1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
97 EXPORT_SYMBOL(mem_map);
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 EXPORT_SYMBOL(high_memory);
111 * Randomize the address space (stacks, mmaps, brk, etc.).
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
135 static int __init disable_randmaps(char *s)
137 randomize_va_space = 0;
140 __setup("norandmaps", disable_randmaps);
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
145 unsigned long highest_memmap_pfn __read_mostly;
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 static int __init init_zero_pfn(void)
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 core_initcall(init_zero_pfn);
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
159 trace_rss_stat(mm, member, count);
162 #if defined(SPLIT_RSS_COUNTING)
164 void sync_mm_rss(struct mm_struct *mm)
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
174 current->rss_stat.events = 0;
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179 struct task_struct *task = current;
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
184 add_mm_counter(mm, member, val);
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct *task)
193 if (unlikely(task != current))
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 sync_mm_rss(task->mm);
198 #else /* SPLIT_RSS_COUNTING */
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203 static void check_sync_rss_stat(struct task_struct *task)
207 #endif /* SPLIT_RSS_COUNTING */
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 pgtable_t token = pmd_pgtable(*pmd);
218 pte_free_tlb(tlb, token, addr);
219 mm_dec_nr_ptes(tlb->mm);
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
231 pmd = pmd_offset(pud, addr);
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
236 free_pte_range(tlb, pmd, addr);
237 } while (pmd++, addr = next, addr != end);
247 if (end - 1 > ceiling - 1)
250 pmd = pmd_offset(pud, start);
252 pmd_free_tlb(tlb, pmd, start);
253 mm_dec_nr_pmds(tlb->mm);
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
265 pud = pud_offset(p4d, addr);
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 } while (pud++, addr = next, addr != end);
281 if (end - 1 > ceiling - 1)
284 pud = pud_offset(p4d, start);
286 pud_free_tlb(tlb, pud, start);
287 mm_dec_nr_puds(tlb->mm);
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
299 p4d = p4d_offset(pgd, addr);
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
311 ceiling &= PGDIR_MASK;
315 if (end - 1 > ceiling - 1)
318 p4d = p4d_offset(pgd, start);
320 p4d_free_tlb(tlb, p4d, start);
324 * This function frees user-level page tables of a process.
326 void free_pgd_range(struct mmu_gather *tlb,
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
334 * The next few lines have given us lots of grief...
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
370 if (end - 1 > ceiling - 1)
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
378 tlb_change_page_size(tlb, PAGE_SIZE);
379 pgd = pgd_offset(tlb->mm, addr);
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 } while (pgd++, addr = next, addr != end);
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 unsigned long floor, unsigned long ceiling)
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
396 * Hide vma from rmap and truncate_pagecache before freeing
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
402 if (is_vm_hugetlb_page(vma)) {
403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
407 * Optimization: gather nearby vmas into one call down
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 && !is_vm_hugetlb_page(next)) {
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 pgtable_t new = pte_alloc_one(mm);
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445 ptl = pmd_lock(mm, pmd);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
448 pmd_populate(mm, pmd, new);
457 int __pte_alloc_kernel(pmd_t *pmd)
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
463 smp_wmb(); /* See comment in __pte_alloc */
465 spin_lock(&init_mm.page_table_lock);
466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm, pmd, new);
470 spin_unlock(&init_mm.page_table_lock);
472 pte_free_kernel(&init_mm, new);
476 static inline void init_rss_vec(int *rss)
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 if (current->mm == mm)
487 for (i = 0; i < NR_MM_COUNTERS; i++)
489 add_mm_counter(mm, i, rss[i]);
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
497 * The calling function must still handle the error.
