void perf_branch_stack_sched_in(struct task_struct *prev,
2386                                        struct task_struct *task)
2387 {
2388         struct perf_cpu_context *cpuctx;
2389         struct pmu *pmu;
2390         unsigned long flags;
2391
2392         /* no need to flush branch stack if not changing task */
2393         if (prev == task)
2394                 return;
2395
2396         local_irq_save(flags);
2397
2398         rcu_read_lock();
2399
2400         list_for_each_entry_rcu(pmu, &pmus, entry) {
2401                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2402
2403                 /*
2404                  * check if the context has at least one
2405                  * event using PERF_SAMPLE_BRANCH_STACK
2406                  */
2407                 if (cpuctx->ctx.nr_branch_stack > 0
2408                     && pmu->flush_branch_stack) {
2409
2410                         pmu = cpuctx->ctx.pmu;
2411
2412                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2413
2414                         perf_pmu_disable(pmu);
2415
2416                         pmu->flush_branch_stack();
2417
2418                         perf_pmu_enable(pmu);
2419
2420                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421                 }
2422         }
2423
2424         rcu_read_unlock();
2425
2426         local_irq_restore(flags);
2427 }
2428
2429 /*
2430  * Called from scheduler to add the events of the current task
2431  * with interrupts disabled.
2432  *
2433  * We restore the event value and then enable it.
2434  *
2435  * This does not protect us against NMI, but enable()
2436  * sets the enabled bit in the control field of event _before_
2437  * accessing the event control register. If a NMI hits, then it will
2438  * keep the event running.
2439  */
2440 void __perf_event_task_sched_in(struct task_struct *prev,
2441                                 struct task_struct *task)
2442 {
2443         struct perf_event_context *ctx;
2444         int ctxn;
2445
2446         for_each_task_context_nr(ctxn) {
2447                 ctx = task->perf_event_ctxp[ctxn];
2448                 if (likely(!ctx))
2449                         continue;
2450
2451                 perf_event_context_sched_in(ctx, task);
2452         }
2453         /*
2454          * if cgroup events exist on this CPU, then we need
2455          * to check if we have to switch in PMU state.
2456          * cgroup event are system-wide mode only
2457          */
2458         if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2459                 perf_cgroup_sched_in(prev, task);
2460
2461         /* check for system-wide branch_stack events */
2462         if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2463                 perf_branch_stack_sched_in(prev, task);
2464 }
2465
2466 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2467 {
2468         u64 frequency = event->attr.sample_freq;
2469         u64 sec = NSEC_PER_SEC;
2470         u64 divisor, dividend;
2471
2472         int count_fls, nsec_fls, frequency_fls, sec_fls;
2473
2474         count_fls = fls64(count);
2475         nsec_fls = fls64(nsec);
2476         frequency_fls = fls64(frequency);
2477         sec_fls = 30;
2478
2479         /*
2480          * We got @count in @nsec, with a target of sample_freq HZ
2481          * the target period becomes:
2482          *
2483          *             @count * 10^9
2484          * period = -------------------
2485          *          @nsec * sample_freq
2486          *
2487          */
2488
2489         /*
2490          * Reduce accuracy by one bit such that @a and @b converge
2491          * to a similar magnitude.
2492          */
2493 #define REDUCE_FLS(a, b)                \
2494 do {                                    \
2495         if (a##_fls > b##_fls) {        \
2496                 a >>= 1;                \
2497                 a##_fls--;              \
2498         } else {                        \
2499                 b >>= 1;                \
2500                 b##_fls--;              \
2501         }                               \
2502 } while (0)
2503
2504         /*
2505          * Reduce accuracy until either term fits in a u64, then proceed with
2506          * the other, so that finally we can do a u64/u64 division.
2507          */
2508         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2509                 REDUCE_FLS(nsec, frequency);
2510                 REDUCE_FLS(sec, count);
2511         }
2512
2513         if (count_fls + sec_fls > 64) {
2514                 divisor = nsec * frequency;
2515
2516                 while (count_fls + sec_fls > 64) {
2517                         REDUCE_FLS(count, sec);
2518                         divisor >>= 1;
2519                 }
2520
2521                 dividend = count * sec;
2522         } else {
2523                 dividend = count * sec;
2524
2525                 while (nsec_fls + frequency_fls > 64) {
2526                         REDUCE_FLS(nsec, frequency);
2527                         dividend >>= 1;
2528                 }
2529
2530                 divisor = nsec * frequency;
2531         }
2532
2533         if (!divisor)
2534                 return dividend;
2535
2536         return div64_u64(dividend, divisor);
2537 }
2538
2539 static DEFINE_PER_CPU(int, perf_throttled_count);
2540 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2541
2542 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2543 {
2544         struct hw_perf_event *hwc = &event->hw;
2545         s64 period, sample_period;
2546         s64 delta;
2547
2548         period = perf_calculate_period(event, nsec, count);
2549
2550         delta = (s64)(period - hwc->sample_period);
2551         delta = (delta + 7) / 8; /* low pass filter */
2552
2553         sample_period = hwc->sample_period + delta;
2554
2555         if (!sample_period)
2556                 sample_period = 1;
2557
2558         hwc->sample_period = sample_period;
2559
2560         if (local64_read(&hwc->period_left) > 8*sample_period) {
2561                 if (disable)
2562                         event->pmu->stop(event, PERF_EF_UPDATE);
2563
2564                 local64_set(&hwc->period_left, 0);
2565
2566                 if (disable)
2567                         event->pmu->start(event, PERF_EF_RELOAD);
2568         }
2569 }
2570
2571 /*
2572  * combine freq adjustment with unthrottling to avoid two passes over the
2573  * events. At the same time, make sure, having freq events does not change
2574  * the rate of unthrottling as that would introduce bias.
2575  */
2576 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2577                                            int needs_unthr)
2578 {
2579         struct perf_event *event;
2580         struct hw_perf_event *hwc;
2581         u64 now, period = TICK_NSEC;
2582         s64 delta;
2583
2584         /*
2585          * only need to iterate over all events iff:
2586          * - context have events in frequency mode (needs freq adjust)
2587          * - there are events to unthrottle on this cpu
2588          */
2589         if (!(ctx->nr_freq || needs_unthr))
2590                 return;
2591
2592         raw_spin_lock(&ctx->lock);
2593         perf_pmu_disable(ctx->pmu);
2594
2595         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2596                 if (event->state != PERF_EVENT_STATE_ACTIVE)
2597                         continue;
2598
2599                 if (!event_filter_match(event))
2600                         continue;
2601
2602                 hwc = &event->hw;
2603
2604                 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2605                         hwc->interrupts = 0;
2606                         perf_log_throttle(event, 1);
2607                         event->pmu->start(event, 0);
2608                 }
2609
2610                 if (!event->attr.freq || !event->attr.sample_freq)
2611                         continue;
2612
2613                 /*
2614                  * stop the event and update event->count
2615                  */
2616                 event->pmu->stop(event, PERF_EF_UPDATE);
2617
2618                 now = local64_read(&event->count);
2619                 delta = now - hwc->freq_count_stamp;
2620                 hwc->freq_count_stamp = now;
2621
2622                 /*
2623                  * restart the event
2624                  * reload only if value has changed
2625                  * we have stopped the event so tell that
2626                  * to perf_adjust_period() to avoid stopping it
2627                  * twice.
2628                  */
2629                 if (delta > 0)
2630                         perf_adjust_period(event, period, delta, false);
2631
2632                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2633         }
2634
2635         perf_pmu_enable(ctx->pmu);
2636         raw_spin_unlock(&ctx->lock);
2637 }
2638
2639 /*
2640  * Round-robin a context's events:
2641  */
2642 static void rotate_ctx(struct perf_event_context *ctx)
2643 {
2644         /*
2645          * Rotate the first entry last of non-pinned groups. Rotation might be
2646          * disabled by the inheritance code.
2647          */
2648         if (!ctx->rotate_disable)
2649                 list_rotate_left(&ctx->flexible_groups);
2650 }
2651
2652 /*
2653  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2654  * because they're strictly cpu affine and rotate_start is called with IRQs
2655  * disabled, while rotate_context is called from IRQ context.
2656  */
2657 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2658 {
2659         struct perf_event_context *ctx = NULL;
2660         int rotate = 0, remove = 1;
2661
2662         if (cpuctx->ctx.nr_events) {
2663                 remove = 0;
2664                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2665                         rotate = 1;
2666         }
2667
2668         ctx = cpuctx->task_ctx;
2669         if (ctx && ctx->nr_events) {
2670                 remove = 0;
2671                 if (ctx->nr_events != ctx->nr_active)
2672                         rotate = 1;
2673         }
2674
2675         if (!rotate)
2676                 goto done;
2677
2678         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2679         perf_pmu_disable(cpuctx->ctx.pmu);
2680
2681         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2682         if (ctx)
2683                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2684
2685         rotate_ctx(&cpuctx->ctx);
2686         if (ctx)
2687                 rotate_ctx(ctx);
2688
2689         perf_event_sched_in(cpuctx, ctx, current);
2690
2691         perf_pmu_enable(cpuctx->ctx.pmu);
2692         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2693 done:
2694         if (remove)
2695                 list_del_init(&cpuctx->rotation_list);
2696
2697         return rotate;
2698 }
2699
2700 #ifdef CONFIG_NO_HZ_FULL
2701 bool perf_event_can_stop_tick(void)
2702 {
2703         if (list_empty(&__get_cpu_var(rotation_list)))
2704                 return true;
2705         else
2706                 return false;
2707 }
2708 #endif
2709
2710 void perf_event_task_tick(void)
2711 {
2712         struct list_head *head = &__get_cpu_var(rotation_list);
2713         struct perf_cpu_context *cpuctx, *tmp;
2714         struct perf_event_context *ctx;
2715         int throttled;
2716
2717         WARN_ON(!irqs_disabled());
2718
2719         __this_cpu_inc(perf_throttled_seq);
2720         throttled = __this_cpu_xchg(perf_throttled_count, 0);
2721
2722         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2723                 ctx = &cpuctx->ctx;
2724                 perf_adjust_freq_unthr_context(ctx, throttled);
2725
2726                 ctx = cpuctx->task_ctx;
2727                 if (ctx)
2728                         perf_adjust_freq_unthr_context(ctx, throttled);
2729         }
2730 }
2731
2732 static int event_enable_on_exec(struct perf_event *event,
2733                                 struct perf_event_context *ctx)
2734 {
2735         if (!event->attr.enable_on_exec)
2736                 return 0;
2737
2738         event->attr.enable_on_exec = 0;
2739         if (event->state >= PERF_EVENT_STATE_INACTIVE)
2740                 return 0;
2741
2742         __perf_event_mark_enabled(event);
2743
2744         return 1;
2745 }
2746
2747 /*
2748  * Enable all of a task's events that have been marked enable-on-exec.
2749  * This expects task == current.
2750  */
2751 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2752 {
2753         struct perf_event *event;
2754         unsigned long flags;
2755         int enabled = 0;
2756         int ret;
2757
2758         local_irq_save(flags);
2759         if (!ctx || !ctx->nr_events)
2760                 goto out;
2761
2762         /*
2763          * We must ctxsw out cgroup events to avoid conflict
2764          * when invoking perf_task_event_sched_in() later on
2765          * in this function. Otherwise we end up trying to
2766          * ctxswin cgroup events which are already scheduled
2767          * in.
2768          */
2769         perf_cgroup_sched_out(current, NULL);
2770
2771         raw_spin_lock(&ctx->lock);
2772         task_ctx_sched_out(ctx);
2773
2774         list_for_each_entry(event, &ctx->event_list, event_entry) {
2775                 ret = event_enable_on_exec(event, ctx);
2776                 if (ret)
2777                         enabled = 1;
2778         }
2779
2780         /*
2781          * Unclone this context if we enabled any event.
2782          */
2783         if (enabled)
2784                 unclone_ctx(ctx);
2785
2786         raw_spin_unlock(&ctx->lock);
2787
2788         /*
2789          * Also calls ctxswin for cgroup events, if any:
2790          */
2791         perf_event_context_sched_in(ctx, ctx->task);
2792 out:
2793         local_irq_restore(flags);
2794 }
2795
2796 /*
2797  * Cross CPU call to read the hardware event
2798  */
2799 static void __perf_event_read(void *info)
2800 {
2801         struct perf_event *event = info;
2802         struct perf_event_context *ctx = event->ctx;
2803         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2804
2805         /*
2806          * If this is a task context, we need to check whether it is
2807          * the current task context of this cpu.  If not it has been
2808          * scheduled out before the smp call arrived.  In that case
2809          * event->count would have been updated to a recent sample
2810          * when the event was scheduled out.
2811          */
2812         if (ctx->task && cpuctx->task_ctx != ctx)
2813                 return;
2814
2815         raw_spin_lock(&ctx->lock);
2816         if (ctx->is_active) {
2817                 update_context_time(ctx);
2818                 update_cgrp_time_from_event(event);
2819         }
2820         update_event_times(event);
2821         if (event->state == PERF_EVENT_STATE_ACTIVE)
2822                 event->pmu->read(event);
2823         raw_spin_unlock(&ctx->lock);
2824 }
2825
2826 static inline u64 perf_event_count(struct perf_event *event)
2827 {
2828         return local64_read(&event->count) + atomic64_read(&event->child_count);
2829 }
2830
2831 static u64 perf_event_read(struct perf_event *event)
2832 {
2833         /*
2834          * If event is enabled and currently active on a CPU, update the
2835          * value in the event structure:
2836          */
2837         if (event->state == PERF_EVENT_STATE_ACTIVE) {
2838                 smp_call_function_single(event->oncpu,
2839                                          __perf_event_read, event, 1);
2840         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2841                 struct perf_event_context *ctx = event->ctx;
2842                 unsigned long flags;
2843
2844                 raw_spin_lock_irqsave(&ctx->lock, flags);
2845                 /*
2846                  * may read while context is not active
2847                  * (e.g., thread is blocked), in that case
2848                  * we cannot update context time
2849                  */
2850                 if (ctx->is_active) {
2851                         update_context_time(ctx);
2852                         update_cgrp_time_from_event(event);
2853                 }
2854                 update_event_times(event);
2855                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2856         }
2857
2858         return perf_event_count(event);
2859 }
2860
2861 /*
2862  * Initialize the perf_event context in a task_struct:
2863  */
2864 static void __perf_event_init_context(struct perf_event_context *ctx)
2865 {
2866         raw_spin_lock_init(&ctx->lock);
2867         mutex_init(&ctx->mutex);
2868         INIT_LIST_HEAD(&ctx->pinned_groups);
2869         INIT_LIST_HEAD(&ctx->flexible_groups);
2870         INIT_LIST_HEAD(&ctx->event_list);
2871         atomic_set(&ctx->refcount, 1);
2872 }
2873
2874 static struct perf_event_context *
2875 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2876 {
2877         struct perf_event_context *ctx;
2878
2879         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2880         if (!ctx)
2881                 return NULL;
2882
2883         __perf_event_init_context(ctx);
2884         if (task) {
2885                 ctx->task = task;
2886                 get_task_struct(task);
2887         }
2888         ctx->pmu = pmu;
2889
2890         return ctx;
2891 }
2892
2893 static struct task_struct *
2894 find_lively_task_by_vpid(pid_t vpid)
2895 {
2896         struct task_struct *task;
2897         int err;
2898
2899         rcu_read_lock();
2900         if (!vpid)
2901                 task = current;
2902         else
2903                 task = find_task_by_vpid(vpid);
2904         if (task)
2905                 get_task_struct(task);
2906         rcu_read_unlock();
2907
2908         if (!task)
2909                 return ERR_PTR(-ESRCH);
2910
2911         /* Reuse ptrace permission checks for now. */
2912         err = -EACCES;
2913         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2914                 goto errout;
2915
2916         return task;
2917 errout:
2918         put_task_struct(task);
2919         return ERR_PTR(err);
2920
2921 }
2922
2923 /*
2924  * Returns a matching context with refcount and pincount.
2925  */
2926 static struct perf_event_context *
2927 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2928 {
2929         struct perf_event_context *ctx;
2930         struct perf_cpu_context *cpuctx;
2931         unsigned long flags;
2932         int ctxn, err;
2933
2934         if (!task) {
2935                 /* Must be root to operate on a CPU event: */
2936                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2937                         return ERR_PTR(-EACCES);
2938
2939                 /*
2940                  * We could be clever and allow to attach a event to an
2941                  * offline CPU and activate it when the CPU comes up, but
2942                  * that's for later.
2943                  */
2944                 if (!cpu_online(cpu))
2945                         return ERR_PTR(-ENODEV);
2946
2947                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2948                 ctx = &cpuctx->ctx;
2949                 get_ctx(ctx);
2950                 ++ctx->pin_count;
2951
2952                 return ctx;
2953         }
2954
2955         err = -EINVAL;
2956         ctxn = pmu->task_ctx_nr;
2957         if (ctxn < 0)
2958                 goto errout;
2959
2960 retry:
2961         ctx = perf_lock_task_context(task, ctxn, &flags);
2962         if (ctx) {
2963                 unclone_ctx(ctx);
2964                 ++ctx->pin_count;
2965                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2966         } else {
2967                 ctx = alloc_perf_context(pmu, task);
2968                 err = -ENOMEM;
2969                 if (!ctx)
2970                         goto errout;
2971
2972                 err = 0;
2973                 mutex_lock(&task->perf_event_mutex);
2974                 /*
2975                  * If it has already passed perf_event_exit_task().
2976                  * we must see PF_EXITING, it takes this mutex too.
2977                  */
2978                 if (task->flags & PF_EXITING)
2979                         err = -ESRCH;
2980                 else if (task->perf_event_ctxp[ctxn])
2981                         err = -EAGAIN;
2982                 else {
2983                         get_ctx(ctx);
2984                         ++ctx->pin_count;
2985                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2986                 }
2987                 mutex_unlock(&task->perf_event_mutex);
2988
2989                 if (unlikely(err)) {
2990                         put_ctx(ctx);
2991
2992                         if (err == -EAGAIN)
2993                                 goto retry;
2994                         goto errout;
2995                 }
2996         }
2997
2998         return ctx;
2999
3000 errout:
3001         return ERR_PTR(err);
3002 }
3003
3004 static void perf_event_free_filter(struct perf_event *event);
3005
3006 static void free_event_rcu(struct rcu_head *head)
3007 {
3008         struct perf_event *event;
3009
3010         event = container_of(head, struct perf_event, rcu_head);
3011         if (event->ns)
3012                 put_pid_ns(event->ns);
3013         perf_event_free_filter(event);
3014         kfree(event);
3015 }
3016
3017 static void ring_buffer_put(struct ring_buffer *rb);
3018
3019 static void free_event(struct perf_event *event)
3020 {
3021         irq_work_sync(&event->pending);
3022
3023         if (!event->parent) {
3024                 if (event->attach_state & PERF_ATTACH_TASK)
3025                         static_key_slow_dec_deferred(&perf_sched_events);
3026                 if (event->attr.mmap || event->attr.mmap_data)
3027                         atomic_dec(&nr_mmap_events);
3028                 if (event->attr.comm)
3029                         atomic_dec(&nr_comm_events);
3030                 if (event->attr.task)
3031                         atomic_dec(&nr_task_events);
3032                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3033                         put_callchain_buffers();
3034                 if (is_cgroup_event(event)) {
3035                         atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3036                         static_key_slow_dec_deferred(&perf_sched_events);
3037                 }
3038
3039                 if (has_branch_stack(event)) {
3040                         static_key_slow_dec_deferred(&perf_sched_events);
3041                         /* is system-wide event */
3042                         if (!(event->attach_state & PERF_ATTACH_TASK))
3043                                 atomic_dec(&per_cpu(perf_branch_stack_events,
3044                                                     event->cpu));
3045                 }
3046         }
3047
3048         if (event->rb) {
3049                 ring_buffer_put(event->rb);
3050                 event->rb = NULL;
3051         }
3052
3053         if (is_cgroup_event(event))
3054                 perf_detach_cgroup(event);
3055
3056         if (event->destroy)
3057                 event->destroy(event);
3058
3059         if (event->ctx)
3060                 put_ctx(event->ctx);
3061
3062         call_rcu(&event->rcu_head, free_event_rcu);
3063 }
3064
3065 int perf_event_release_kernel(struct perf_event *event)
3066 {
3067         struct perf_event_context *ctx = event->ctx;
3068
3069         WARN_ON_ONCE(ctx->parent_ctx);
3070         /*
3071          * There are two ways this annotation is useful:
3072          *
3073          *  1) there is a lock recursion from perf_event_exit_task
3074          *     see the comment there.
3075          *
3076          *  2) there is a lock-inversion with mmap_sem through
3077          *     perf_event_read_group(), which takes faults while
3078          *     holding ctx->mutex, however this is called after
3079          *     the last filedesc died, so there is no possibility
3080          *     to trigger the AB-BA case.
3081          */
3082         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3083         raw_spin_lock_irq(&ctx->lock);
3084         perf_group_detach(event);
3085         raw_spin_unlock_irq(&ctx->lock);
3086         perf_remove_from_context(event);
3087         mutex_unlock(&ctx->mutex);
3088
3089         free_event(event);
3090
3091         return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3094
3095 /*
3096  * Called when the last reference to the file is gone.
3097  */
3098 static void put_event(struct perf_event *event)
3099 {
3100         struct task_struct *owner;
3101
3102         if (!atomic_long_dec_and_test(&event->refcount))
3103                 return;
3104
3105         rcu_read_lock();
3106         owner = ACCESS_ONCE(event->owner);
3107         /*
3108          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3109          * !owner it means the list deletion is complete and we can indeed
3110          * free this event, otherwise we need to serialize on
3111          * owner->perf_event_mutex.
3112          */
3113         smp_read_barrier_depends();
3114         if (owner) {
3115                 /*
3116                  * Since delayed_put_task_struct() also drops the last
3117                  * task reference we can safely take a new reference
3118                  * while holding the rcu_read_lock().
3119                  */
3120                 get_task_struct(owner);
3121         }
3122         rcu_read_unlock();
3123
3124         if (owner) {
3125                 mutex_lock(&owner->perf_event_mutex);
3126                 /*
3127                  * We have to re-check the event->owner field, if it is cleared
3128                  * we raced with perf_event_exit_task(), acquiring the mutex
3129                  * ensured they're done, and we can proceed with freeing the
3130                  * event.
3131                  */
3132                 if (event->owner)
3133                         list_del_init(&event->owner_entry);
3134                 mutex_unlock(&owner->perf_event_mutex);
3135                 put_task_struct(owner);
3136         }
3137
3138         perf_event_release_kernel(event);
3139 }
3140
3141 static int perf_release(struct inode *inode, struct file *file)
3142 {
3143         put_event(file->private_data);
3144         return 0;
3145 }
3146
3147 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3148 {
3149         struct perf_event *child;
3150         u64 total = 0;
3151
3152         *enabled = 0;
3153         *running = 0;
3154
3155         mutex_lock(&event->child_mutex);
3156         total += perf_event_read(event);
3157         *enabled += event->total_time_enabled +
3158                         atomic64_read(&event->child_total_time_enabled);
3159         *running += event->total_time_running +
3160                         atomic64_read(&event->child_total_time_running);
3161
3162         list_for_each_entry(child, &event->child_list, child_list) {
3163                 total += perf_event_read(child);
3164                 *enabled += child->total_time_enabled;
3165                 *running += child->total_time_running;
3166         }
3167         mutex_unlock(&event->child_mutex);
3168
3169         return total;
3170 }
3171 EXPORT_SYMBOL_GPL(perf_event_read_value);
3172
3173 static int perf_event_read_group(struct perf_event *event,
3174                                    u64 read_format, char __user *buf)
3175 {
3176         struct perf_event *leader = event->group_leader, *sub;
3177         int n = 0, size = 0, ret = -EFAULT;
3178         struct perf_event_context *ctx = leader->ctx;
3179         u64 values[5];
3180         u64 count, enabled, running;
3181
3182         mutex_lock(&ctx->mutex);
3183         count = perf_event_read_value(leader, &enabled, &running);
3184
3185         values[n++] = 1 + leader->nr_siblings;
3186         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3187                 values[n++] = enabled;
3188         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3189                 values[n++] = running;
3190         values[n++] = count;
3191         if (read_format & PERF_FORMAT_ID)
3192                 values[n++] = primary_event_id(leader);
3193
3194         size = n * sizeof(u64);
3195
3196         if (copy_to_user(buf, values, size))
3197                 goto unlock;
3198
3199         ret = size;
3200
3201         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3202                 n = 0;
3203
3204                 values[n++] = perf_event_read_value(sub, &enabled, &running);
3205                 if (read_format & PERF_FORMAT_ID)
3206                         values[n++] = primary_event_id(sub);
3207
3208                 size = n * sizeof(u64);
3209
3210                 if (copy_to_user(buf + ret, values, size)) {
3211                         ret = -EFAULT;
3212                         goto unlock;
3213                 }
3214
3215                 ret += size;
3216         }
3217 unlock:
3218         mutex_unlock(&ctx->mutex);
3219
3220         return ret;
3221 }
3222
3223 static int perf_event_read_one(struct perf_event *event,
3224                                  u64 read_format, char __user *buf)
3225 {
3226         u64 enabled, running;
3227         u64 values[4];
3228         int n = 0;
3229
3230         values[n++] = perf_event_read_value(event, &enabled, &running);
3231         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3232                 values[n++] = enabled;
3233         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3234                 values[n++] = running;
3235         if (read_format & PERF_FORMAT_ID)
3236                 values[n++] = primary_event_id(event);
3237
3238         if (copy_to_user(buf, values, n * sizeof(u64)))
3239                 return -EFAULT;
3240
3241         return n * sizeof(u64);
3242 }
3243
3244 /*
3245  * Read the performance event - simple non blocking version for now
3246  */
3247 static ssize_t
3248 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3249 {
3250         u64 read_format = event->attr.read_format;
3251         int ret;
3252
3253         /*
3254          * Return end-of-file for a read on a event that is in
3255          * error state (i.e. because it was pinned but it couldn't be
3256          * scheduled on to the CPU at some point).
3257          */
3258         if (event->state == PERF_EVENT_STATE_ERROR)
3259                 return 0;
3260
3261         if (count < event->read_size)
3262                 return -ENOSPC;
3263
3264         WARN_ON_ONCE(event->ctx->parent_ctx);
3265         if (read_format & PERF_FORMAT_GROUP)
3266                 ret = perf_event_read_group(event, read_format, buf);
3267         else
3268                 ret = perf_event_read_one(event, read_format, buf);
3269
3270         return ret;
3271 }
3272
3273 static ssize_t
3274 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3275 {
3276         struct perf_event *event = file->private_data;
3277
3278         return perf_read_hw(event, buf, count);
3279 }
3280
3281 static unsigned int perf_poll(struct file *file, poll_table *wait)
3282 {
3283         struct perf_event *event = file->private_data;
3284         struct ring_buffer *rb;
3285         unsigned int events = POLL_HUP;
3286
3287         /*
3288          * Race between perf_event_set_output() and perf_poll(): perf_poll()
3289          * grabs the rb reference but perf_event_set_output() overrides it.
3290          * Here is the timeline for two threads T1, T2:
3291          * t0: T1, rb = rcu_dereference(event->rb)
3292          * t1: T2, old_rb = event->rb
3293          * t2: T2, event->rb = new rb
3294          * t3: T2, ring_buffer_detach(old_rb)
3295          * t4: T1, ring_buffer_attach(rb1)
3296          * t5: T1, poll_wait(event->waitq)
3297          *
3298          * To avoid this problem, we grab mmap_mutex in perf_poll()
3299          * thereby ensuring that the assignment of the new ring buffer
3300          * and the detachment of the old buffer appear atomic to perf_poll()
3301          */
3302         mutex_lock(&event->mmap_mutex);
3303
3304         rcu_read_lock();
3305         rb = rcu_dereference(event->rb);
3306         if (rb) {
3307                 ring_buffer_attach(event, rb);
3308                 events = atomic_xchg(&rb->poll, 0);
3309         }
3310         rcu_read_unlock();
3311
3312         mutex_unlock(&event->mmap_mutex);
3313
3314         poll_wait(file, &event->waitq, wait);
3315
3316         return events;
3317 }
3318
3319 static void perf_event_reset(struct perf_event *event)
3320 {
3321         (void)perf_event_read(event);
3322         local64_set(&event->count, 0);
3323         perf_event_update_userpage(event);
3324 }
3325
3326 /*
3327  * Holding the top-level event's child_mutex means that any
3328  * descendant process that has inherited this event will block
3329  * in sync_child_event if it goes to exit, thus satisfying the
3330  * task existence requirements of perf_event_enable/disable.
3331  */
3332 static void perf_event_for_each_child(struct perf_event *event,
3333                                         void (*func)(struct perf_event *))
3334 {
3335         struct perf_event *child;
3336
3337         WARN_ON_ONCE(event->ctx->parent_ctx);
3338         mutex_lock(&event->child_mutex);
3339         func(event);
3340         list_for_each_entry(child, &event->child_list, child_list)
3341                 func(child);
3342         mutex_unlock(&event->child_mutex);
3343 }
3344
3345 static void perf_event_for_each(struct perf_event *event,
3346                                   void (*func)(struct perf_event *))
3347 {
3348         struct perf_event_context *ctx = event->ctx;
3349         struct perf_event *sibling;
3350
3351         WARN_ON_ONCE(ctx->parent_ctx);
3352         mutex_lock(&ctx->mutex);
3353         event = event->group_leader;
3354
3355         perf_event_for_each_child(event, func);
3356         list_for_each_entry(sibling, &event->sibling_list, group_entry)
3357                 perf_event_for_each_child(sibling, func);
3358         mutex_unlock(&ctx->mutex);
3359 }
3360
3361 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3362 {
3363         struct perf_event_context *ctx = event->ctx;
3364         int ret = 0;
3365         u64 value;
3366
3367         if (!is_sampling_event(event))
3368                 return -EINVAL;
3369
3370         if (copy_from_user(&value, arg, sizeof(value)))
3371                 return -EFAULT;
3372
3373         if (!value)
3374                 return -EINVAL;
3375
3376         raw_spin_lock_irq(&ctx->lock);
3377         if (event->attr.freq) {
3378                 if (value > sysctl_perf_event_sample_rate) {
3379                         ret = -EINVAL;
3380                         goto unlock;
3381                 }
3382
3383                 event->attr.sample_freq = value;
3384         } else {
3385                 event->attr.sample_period = value;
3386                 event->hw.sample_period = value;
3387         }
3388 unlock:
3389         raw_spin_unlock_irq(&ctx->lock);
3390
3391         return ret;
3392 }
3393
3394 static const struct file_operations perf_fops;
3395
3396 static inline int perf_fget_light(int fd, struct fd *p)
3397 {
3398         struct fd f = fdget(fd);
3399         if (!f.file)
3400                 return -EBADF;
3401
3402         if (f.file->f_op != &perf_fops) {
3403                 fdput(f);
3404                 return -EBADF;
3405         }
3406         *p = f;
3407         return 0;
3408 }
3409
3410 static int perf_event_set_output(struct perf_event *event,
3411                                  struct perf_event *output_event);
3412 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3413
3414 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3415 {
3416         struct perf_event *event = file->private_data;
3417         void (*func)(struct perf_event *);
3418         u32 flags = arg;
3419
3420         switch (cmd) {
3421         case PERF_EVENT_IOC_ENABLE:
3422                 func = perf_event_enable;
3423                 break;
3424         case PERF_EVENT_IOC_DISABLE:
3425                 func = perf_event_disable;
3426                 break;
3427         case PERF_EVENT_IOC_RESET:
3428                 func = perf_event_reset;
3429                 break;
3430
3431         case PERF_EVENT_IOC_REFRESH:
3432                 return perf_event_refresh(event, arg);
3433
3434         case PERF_EVENT_IOC_PERIOD:
3435                 return perf_event_period(event, (u64 __user *)arg);
3436
3437         case PERF_EVENT_IOC_SET_OUTPUT:
3438         {
3439                 int ret;
3440                 if (arg != -1) {
3441                         struct perf_event *output_event;
3442                         struct fd output;
3443                         ret = perf_fget_light(arg, &output);
3444                         if (ret)
3445                                 return ret;
3446                         output_event = output.file->private_data;
3447                         ret = perf_event_set_output(event, output_event);
3448                         fdput(output);
3449                 } else {
3450                         ret = perf_event_set_output(event, NULL);
3451                 }
3452                 return ret;
3453         }
3454
3455         case PERF_EVENT_IOC_SET_FILTER:
3456                 return perf_event_set_filter(event, (void __user *)arg);
3457
3458         default:
3459                 return -ENOTTY;
3460         }
3461
3462         if (flags & PERF_IOC_FLAG_GROUP)
3463                 perf_event_for_each(event, func);
3464         else
3465                 perf_event_for_each_child(event, func);
3466
3467         return 0;
3468 }
3469
3470 int perf_event_task_enable(void)
3471 {
3472         struct perf_event *event;
3473
3474         mutex_lock(&current->perf_event_mutex);
3475         list_for_each_entry(event, &current->perf_event_list, owner_entry)
3476                 perf_event_for_each_child(event, perf_event_enable);
3477         mutex_unlock(&current->perf_event_mutex);
3478
3479         return 0;
3480 }
3481
3482 int perf_event_task_disable(void)
3483 {
3484         struct perf_event *event;
3485
3486         mutex_lock(&current->perf_event_mutex);
3487         list_for_each_entry(event, &current->perf_event_list, owner_entry)
3488                 perf_event_for_each_child(event, perf_event_disable);
3489         mutex_unlock(&current->perf_event_mutex);
3490
3491         return 0;
3492 }
3493
3494 static int perf_event_index(struct perf_event *event)
3495 {
3496         if (event->hw.state & PERF_HES_STOPPED)
3497                 return 0;
3498
3499         if (event->state != PERF_EVENT_STATE_ACTIVE)
3500                 return 0;
3501
3502         return event->pmu->event_idx(event);
3503 }
3504
3505 static void calc_timer_values(struct perf_event *event,
3506                                 u64 *now,
3507                                 u64 *enabled,
3508                                 u64 *running)
3509 {
3510         u64 ctx_time;
3511
3512         *now = perf_clock();
3513         ctx_time = event->shadow_ctx_time + *now;
3514         *enabled = ctx_time - event->tstamp_enabled;
3515         *running = ctx_time - event->tstamp_running;
3516 }
3517
3518 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3519 {
3520 }
3521
3522 /*
3523  * Callers need to ensure there can be no nesting of this function, otherwise
3524  * the seqlock logic goes bad. We can not serialize this because the arch
3525  * code calls this from NMI context.
3526  */
3527 void perf_event_update_userpage(struct perf_event *event)
3528 {
3529         struct perf_event_mmap_page *userpg;
3530         struct ring_buffer *rb;
3531         u64 enabled, running, now;
3532
3533         rcu_read_lock();
3534         /*
3535          * compute total_time_enabled, total_time_running
3536          * based on snapshot values taken when the event
3537          * was last scheduled in.
3538          *
3539          * we cannot simply called update_context_time()
3540          * because of locking issue as we can be called in
3541          * NMI context
3542          */
3543         calc_timer_values(event, &now, &enabled, &running);
3544         rb = rcu_dereference(event->rb);
3545         if (!rb)
3546                 goto unlock;
3547
3548         userpg = rb->user_page;
3549
3550         /*
3551          * Disable preemption so as to not let the corresponding user-space
3552          * spin too long if we get preempted.
3553          */
3554         preempt_disable();
3555         ++userpg->lock;
3556         barrier();
3557         userpg->index = perf_event_index(event);
3558         userpg->offset = perf_event_count(event);
3559         if (userpg->index)
3560                 userpg->offset -= local64_read(&event->hw.prev_count);
3561
3562         userpg->time_enabled = enabled +
3563                         atomic64_read(&event->child_total_time_enabled);
3564
3565         userpg->time_running = running +
3566                         atomic64_read(&event->child_total_time_running);
3567
3568         arch_perf_update_userpage(userpg, now);
3569
3570         barrier();
3571         ++userpg->lock;
3572         preempt_enable();
3573 unlock:
3574         rcu_read_unlock();
3575 }
3576
3577 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3578 {
3579         struct perf_event *event = vma->vm_file->private_data;
3580         struct ring_buffer *rb;
3581         int ret = VM_FAULT_SIGBUS;
3582
3583         if (vmf->flags & FAULT_FLAG_MKWRITE) {
3584                 if (vmf->pgoff == 0)
3585                         ret = 0;
3586                 return ret;
3587         }
3588
3589         rcu_read_lock();
3590         rb = rcu_dereference(event->rb);
3591         if (!rb)
3592                 goto unlock;
3593
3594         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3595                 goto unlock;
3596
3597         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3598         if (!vmf->page)
3599                 goto unlock;
3600
3601         get_page(vmf->page);
3602         vmf->page->mapping = vma->vm_file->f_mapping;
3603         vmf->page->index   = vmf->pgoff;
3604
3605         ret = 0;
3606 unlock:
3607         rcu_read_unlock();
3608
3609         return ret;
3610 }
3611
3612 static void ring_buffer_attach(struct perf_event *event,
3613                                struct ring_buffer *rb)
3614 {
3615         unsigned long flags;
3616
3617         if (!list_empty(&event->rb_entry))
3618                 return;
3619
3620         spin_lock_irqsave(&rb->event_lock, flags);
3621         if (!list_empty(&event->rb_entry))
3622                 goto unlock;
3623
3624         list_add(&event->rb_entry, &rb->event_list);
3625 unlock:
3626         spin_unlock_irqrestore(&rb->event_lock, flags);
3627 }
3628
3629 static void ring_buffer_detach(struct perf_event *event,
3630                                struct ring_buffer *rb)
3631 {
3632         unsigned long flags;
3633
3634         if (list_empty(&event->rb_entry))
3635                 return;
3636
3637         spin_lock_irqsave(&rb->event_lock, flags);
3638         list_del_init(&event->rb_entry);
3639         wake_up_all(&event->waitq);
3640         spin_unlock_irqrestore(&rb->event_lock, flags);
3641 }
3642
3643 static void ring_buffer_wakeup(struct perf_event *event)
3644 {
3645         struct ring_buffer *rb;
3646
3647         rcu_read_lock();
3648         rb = rcu_dereference(event->rb);
3649         if (!rb)
3650                 goto unlock;
3651
3652         list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3653                 wake_up_all(&event->waitq);
3654
3655 unlock:
3656         rcu_read_unlock();
3657 }
3658
3659 static void rb_free_rcu(struct rcu_head *rcu_head)
3660 {
3661         struct ring_buffer *rb;
3662
3663         rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3664         rb_free(rb);
3665 }
3666
3667 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3668 {
3669         struct ring_buffer *rb;
3670
3671         rcu_read_lock();
3672         rb = rcu_dereference(event->rb);
3673         if (rb) {
3674                 if (!atomic_inc_not_zero(&rb->refcount))
3675                         rb = NULL;
3676         }
3677         rcu_read_unlock();
3678
3679         return rb;
3680 }
3681
3682 static void ring_buffer_put(struct ring_buffer *rb)
3683 {
3684         struct perf_event *event, *n;
3685         unsigned long flags;
3686
3687         if (!atomic_dec_and_test(&rb->refcount))
3688                 return;
3689
3690         spin_lock_irqsave(&rb->event_lock, flags);
3691         list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3692                 list_del_init(&event->rb_entry);
3693                 wake_up_all(&event->waitq);
3694         }
3695         spin_unlock_irqrestore(&rb->event_lock, flags);
3696
3697         call_rcu(&rb->rcu_head, rb_free_rcu);
3698 }
3699
3700 static void perf_mmap_open(struct vm_area_struct *vma)
3701 {
3702         struct perf_event *event = vma->vm_file->private_data;
3703
3704         atomic_inc(&event->mmap_count);
3705 }
3706
3707 static void perf_mmap_close(struct vm_area_struct *vma)
3708 {
3709         struct perf_event *event = vma->vm_file->private_data;
3710
3711         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3712                 unsigned long size = perf_data_size(event->rb);
3713                 struct user_struct *user = event->mmap_user;
3714                 struct ring_buffer *rb = event->rb;
3715
3716                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3717                 vma->vm_mm->pinned_vm -= event->mmap_locked;
3718                 rcu_assign_pointer(event->rb, NULL);
3719                 ring_buffer_detach(event, rb);
3720                 mutex_unlock(&event->mmap_mutex);
3721
3722                 ring_buffer_put(rb);
3723                 free_uid(user);
3724         }
3725 }
3726
3727 static const struct vm_operations_struct perf_mmap_vmops = {
3728         .open           = perf_mmap_open,
3729         .close          = perf_mmap_close,
3730         .fault          = perf_mmap_fault,
3731         .page_mkwrite   = perf_mmap_fault,
3732 };
3733
3734 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3735 {
3736         struct perf_event *event = file->private_data;
3737         unsigned long user_locked, user_lock_limit;
3738         struct user_struct *user = current_user();
3739         unsigned long locked, lock_limit;
3740         struct ring_buffer *rb;
3741         unsigned long vma_size;
3742         unsigned long nr_pages;
3743         long user_extra, extra;
3744         int ret = 0, flags = 0;
3745
3746         /*
3747          * Don't allow mmap() of inherited per-task counters. This would
3748          * create a performance issue due to all children writing to the
3749          * same rb.