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
529 resume = jiffies + 60 * HZ;
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
538 dump_page(page, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 unsigned long pfn = pte_pfn(pte);
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 if (is_zero_pfn(pfn))
609 print_bad_pte(vma, addr, pte, NULL);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
625 if (!is_cow_mapping(vma->vm_flags))
630 if (is_zero_pfn(pfn))
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn);
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 unsigned long pfn = pmd_pfn(pmd);
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
668 if (!is_cow_mapping(vma->vm_flags))
675 if (is_huge_zero_pmd(pmd))
677 if (unlikely(pfn > highest_memmap_pfn))
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
685 return pfn_to_page(pfn);
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 unsigned long addr, int *rss)
700 unsigned long vm_flags = vma->vm_flags;
701 pte_t pte = *src_pte;
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
706 swp_entry_t entry = pte_to_swp_entry(pte);
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
718 spin_unlock(&mmlist_lock);
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
724 rss[mm_counter(page)]++;
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
729 * COW mappings require pages in both
730 * parent and child to be set to read.
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 set_pte_at(src_mm, addr, src_pte, pte);
738 } else if (is_device_private_entry(entry)) {
739 page = device_private_entry_to_page(entry);
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
751 rss[mm_counter(page)]++;
752 page_dup_rmap(page, false);
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
761 if (is_write_device_private_entry(entry) &&
762 is_cow_mapping(vm_flags)) {
763 make_device_private_entry_read(&entry);
764 pte = swp_entry_to_pte(entry);
765 set_pte_at(src_mm, addr, src_pte, pte);
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
775 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776 ptep_set_wrprotect(src_mm, addr, src_pte);
777 pte = pte_wrprotect(pte);
781 * If it's a shared mapping, mark it clean in
784 if (vm_flags & VM_SHARED)
785 pte = pte_mkclean(pte);
786 pte = pte_mkold(pte);
788 page = vm_normal_page(vma, addr, pte);
791 page_dup_rmap(page, false);
792 rss[mm_counter(page)]++;
793 } else if (pte_devmap(pte)) {
794 page = pte_page(pte);
798 set_pte_at(dst_mm, addr, dst_pte, pte);
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 unsigned long addr, unsigned long end)
806 pte_t *orig_src_pte, *orig_dst_pte;
807 pte_t *src_pte, *dst_pte;
808 spinlock_t *src_ptl, *dst_ptl;
810 int rss[NR_MM_COUNTERS];
811 swp_entry_t entry = (swp_entry_t){0};
816 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
819 src_pte = pte_offset_map(src_pmd, addr);
820 src_ptl = pte_lockptr(src_mm, src_pmd);
821 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822 orig_src_pte = src_pte;
823 orig_dst_pte = dst_pte;
824 arch_enter_lazy_mmu_mode();
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
831 if (progress >= 32) {
833 if (need_resched() ||
834 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
837 if (pte_none(*src_pte)) {
841 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
846 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
848 arch_leave_lazy_mmu_mode();
849 spin_unlock(src_ptl);
850 pte_unmap(orig_src_pte);
851 add_mm_rss_vec(dst_mm, rss);
852 pte_unmap_unlock(orig_dst_pte, dst_ptl);
856 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 unsigned long addr, unsigned long end)
869 pmd_t *src_pmd, *dst_pmd;
872 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
875 src_pmd = pmd_offset(src_pud, addr);
877 next = pmd_addr_end(addr, end);
878 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 || pmd_devmap(*src_pmd)) {
881 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882 err = copy_huge_pmd(dst_mm, src_mm,
883 dst_pmd, src_pmd, addr, vma);
890 if (pmd_none_or_clear_bad(src_pmd))
892 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
895 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901 unsigned long addr, unsigned long end)
903 pud_t *src_pud, *dst_pud;
906 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
909 src_pud = pud_offset(src_p4d, addr);
911 next = pud_addr_end(addr, end);
912 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
915 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 err = copy_huge_pud(dst_mm, src_mm,