3750          */
3751         if (event->cpu == -1 && event->attr.inherit)
3752                 return -EINVAL;
3753
3754         if (!(vma->vm_flags & VM_SHARED))
3755                 return -EINVAL;
3756
3757         vma_size = vma->vm_end - vma->vm_start;
3758         nr_pages = (vma_size / PAGE_SIZE) - 1;
3759
3760         /*
3761          * If we have rb pages ensure they're a power-of-two number, so we
3762          * can do bitmasks instead of modulo.
3763          */
3764         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3765                 return -EINVAL;
3766
3767         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3768                 return -EINVAL;
3769
3770         if (vma->vm_pgoff != 0)
3771                 return -EINVAL;
3772
3773         WARN_ON_ONCE(event->ctx->parent_ctx);
3774         mutex_lock(&event->mmap_mutex);
3775         if (event->rb) {
3776                 if (event->rb->nr_pages == nr_pages)
3777                         atomic_inc(&event->rb->refcount);
3778                 else
3779                         ret = -EINVAL;
3780                 goto unlock;
3781         }
3782
3783         user_extra = nr_pages + 1;
3784         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3785
3786         /*
3787          * Increase the limit linearly with more CPUs:
3788          */
3789         user_lock_limit *= num_online_cpus();
3790
3791         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3792
3793         extra = 0;
3794         if (user_locked > user_lock_limit)
3795                 extra = user_locked - user_lock_limit;
3796
3797         lock_limit = rlimit(RLIMIT_MEMLOCK);
3798         lock_limit >>= PAGE_SHIFT;
3799         locked = vma->vm_mm->pinned_vm + extra;
3800
3801         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3802                 !capable(CAP_IPC_LOCK)) {
3803                 ret = -EPERM;
3804                 goto unlock;
3805         }
3806
3807         WARN_ON(event->rb);
3808
3809         if (vma->vm_flags & VM_WRITE)
3810                 flags |= RING_BUFFER_WRITABLE;
3811
3812         rb = rb_alloc(nr_pages, 
3813                 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3814                 event->cpu, flags);
3815
3816         if (!rb) {
3817                 ret = -ENOMEM;
3818                 goto unlock;
3819         }
3820         rcu_assign_pointer(event->rb, rb);
3821
3822         atomic_long_add(user_extra, &user->locked_vm);
3823         event->mmap_locked = extra;
3824         event->mmap_user = get_current_user();
3825         vma->vm_mm->pinned_vm += event->mmap_locked;
3826
3827         perf_event_update_userpage(event);
3828
3829 unlock:
3830         if (!ret)
3831                 atomic_inc(&event->mmap_count);
3832         mutex_unlock(&event->mmap_mutex);
3833
3834         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3835         vma->vm_ops = &perf_mmap_vmops;
3836
3837         return ret;
3838 }
3839
3840 static int perf_fasync(int fd, struct file *filp, int on)
3841 {
3842         struct inode *inode = file_inode(filp);
3843         struct perf_event *event = filp->private_data;
3844         int retval;
3845
3846         mutex_lock(&inode->i_mutex);
3847         retval = fasync_helper(fd, filp, on, &event->fasync);
3848         mutex_unlock(&inode->i_mutex);
3849
3850         if (retval < 0)
3851                 return retval;
3852
3853         return 0;
3854 }
3855
3856 static const struct file_operations perf_fops = {
3857         .llseek                 = no_llseek,
3858         .release                = perf_release,
3859         .read                   = perf_read,
3860         .poll                   = perf_poll,
3861         .unlocked_ioctl         = perf_ioctl,
3862         .compat_ioctl           = perf_ioctl,
3863         .mmap                   = perf_mmap,
3864         .fasync                 = perf_fasync,
3865 };
3866
3867 /*
3868  * Perf event wakeup
3869  *
3870  * If there's data, ensure we set the poll() state and publish everything
3871  * to user-space before waking everybody up.
3872  */
3873
3874 void perf_event_wakeup(struct perf_event *event)
3875 {
3876         ring_buffer_wakeup(event);
3877
3878         if (event->pending_kill) {
3879                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3880                 event->pending_kill = 0;
3881         }
3882 }
3883
3884 static void perf_pending_event(struct irq_work *entry)
3885 {
3886         struct perf_event *event = container_of(entry,
3887                         struct perf_event, pending);
3888
3889         if (event->pending_disable) {
3890                 event->pending_disable = 0;
3891                 __perf_event_disable(event);
3892         }
3893
3894         if (event->pending_wakeup) {
3895                 event->pending_wakeup = 0;
3896                 perf_event_wakeup(event);
3897         }
3898 }
3899
3900 /*
3901  * We assume there is only KVM supporting the callbacks.
3902  * Later on, we might change it to a list if there is
3903  * another virtualization implementation supporting the callbacks.
3904  */
3905 struct perf_guest_info_callbacks *perf_guest_cbs;
3906
3907 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3908 {
3909         perf_guest_cbs = cbs;
3910         return 0;
3911 }
3912 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3913
3914 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3915 {
3916         perf_guest_cbs = NULL;
3917         return 0;
3918 }
3919 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3920
3921 static void
3922 perf_output_sample_regs(struct perf_output_handle *handle,
3923                         struct pt_regs *regs, u64 mask)
3924 {
3925         int bit;
3926
3927         for_each_set_bit(bit, (const unsigned long *) &mask,
3928                          sizeof(mask) * BITS_PER_BYTE) {
3929                 u64 val;
3930
3931                 val = perf_reg_value(regs, bit);
3932                 perf_output_put(handle, val);
3933         }
3934 }
3935
3936 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3937                                   struct pt_regs *regs)
3938 {
3939         if (!user_mode(regs)) {
3940                 if (current->mm)
3941                         regs = task_pt_regs(current);
3942                 else
3943                         regs = NULL;
3944         }
3945
3946         if (regs) {
3947                 regs_user->regs = regs;
3948                 regs_user->abi  = perf_reg_abi(current);
3949         }
3950 }
3951
3952 /*
3953  * Get remaining task size from user stack pointer.
3954  *
3955  * It'd be better to take stack vma map and limit this more
3956  * precisly, but there's no way to get it safely under interrupt,
3957  * so using TASK_SIZE as limit.
3958  */
3959 static u64 perf_ustack_task_size(struct pt_regs *regs)
3960 {
3961         unsigned long addr = perf_user_stack_pointer(regs);
3962
3963         if (!addr || addr >= TASK_SIZE)
3964                 return 0;
3965
3966         return TASK_SIZE - addr;
3967 }
3968
3969 static u16
3970 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3971                         struct pt_regs *regs)
3972 {
3973         u64 task_size;
3974
3975         /* No regs, no stack pointer, no dump. */
3976         if (!regs)
3977                 return 0;
3978
3979         /*
3980          * Check if we fit in with the requested stack size into the:
3981          * - TASK_SIZE
3982          *   If we don't, we limit the size to the TASK_SIZE.
3983          *
3984          * - remaining sample size
3985          *   If we don't, we customize the stack size to
3986          *   fit in to the remaining sample size.
3987          */
3988
3989         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3990         stack_size = min(stack_size, (u16) task_size);
3991
3992         /* Current header size plus static size and dynamic size. */
3993         header_size += 2 * sizeof(u64);
3994
3995         /* Do we fit in with the current stack dump size? */
3996         if ((u16) (header_size + stack_size) < header_size) {
3997                 /*
3998                  * If we overflow the maximum size for the sample,
3999                  * we customize the stack dump size to fit in.
4000                  */
4001                 stack_size = USHRT_MAX - header_size - sizeof(u64);
4002                 stack_size = round_up(stack_size, sizeof(u64));
4003         }
4004
4005         return stack_size;
4006 }
4007
4008 static void
4009 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4010                           struct pt_regs *regs)
4011 {
4012         /* Case of a kernel thread, nothing to dump */
4013         if (!regs) {
4014                 u64 size = 0;
4015                 perf_output_put(handle, size);
4016         } else {
4017                 unsigned long sp;
4018                 unsigned int rem;
4019                 u64 dyn_size;
4020
4021                 /*
4022                  * We dump:
4023                  * static size
4024                  *   - the size requested by user or the best one we can fit
4025                  *     in to the sample max size
4026                  * data
4027                  *   - user stack dump data
4028                  * dynamic size
4029                  *   - the actual dumped size
4030                  */
4031
4032                 /* Static size. */
4033                 perf_output_put(handle, dump_size);
4034
4035                 /* Data. */
4036                 sp = perf_user_stack_pointer(regs);
4037                 rem = __output_copy_user(handle, (void *) sp, dump_size);
4038                 dyn_size = dump_size - rem;
4039
4040                 perf_output_skip(handle, rem);
4041
4042                 /* Dynamic size. */
4043                 perf_output_put(handle, dyn_size);
4044         }
4045 }
4046
4047 static void __perf_event_header__init_id(struct perf_event_header *header,
4048                                          struct perf_sample_data *data,
4049                                          struct perf_event *event)
4050 {
4051         u64 sample_type = event->attr.sample_type;
4052
4053         data->type = sample_type;
4054         header->size += event->id_header_size;
4055
4056         if (sample_type & PERF_SAMPLE_TID) {
4057                 /* namespace issues */
4058                 data->tid_entry.pid = perf_event_pid(event, current);
4059                 data->tid_entry.tid = perf_event_tid(event, current);
4060         }
4061
4062         if (sample_type & PERF_SAMPLE_TIME)
4063                 data->time = perf_clock();
4064
4065         if (sample_type & PERF_SAMPLE_ID)
4066                 data->id = primary_event_id(event);
4067
4068         if (sample_type & PERF_SAMPLE_STREAM_ID)
4069                 data->stream_id = event->id;
4070
4071         if (sample_type & PERF_SAMPLE_CPU) {
4072                 data->cpu_entry.cpu      = raw_smp_processor_id();
4073                 data->cpu_entry.reserved = 0;
4074         }
4075 }
4076
4077 void perf_event_header__init_id(struct perf_event_header *header,
4078                                 struct perf_sample_data *data,
4079                                 struct perf_event *event)
4080 {
4081         if (event->attr.sample_id_all)
4082                 __perf_event_header__init_id(header, data, event);
4083 }
4084
4085 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4086                                            struct perf_sample_data *data)
4087 {
4088         u64 sample_type = data->type;
4089
4090         if (sample_type & PERF_SAMPLE_TID)
4091                 perf_output_put(handle, data->tid_entry);
4092
4093         if (sample_type & PERF_SAMPLE_TIME)
4094                 perf_output_put(handle, data->time);
4095
4096         if (sample_type & PERF_SAMPLE_ID)
4097                 perf_output_put(handle, data->id);
4098
4099         if (sample_type & PERF_SAMPLE_STREAM_ID)
4100                 perf_output_put(handle, data->stream_id);
4101
4102         if (sample_type & PERF_SAMPLE_CPU)
4103                 perf_output_put(handle, data->cpu_entry);
4104 }
4105
4106 void perf_event__output_id_sample(struct perf_event *event,
4107                                   struct perf_output_handle *handle,
4108                                   struct perf_sample_data *sample)
4109 {
4110         if (event->attr.sample_id_all)
4111                 __perf_event__output_id_sample(handle, sample);
4112 }
4113
4114 static void perf_output_read_one(struct perf_output_handle *handle,
4115                                  struct perf_event *event,
4116                                  u64 enabled, u64 running)
4117 {
4118         u64 read_format = event->attr.read_format;
4119         u64 values[4];
4120         int n = 0;
4121
4122         values[n++] = perf_event_count(event);
4123         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4124                 values[n++] = enabled +
4125                         atomic64_read(&event->child_total_time_enabled);
4126         }
4127         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4128                 values[n++] = running +
4129                         atomic64_read(&event->child_total_time_running);
4130         }
4131         if (read_format & PERF_FORMAT_ID)
4132                 values[n++] = primary_event_id(event);
4133
4134         __output_copy(handle, values, n * sizeof(u64));
4135 }
4136
4137 /*
4138  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4139  */
4140 static void perf_output_read_group(struct perf_output_handle *handle,
4141                             struct perf_event *event,
4142                             u64 enabled, u64 running)
4143 {
4144         struct perf_event *leader = event->group_leader, *sub;
4145         u64 read_format = event->attr.read_format;
4146         u64 values[5];
4147         int n = 0;
4148
4149         values[n++] = 1 + leader->nr_siblings;
4150
4151         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4152                 values[n++] = enabled;
4153
4154         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4155                 values[n++] = running;
4156
4157         if (leader != event)
4158                 leader->pmu->read(leader);
4159
4160         values[n++] = perf_event_count(leader);
4161         if (read_format & PERF_FORMAT_ID)
4162                 values[n++] = primary_event_id(leader);
4163
4164         __output_copy(handle, values, n * sizeof(u64));
4165
4166         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4167                 n = 0;
4168
4169                 if (sub != event)
4170                         sub->pmu->read(sub);
4171
4172                 values[n++] = perf_event_count(sub);
4173                 if (read_format & PERF_FORMAT_ID)
4174                         values[n++] = primary_event_id(sub);
4175
4176                 __output_copy(handle, values, n * sizeof(u64));
4177         }
4178 }
4179
4180 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4181                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
4182
4183 static void perf_output_read(struct perf_output_handle *handle,
4184                              struct perf_event *event)
4185 {
4186         u64 enabled = 0, running = 0, now;
4187         u64 read_format = event->attr.read_format;
4188
4189         /*
4190          * compute total_time_enabled, total_time_running
4191          * based on snapshot values taken when the event
4192          * was last scheduled in.
4193          *
4194          * we cannot simply called update_context_time()
4195          * because of locking issue as we are called in
4196          * NMI context
4197          */
4198         if (read_format & PERF_FORMAT_TOTAL_TIMES)
4199                 calc_timer_values(event, &now, &enabled, &running);
4200
4201         if (event->attr.read_format & PERF_FORMAT_GROUP)
4202                 perf_output_read_group(handle, event, enabled, running);
4203         else
4204                 perf_output_read_one(handle, event, enabled, running);
4205 }
4206
4207 void perf_output_sample(struct perf_output_handle *handle,
4208                         struct perf_event_header *header,
4209                         struct perf_sample_data *data,
4210                         struct perf_event *event)
4211 {
4212         u64 sample_type = data->type;
4213
4214         perf_output_put(handle, *header);
4215
4216         if (sample_type & PERF_SAMPLE_IP)
4217                 perf_output_put(handle, data->ip);
4218
4219         if (sample_type & PERF_SAMPLE_TID)
4220                 perf_output_put(handle, data->tid_entry);
4221
4222         if (sample_type & PERF_SAMPLE_TIME)
4223                 perf_output_put(handle, data->time);
4224
4225         if (sample_type & PERF_SAMPLE_ADDR)
4226                 perf_output_put(handle, data->addr);
4227
4228         if (sample_type & PERF_SAMPLE_ID)
4229                 perf_output_put(handle, data->id);
4230
4231         if (sample_type & PERF_SAMPLE_STREAM_ID)
4232                 perf_output_put(handle, data->stream_id);
4233
4234         if (sample_type & PERF_SAMPLE_CPU)
4235                 perf_output_put(handle, data->cpu_entry);
4236
4237         if (sample_type & PERF_SAMPLE_PERIOD)
4238                 perf_output_put(handle, data->period);
4239
4240         if (sample_type & PERF_SAMPLE_READ)
4241                 perf_output_read(handle, event);
4242
4243         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4244                 if (data->callchain) {
4245                         int size = 1;
4246
4247                         if (data->callchain)
4248                                 size += data->callchain->nr;
4249
4250                         size *= sizeof(u64);
4251
4252                         __output_copy(handle, data->callchain, size);
4253                 } else {
4254                         u64 nr = 0;
4255                         perf_output_put(handle, nr);
4256                 }
4257         }
4258
4259         if (sample_type & PERF_SAMPLE_RAW) {
4260                 if (data->raw) {
4261                         perf_output_put(handle, data->raw->size);
4262                         __output_copy(handle, data->raw->data,
4263                                            data->raw->size);
4264                 } else {
4265                         struct {
4266                                 u32     size;
4267                                 u32     data;
4268                         } raw = {
4269                                 .size = sizeof(u32),
4270                                 .data = 0,
4271                         };
4272                         perf_output_put(handle, raw);
4273                 }
4274         }
4275
4276         if (!event->attr.watermark) {
4277                 int wakeup_events = event->attr.wakeup_events;
4278
4279                 if (wakeup_events) {
4280                         struct ring_buffer *rb = handle->rb;
4281                         int events = local_inc_return(&rb->events);
4282
4283                         if (events >= wakeup_events) {
4284                                 local_sub(wakeup_events, &rb->events);
4285                                 local_inc(&rb->wakeup);
4286                         }
4287                 }
4288         }
4289
4290         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4291                 if (data->br_stack) {
4292                         size_t size;
4293
4294                         size = data->br_stack->nr
4295                              * sizeof(struct perf_branch_entry);
4296
4297                         perf_output_put(handle, data->br_stack->nr);
4298                         perf_output_copy(handle, data->br_stack->entries, size);
4299                 } else {
4300                         /*
4301                          * we always store at least the value of nr
4302                          */
4303                         u64 nr = 0;
4304                         perf_output_put(handle, nr);
4305                 }
4306         }
4307
4308         if (sample_type & PERF_SAMPLE_REGS_USER) {
4309                 u64 abi = data->regs_user.abi;
4310
4311                 /*
4312                  * If there are no regs to dump, notice it through
4313                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4314                  */
4315                 perf_output_put(handle, abi);
4316
4317                 if (abi) {
4318                         u64 mask = event->attr.sample_regs_user;
4319                         perf_output_sample_regs(handle,
4320                                                 data->regs_user.regs,
4321                                                 mask);
4322                 }
4323         }
4324
4325         if (sample_type & PERF_SAMPLE_STACK_USER)
4326                 perf_output_sample_ustack(handle,
4327                                           data->stack_user_size,
4328                                           data->regs_user.regs);
4329
4330         if (sample_type & PERF_SAMPLE_WEIGHT)
4331                 perf_output_put(handle, data->weight);
4332
4333         if (sample_type & PERF_SAMPLE_DATA_SRC)
4334                 perf_output_put(handle, data->data_src.val);
4335 }
4336
4337 void perf_prepare_sample(struct perf_event_header *header,
4338                          struct perf_sample_data *data,
4339                          struct perf_event *event,
4340                          struct pt_regs *regs)
4341 {
4342         u64 sample_type = event->attr.sample_type;
4343
4344         header->type = PERF_RECORD_SAMPLE;
4345         header->size = sizeof(*header) + event->header_size;
4346
4347         header->misc = 0;
4348         header->misc |= perf_misc_flags(regs);
4349
4350         __perf_event_header__init_id(header, data, event);
4351
4352         if (sample_type & PERF_SAMPLE_IP)
4353                 data->ip = perf_instruction_pointer(regs);
4354
4355         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4356                 int size = 1;
4357
4358                 data->callchain = perf_callchain(event, regs);
4359
4360                 if (data->callchain)
4361                         size += data->callchain->nr;
4362
4363                 header->size += size * sizeof(u64);
4364         }
4365
4366         if (sample_type & PERF_SAMPLE_RAW) {
4367                 int size = sizeof(u32);
4368
4369                 if (data->raw)
4370                         size += data->raw->size;
4371                 else
4372                         size += sizeof(u32);
4373
4374                 WARN_ON_ONCE(size & (sizeof(u64)-1));
4375                 header->size += size;
4376         }
4377
4378         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4379                 int size = sizeof(u64); /* nr */
4380                 if (data->br_stack) {
4381                         size += data->br_stack->nr
4382                               * sizeof(struct perf_branch_entry);
4383                 }
4384                 header->size += size;
4385         }
4386
4387         if (sample_type & PERF_SAMPLE_REGS_USER) {
4388                 /* regs dump ABI info */
4389                 int size = sizeof(u64);
4390
4391                 perf_sample_regs_user(&data->regs_user, regs);
4392
4393                 if (data->regs_user.regs) {
4394                         u64 mask = event->attr.sample_regs_user;
4395                         size += hweight64(mask) * sizeof(u64);
4396                 }
4397
4398                 header->size += size;
4399         }
4400
4401         if (sample_type & PERF_SAMPLE_STACK_USER) {
4402                 /*
4403                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4404                  * processed as the last one or have additional check added
4405                  * in case new sample type is added, because we could eat
4406                  * up the rest of the sample size.