917 dst_pud, src_pud, addr, vma);
924 if (pud_none_or_clear_bad(src_pud))
926 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
929 } while (dst_pud++, src_pud++, addr = next, addr != end);
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 unsigned long addr, unsigned long end)
937 p4d_t *src_p4d, *dst_p4d;
940 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
943 src_p4d = p4d_offset(src_pgd, addr);
945 next = p4d_addr_end(addr, end);
946 if (p4d_none_or_clear_bad(src_p4d))
948 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
951 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 struct vm_area_struct *vma)
958 pgd_t *src_pgd, *dst_pgd;
960 unsigned long addr = vma->vm_start;
961 unsigned long end = vma->vm_end;
962 struct mmu_notifier_range range;
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
972 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
976 if (is_vm_hugetlb_page(vma))
977 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
979 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
984 ret = track_pfn_copy(vma);
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
995 is_cow = is_cow_mapping(vma->vm_flags);
998 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 0, vma, src_mm, addr, end);
1000 mmu_notifier_invalidate_range_start(&range);
1004 dst_pgd = pgd_offset(dst_mm, addr);
1005 src_pgd = pgd_offset(src_mm, addr);
1007 next = pgd_addr_end(addr, end);
1008 if (pgd_none_or_clear_bad(src_pgd))
1010 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011 vma, addr, next))) {
1015 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1018 mmu_notifier_invalidate_range_end(&range);
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023 struct vm_area_struct *vma, pmd_t *pmd,
1024 unsigned long addr, unsigned long end,
1025 struct zap_details *details)
1027 struct mm_struct *mm = tlb->mm;
1028 int force_flush = 0;
1029 int rss[NR_MM_COUNTERS];
1035 tlb_change_page_size(tlb, PAGE_SIZE);
1038 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1040 flush_tlb_batched_pending(mm);
1041 arch_enter_lazy_mmu_mode();
1044 if (pte_none(ptent))
1050 if (pte_present(ptent)) {
1053 page = vm_normal_page(vma, addr, ptent);
1054 if (unlikely(details) && page) {
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1060 if (details->check_mapping &&
1061 details->check_mapping != page_rmapping(page))
1064 ptent = ptep_get_and_clear_full(mm, addr, pte,
1066 tlb_remove_tlb_entry(tlb, pte, addr);
1067 if (unlikely(!page))
1070 if (!PageAnon(page)) {
1071 if (pte_dirty(ptent)) {
1073 set_page_dirty(page);
1075 if (pte_young(ptent) &&
1076 likely(!(vma->vm_flags & VM_SEQ_READ)))
1077 mark_page_accessed(page);
1079 rss[mm_counter(page)]--;
1080 page_remove_rmap(page, false);
1081 if (unlikely(page_mapcount(page) < 0))
1082 print_bad_pte(vma, addr, ptent, page);
1083 if (unlikely(__tlb_remove_page(tlb, page))) {
1091 entry = pte_to_swp_entry(ptent);
1092 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 struct page *page = device_private_entry_to_page(entry);
1095 if (unlikely(details && details->check_mapping)) {
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1101 if (details->check_mapping !=
1102 page_rmapping(page))
1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 rss[mm_counter(page)]--;
1108 page_remove_rmap(page, false);
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details))
1117 if (!non_swap_entry(entry))
1119 else if (is_migration_entry(entry)) {
1122 page = migration_entry_to_page(entry);
1123 rss[mm_counter(page)]--;
1125 if (unlikely(!free_swap_and_cache(entry)))
1126 print_bad_pte(vma, addr, ptent, NULL);
1127 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128 } while (pte++, addr += PAGE_SIZE, addr != end);
1130 add_mm_rss_vec(mm, rss);
1131 arch_leave_lazy_mmu_mode();
1133 /* Do the actual TLB flush before dropping ptl */
1135 tlb_flush_mmu_tlbonly(tlb);
1136 pte_unmap_unlock(start_pte, ptl);
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158 struct vm_area_struct *vma, pud_t *pud,
1159 unsigned long addr, unsigned long end,
1160 struct zap_details *details)
1165 pmd = pmd_offset(pud, addr);
1167 next = pmd_addr_end(addr, end);
1168 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169 if (next - addr != HPAGE_PMD_SIZE)
1170 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1184 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1187 } while (pmd++, addr = next, addr != end);
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193 struct vm_area_struct *vma, p4d_t *p4d,