4407                  */
4408                 struct perf_regs_user *uregs = &data->regs_user;
4409                 u16 stack_size = event->attr.sample_stack_user;
4410                 u16 size = sizeof(u64);
4411
4412                 if (!uregs->abi)
4413                         perf_sample_regs_user(uregs, regs);
4414
4415                 stack_size = perf_sample_ustack_size(stack_size, header->size,
4416                                                      uregs->regs);
4417
4418                 /*
4419                  * If there is something to dump, add space for the dump
4420                  * itself and for the field that tells the dynamic size,
4421                  * which is how many have been actually dumped.
4422                  */
4423                 if (stack_size)
4424                         size += sizeof(u64) + stack_size;
4425
4426                 data->stack_user_size = stack_size;
4427                 header->size += size;
4428         }
4429 }
4430
4431 static void perf_event_output(struct perf_event *event,
4432                                 struct perf_sample_data *data,
4433                                 struct pt_regs *regs)
4434 {
4435         struct perf_output_handle handle;
4436         struct perf_event_header header;
4437
4438         /* protect the callchain buffers */
4439         rcu_read_lock();
4440
4441         perf_prepare_sample(&header, data, event, regs);
4442
4443         if (perf_output_begin(&handle, event, header.size))
4444                 goto exit;
4445
4446         perf_output_sample(&handle, &header, data, event);
4447
4448         perf_output_end(&handle);
4449
4450 exit:
4451         rcu_read_unlock();
4452 }
4453
4454 /*
4455  * read event_id
4456  */
4457
4458 struct perf_read_event {
4459         struct perf_event_header        header;
4460
4461         u32                             pid;
4462         u32                             tid;
4463 };
4464
4465 static void
4466 perf_event_read_event(struct perf_event *event,
4467                         struct task_struct *task)
4468 {
4469         struct perf_output_handle handle;
4470         struct perf_sample_data sample;
4471         struct perf_read_event read_event = {
4472                 .header = {
4473                         .type = PERF_RECORD_READ,
4474                         .misc = 0,
4475                         .size = sizeof(read_event) + event->read_size,
4476                 },
4477                 .pid = perf_event_pid(event, task),
4478                 .tid = perf_event_tid(event, task),
4479         };
4480         int ret;
4481
4482         perf_event_header__init_id(&read_event.header, &sample, event);
4483         ret = perf_output_begin(&handle, event, read_event.header.size);
4484         if (ret)
4485                 return;
4486
4487         perf_output_put(&handle, read_event);
4488         perf_output_read(&handle, event);
4489         perf_event__output_id_sample(event, &handle, &sample);
4490
4491         perf_output_end(&handle);
4492 }
4493
4494 typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4495 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4496
4497 static void
4498 perf_event_aux_ctx(struct perf_event_context *ctx,
4499                    perf_event_aux_match_cb match,
4500                    perf_event_aux_output_cb output,
4501                    void *data)
4502 {
4503         struct perf_event *event;
4504
4505         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4506                 if (event->state < PERF_EVENT_STATE_INACTIVE)
4507                         continue;
4508                 if (!event_filter_match(event))
4509                         continue;
4510                 if (match(event, data))
4511                         output(event, data);
4512         }
4513 }
4514
4515 static void
4516 perf_event_aux(perf_event_aux_match_cb match,
4517                perf_event_aux_output_cb output,
4518                void *data,
4519                struct perf_event_context *task_ctx)
4520 {
4521         struct perf_cpu_context *cpuctx;
4522         struct perf_event_context *ctx;
4523         struct pmu *pmu;
4524         int ctxn;
4525
4526         rcu_read_lock();
4527         list_for_each_entry_rcu(pmu, &pmus, entry) {
4528                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4529                 if (cpuctx->unique_pmu != pmu)
4530                         goto next;
4531                 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4532                 if (task_ctx)
4533                         goto next;
4534                 ctxn = pmu->task_ctx_nr;
4535                 if (ctxn < 0)
4536                         goto next;
4537                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4538                 if (ctx)
4539                         perf_event_aux_ctx(ctx, match, output, data);
4540 next:
4541                 put_cpu_ptr(pmu->pmu_cpu_context);
4542         }
4543
4544         if (task_ctx) {
4545                 preempt_disable();
4546                 perf_event_aux_ctx(task_ctx, match, output, data);
4547                 preempt_enable();
4548         }
4549         rcu_read_unlock();
4550 }
4551
4552 /*
4553  * task tracking -- fork/exit
4554  *
4555  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4556  */
4557
4558 struct perf_task_event {
4559         struct task_struct              *task;
4560         struct perf_event_context       *task_ctx;
4561
4562         struct {
4563                 struct perf_event_header        header;
4564
4565                 u32                             pid;
4566                 u32                             ppid;
4567                 u32                             tid;
4568                 u32                             ptid;
4569                 u64                             time;
4570         } event_id;
4571 };
4572
4573 static void perf_event_task_output(struct perf_event *event,
4574                                    void *data)
4575 {
4576         struct perf_task_event *task_event = data;
4577         struct perf_output_handle handle;
4578         struct perf_sample_data sample;
4579         struct task_struct *task = task_event->task;
4580         int ret, size = task_event->event_id.header.size;
4581
4582         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4583
4584         ret = perf_output_begin(&handle, event,
4585                                 task_event->event_id.header.size);
4586         if (ret)
4587                 goto out;
4588
4589         task_event->event_id.pid = perf_event_pid(event, task);
4590         task_event->event_id.ppid = perf_event_pid(event, current);
4591
4592         task_event->event_id.tid = perf_event_tid(event, task);
4593         task_event->event_id.ptid = perf_event_tid(event, current);
4594
4595         perf_output_put(&handle, task_event->event_id);
4596
4597         perf_event__output_id_sample(event, &handle, &sample);
4598
4599         perf_output_end(&handle);
4600 out:
4601         task_event->event_id.header.size = size;
4602 }
4603
4604 static int perf_event_task_match(struct perf_event *event,
4605                                  void *data __maybe_unused)
4606 {
4607         return event->attr.comm || event->attr.mmap ||
4608                event->attr.mmap_data || event->attr.task;
4609 }
4610
4611 static void perf_event_task(struct task_struct *task,
4612                               struct perf_event_context *task_ctx,
4613                               int new)
4614 {
4615         struct perf_task_event task_event;
4616
4617         if (!atomic_read(&nr_comm_events) &&
4618             !atomic_read(&nr_mmap_events) &&
4619             !atomic_read(&nr_task_events))
4620                 return;
4621
4622         task_event = (struct perf_task_event){
4623                 .task     = task,
4624                 .task_ctx = task_ctx,
4625                 .event_id    = {
4626                         .header = {
4627                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4628                                 .misc = 0,
4629                                 .size = sizeof(task_event.event_id),
4630                         },
4631                         /* .pid  */
4632                         /* .ppid */
4633                         /* .tid  */
4634                         /* .ptid */
4635                         .time = perf_clock(),
4636                 },
4637         };
4638
4639         perf_event_aux(perf_event_task_match,
4640                        perf_event_task_output,
4641                        &task_event,
4642                        task_ctx);
4643 }
4644
4645 void perf_event_fork(struct task_struct *task)
4646 {
4647         perf_event_task(task, NULL, 1);
4648 }
4649
4650 /*
4651  * comm tracking
4652  */
4653
4654 struct perf_comm_event {
4655         struct task_struct      *task;
4656         char                    *comm;
4657         int                     comm_size;
4658
4659         struct {
4660                 struct perf_event_header        header;
4661
4662                 u32                             pid;
4663                 u32                             tid;
4664         } event_id;
4665 };
4666
4667 static void perf_event_comm_output(struct perf_event *event,
4668                                    void *data)
4669 {
4670         struct perf_comm_event *comm_event = data;
4671         struct perf_output_handle handle;
4672         struct perf_sample_data sample;
4673         int size = comm_event->event_id.header.size;
4674         int ret;
4675
4676         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4677         ret = perf_output_begin(&handle, event,
4678                                 comm_event->event_id.header.size);
4679
4680         if (ret)
4681                 goto out;
4682
4683         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4684         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4685
4686         perf_output_put(&handle, comm_event->event_id);
4687         __output_copy(&handle, comm_event->comm,
4688                                    comm_event->comm_size);
4689
4690         perf_event__output_id_sample(event, &handle, &sample);
4691
4692         perf_output_end(&handle);
4693 out:
4694         comm_event->event_id.header.size = size;
4695 }
4696
4697 static int perf_event_comm_match(struct perf_event *event,
4698                                  void *data __maybe_unused)
4699 {
4700         return event->attr.comm;
4701 }
4702
4703 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4704 {
4705         char comm[TASK_COMM_LEN];
4706         unsigned int size;
4707
4708         memset(comm, 0, sizeof(comm));
4709         strlcpy(comm, comm_event->task->comm, sizeof(comm));
4710         size = ALIGN(strlen(comm)+1, sizeof(u64));
4711
4712         comm_event->comm = comm;
4713         comm_event->comm_size = size;
4714
4715         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4716
4717         perf_event_aux(perf_event_comm_match,
4718                        perf_event_comm_output,
4719                        comm_event,
4720                        NULL);
4721 }
4722
4723 void perf_event_comm(struct task_struct *task)
4724 {
4725         struct perf_comm_event comm_event;
4726         struct perf_event_context *ctx;
4727         int ctxn;
4728
4729         rcu_read_lock();
4730         for_each_task_context_nr(ctxn) {
4731                 ctx = task->perf_event_ctxp[ctxn];
4732                 if (!ctx)
4733                         continue;
4734
4735                 perf_event_enable_on_exec(ctx);
4736         }
4737         rcu_read_unlock();
4738
4739         if (!atomic_read(&nr_comm_events))
4740                 return;
4741
4742         comm_event = (struct perf_comm_event){
4743                 .task   = task,
4744                 /* .comm      */
4745                 /* .comm_size */
4746                 .event_id  = {
4747                         .header = {
4748                                 .type = PERF_RECORD_COMM,
4749                                 .misc = 0,
4750                                 /* .size */
4751                         },
4752                         /* .pid */
4753                         /* .tid */
4754                 },
4755         };
4756
4757         perf_event_comm_event(&comm_event);
4758 }
4759
4760 /*
4761  * mmap tracking
4762  */
4763
4764 struct perf_mmap_event {
4765         struct vm_area_struct   *vma;
4766
4767         const char              *file_name;
4768         int                     file_size;
4769
4770         struct {
4771                 struct perf_event_header        header;
4772
4773                 u32                             pid;
4774                 u32                             tid;
4775                 u64                             start;
4776                 u64                             len;
4777                 u64                             pgoff;
4778         } event_id;
4779 };
4780
4781 static void perf_event_mmap_output(struct perf_event *event,
4782                                    void *data)
4783 {
4784         struct perf_mmap_event *mmap_event = data;
4785         struct perf_output_handle handle;
4786         struct perf_sample_data sample;
4787         int size = mmap_event->event_id.header.size;
4788         int ret;
4789
4790         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4791         ret = perf_output_begin(&handle, event,
4792                                 mmap_event->event_id.header.size);
4793         if (ret)
4794                 goto out;
4795
4796         mmap_event->event_id.pid = perf_event_pid(event, current);
4797         mmap_event->event_id.tid = perf_event_tid(event, current);
4798
4799         perf_output_put(&handle, mmap_event->event_id);
4800         __output_copy(&handle, mmap_event->file_name,
4801                                    mmap_event->file_size);
4802
4803         perf_event__output_id_sample(event, &handle, &sample);
4804
4805         perf_output_end(&handle);
4806 out:
4807         mmap_event->event_id.header.size = size;
4808 }
4809
4810 static int perf_event_mmap_match(struct perf_event *event,
4811                                  void *data)
4812 {
4813         struct perf_mmap_event *mmap_event = data;
4814         struct vm_area_struct *vma = mmap_event->vma;
4815         int executable = vma->vm_flags & VM_EXEC;
4816
4817         return (!executable && event->attr.mmap_data) ||
4818                (executable && event->attr.mmap);
4819 }
4820
4821 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4822 {
4823         struct vm_area_struct *vma = mmap_event->vma;
4824         struct file *file = vma->vm_file;
4825         unsigned int size;
4826         char tmp[16];
4827         char *buf = NULL;
4828         const char *name;
4829
4830         memset(tmp, 0, sizeof(tmp));
4831
4832         if (file) {
4833                 /*
4834                  * d_path works from the end of the rb backwards, so we
4835                  * need to add enough zero bytes after the string to handle
4836                  * the 64bit alignment we do later.
4837                  */
4838                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4839                 if (!buf) {
4840                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4841                         goto got_name;
4842                 }
4843                 name = d_path(&file->f_path, buf, PATH_MAX);
4844                 if (IS_ERR(name)) {
4845                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4846                         goto got_name;
4847                 }
4848         } else {
4849                 if (arch_vma_name(mmap_event->vma)) {
4850                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4851                                        sizeof(tmp) - 1);
4852                         tmp[sizeof(tmp) - 1] = '\0';
4853                         goto got_name;
4854                 }
4855
4856                 if (!vma->vm_mm) {
4857                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4858                         goto got_name;
4859                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4860                                 vma->vm_end >= vma->vm_mm->brk) {
4861                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4862                         goto got_name;
4863                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4864                                 vma->vm_end >= vma->vm_mm->start_stack) {
4865                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4866                         goto got_name;
4867                 }
4868
4869                 name = strncpy(tmp, "//anon", sizeof(tmp));
4870                 goto got_name;
4871         }
4872
4873 got_name:
4874         size = ALIGN(strlen(name)+1, sizeof(u64));
4875
4876         mmap_event->file_name = name;
4877         mmap_event->file_size = size;
4878
4879         if (!(vma->vm_flags & VM_EXEC))
4880                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4881
4882         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4883
4884         perf_event_aux(perf_event_mmap_match,
4885                        perf_event_mmap_output,
4886                        mmap_event,
4887                        NULL);
4888
4889         kfree(buf);
4890 }
4891
4892 void perf_event_mmap(struct vm_area_struct *vma)
4893 {
4894         struct perf_mmap_event mmap_event;
4895
4896         if (!atomic_read(&nr_mmap_events))
4897                 return;
4898
4899         mmap_event = (struct perf_mmap_event){
4900                 .vma    = vma,
4901                 /* .file_name */
4902                 /* .file_size */
4903                 .event_id  = {
4904                         .header = {
4905                                 .type = PERF_RECORD_MMAP,
4906                                 .misc = PERF_RECORD_MISC_USER,
4907                                 /* .size */
4908                         },
4909                         /* .pid */
4910                         /* .tid */
4911                         .start  = vma->vm_start,
4912                         .len    = vma->vm_end - vma->vm_start,
4913                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4914                 },
4915         };
4916
4917         perf_event_mmap_event(&mmap_event);
4918 }
4919
4920 /*
4921  * IRQ throttle logging
4922  */
4923
4924 static void perf_log_throttle(struct perf_event *event, int enable)
4925 {
4926         struct perf_output_handle handle;
4927         struct perf_sample_data sample;
4928         int ret;
4929
4930         struct {
4931                 struct perf_event_header        header;
4932                 u64                             time;
4933                 u64                             id;
4934                 u64                             stream_id;
4935         } throttle_event = {
4936                 .header = {
4937                         .type = PERF_RECORD_THROTTLE,
4938                         .misc = 0,
4939                         .size = sizeof(throttle_event),
4940                 },
4941                 .time           = perf_clock(),
4942                 .id             = primary_event_id(event),
4943                 .stream_id      = event->id,
4944         };
4945
4946         if (enable)
4947                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4948
4949         perf_event_header__init_id(&throttle_event.header, &sample, event);
4950
4951         ret = perf_output_begin(&handle, event,
4952                                 throttle_event.header.size);
4953         if (ret)
4954                 return;
4955
4956         perf_output_put(&handle, throttle_event);
4957         perf_event__output_id_sample(event, &handle, &sample);
4958         perf_output_end(&handle);
4959 }
4960
4961 /*
4962  * Generic event overflow handling, sampling.
4963  */
4964
4965 static int __perf_event_overflow(struct perf_event *event,
4966                                    int throttle, struct perf_sample_data *data,
4967                                    struct pt_regs *regs)
4968 {
4969         int events = atomic_read(&event->event_limit);
4970         struct hw_perf_event *hwc = &event->hw;
4971         u64 seq;
4972         int ret = 0;
4973
4974         /*
4975          * Non-sampling counters might still use the PMI to fold short
4976          * hardware counters, ignore those.