1194 unsigned long addr, unsigned long end,
1195 struct zap_details *details)
1200 pud = pud_offset(p4d, addr);
1202 next = pud_addr_end(addr, end);
1203 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 if (next - addr != HPAGE_PUD_SIZE) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 split_huge_pud(vma, pud, addr);
1207 } else if (zap_huge_pud(tlb, vma, pud, addr))
1211 if (pud_none_or_clear_bad(pud))
1213 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1216 } while (pud++, addr = next, addr != end);
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pgd_t *pgd,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1229 p4d = p4d_offset(pgd, addr);
1231 next = p4d_addr_end(addr, end);
1232 if (p4d_none_or_clear_bad(p4d))
1234 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 } while (p4d++, addr = next, addr != end);
1240 void unmap_page_range(struct mmu_gather *tlb,
1241 struct vm_area_struct *vma,
1242 unsigned long addr, unsigned long end,
1243 struct zap_details *details)
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1252 next = pgd_addr_end(addr, end);
1253 if (pgd_none_or_clear_bad(pgd))
1255 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256 } while (pgd++, addr = next, addr != end);
1257 tlb_end_vma(tlb, vma);
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
1263 unsigned long end_addr,
1264 struct zap_details *details)
1266 unsigned long start = max(vma->vm_start, start_addr);
1269 if (start >= vma->vm_end)
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1276 uprobe_munmap(vma, start, end);
1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 untrack_pfn(vma, 0, 0);
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1295 i_mmap_lock_write(vma->vm_file->f_mapping);
1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
1300 unmap_page_range(tlb, vma, start, end, details);
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1311 * Unmap all pages in the vma list.
1313 * Only addresses between `start' and `end' will be unmapped.
1315 * The VMA list must be sorted in ascending virtual address order.
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 struct vm_area_struct *vma, unsigned long start_addr,
1324 unsigned long end_addr)
1326 struct mmu_notifier_range range;
1328 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 start_addr, end_addr);
1330 mmu_notifier_invalidate_range_start(&range);
1331 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333 mmu_notifier_invalidate_range_end(&range);
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
1339 * @start: starting address of pages to zap
1340 * @size: number of bytes to zap
1342 * Caller must protect the VMA list
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1347 struct mmu_notifier_range range;
1348 struct mmu_gather tlb;
1351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352 start, start + size);
1353 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 update_hiwater_rss(vma->vm_mm);
1355 mmu_notifier_invalidate_range_start(&range);
1356 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 mmu_notifier_invalidate_range_end(&range);
1359 tlb_finish_mmu(&tlb, start, range.end);
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1369 * The range must fit into one VMA.
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372 unsigned long size, struct zap_details *details)
1374 struct mmu_notifier_range range;
1375 struct mmu_gather tlb;
1378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 address, address + size);
1380 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 update_hiwater_rss(vma->vm_mm);
1382 mmu_notifier_invalidate_range_start(&range);
1383 unmap_single_vma(&tlb, vma, address, range.end, details);
1384 mmu_notifier_invalidate_range_end(&range);
1385 tlb_finish_mmu(&tlb, address, range.end);
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 * The entire address range must be fully contained within the vma.
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402 if (address < vma->vm_start || address + size > vma->vm_end ||
1403 !(vma->vm_flags & VM_PFNMAP))
1406 zap_page_range_single(vma, address, size, NULL);
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1418 pgd = pgd_offset(mm, addr);
1419 p4d = p4d_alloc(mm, pgd, addr);
1422 pud = pud_alloc(mm, p4d, addr);
1425 pmd = pmd_alloc(mm, pud, addr);
1429 VM_BUG_ON(pmd_trans_huge(*pmd));
1430 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1434 * This is the old fallback for page remapping.