4977          */
4978         if (unlikely(!is_sampling_event(event)))
4979                 return 0;
4980
4981         seq = __this_cpu_read(perf_throttled_seq);
4982         if (seq != hwc->interrupts_seq) {
4983                 hwc->interrupts_seq = seq;
4984                 hwc->interrupts = 1;
4985         } else {
4986                 hwc->interrupts++;
4987                 if (unlikely(throttle
4988                              && hwc->interrupts >= max_samples_per_tick)) {
4989                         __this_cpu_inc(perf_throttled_count);
4990                         hwc->interrupts = MAX_INTERRUPTS;
4991                         perf_log_throttle(event, 0);
4992                         ret = 1;
4993                 }
4994         }
4995
4996         if (event->attr.freq) {
4997                 u64 now = perf_clock();
4998                 s64 delta = now - hwc->freq_time_stamp;
4999
5000                 hwc->freq_time_stamp = now;
5001
5002                 if (delta > 0 && delta < 2*TICK_NSEC)
5003                         perf_adjust_period(event, delta, hwc->last_period, true);
5004         }
5005
5006         /*
5007          * XXX event_limit might not quite work as expected on inherited
5008          * events
5009          */
5010
5011         event->pending_kill = POLL_IN;
5012         if (events && atomic_dec_and_test(&event->event_limit)) {
5013                 ret = 1;
5014                 event->pending_kill = POLL_HUP;
5015                 event->pending_disable = 1;
5016                 irq_work_queue(&event->pending);
5017         }
5018
5019         if (event->overflow_handler)
5020                 event->overflow_handler(event, data, regs);
5021         else
5022                 perf_event_output(event, data, regs);
5023
5024         if (event->fasync && event->pending_kill) {
5025                 event->pending_wakeup = 1;
5026                 irq_work_queue(&event->pending);
5027         }
5028
5029         return ret;
5030 }
5031
5032 int perf_event_overflow(struct perf_event *event,
5033                           struct perf_sample_data *data,
5034                           struct pt_regs *regs)
5035 {
5036         return __perf_event_overflow(event, 1, data, regs);
5037 }
5038
5039 /*
5040  * Generic software event infrastructure
5041  */
5042
5043 struct swevent_htable {
5044         struct swevent_hlist            *swevent_hlist;
5045         struct mutex                    hlist_mutex;
5046         int                             hlist_refcount;
5047
5048         /* Recursion avoidance in each contexts */
5049         int                             recursion[PERF_NR_CONTEXTS];
5050 };
5051
5052 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5053
5054 /*
5055  * We directly increment event->count and keep a second value in
5056  * event->hw.period_left to count intervals. This period event
5057  * is kept in the range [-sample_period, 0] so that we can use the
5058  * sign as trigger.
5059  */
5060
5061 u64 perf_swevent_set_period(struct perf_event *event)
5062 {
5063         struct hw_perf_event *hwc = &event->hw;
5064         u64 period = hwc->last_period;
5065         u64 nr, offset;
5066         s64 old, val;
5067
5068         hwc->last_period = hwc->sample_period;
5069
5070 again:
5071         old = val = local64_read(&hwc->period_left);
5072         if (val < 0)
5073                 return 0;
5074
5075         nr = div64_u64(period + val, period);
5076         offset = nr * period;
5077         val -= offset;
5078         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5079                 goto again;
5080
5081         return nr;
5082 }
5083
5084 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5085                                     struct perf_sample_data *data,
5086                                     struct pt_regs *regs)
5087 {
5088         struct hw_perf_event *hwc = &event->hw;
5089         int throttle = 0;
5090
5091         if (!overflow)
5092                 overflow = perf_swevent_set_period(event);
5093
5094         if (hwc->interrupts == MAX_INTERRUPTS)
5095                 return;
5096
5097         for (; overflow; overflow--) {
5098                 if (__perf_event_overflow(event, throttle,
5099                                             data, regs)) {
5100                         /*
5101                          * We inhibit the overflow from happening when
5102                          * hwc->interrupts == MAX_INTERRUPTS.
5103                          */
5104                         break;
5105                 }
5106                 throttle = 1;
5107         }
5108 }
5109
5110 static void perf_swevent_event(struct perf_event *event, u64 nr,
5111                                struct perf_sample_data *data,
5112                                struct pt_regs *regs)
5113 {
5114         struct hw_perf_event *hwc = &event->hw;
5115
5116         local64_add(nr, &event->count);
5117
5118         if (!regs)
5119                 return;
5120
5121         if (!is_sampling_event(event))
5122                 return;
5123
5124         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5125                 data->period = nr;
5126                 return perf_swevent_overflow(event, 1, data, regs);
5127         } else
5128                 data->period = event->hw.last_period;
5129
5130         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5131                 return perf_swevent_overflow(event, 1, data, regs);
5132
5133         if (local64_add_negative(nr, &hwc->period_left))
5134                 return;
5135
5136         perf_swevent_overflow(event, 0, data, regs);
5137 }
5138
5139 static int perf_exclude_event(struct perf_event *event,
5140                               struct pt_regs *regs)
5141 {
5142         if (event->hw.state & PERF_HES_STOPPED)
5143                 return 1;
5144
5145         if (regs) {
5146                 if (event->attr.exclude_user && user_mode(regs))
5147                         return 1;
5148
5149                 if (event->attr.exclude_kernel && !user_mode(regs))
5150                         return 1;
5151         }
5152
5153         return 0;
5154 }
5155
5156 static int perf_swevent_match(struct perf_event *event,
5157                                 enum perf_type_id type,
5158                                 u32 event_id,
5159                                 struct perf_sample_data *data,
5160                                 struct pt_regs *regs)
5161 {
5162         if (event->attr.type != type)
5163                 return 0;
5164
5165         if (event->attr.config != event_id)
5166                 return 0;
5167
5168         if (perf_exclude_event(event, regs))
5169                 return 0;
5170
5171         return 1;
5172 }
5173
5174 static inline u64 swevent_hash(u64 type, u32 event_id)
5175 {
5176         u64 val = event_id | (type << 32);
5177
5178         return hash_64(val, SWEVENT_HLIST_BITS);
5179 }
5180
5181 static inline struct hlist_head *
5182 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5183 {
5184         u64 hash = swevent_hash(type, event_id);
5185
5186         return &hlist->heads[hash];
5187 }
5188
5189 /* For the read side: events when they trigger */
5190 static inline struct hlist_head *
5191 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5192 {
5193         struct swevent_hlist *hlist;
5194
5195         hlist = rcu_dereference(swhash->swevent_hlist);
5196         if (!hlist)
5197                 return NULL;
5198
5199         return __find_swevent_head(hlist, type, event_id);
5200 }
5201
5202 /* For the event head insertion and removal in the hlist */
5203 static inline struct hlist_head *
5204 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5205 {
5206         struct swevent_hlist *hlist;
5207         u32 event_id = event->attr.config;
5208         u64 type = event->attr.type;
5209
5210         /*
5211          * Event scheduling is always serialized against hlist allocation
5212          * and release. Which makes the protected version suitable here.
5213          * The context lock guarantees that.
5214          */
5215         hlist = rcu_dereference_protected(swhash->swevent_hlist,
5216                                           lockdep_is_held(&event->ctx->lock));
5217         if (!hlist)
5218                 return NULL;
5219
5220         return __find_swevent_head(hlist, type, event_id);
5221 }
5222
5223 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5224                                     u64 nr,
5225                                     struct perf_sample_data *data,
5226                                     struct pt_regs *regs)
5227 {
5228         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5229         struct perf_event *event;
5230         struct hlist_head *head;
5231
5232         rcu_read_lock();
5233         head = find_swevent_head_rcu(swhash, type, event_id);
5234         if (!head)
5235                 goto end;
5236
5237         hlist_for_each_entry_rcu(event, head, hlist_entry) {
5238                 if (perf_swevent_match(event, type, event_id, data, regs))
5239                         perf_swevent_event(event, nr, data, regs);
5240         }
5241 end:
5242         rcu_read_unlock();
5243 }
5244
5245 int perf_swevent_get_recursion_context(void)
5246 {
5247         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5248
5249         return get_recursion_context(swhash->recursion);
5250 }
5251 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5252
5253 inline void perf_swevent_put_recursion_context(int rctx)
5254 {
5255         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5256
5257         put_recursion_context(swhash->recursion, rctx);
5258 }
5259
5260 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5261 {
5262         struct perf_sample_data data;
5263         int rctx;
5264
5265         preempt_disable_notrace();
5266         rctx = perf_swevent_get_recursion_context();
5267         if (rctx < 0)
5268                 return;
5269
5270         perf_sample_data_init(&data, addr, 0);
5271
5272         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5273
5274         perf_swevent_put_recursion_context(rctx);
5275         preempt_enable_notrace();
5276 }
5277
5278 static void perf_swevent_read(struct perf_event *event)
5279 {
5280 }
5281
5282 static int perf_swevent_add(struct perf_event *event, int flags)
5283 {
5284         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5285         struct hw_perf_event *hwc = &event->hw;
5286         struct hlist_head *head;
5287
5288         if (is_sampling_event(event)) {
5289                 hwc->last_period = hwc->sample_period;
5290                 perf_swevent_set_period(event);
5291         }
5292
5293         hwc->state = !(flags & PERF_EF_START);
5294
5295         head = find_swevent_head(swhash, event);
5296         if (WARN_ON_ONCE(!head))
5297                 return -EINVAL;
5298
5299         hlist_add_head_rcu(&event->hlist_entry, head);
5300
5301         return 0;
5302 }
5303
5304 static void perf_swevent_del(struct perf_event *event, int flags)
5305 {
5306         hlist_del_rcu(&event->hlist_entry);
5307 }
5308
5309 static void perf_swevent_start(struct perf_event *event, int flags)
5310 {
5311         event->hw.state = 0;
5312 }
5313
5314 static void perf_swevent_stop(struct perf_event *event, int flags)
5315 {
5316         event->hw.state = PERF_HES_STOPPED;
5317 }
5318
5319 /* Deref the hlist from the update side */
5320 static inline struct swevent_hlist *
5321 swevent_hlist_deref(struct swevent_htable *swhash)
5322 {
5323         return rcu_dereference_protected(swhash->swevent_hlist,
5324                                          lockdep_is_held(&swhash->hlist_mutex));
5325 }
5326
5327 static void swevent_hlist_release(struct swevent_htable *swhash)
5328 {
5329         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5330
5331         if (!hlist)
5332                 return;
5333
5334         rcu_assign_pointer(swhash->swevent_hlist, NULL);
5335         kfree_rcu(hlist, rcu_head);
5336 }
5337
5338 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5339 {
5340         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5341
5342         mutex_lock(&swhash->hlist_mutex);
5343
5344         if (!--swhash->hlist_refcount)
5345                 swevent_hlist_release(swhash);
5346
5347         mutex_unlock(&swhash->hlist_mutex);
5348 }
5349
5350 static void swevent_hlist_put(struct perf_event *event)
5351 {
5352         int cpu;
5353
5354         if (event->cpu != -1) {
5355                 swevent_hlist_put_cpu(event, event->cpu);
5356                 return;
5357         }
5358
5359         for_each_possible_cpu(cpu)
5360                 swevent_hlist_put_cpu(event, cpu);
5361 }
5362
5363 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5364 {
5365         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5366         int err = 0;
5367
5368         mutex_lock(&swhash->hlist_mutex);
5369
5370         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5371                 struct swevent_hlist *hlist;
5372
5373                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5374                 if (!hlist) {
5375                         err = -ENOMEM;
5376                         goto exit;
5377                 }
5378                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5379         }
5380         swhash->hlist_refcount++;
5381 exit:
5382         mutex_unlock(&swhash->hlist_mutex);
5383
5384         return err;
5385 }
5386
5387 static int swevent_hlist_get(struct perf_event *event)
5388 {
5389         int err;
5390         int cpu, failed_cpu;
5391
5392         if (event->cpu != -1)
5393                 return swevent_hlist_get_cpu(event, event->cpu);
5394
5395         get_online_cpus();
5396         for_each_possible_cpu(cpu) {
5397                 err = swevent_hlist_get_cpu(event, cpu);
5398                 if (err) {
5399                         failed_cpu = cpu;
5400                         goto fail;
5401                 }
5402         }
5403         put_online_cpus();
5404
5405         return 0;
5406 fail:
5407         for_each_possible_cpu(cpu) {
5408                 if (cpu == failed_cpu)
5409                         break;
5410                 swevent_hlist_put_cpu(event, cpu);
5411         }
5412
5413         put_online_cpus();
5414         return err;
5415 }
5416
5417 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5418
5419 static void sw_perf_event_destroy(struct perf_event *event)
5420 {
5421         u64 event_id = event->attr.config;
5422
5423         WARN_ON(event->parent);
5424
5425         static_key_slow_dec(&perf_swevent_enabled[event_id]);
5426         swevent_hlist_put(event);
5427 }
5428
5429 static int perf_swevent_init(struct perf_event *event)
5430 {
5431         u64 event_id = event->attr.config;
5432
5433         if (event->attr.type != PERF_TYPE_SOFTWARE)
5434                 return -ENOENT;
5435
5436         /*
5437          * no branch sampling for software events
5438          */
5439         if (has_branch_stack(event))
5440                 return -EOPNOTSUPP;
5441
5442         switch (event_id) {
5443         case PERF_COUNT_SW_CPU_CLOCK:
5444         case PERF_COUNT_SW_TASK_CLOCK:
5445                 return -ENOENT;
5446
5447         default:
5448                 break;
5449         }
5450
5451         if (event_id >= PERF_COUNT_SW_MAX)
5452                 return -ENOENT;
5453
5454         if (!event->parent) {
5455                 int err;
5456
5457                 err = swevent_hlist_get(event);
5458                 if (err)
5459                         return err;
5460
5461                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5462                 event->destroy = sw_perf_event_destroy;
5463         }
5464
5465         return 0;
5466 }
5467
5468 static int perf_swevent_event_idx(struct perf_event *event)
5469 {
5470         return 0;
5471 }
5472
5473 static struct pmu perf_swevent = {
5474         .task_ctx_nr    = perf_sw_context,
5475
5476         .event_init     = perf_swevent_init,
5477         .add            = perf_swevent_add,
5478         .del            = perf_swevent_del,
5479         .start          = perf_swevent_start,
5480         .stop           = perf_swevent_stop,
5481         .read           = perf_swevent_read,
5482
5483         .event_idx      = perf_swevent_event_idx,
5484 };
5485
5486 #ifdef CONFIG_EVENT_TRACING
5487
5488 static int perf_tp_filter_match(struct perf_event *event,
5489                                 struct perf_sample_data *data)
5490 {
5491         void *record = data->raw->data;
5492
5493         if (likely(!event->filter) || filter_match_preds(event->filter, record))
5494                 return 1;
5495         return 0;
5496 }
5497
5498 static int perf_tp_event_match(struct perf_event *event,
5499                                 struct perf_sample_data *data,
5500                                 struct pt_regs *regs)
5501 {
5502         if (event->hw.state & PERF_HES_STOPPED)
5503                 return 0;
5504         /*
5505          * All tracepoints are from kernel-space.
5506          */
5507         if (event->attr.exclude_kernel)
5508                 return 0;
5509
5510         if (!perf_tp_filter_match(event, data))
5511                 return 0;
5512
5513         return 1;
5514 }
5515
5516 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5517                    struct pt_regs *regs, struct hlist_head *head, int rctx,
5518                    struct task_struct *task)
5519 {
5520         struct perf_sample_data data;
5521         struct perf_event *event;
5522
5523         struct perf_raw_record raw = {
5524                 .size = entry_size,
5525                 .data = record,
5526         };
5527
5528         perf_sample_data_init(&data, addr, 0);
5529         data.raw = &raw;
5530
5531         hlist_for_each_entry_rcu(event, head, hlist_entry) {
5532                 if (perf_tp_event_match(event, &data, regs))
5533                         perf_swevent_event(event, count, &data, regs);
5534         }
5535
5536         /*
5537          * If we got specified a target task, also iterate its context and
5538          * deliver this event there too.
5539          */
5540         if (task && task != current) {
5541                 struct perf_event_context *ctx;
5542                 struct trace_entry *entry = record;
5543
5544                 rcu_read_lock();
5545                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5546                 if (!ctx)
5547                         goto unlock;
5548
5549                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5550                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
5551                                 continue;
5552                         if (event->attr.config != entry->type)
5553                                 continue;
5554                         if (perf_tp_event_match(event, &data, regs))
5555                                 perf_swevent_event(event, count, &data, regs);
5556                 }
5557 unlock:
5558                 rcu_read_unlock();
5559         }
5560
5561         perf_swevent_put_recursion_context(rctx);
5562 }
5563 EXPORT_SYMBOL_GPL(perf_tp_event);
5564
5565 static void tp_perf_event_destroy(struct perf_event *event)
5566 {
5567         perf_trace_destroy(event);
5568 }
5569
5570 static int perf_tp_event_init(struct perf_event *event)
5571 {
5572         int err;
5573
5574         if (event->attr.type != PERF_TYPE_TRACEPOINT)
5575                 return -ENOENT;
5576
5577         /*
5578          * no branch sampling for tracepoint events
5579          */
5580         if (has_branch_stack(event))
5581                 return -EOPNOTSUPP;
5582
5583         err = perf_trace_init(event);
5584         if (err)
5585                 return err;
5586
5587         event->destroy = tp_perf_event_destroy;
5588
5589         return 0;
5590 }
5591
5592 static struct pmu perf_tracepoint = {
5593         .task_ctx_nr    = perf_sw_context,
5594
5595         .event_init     = perf_tp_event_init,
5596         .add            = perf_trace_add,
5597         .del            = perf_trace_del,
5598         .start          = perf_swevent_start,
5599         .stop           = perf_swevent_stop,
5600         .read           = perf_swevent_read,
5601
5602         .event_idx      = perf_swevent_event_idx,
5603 };
5604
5605 static inline void perf_tp_register(void)
5606 {
5607         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5608 }
5609
5610 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5611 {
5612         char *filter_str;
5613         int ret;
5614
5615         if (event->attr.type != PERF_TYPE_TRACEPOINT)
5616                 return -EINVAL;
5617
5618         filter_str = strndup_user(arg, PAGE_SIZE);
5619         if (IS_ERR(filter_str))
5620                 return PTR_ERR(filter_str);
5621
5622         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5623
5624         kfree(filter_str);
5625         return ret;
5626 }
5627
5628 static void perf_event_free_filter(struct perf_event *event)
5629 {
5630         ftrace_profile_free_filter(event);
5631 }
5632
5633 #else
5634
5635 static inline void perf_tp_register(void)
5636 {
5637 }
5638
5639 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5640 {
5641         return -ENOENT;
5642 }
5643
5644 static void perf_event_free_filter(struct perf_event *event)
5645 {
5646 }
5647
5648 #endif /* CONFIG_EVENT_TRACING */
5649
5650 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5651 void perf_bp_event(struct perf_event *bp, void *data)
5652 {
5653         struct perf_sample_data sample;
5654         struct pt_regs *regs = data;
5655
5656         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5657
5658         if (!bp->hw.state && !perf_exclude_event(bp, regs))
5659                 perf_swevent_event(bp, 1, &sample, regs);
5660 }
5661 #endif
5662
5663 /*
5664  * hrtimer based swevent callback
5665  */
5666
5667 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5668 {
5669         enum hrtimer_restart ret = HRTIMER_RESTART;
5670         struct perf_sample_data data;
5671         struct pt_regs *regs;
5672         struct perf_event *event;
5673         u64 period;
5674
5675         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5676
5677         if (event->state != PERF_EVENT_STATE_ACTIVE)
5678                 return HRTIMER_NORESTART;
5679
5680         event->pmu->read(event);
5681
5682         perf_sample_data_init(&data, 0, event->hw.last_period);
5683         regs = get_irq_regs();
5684
5685         if (regs && !perf_exclude_event(event, regs)) {
5686                 if (!(event->attr.exclude_idle && is_idle_task(current)))
5687                         if (__perf_event_overflow(event, 1, &data, regs))
5688                                 ret = HRTIMER_NORESTART;
5689         }
5690
5691         period = max_t(u64, 10000, event->hw.sample_period);
5692         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5693
5694         return ret;
5695 }
5696
5697 static void perf_swevent_start_hrtimer(struct perf_event *event)
5698 {
5699         struct hw_perf_event *hwc = &event->hw;
5700         s64 period;
5701
5702         if (!is_sampling_event(event))
5703                 return;
5704
5705         period = local64_read(&hwc->period_left);
5706         if (period) {
5707                 if (period < 0)
5708                         period = 10000;
5709
5710                 local64_set(&hwc->period_left, 0);
5711         } else {
5712                 period = max_t(u64, 10000, hwc->sample_period);
5713         }
5714         __hrtimer_start_range_ns(&hwc->hrtimer,
5715                                 ns_to_ktime(period), 0,
5716                                 HRTIMER_MODE_REL_PINNED, 0);
5717 }
5718
5719 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5720 {
5721         struct hw_perf_event *hwc = &event->hw;
5722
5723         if (is_sampling_event(event)) {
5724                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5725                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5726
5727                 hrtimer_cancel(&hwc->hrtimer);
5728         }
5729 }
5730
5731 static void perf_swevent_init_hrtimer(struct perf_event *event)
5732 {
5733         struct hw_perf_event *hwc = &event->hw;
5734
5735         if (!is_sampling_event(event))
5736                 return;
5737
5738         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5739         hwc->hrtimer.function = perf_swevent_hrtimer;
5740
5741         /*
5742          * Since hrtimers have a fixed rate, we can do a static freq->period
5743          * mapping and avoid the whole period adjust feedback stuff.
5744          */
5745         if (event->attr.freq) {
5746                 long freq = event->attr.sample_freq;
5747
5748                 event->attr.sample_period = NSEC_PER_SEC / freq;
5749                 hwc->sample_period = event->attr.sample_period;
5750                 local64_set(&hwc->period_left, hwc->sample_period);
5751                 hwc->last_period = hwc->sample_period;
5752                 event->attr.freq = 0;
5753         }
5754 }
5755
5756 /*
5757  * Software event: cpu wall time clock
5758  */
5759
5760 static void cpu_clock_event_update(struct perf_event *event)
5761 {
5762         s64 prev;
5763         u64 now;
5764
5765         now = local_clock();
5766         prev = local64_xchg(&event->hw.prev_count, now);
5767         local64_add(now - prev, &event->count);
5768 }
5769
5770 static void cpu_clock_event_start(struct perf_event *event, int flags)
5771 {
5772         local64_set(&event->hw.prev_count, local_clock());
5773         perf_swevent_start_hrtimer(event);
5774 }
5775
5776 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5777 {
5778         perf_swevent_cancel_hrtimer(event);
5779         cpu_clock_event_update(event);
5780 }
5781
5782 static int cpu_clock_event_add(struct perf_event *event, int flags)
5783 {
5784         if (flags & PERF_EF_START)
5785                 cpu_clock_event_start(event, flags);
5786
5787         return 0;
5788 }
5789
5790 static void cpu_clock_event_del(struct perf_event *event, int flags)
5791 {
5792         cpu_clock_event_stop(event, flags);
5793 }
5794
5795 static void cpu_clock_event_read(struct perf_event *event)
5796 {
5797         cpu_clock_event_update(event);
5798 }
5799
5800 static int cpu_clock_event_init(struct perf_event *event)
5801 {
5802         if (event->attr.type != PERF_TYPE_SOFTWARE)
5803                 return -ENOENT;
5804
5805         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5806                 return -ENOENT;
5807
5808         /*
5809          * no branch sampling for software events
5810          */
5811         if (has_branch_stack(event))
5812                 return -EOPNOTSUPP;
5813
5814         perf_swevent_init_hrtimer(event);
5815
5816         return 0;
5817 }
5818
5819 static struct pmu perf_cpu_clock = {
5820         .task_ctx_nr    = perf_sw_context,
5821
5822         .event_init     = cpu_clock_event_init,
5823         .add            = cpu_clock_event_add,
5824         .del            = cpu_clock_event_del,
5825         .start          = cpu_clock_event_start,
5826         .stop           = cpu_clock_event_stop,
5827         .read           = cpu_clock_event_read,
5828
5829         .event_idx      = perf_swevent_event_idx,
5830 };
5831
5832 /*
5833  * Software event: task time clock
5834  */
5835
5836 static void task_clock_event_update(struct perf_event *event, u64 now)
5837 {
5838         u64 prev;
5839         s64 delta;
5840
5841         prev = local64_xchg(&event->hw.prev_count, now);
5842         delta = now - prev;
5843         local64_add(delta, &event->count);
5844 }
5845
5846 static void task_clock_event_start(struct perf_event *event, int flags)
5847 {
5848         local64_set(&event->hw.prev_count, event->ctx->time);
5849         perf_swevent_start_hrtimer(event);
5850 }
5851
5852 static void task_clock_event_stop(struct perf_event *event, int flags)
5853 {
5854         perf_swevent_cancel_hrtimer(event);
5855         task_clock_event_update(event, event->ctx->time);
5856 }
5857
5858 static int task_clock_event_add(struct perf_event *event, int flags)
5859 {
5860         if (flags & PERF_EF_START)
5861                 task_clock_event_start(event, flags);
5862
5863         return 0;
5864 }
5865
5866 static void task_clock_event_del(struct perf_event *event, int flags)
5867 {
5868         task_clock_event_stop(event, PERF_EF_UPDATE);
5869 }
5870
5871 static void task_clock_event_read(struct perf_event *event)
5872 {
5873         u64 now = perf_clock();
5874         u64 delta = now - event->ctx->timestamp;
5875         u64 time = event->ctx->time + delta;
5876
5877         task_clock_event_update(event, time);
5878 }
5879
5880 static int task_clock_event_init(struct perf_event *event)
5881 {
5882         if (event->attr.type != PERF_TYPE_SOFTWARE)
5883                 return -ENOENT;
5884
5885         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5886                 return -ENOENT;
5887
5888         /*
5889          * no branch sampling for software events
5890          */
5891         if (has_branch_stack(event))
5892                 return -EOPNOTSUPP;
5893
5894         perf_swevent_init_hrtimer(event);
5895
5896         return 0;
5897 }
5898
5899 static struct pmu perf_task_clock = {
5900         .task_ctx_nr    = perf_sw_context,
5901
5902         .event_init     = task_clock_event_init,
5903         .add            = task_clock_event_add,
5904         .del            = task_clock_event_del,
5905         .start          = task_clock_event_start,
5906         .stop           = task_clock_event_stop,
5907         .read           = task_clock_event_read,
5908
5909         .event_idx      = perf_swevent_event_idx,
5910 };
5911
5912 static void perf_pmu_nop_void(struct pmu *pmu)
5913 {
5914 }
5915
5916 static int perf_pmu_nop_int(struct pmu *pmu)
5917 {
5918         return 0;
5919 }
5920
5921 static void perf_pmu_start_txn(struct pmu *pmu)
5922 {
5923         perf_pmu_disable(pmu);
5924 }
5925
5926 static int perf_pmu_commit_txn(struct pmu *pmu)
5927 {
5928         perf_pmu_enable(pmu);
5929         return 0;
5930 }
5931
5932 static void perf_pmu_cancel_txn(struct pmu *pmu)
5933 {
5934         perf_pmu_enable(pmu);
5935 }
5936
5937 static int perf_event_idx_default(struct perf_event *event)
5938 {
5939         return event->hw.idx + 1;
5940 }
5941
5942 /*
5943  * Ensures all contexts with the same task_ctx_nr have the same
5944  * pmu_cpu_context too.
5945  */
5946 static void *find_pmu_context(int ctxn)
5947 {
5948         struct pmu *pmu;
5949
5950         if (ctxn < 0)
5951                 return NULL;
5952
5953         list_for_each_entry(pmu, &pmus, entry) {
5954                 if (pmu->task_ctx_nr == ctxn)
5955                         return pmu->pmu_cpu_context;
5956         }
5957
5958         return NULL;
5959 }
5960
5961 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5962 {
5963         int cpu;
5964
5965         for_each_possible_cpu(cpu) {
5966                 struct perf_cpu_context *cpuctx;
5967
5968                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5969
5970                 if (cpuctx->unique_pmu == old_pmu)
5971                         cpuctx->unique_pmu = pmu;
5972         }
5973 }
5974
5975 static void free_pmu_context(struct pmu *pmu)
5976 {
5977         struct pmu *i;
5978
5979         mutex_lock(&pmus_lock);
5980         /*
5981          * Like a real lame refcount.
5982          */
5983         list_for_each_entry(i, &pmus, entry) {
5984                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5985                         update_pmu_context(i, pmu);
5986                         goto out;
5987                 }
5988         }
5989
5990         free_percpu(pmu->pmu_cpu_context);
5991 out:
5992         mutex_unlock(&pmus_lock);
5993 }
5994 static struct idr pmu_idr;
5995
5996 static ssize_t
5997 type_show(struct device *dev, struct device_attribute *attr, char *page)
5998 {
5999         struct pmu *pmu = dev_get_drvdata(dev);
6000
6001         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6002 }
6003
6004 static struct device_attribute pmu_dev_attrs[] = {
6005        __ATTR_RO(type),
6006        __ATTR_NULL,
6007 };
6008
6009 static int pmu_bus_running;
6010 static struct bus_type pmu_bus = {
6011         .name           = "event_source",
6012         .dev_attrs      = pmu_dev_attrs,
6013 };
6014
6015 static void pmu_dev_release(struct device *dev)
6016 {
6017         kfree(dev);
6018 }
6019
6020 static int pmu_dev_alloc(struct pmu *pmu)
6021 {
6022         int ret = -ENOMEM;
6023
6024         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6025         if (!pmu->dev)
6026                 goto out;
6027
6028         pmu->dev->groups = pmu->attr_groups;
6029         device_initialize(pmu->dev);
6030         ret = dev_set_name(pmu->dev, "%s", pmu->name);
6031         if (ret)
6032                 goto free_dev;
6033
6034         dev_set_drvdata(pmu->dev, pmu);
6035         pmu->dev->bus = &pmu_bus;
6036         pmu->dev->release = pmu_dev_release;
6037         ret = device_add(pmu->dev);
6038         if (ret)
6039                 goto free_dev;
6040
6041 out:
6042         return ret;
6043
6044 free_dev:
6045         put_device(pmu->dev);
6046         goto out;
6047 }
6048
6049 static struct lock_class_key cpuctx_mutex;
6050 static struct lock_class_key cpuctx_lock;
6051
6052 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6053 {
6054         int cpu, ret;
6055
6056         mutex_lock(&pmus_lock);
6057         ret = -ENOMEM;
6058         pmu->pmu_disable_count = alloc_percpu(int);
6059         if (!pmu->pmu_disable_count)
6060                 goto unlock;
6061
6062         pmu->type = -1;
6063         if (!name)
6064                 goto skip_type;
6065         pmu->name = name;
6066
6067         if (type < 0) {
6068                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6069                 if (type < 0) {
6070                         ret = type;
6071                         goto free_pdc;
6072                 }
6073         }
6074         pmu->type = type;
6075
6076         if (pmu_bus_running) {
6077                 ret = pmu_dev_alloc(pmu);
6078                 if (ret)
6079                         goto free_idr;
6080         }
6081
6082 skip_type:
6083         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6084         if (pmu->pmu_cpu_context)
6085                 goto got_cpu_context;
6086
6087         ret = -ENOMEM;
6088         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6089         if (!pmu->pmu_cpu_context)
6090                 goto free_dev;
6091
6092         for_each_possible_cpu(cpu) {
6093                 struct perf_cpu_context *cpuctx;
6094
6095                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6096                 __perf_event_init_context(&cpuctx->ctx);
6097                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6098                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6099                 cpuctx->ctx.type = cpu_context;
6100                 cpuctx->ctx.pmu = pmu;
6101
6102                 __perf_cpu_hrtimer_init(cpuctx, cpu);
6103
6104                 INIT_LIST_HEAD(&cpuctx->rotation_list);
6105                 cpuctx->unique_pmu = pmu;
6106         }
6107
6108 got_cpu_context:
6109         if (!pmu->start_txn) {
6110                 if (pmu->pmu_enable) {
6111                         /*
6112                          * If we have pmu_enable/pmu_disable calls, install
6113                          * transaction stubs that use that to try and batch
6114                          * hardware accesses.
6115                          */
6116                         pmu->start_txn  = perf_pmu_start_txn;
6117                         pmu->commit_txn = perf_pmu_commit_txn;
6118                         pmu->cancel_txn = perf_pmu_cancel_txn;
6119                 } else {
6120                         pmu->start_txn  = perf_pmu_nop_void;
6121                         pmu->commit_txn = perf_pmu_nop_int;
6122                         pmu->cancel_txn = perf_pmu_nop_void;
6123                 }
6124         }
6125
6126         if (!pmu->pmu_enable) {
6127                 pmu->pmu_enable  = perf_pmu_nop_void;
6128                 pmu->pmu_disable = perf_pmu_nop_void;
6129         }
6130
6131         if (!pmu->event_idx)
6132                 pmu->event_idx = perf_event_idx_default;
6133
6134         list_add_rcu(&pmu->entry, &pmus);
6135         ret = 0;
6136 unlock:
6137         mutex_unlock(&pmus_lock);
6138
6139         return ret;
6140
6141 free_dev:
6142         device_del(pmu->dev);
6143         put_device(pmu->dev);
6144
6145 free_idr:
6146         if (pmu->type >= PERF_TYPE_MAX)
6147                 idr_remove(&pmu_idr, pmu->type);
6148
6149 free_pdc:
6150         free_percpu(pmu->pmu_disable_count);
6151         goto unlock;
6152 }
6153
6154 void perf_pmu_unregister(struct pmu *pmu)
6155 {
6156         mutex_lock(&pmus_lock);
6157         list_del_rcu(&pmu->entry);
6158         mutex_unlock(&pmus_lock);
6159
6160         /*
6161          * We dereference the pmu list under both SRCU and regular RCU, so
6162          * synchronize against both of those.
6163          */
6164         synchronize_srcu(&pmus_srcu);
6165         synchronize_rcu();
6166
6167         free_percpu(pmu->pmu_disable_count);
6168         if (pmu->type >= PERF_TYPE_MAX)
6169                 idr_remove(&pmu_idr, pmu->type);
6170         device_del(pmu->dev);
6171         put_device(pmu->dev);
6172         free_pmu_context(pmu);
6173 }
6174
6175 struct pmu *perf_init_event(struct perf_event *event)
6176 {
6177         struct pmu *pmu = NULL;
6178         int idx;
6179         int ret;
6180
6181         idx = srcu_read_lock(&pmus_srcu);
6182
6183         rcu_read_lock();
6184         pmu = idr_find(&pmu_idr, event->attr.type);
6185         rcu_read_unlock();
6186         if (pmu) {
6187                 event->pmu = pmu;
6188                 ret = pmu->event_init(event);
6189                 if (ret)
6190                         pmu = ERR_PTR(ret);
6191                 goto unlock;
6192         }
6193
6194         list_for_each_entry_rcu(pmu, &pmus, entry) {
6195                 event->pmu = pmu;
6196                 ret = pmu->event_init(event);
6197                 if (!ret)
6198                         goto unlock;
6199
6200                 if (ret != -ENOENT) {
6201                         pmu = ERR_PTR(ret);
6202                         goto unlock;
6203                 }
6204         }
6205         pmu = ERR_PTR(-ENOENT);
6206 unlock:
6207         srcu_read_unlock(&pmus_srcu, idx);
6208
6209         return pmu;
6210 }
6211
6212 /*
6213  * Allocate and initialize a event structure
6214  */
6215 static struct perf_event *
6216 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6217                  struct task_struct *task,
6218                  struct perf_event *group_leader,
6219                  struct perf_event *parent_event,
6220                  perf_overflow_handler_t overflow_handler,
6221                  void *context)
6222 {
6223         struct pmu *pmu;
6224         struct perf_event *event;
6225         struct hw_perf_event *hwc;
6226         long err;
6227
6228         if ((unsigned)cpu >= nr_cpu_ids) {
6229                 if (!task || cpu != -1)
6230                         return ERR_PTR(-EINVAL);
6231         }
6232
6233         event = kzalloc(sizeof(*event), GFP_KERNEL);
6234         if (!event)
6235                 return ERR_PTR(-ENOMEM);
6236
6237         /*
6238          * Single events are their own group leaders, with an
6239          * empty sibling list:
6240          */
6241         if (!group_leader)
6242                 group_leader = event;
6243
6244         mutex_init(&event->child_mutex);
6245         INIT_LIST_HEAD(&event->child_list);
6246
6247         INIT_LIST_HEAD(&event->group_entry);
6248         INIT_LIST_HEAD(&event->event_entry);
6249         INIT_LIST_HEAD(&event->sibling_list);
6250         INIT_LIST_HEAD(&event->rb_entry);
6251
6252         init_waitqueue_head(&event->waitq);
6253         init_irq_work(&event->pending, perf_pending_event);
6254
6255         mutex_init(&event->mmap_mutex);
6256
6257         atomic_long_set(&event->refcount, 1);
6258         event->cpu              = cpu;
6259         event->attr             = *attr;
6260         event->group_leader     = group_leader;
6261         event->pmu              = NULL;
6262         event->oncpu            = -1;
6263
6264         event->parent           = parent_event;
6265
6266         event->ns               = get_pid_ns(task_active_pid_ns(current));
6267         event->id               = atomic64_inc_return(&perf_event_id);
6268
6269         event->state            = PERF_EVENT_STATE_INACTIVE;
6270
6271         if (task) {
6272                 event->attach_state = PERF_ATTACH_TASK;
6273
6274                 if (attr->type == PERF_TYPE_TRACEPOINT)
6275                         event->hw.tp_target = task;
6276 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6277                 /*
6278                  * hw_breakpoint is a bit difficult here..