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 struct page *page, pgprot_t prot)
1443 struct mm_struct *mm = vma->vm_mm;
1449 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1452 flush_dcache_page(page);
1453 pte = get_locked_pte(mm, addr, &ptl);
1457 if (!pte_none(*pte))
1460 /* Ok, finally just insert the thing.. */
1462 inc_mm_counter_fast(mm, mm_counter_file(page));
1463 page_add_file_rmap(page, false);
1464 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1468 pte_unmap_unlock(pte, ptl);
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1479 * This allows drivers to insert individual pages they've allocated
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1493 * The page does not need to be reserved.
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1500 * Return: %0 on success, negative error code otherwise.
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1505 if (addr < vma->vm_start || addr >= vma->vm_end)
1507 if (!page_count(page))
1509 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 vma->vm_flags |= VM_MIXEDMAP;
1514 return insert_page(vma, addr, page, vma->vm_page_prot);
1516 EXPORT_SYMBOL(vm_insert_page);
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1525 * This allows drivers to map range of kernel pages into a user vma.
1527 * Return: 0 on success and error code otherwise.
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 unsigned long num, unsigned long offset)
1532 unsigned long count = vma_pages(vma);
1533 unsigned long uaddr = vma->vm_start;
1536 /* Fail if the user requested offset is beyond the end of the object */
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count > num - offset)
1544 for (i = 0; i < count; i++) {
1545 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1575 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1577 EXPORT_SYMBOL(vm_map_pages);
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1595 return __vm_map_pages(vma, pages, num, 0);
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 pfn_t pfn, pgprot_t prot, bool mkwrite)
1602 struct mm_struct *mm = vma->vm_mm;
1606 pte = get_locked_pte(mm, addr, &ptl);
1608 return VM_FAULT_OOM;
1609 if (!pte_none(*pte)) {
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1621 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1625 entry = pte_mkyoung(*pte);
1626 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 update_mmu_cache(vma, addr, pte);
1633 /* Ok, finally just insert the thing.. */
1634 if (pfn_t_devmap(pfn))
1635 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1637 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1640 entry = pte_mkyoung(entry);
1641 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1644 set_pte_at(mm, addr, pte, entry);
1645 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1648 pte_unmap_unlock(pte, ptl);
1649 return VM_FAULT_NOPAGE;
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1667 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668 * a value of @pgprot different from that of @vma->vm_page_prot.
1670 * Context: Process context. May allocate using %GFP_KERNEL.
1671 * Return: vm_fault_t value.
1673 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674 unsigned long pfn, pgprot_t pgprot)
1677 * Technically, architectures with pte_special can avoid all these
1678 * restrictions (same for remap_pfn_range). However we would like
1679 * consistency in testing and feature parity among all, so we should
1680 * try to keep these invariants in place for everybody.
1682 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684 (VM_PFNMAP|VM_MIXEDMAP));
1685 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1688 if (addr < vma->vm_start || addr >= vma->vm_end)
1689 return VM_FAULT_SIGBUS;
1691 if (!pfn_modify_allowed(pfn, pgprot))
1692 return VM_FAULT_SIGBUS;
1694 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1696 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1702 * vmf_insert_pfn - insert single pfn into user vma
1703 * @vma: user vma to map to
1704 * @addr: target user address of this page
1705 * @pfn: source kernel pfn
1707 * Similar to vm_insert_page, this allows drivers to insert individual pages
1708 * they've allocated into a user vma. Same comments apply.
1710 * This function should only be called from a vm_ops->fault handler, and
1711 * in that case the handler should return the result of this function.
1713 * vma cannot be a COW mapping.
1715 * As this is called only for pages that do not currently exist, we
1716 * do not need to flush old virtual caches or the TLB.
1718 * Context: Process context. May allocate using %GFP_KERNEL.
1719 * Return: vm_fault_t value.