6279                  */
6280                 else if (attr->type == PERF_TYPE_BREAKPOINT)
6281                         event->hw.bp_target = task;
6282 #endif
6283         }
6284
6285         if (!overflow_handler && parent_event) {
6286                 overflow_handler = parent_event->overflow_handler;
6287                 context = parent_event->overflow_handler_context;
6288         }
6289
6290         event->overflow_handler = overflow_handler;
6291         event->overflow_handler_context = context;
6292
6293         perf_event__state_init(event);
6294
6295         pmu = NULL;
6296
6297         hwc = &event->hw;
6298         hwc->sample_period = attr->sample_period;
6299         if (attr->freq && attr->sample_freq)
6300                 hwc->sample_period = 1;
6301         hwc->last_period = hwc->sample_period;
6302
6303         local64_set(&hwc->period_left, hwc->sample_period);
6304
6305         /*
6306          * we currently do not support PERF_FORMAT_GROUP on inherited events
6307          */
6308         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6309                 goto done;
6310
6311         pmu = perf_init_event(event);
6312
6313 done:
6314         err = 0;
6315         if (!pmu)
6316                 err = -EINVAL;
6317         else if (IS_ERR(pmu))
6318                 err = PTR_ERR(pmu);
6319
6320         if (err) {
6321                 if (event->ns)
6322                         put_pid_ns(event->ns);
6323                 kfree(event);
6324                 return ERR_PTR(err);
6325         }
6326
6327         if (!event->parent) {
6328                 if (event->attach_state & PERF_ATTACH_TASK)
6329                         static_key_slow_inc(&perf_sched_events.key);
6330                 if (event->attr.mmap || event->attr.mmap_data)
6331                         atomic_inc(&nr_mmap_events);
6332                 if (event->attr.comm)
6333                         atomic_inc(&nr_comm_events);
6334                 if (event->attr.task)
6335                         atomic_inc(&nr_task_events);
6336                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6337                         err = get_callchain_buffers();
6338                         if (err) {
6339                                 free_event(event);
6340                                 return ERR_PTR(err);
6341                         }
6342                 }
6343                 if (has_branch_stack(event)) {
6344                         static_key_slow_inc(&perf_sched_events.key);
6345                         if (!(event->attach_state & PERF_ATTACH_TASK))
6346                                 atomic_inc(&per_cpu(perf_branch_stack_events,
6347                                                     event->cpu));
6348                 }
6349         }
6350
6351         return event;
6352 }
6353
6354 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6355                           struct perf_event_attr *attr)
6356 {
6357         u32 size;
6358         int ret;
6359
6360         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6361                 return -EFAULT;
6362
6363         /*
6364          * zero the full structure, so that a short copy will be nice.
6365          */
6366         memset(attr, 0, sizeof(*attr));
6367
6368         ret = get_user(size, &uattr->size);
6369         if (ret)
6370                 return ret;
6371
6372         if (size > PAGE_SIZE)   /* silly large */
6373                 goto err_size;
6374
6375         if (!size)              /* abi compat */
6376                 size = PERF_ATTR_SIZE_VER0;
6377
6378         if (size < PERF_ATTR_SIZE_VER0)
6379                 goto err_size;
6380
6381         /*
6382          * If we're handed a bigger struct than we know of,
6383          * ensure all the unknown bits are 0 - i.e. new
6384          * user-space does not rely on any kernel feature
6385          * extensions we dont know about yet.
6386          */
6387         if (size > sizeof(*attr)) {
6388                 unsigned char __user *addr;
6389                 unsigned char __user *end;
6390                 unsigned char val;
6391
6392                 addr = (void __user *)uattr + sizeof(*attr);
6393                 end  = (void __user *)uattr + size;
6394
6395                 for (; addr < end; addr++) {
6396                         ret = get_user(val, addr);
6397                         if (ret)
6398                                 return ret;
6399                         if (val)
6400                                 goto err_size;
6401                 }
6402                 size = sizeof(*attr);
6403         }
6404
6405         ret = copy_from_user(attr, uattr, size);
6406         if (ret)
6407                 return -EFAULT;
6408
6409         if (attr->__reserved_1)
6410                 return -EINVAL;
6411
6412         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6413                 return -EINVAL;
6414
6415         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6416                 return -EINVAL;
6417
6418         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6419                 u64 mask = attr->branch_sample_type;
6420
6421                 /* only using defined bits */
6422                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6423                         return -EINVAL;
6424
6425                 /* at least one branch bit must be set */
6426                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6427                         return -EINVAL;
6428
6429                 /* kernel level capture: check permissions */
6430                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6431                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6432                         return -EACCES;
6433
6434                 /* propagate priv level, when not set for branch */
6435                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6436
6437                         /* exclude_kernel checked on syscall entry */
6438                         if (!attr->exclude_kernel)
6439                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6440
6441                         if (!attr->exclude_user)
6442                                 mask |= PERF_SAMPLE_BRANCH_USER;
6443
6444                         if (!attr->exclude_hv)
6445                                 mask |= PERF_SAMPLE_BRANCH_HV;
6446                         /*
6447                          * adjust user setting (for HW filter setup)
6448                          */
6449                         attr->branch_sample_type = mask;
6450                 }
6451         }
6452
6453         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6454                 ret = perf_reg_validate(attr->sample_regs_user);
6455                 if (ret)
6456                         return ret;
6457         }
6458
6459         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6460                 if (!arch_perf_have_user_stack_dump())
6461                         return -ENOSYS;
6462
6463                 /*
6464                  * We have __u32 type for the size, but so far
6465                  * we can only use __u16 as maximum due to the
6466                  * __u16 sample size limit.
6467                  */
6468                 if (attr->sample_stack_user >= USHRT_MAX)
6469                         ret = -EINVAL;
6470                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6471                         ret = -EINVAL;
6472         }
6473
6474 out:
6475         return ret;
6476
6477 err_size:
6478         put_user(sizeof(*attr), &uattr->size);
6479         ret = -E2BIG;
6480         goto out;
6481 }
6482
6483 static int
6484 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6485 {
6486         struct ring_buffer *rb = NULL, *old_rb = NULL;
6487         int ret = -EINVAL;
6488
6489         if (!output_event)
6490                 goto set;
6491
6492         /* don't allow circular references */
6493         if (event == output_event)
6494                 goto out;
6495
6496         /*
6497          * Don't allow cross-cpu buffers
6498          */
6499         if (output_event->cpu != event->cpu)
6500                 goto out;
6501
6502         /*
6503          * If its not a per-cpu rb, it must be the same task.
6504          */
6505         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6506                 goto out;
6507
6508 set:
6509         mutex_lock(&event->mmap_mutex);
6510         /* Can't redirect output if we've got an active mmap() */
6511         if (atomic_read(&event->mmap_count))
6512                 goto unlock;
6513
6514         if (output_event) {
6515                 /* get the rb we want to redirect to */
6516                 rb = ring_buffer_get(output_event);
6517                 if (!rb)
6518                         goto unlock;
6519         }
6520
6521         old_rb = event->rb;
6522         rcu_assign_pointer(event->rb, rb);
6523         if (old_rb)
6524                 ring_buffer_detach(event, old_rb);
6525         ret = 0;
6526 unlock:
6527         mutex_unlock(&event->mmap_mutex);
6528
6529         if (old_rb)
6530                 ring_buffer_put(old_rb);
6531 out:
6532         return ret;
6533 }
6534
6535 /**
6536  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6537  *
6538  * @attr_uptr:  event_id type attributes for monitoring/sampling
6539  * @pid:                target pid
6540  * @cpu:                target cpu
6541  * @group_fd:           group leader event fd
6542  */
6543 SYSCALL_DEFINE5(perf_event_open,
6544                 struct perf_event_attr __user *, attr_uptr,
6545                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6546 {
6547         struct perf_event *group_leader = NULL, *output_event = NULL;
6548         struct perf_event *event, *sibling;
6549         struct perf_event_attr attr;
6550         struct perf_event_context *ctx;
6551         struct file *event_file = NULL;
6552         struct fd group = {NULL, 0};
6553         struct task_struct *task = NULL;
6554         struct pmu *pmu;
6555         int event_fd;
6556         int move_group = 0;
6557         int err;
6558
6559         /* for future expandability... */
6560         if (flags & ~PERF_FLAG_ALL)
6561                 return -EINVAL;
6562
6563         err = perf_copy_attr(attr_uptr, &attr);
6564         if (err)
6565                 return err;
6566
6567         if (!attr.exclude_kernel) {
6568                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6569                         return -EACCES;
6570         }
6571
6572         if (attr.freq) {
6573                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6574                         return -EINVAL;
6575         }
6576
6577         /*
6578          * In cgroup mode, the pid argument is used to pass the fd
6579          * opened to the cgroup directory in cgroupfs. The cpu argument
6580          * designates the cpu on which to monitor threads from that
6581          * cgroup.
6582          */
6583         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6584                 return -EINVAL;
6585
6586         event_fd = get_unused_fd();
6587         if (event_fd < 0)
6588                 return event_fd;
6589
6590         if (group_fd != -1) {
6591                 err = perf_fget_light(group_fd, &group);
6592                 if (err)
6593                         goto err_fd;
6594                 group_leader = group.file->private_data;
6595                 if (flags & PERF_FLAG_FD_OUTPUT)
6596                         output_event = group_leader;
6597                 if (flags & PERF_FLAG_FD_NO_GROUP)
6598                         group_leader = NULL;
6599         }
6600
6601         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6602                 task = find_lively_task_by_vpid(pid);
6603                 if (IS_ERR(task)) {
6604                         err = PTR_ERR(task);
6605                         goto err_group_fd;
6606                 }
6607         }
6608
6609         get_online_cpus();
6610
6611         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6612                                  NULL, NULL);
6613         if (IS_ERR(event)) {
6614                 err = PTR_ERR(event);
6615                 goto err_task;
6616         }
6617
6618         if (flags & PERF_FLAG_PID_CGROUP) {
6619                 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6620                 if (err)
6621                         goto err_alloc;
6622                 /*
6623                  * one more event:
6624                  * - that has cgroup constraint on event->cpu
6625                  * - that may need work on context switch
6626                  */
6627                 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6628                 static_key_slow_inc(&perf_sched_events.key);
6629         }
6630
6631         /*
6632          * Special case software events and allow them to be part of
6633          * any hardware group.
6634          */
6635         pmu = event->pmu;
6636
6637         if (group_leader &&
6638             (is_software_event(event) != is_software_event(group_leader))) {
6639                 if (is_software_event(event)) {
6640                         /*
6641                          * If event and group_leader are not both a software
6642                          * event, and event is, then group leader is not.
6643                          *
6644                          * Allow the addition of software events to !software
6645                          * groups, this is safe because software events never
6646                          * fail to schedule.
6647                          */
6648                         pmu = group_leader->pmu;
6649                 } else if (is_software_event(group_leader) &&
6650                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6651                         /*
6652                          * In case the group is a pure software group, and we
6653                          * try to add a hardware event, move the whole group to
6654                          * the hardware context.
6655                          */
6656                         move_group = 1;
6657                 }
6658         }
6659
6660         /*
6661          * Get the target context (task or percpu):
6662          */
6663         ctx = find_get_context(pmu, task, event->cpu);
6664         if (IS_ERR(ctx)) {
6665                 err = PTR_ERR(ctx);
6666                 goto err_alloc;
6667         }
6668
6669         if (task) {
6670                 put_task_struct(task);
6671                 task = NULL;
6672         }
6673
6674         /*
6675          * Look up the group leader (we will attach this event to it):
6676          */
6677         if (group_leader) {
6678                 err = -EINVAL;
6679
6680                 /*
6681                  * Do not allow a recursive hierarchy (this new sibling
6682                  * becoming part of another group-sibling):
6683                  */
6684                 if (group_leader->group_leader != group_leader)
6685                         goto err_context;
6686                 /*
6687                  * Do not allow to attach to a group in a different
6688                  * task or CPU context:
6689                  */
6690                 if (move_group) {
6691                         if (group_leader->ctx->type != ctx->type)
6692                                 goto err_context;
6693                 } else {
6694                         if (group_leader->ctx != ctx)
6695                                 goto err_context;
6696                 }
6697
6698                 /*
6699                  * Only a group leader can be exclusive or pinned
6700                  */
6701                 if (attr.exclusive || attr.pinned)
6702                         goto err_context;
6703         }
6704
6705         if (output_event) {
6706                 err = perf_event_set_output(event, output_event);
6707                 if (err)
6708                         goto err_context;
6709         }
6710
6711         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6712         if (IS_ERR(event_file)) {
6713                 err = PTR_ERR(event_file);
6714                 goto err_context;
6715         }
6716
6717         if (move_group) {
6718                 struct perf_event_context *gctx = group_leader->ctx;
6719
6720                 mutex_lock(&gctx->mutex);
6721                 perf_remove_from_context(group_leader);
6722
6723                 /*
6724                  * Removing from the context ends up with disabled
6725                  * event. What we want here is event in the initial
6726                  * startup state, ready to be add into new context.
6727                  */
6728                 perf_event__state_init(group_leader);
6729                 list_for_each_entry(sibling, &group_leader->sibling_list,
6730                                     group_entry) {
6731                         perf_remove_from_context(sibling);
6732                         perf_event__state_init(sibling);
6733                         put_ctx(gctx);
6734                 }
6735                 mutex_unlock(&gctx->mutex);
6736                 put_ctx(gctx);
6737         }
6738
6739         WARN_ON_ONCE(ctx->parent_ctx);
6740         mutex_lock(&ctx->mutex);
6741
6742         if (move_group) {
6743                 synchronize_rcu();
6744                 perf_install_in_context(ctx, group_leader, event->cpu);
6745                 get_ctx(ctx);
6746                 list_for_each_entry(sibling, &group_leader->sibling_list,
6747                                     group_entry) {
6748                         perf_install_in_context(ctx, sibling, event->cpu);
6749                         get_ctx(ctx);
6750                 }
6751         }
6752
6753         perf_install_in_context(ctx, event, event->cpu);
6754         ++ctx->generation;
6755         perf_unpin_context(ctx);
6756         mutex_unlock(&ctx->mutex);
6757
6758         put_online_cpus();
6759
6760         event->owner = current;
6761
6762         mutex_lock(&current->perf_event_mutex);
6763         list_add_tail(&event->owner_entry, &current->perf_event_list);
6764         mutex_unlock(&current->perf_event_mutex);
6765
6766         /*
6767          * Precalculate sample_data sizes
6768          */
6769         perf_event__header_size(event);
6770         perf_event__id_header_size(event);
6771
6772         /*
6773          * Drop the reference on the group_event after placing the
6774          * new event on the sibling_list. This ensures destruction
6775          * of the group leader will find the pointer to itself in
6776          * perf_group_detach().
6777          */
6778         fdput(group);
6779         fd_install(event_fd, event_file);
6780         return event_fd;
6781
6782 err_context:
6783         perf_unpin_context(ctx);
6784         put_ctx(ctx);
6785 err_alloc:
6786         free_event(event);
6787 err_task:
6788         put_online_cpus();
6789         if (task)
6790                 put_task_struct(task);
6791 err_group_fd:
6792         fdput(group);
6793 err_fd:
6794         put_unused_fd(event_fd);
6795         return err;
6796 }
6797
6798 /**
6799  * perf_event_create_kernel_counter
6800  *
6801  * @attr: attributes of the counter to create
6802  * @cpu: cpu in which the counter is bound
6803  * @task: task to profile (NULL for percpu)
6804  */
6805 struct perf_event *
6806 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6807                                  struct task_struct *task,
6808                                  perf_overflow_handler_t overflow_handler,
6809                                  void *context)
6810 {
6811         struct perf_event_context *ctx;
6812         struct perf_event *event;
6813         int err;
6814
6815         /*
6816          * Get the target context (task or percpu):
6817          */
6818
6819         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6820                                  overflow_handler, context);
6821         if (IS_ERR(event)) {
6822                 err = PTR_ERR(event);
6823                 goto err;
6824         }
6825
6826         ctx = find_get_context(event->pmu, task, cpu);
6827         if (IS_ERR(ctx)) {
6828                 err = PTR_ERR(ctx);
6829                 goto err_free;
6830         }
6831
6832         WARN_ON_ONCE(ctx->parent_ctx);
6833         mutex_lock(&ctx->mutex);
6834         perf_install_in_context(ctx, event, cpu);
6835         ++ctx->generation;
6836         perf_unpin_context(ctx);
6837         mutex_unlock(&ctx->mutex);
6838
6839         return event;
6840
6841 err_free:
6842         free_event(event);
6843 err:
6844         return ERR_PTR(err);
6845 }
6846 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6847
6848 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6849 {
6850         struct perf_event_context *src_ctx;
6851         struct perf_event_context *dst_ctx;
6852         struct perf_event *event, *tmp;
6853         LIST_HEAD(events);
6854
6855         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6856         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6857
6858         mutex_lock(&src_ctx->mutex);
6859         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6860                                  event_entry) {
6861                 perf_remove_from_context(event);
6862                 put_ctx(src_ctx);
6863                 list_add(&event->event_entry, &events);
6864         }
6865         mutex_unlock(&src_ctx->mutex);
6866
6867         synchronize_rcu();
6868
6869         mutex_lock(&dst_ctx->mutex);
6870         list_for_each_entry_safe(event, tmp, &events, event_entry) {
6871                 list_del(&event->event_entry);
6872                 if (event->state >= PERF_EVENT_STATE_OFF)
6873                         event->state = PERF_EVENT_STATE_INACTIVE;
6874                 perf_install_in_context(dst_ctx, event, dst_cpu);
6875                 get_ctx(dst_ctx);
6876         }
6877         mutex_unlock(&dst_ctx->mutex);
6878 }
6879 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6880
6881 static void sync_child_event(struct perf_event *child_event,
6882                                struct task_struct *child)
6883 {
6884         struct perf_event *parent_event = child_event->parent;
6885         u64 child_val;
6886
6887         if (child_event->attr.inherit_stat)
6888                 perf_event_read_event(child_event, child);
6889
6890         child_val = perf_event_count(child_event);
6891
6892         /*
6893          * Add back the child's count to the parent's count:
6894          */
6895         atomic64_add(child_val, &parent_event->child_count);
6896         atomic64_add(child_event->total_time_enabled,
6897                      &parent_event->child_total_time_enabled);
6898         atomic64_add(child_event->total_time_running,
6899                      &parent_event->child_total_time_running);
6900
6901         /*
6902          * Remove this event from the parent's list
6903          */
6904         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6905         mutex_lock(&parent_event->child_mutex);
6906         list_del_init(&child_event->child_list);
6907         mutex_unlock(&parent_event->child_mutex);
6908
6909         /*
6910          * Release the parent event, if this was the last
6911          * reference to it.
6912          */
6913         put_event(parent_event);
6914 }
6915
6916 static void
6917 __perf_event_exit_task(struct perf_event *child_event,
6918                          struct perf_event_context *child_ctx,
6919                          struct task_struct *child)
6920 {
6921         if (child_event->parent) {
6922                 raw_spin_lock_irq(&child_ctx->lock);
6923                 perf_group_detach(child_event);
6924                 raw_spin_unlock_irq(&child_ctx->lock);
6925         }
6926
6927         perf_remove_from_context(child_event);
6928
6929         /*
6930          * It can happen that the parent exits first, and has events
6931          * that are still around due to the child reference. These
6932          * events need to be zapped.
6933          */
6934         if (child_event->parent) {
6935                 sync_child_event(child_event, child);
6936                 free_event(child_event);
6937         }
6938 }
6939
6940 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6941 {
6942         struct perf_event *child_event, *tmp;
6943         struct perf_event_context *child_ctx;
6944         unsigned long flags;
6945
6946         if (likely(!child->perf_event_ctxp[ctxn])) {
6947                 perf_event_task(child, NULL, 0);
6948                 return;
6949         }
6950
6951         local_irq_save(flags);
6952         /*
6953          * We can't reschedule here because interrupts are disabled,
6954          * and either child is current or it is a task that can't be
6955          * scheduled, so we are now safe from rescheduling changing
6956          * our context.
6957          */
6958         child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6959
6960         /*
6961          * Take the context lock here so that if find_get_context is
6962          * reading child->perf_event_ctxp, we wait until it has
6963          * incremented the context's refcount before we do put_ctx below.
6964          */
6965         raw_spin_lock(&child_ctx->lock);
6966         task_ctx_sched_out(child_ctx);
6967         child->perf_event_ctxp[ctxn] = NULL;
6968         /*
6969          * If this context is a clone; unclone it so it can't get
6970          * swapped to another process while we're removing all
6971          * the events from it.
6972          */
6973         unclone_ctx(child_ctx);
6974         update_context_time(child_ctx);
6975         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6976
6977         /*
6978          * Report the task dead after unscheduling the events so that we
6979          * won't get any samples after PERF_RECORD_EXIT. We can however still
6980          * get a few PERF_RECORD_READ events.
6981          */
6982         perf_event_task(child, child_ctx, 0);
6983
6984         /*
6985          * We can recurse on the same lock type through:
6986          *
6987          *   __perf_event_exit_task()
6988          *     sync_child_event()
6989          *       put_event()
6990          *         mutex_lock(&ctx->mutex)
6991          *
6992          * But since its the parent context it won't be the same instance.
6993          */
6994         mutex_lock(&child_ctx->mutex);
6995
6996 again:
6997         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6998                                  group_entry)
6999                 __perf_event_exit_task(child_event, child_ctx, child);
7000
7001         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7002                                  group_entry)
7003                 __perf_event_exit_task(child_event, child_ctx, child);
7004
7005         /*
7006          * If the last event was a group event, it will have appended all
7007          * its siblings to the list, but we obtained 'tmp' before that which
7008          * will still point to the list head terminating the iteration.
7009          */
7010         if (!list_empty(&child_ctx->pinned_groups) ||
7011             !list_empty(&child_ctx->flexible_groups))
7012                 goto again;
7013
7014         mutex_unlock(&child_ctx->mutex);
7015
7016         put_ctx(child_ctx);
7017 }
7018
7019 /*
7020  * When a child task exits, feed back event values to parent events.
7021  */
7022 void perf_event_exit_task(struct task_struct *child)
7023 {
7024         struct perf_event *event, *tmp;
7025         int ctxn;
7026
7027         mutex_lock(&child->perf_event_mutex);
7028         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7029                                  owner_entry) {
7030                 list_del_init(&event->owner_entry);
7031
7032                 /*
7033                  * Ensure the list deletion is visible before we clear
7034                  * the owner, closes a race against perf_release() where
7035                  * we need to serialize on the owner->perf_event_mutex.
7036                  */
7037                 smp_wmb();
7038                 event->owner = NULL;
7039         }
7040         mutex_unlock(&child->perf_event_mutex);
7041
7042         for_each_task_context_nr(ctxn)
7043                 perf_event_exit_task_context(child, ctxn);
7044 }
7045
7046 static void perf_free_event(struct perf_event *event,
7047                             struct perf_event_context *ctx)
7048 {
7049         struct perf_event *parent = event->parent;
7050
7051         if (WARN_ON_ONCE(!parent))
7052                 return;
7053
7054         mutex_lock(&parent->child_mutex);
7055         list_del_init(&event->child_list);
7056         mutex_unlock(&parent->child_mutex);
7057
7058         put_event(parent);
7059
7060         perf_group_detach(event);
7061         list_del_event(event, ctx);
7062         free_event(event);
7063 }
7064
7065 /*
7066  * free an unexposed, unused context as created by inheritance by
7067  * perf_event_init_task below, used by fork() in case of fail.
7068  */
7069 void perf_event_free_task(struct task_struct *task)
7070 {
7071         struct perf_event_context *ctx;
7072         struct perf_event *event, *tmp;
7073         int ctxn;
7074
7075         for_each_task_context_nr(ctxn) {
7076                 ctx = task->perf_event_ctxp[ctxn];
7077                 if (!ctx)
7078                         continue;
7079
7080                 mutex_lock(&ctx->mutex);
7081 again:
7082                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7083                                 group_entry)
7084                         perf_free_event(event, ctx);
7085
7086                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7087                                 group_entry)
7088                         perf_free_event(event, ctx);
7089
7090                 if (!list_empty(&ctx->pinned_groups) ||
7091                                 !list_empty(&ctx->flexible_groups))
7092                         goto again;
7093
7094                 mutex_unlock(&ctx->mutex);
7095
7096                 put_ctx(ctx);
7097         }
7098 }
7099
7100 void perf_event_delayed_put(struct task_struct *task)
7101 {
7102         int ctxn;
7103
7104         for_each_task_context_nr(ctxn)
7105                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7106 }
7107
7108 /*
7109  * inherit a event from parent task to child task:
7110  */
7111 static struct perf_event *
7112 inherit_event(struct perf_event *parent_event,
7113               struct task_struct *parent,
7114               struct perf_event_context *parent_ctx,
7115               struct task_struct *child,
7116               struct perf_event *group_leader,
7117               struct perf_event_context *child_ctx)
7118 {
7119         struct perf_event *child_event;
7120         unsigned long flags;
7121
7122         /*
7123          * Instead of creating recursive hierarchies of events,
7124          * we link inherited events back to the original parent,
7125          * which has a filp for sure, which we use as the reference
7126          * count:
7127          */
7128         if (parent_event->parent)
7129                 parent_event = parent_event->parent;
7130
7131         child_event = perf_event_alloc(&parent_event->attr,
7132                                            parent_event->cpu,
7133                                            child,
7134                                            group_leader, parent_event,
7135                                            NULL, NULL);
7136         if (IS_ERR(child_event))
7137                 return child_event;
7138
7139         if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7140                 free_event(child_event);
7141                 return NULL;
7142         }
7143
7144         get_ctx(child_ctx);
7145
7146         /*
7147          * Make the child state follow the state of the parent event,
7148          * not its attr.disabled bit.  We hold the parent's mutex,
7149          * so we won't race with perf_event_{en, dis}able_family.
7150          */
7151         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7152                 child_event->state = PERF_EVENT_STATE_INACTIVE;
7153         else
7154                 child_event->state = PERF_EVENT_STATE_OFF;
7155
7156         if (parent_event->attr.freq) {
7157                 u64 sample_period = parent_event->hw.sample_period;
7158                 struct hw_perf_event *hwc = &child_event->hw;
7159
7160                 hwc->sample_period = sample_period;
7161                 hwc->last_period   = sample_period;
7162
7163                 local64_set(&hwc->period_left, sample_period);
7164         }
7165
7166         child_event->ctx = child_ctx;
7167         child_event->overflow_handler = parent_event->overflow_handler;
7168         child_event->overflow_handler_context
7169                 = parent_event->overflow_handler_context;
7170
7171         /*
7172          * Precalculate sample_data sizes
7173          */
7174         perf_event__header_size(child_event);
7175         perf_event__id_header_size(child_event);
7176
7177         /*
7178          * Link it up in the child's context:
7179          */
7180         raw_spin_lock_irqsave(&child_ctx->lock, flags);
7181         add_event_to_ctx(child_event, child_ctx);
7182         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7183
7184         /*
7185          * Link this into the parent event's child list
7186          */
7187         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7188         mutex_lock(&parent_event->child_mutex);
7189         list_add_tail(&child_event->child_list, &parent_event->child_list);
7190         mutex_unlock(&parent_event->child_mutex);
7191
7192         return child_event;
7193 }
7194
7195 static int inherit_group(struct perf_event *parent_event,
7196               struct task_struct *parent,
7197               struct perf_event_context *parent_ctx,
7198               struct task_struct *child,
7199               struct perf_event_context *child_ctx)
7200 {
7201         struct perf_event *leader;
7202         struct perf_event *sub;
7203         struct perf_event *child_ctr;
7204
7205         leader = inherit_event(parent_event, parent, parent_ctx,
7206                                  child, NULL, child_ctx);
7207         if (IS_ERR(leader))
7208                 return PTR_ERR(leader);
7209         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7210                 child_ctr = inherit_event(sub, parent, parent_ctx,
7211                                             child, leader, child_ctx);
7212                 if (IS_ERR(child_ctr))
7213                         return PTR_ERR(child_ctr);
7214         }
7215         return 0;
7216 }
7217
7218 static int
7219 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7220                    struct perf_event_context *parent_ctx,
7221                    struct task_struct *child, int ctxn,
7222                    int *inherited_all)
7223 {
7224         int ret;
7225         struct perf_event_context *child_ctx;
7226
7227         if (!event->attr.inherit) {
7228                 *inherited_all = 0;
7229                 return 0;
7230         }
7231
7232         child_ctx = child->perf_event_ctxp[ctxn];
7233         if (!child_ctx) {
7234                 /*
7235                  * This is executed from the parent task context, so
7236                  * inherit events that have been marked for cloning.
7237                  * First allocate and initialize a context for the
7238                  * child.
7239                  */
7240
7241                 child_ctx = alloc_perf_context(event->pmu, child);
7242                 if (!child_ctx)
7243                         return -ENOMEM;
7244
7245                 child->perf_event_ctxp[ctxn] = child_ctx;
7246         }
7247
7248         ret = inherit_group(event, parent, parent_ctx,
7249                             child, child_ctx);
7250
7251         if (ret)
7252                 *inherited_all = 0;
7253
7254         return ret;
7255 }
7256
7257 /*
7258  * Initialize the perf_event context in task_struct
7259  */
7260 int perf_event_init_context(struct task_struct *child, int ctxn)
7261 {
7262         struct perf_event_context *child_ctx, *parent_ctx;
7263         struct perf_event_context *cloned_ctx;
7264         struct perf_event *event;
7265         struct task_struct *parent = current;
7266         int inherited_all = 1;
7267         unsigned long flags;
7268         int ret = 0;
7269
7270         if (likely(!parent->perf_event_ctxp[ctxn]))
7271                 return 0;
7272
7273         /*
7274          * If the parent's context is a clone, pin it so it won't get
7275          * swapped under us.
7276          */
7277         parent_ctx = perf_pin_task_context(parent, ctxn);
7278
7279         /*
7280          * No need to check if parent_ctx != NULL here; since we saw
7281          * it non-NULL earlier, the only reason for it to become NULL
7282          * is if we exit, and since we're currently in the middle of
7283          * a fork we can't be exiting at the same time.
7284          */
7285
7286         /*
7287          * Lock the parent list. No need to lock the child - not PID
7288          * hashed yet and not running, so nobody can access it.
7289          */
7290         mutex_lock(&parent_ctx->mutex);
7291
7292         /*
7293          * We dont have to disable NMIs - we are only looking at
7294          * the list, not manipulating it:
7295          */
7296         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7297                 ret = inherit_task_group(event, parent, parent_ctx,
7298                                          child, ctxn, &inherited_all);
7299                 if (ret)
7300                         break;
7301         }
7302
7303         /*
7304          * We can't hold ctx->lock when iterating the ->flexible_group list due
7305          * to allocations, but we need to prevent rotation because
7306          * rotate_ctx() will change the list from interrupt context.
7307          */
7308         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7309         parent_ctx->rotate_disable = 1;
7310         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7311
7312         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7313                 ret = inherit_task_group(event, parent, parent_ctx,
7314                                          child, ctxn, &inherited_all);
7315                 if (ret)
7316                         break;
7317         }
7318
7319         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7320         parent_ctx->rotate_disable = 0;
7321
7322         child_ctx = child->perf_event_ctxp[ctxn];
7323
7324         if (child_ctx && inherited_all) {
7325                 /*
7326                  * Mark the child context as a clone of the parent
7327                  * context, or of whatever the parent is a clone of.
7328                  *
7329                  * Note that if the parent is a clone, the holding of
7330                  * parent_ctx->lock avoids it from being uncloned.
7331                  */
7332                 cloned_ctx = parent_ctx->parent_ctx;
7333                 if (cloned_ctx) {
7334                         child_ctx->parent_ctx = cloned_ctx;
7335                         child_ctx->parent_gen = parent_ctx->parent_gen;
7336                 } else {
7337                         child_ctx->parent_ctx = parent_ctx;
7338                         child_ctx->parent_gen = parent_ctx->generation;
7339                 }
7340                 get_ctx(child_ctx->parent_ctx);
7341         }
7342
7343         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7344         mutex_unlock(&parent_ctx->mutex);
7345
7346         perf_unpin_context(parent_ctx);
7347         put_ctx(parent_ctx);
7348
7349         return ret;
7350 }
7351
7352 /*
7353  * Initialize the perf_event context in task_struct
7354  */
7355 int perf_event_init_task(struct task_struct *child)
7356 {
7357         int ctxn, ret;
7358
7359         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7360         mutex_init(&child->perf_event_mutex);
7361         INIT_LIST_HEAD(&child->perf_event_list);
7362
7363         for_each_task_context_nr(ctxn) {
7364                 ret = perf_event_init_context(child, ctxn);
7365                 if (ret)
7366                         return ret;
7367         }
7368
7369         return 0;
7370 }
7371
7372 static void __init perf_event_init_all_cpus(void)
7373 {
7374         struct swevent_htable *swhash;
7375         int cpu;
7376
7377         for_each_possible_cpu(cpu) {
7378                 swhash = &per_cpu(swevent_htable, cpu);
7379                 mutex_init(&swhash->hlist_mutex);
7380                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7381         }
7382 }
7383
7384 static void __cpuinit perf_event_init_cpu(int cpu)
7385 {
7386         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7387
7388         mutex_lock(&swhash->hlist_mutex);
7389         if (swhash->hlist_refcount > 0) {
7390                 struct swevent_hlist *hlist;
7391
7392                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7393                 WARN_ON(!hlist);
7394                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7395         }
7396         mutex_unlock(&swhash->hlist_mutex);
7397 }
7398
7399 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7400 static void perf_pmu_rotate_stop(struct pmu *pmu)
7401 {
7402         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7403
7404         WARN_ON(!irqs_disabled());
7405
7406         list_del_init(&cpuctx->rotation_list);
7407 }
7408
7409 static void __perf_event_exit_context(void *__info)
7410 {
7411         struct perf_event_context *ctx = __info;
7412         struct perf_event *event, *tmp;
7413
7414         perf_pmu_rotate_stop(ctx->pmu);
7415
7416         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7417                 __perf_remove_from_context(event);
7418         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7419                 __perf_remove_from_context(event);
7420 }
7421
7422 static void perf_event_exit_cpu_context(int cpu)
7423 {
7424         struct perf_event_context *ctx;
7425         struct pmu *pmu;
7426         int idx;
7427
7428         idx = srcu_read_lock(&pmus_srcu);
7429         list_for_each_entry_rcu(pmu, &pmus, entry) {
7430                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7431
7432                 mutex_lock(&ctx->mutex);
7433                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7434                 mutex_unlock(&ctx->mutex);
7435         }
7436         srcu_read_unlock(&pmus_srcu, idx);
7437 }
7438
7439 static void perf_event_exit_cpu(int cpu)
7440 {
7441         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7442
7443         mutex_lock(&swhash->hlist_mutex);
7444         swevent_hlist_release(swhash);
7445         mutex_unlock(&swhash->hlist_mutex);
7446
7447         perf_event_exit_cpu_context(cpu);
7448 }
7449 #else
7450 static inline void perf_event_exit_cpu(int cpu) { }
7451 #endif
7452
7453 static int
7454 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7455 {
7456         int cpu;
7457
7458         for_each_online_cpu(cpu)
7459                 perf_event_exit_cpu(cpu);
7460
7461         return NOTIFY_OK;
7462 }
7463
7464 /*
7465  * Run the perf reboot notifier at the very last possible moment so that
7466  * the generic watchdog code runs as long as possible.
7467  */
7468 static struct notifier_block perf_reboot_notifier = {
7469         .notifier_call = perf_reboot,
7470         .priority = INT_MIN,
7471 };
7472
7473 static int __cpuinit
7474 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7475 {
7476         unsigned int cpu = (long)hcpu;
7477
7478         switch (action & ~CPU_TASKS_FROZEN) {
7479
7480         case CPU_UP_PREPARE:
7481         case CPU_DOWN_FAILED:
7482                 perf_event_init_cpu(cpu);
7483                 break;
7484
7485         case CPU_UP_CANCELED:
7486         case CPU_DOWN_PREPARE:
7487                 perf_event_exit_cpu(cpu);
7488                 break;
7489         default:
7490                 break;
7491         }
7492
7493         return NOTIFY_OK;
7494 }
7495
7496 void __init perf_event_init(void)
7497 {
7498         int ret;
7499
7500         idr_init(&pmu_idr);
7501
7502         perf_event_init_all_cpus();
7503         init_srcu_struct(&pmus_srcu);
7504         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7505         perf_pmu_register(&perf_cpu_clock, NULL, -1);
7506         perf_pmu_register(&perf_task_clock, NULL, -1);
7507         perf_tp_register();
7508         perf_cpu_notifier(perf_cpu_notify);
7509         register_reboot_notifier(&perf_reboot_notifier);
7510
7511         ret = init_hw_breakpoint();
7512         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7513
7514         /* do not patch jump label more than once per second */
7515         jump_label_rate_limit(&perf_sched_events, HZ);
7516
7517         /*
7518          * Build time assertion that we keep the data_head at the intended
7519          * location.  IOW, validation we got the __reserved[] size right.
7520          */
7521         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7522                      != 1024);
7523 }
7524
7525 static int __init perf_event_sysfs_init(void)
7526 {
7527         struct pmu *pmu;
7528         int ret;
7529
7530         mutex_lock(&pmus_lock);
7531
7532         ret = bus_register(&pmu_bus);
7533         if (ret)
7534                 goto unlock;
7535
7536         list_for_each_entry(pmu, &pmus, entry) {
7537                 if (!pmu->name || pmu->type < 0)
7538                         continue;
7539
7540                 ret = pmu_dev_alloc(pmu);
7541                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7542         }
7543         pmu_bus_running = 1;
7544         ret = 0;
7545
7546 unlock:
7547         mutex_unlock(&pmus_lock);
7548
7549         return ret;
7550 }
7551 device_initcall(perf_event_sysfs_init);
7552
7553 #ifdef CONFIG_CGROUP_PERF
7554 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7555 {
7556         struct perf_cgroup *jc;
7557
7558         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7559         if (!jc)
7560                 return ERR_PTR(-ENOMEM);
7561
7562         jc->info = alloc_percpu(struct perf_cgroup_info);
7563         if (!jc->info) {
7564                 kfree(jc);
7565                 return ERR_PTR(-ENOMEM);
7566         }
7567
7568         return &jc->css;
7569 }
7570
7571 static void perf_cgroup_css_free(struct cgroup *cont)
7572 {
7573         struct perf_cgroup *jc;
7574         jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7575                           struct perf_cgroup, css);
7576         free_percpu(jc->info);
7577         kfree(jc);
7578 }
7579
7580 static int __perf_cgroup_move(void *info)
7581 {
7582         struct task_struct *task = info;
7583         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7584         return 0;
7585 }
7586
7587 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7588 {
7589         struct task_struct *task;
7590
7591         cgroup_taskset_for_each(task, cgrp, tset)
7592                 task_function_call(task, __perf_cgroup_move, task);
7593 }
7594
7595 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7596                              struct task_struct *task)
7597 {
7598         /*
7599          * cgroup_exit() is called in the copy_process() failure path.
7600          * Ignore this case since the task hasn't ran yet, this avoids
7601          * trying to poke a half freed task state from generic code.
7602          */
7603         if (!(task->flags & PF_EXITING))
7604                 return;
7605
7606         task_function_call(task, __perf_cgroup_move, task);
7607 }
7608
7609 struct cgroup_subsys perf_subsys = {
7610         .name           = "perf_event",
7611         .subsys_id      = perf_subsys_id,
7612         .css_alloc      = perf_cgroup_css_alloc,
7613         .css_free       = perf_cgroup_css_free,
7614         .exit           = perf_cgroup_exit,
7615         .attach         = perf_cgroup_attach,
7616 };
7617 #endif /* CONFIG_CGROUP_PERF */
This page took 0.451274 seconds and 4 git commands to generate.