1721 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1724 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1726 EXPORT_SYMBOL(vmf_insert_pfn);
1728 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1730 /* these checks mirror the abort conditions in vm_normal_page */
1731 if (vma->vm_flags & VM_MIXEDMAP)
1733 if (pfn_t_devmap(pfn))
1735 if (pfn_t_special(pfn))
1737 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1742 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1743 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1748 BUG_ON(!vm_mixed_ok(vma, pfn));
1750 if (addr < vma->vm_start || addr >= vma->vm_end)
1751 return VM_FAULT_SIGBUS;
1753 track_pfn_insert(vma, &pgprot, pfn);
1755 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1756 return VM_FAULT_SIGBUS;
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
1765 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1770 * At this point we are committed to insert_page()
1771 * regardless of whether the caller specified flags that
1772 * result in pfn_t_has_page() == false.
1774 page = pfn_to_page(pfn_t_to_pfn(pfn));
1775 err = insert_page(vma, addr, page, pgprot);
1777 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1781 return VM_FAULT_OOM;
1782 if (err < 0 && err != -EBUSY)
1783 return VM_FAULT_SIGBUS;
1785 return VM_FAULT_NOPAGE;
1789 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790 * @vma: user vma to map to
1791 * @addr: target user address of this page
1792 * @pfn: source kernel pfn
1793 * @pgprot: pgprot flags for the inserted page
1795 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796 * to override pgprot on a per-page basis.
1798 * Typically this function should be used by drivers to set caching- and
1799 * encryption bits different than those of @vma->vm_page_prot, because
1800 * the caching- or encryption mode may not be known at mmap() time.
1801 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802 * to set caching and encryption bits for those vmas (except for COW pages).
1803 * This is ensured by core vm only modifying these page table entries using
1804 * functions that don't touch caching- or encryption bits, using pte_modify()
1805 * if needed. (See for example mprotect()).
1806 * Also when new page-table entries are created, this is only done using the
1807 * fault() callback, and never using the value of vma->vm_page_prot,
1808 * except for page-table entries that point to anonymous pages as the result
1811 * Context: Process context. May allocate using %GFP_KERNEL.
1812 * Return: vm_fault_t value.
1814 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815 pfn_t pfn, pgprot_t pgprot)
1817 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1821 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1824 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1826 EXPORT_SYMBOL(vmf_insert_mixed);
1829 * If the insertion of PTE failed because someone else already added a
1830 * different entry in the mean time, we treat that as success as we assume
1831 * the same entry was actually inserted.
1833 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1834 unsigned long addr, pfn_t pfn)
1836 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1841 * maps a range of physical memory into the requested pages. the old
1842 * mappings are removed. any references to nonexistent pages results
1843 * in null mappings (currently treated as "copy-on-access")
1845 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846 unsigned long addr, unsigned long end,
1847 unsigned long pfn, pgprot_t prot)
1853 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1856 arch_enter_lazy_mmu_mode();
1858 BUG_ON(!pte_none(*pte));
1859 if (!pfn_modify_allowed(pfn, prot)) {
1863 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1865 } while (pte++, addr += PAGE_SIZE, addr != end);
1866 arch_leave_lazy_mmu_mode();
1867 pte_unmap_unlock(pte - 1, ptl);
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872 unsigned long addr, unsigned long end,
1873 unsigned long pfn, pgprot_t prot)
1879 pfn -= addr >> PAGE_SHIFT;
1880 pmd = pmd_alloc(mm, pud, addr);
1883 VM_BUG_ON(pmd_trans_huge(*pmd));
1885 next = pmd_addr_end(addr, end);
1886 err = remap_pte_range(mm, pmd, addr, next,
1887 pfn + (addr >> PAGE_SHIFT), prot);
1890 } while (pmd++, addr = next, addr != end);
1894 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1895 unsigned long addr, unsigned long end,
1896 unsigned long pfn, pgprot_t prot)
1902 pfn -= addr >> PAGE_SHIFT;
1903 pud = pud_alloc(mm, p4d, addr);
1907 next = pud_addr_end(addr, end);
1908 err = remap_pmd_range(mm, pud, addr, next,
1909 pfn + (addr >> PAGE_SHIFT), prot);
1912 } while (pud++, addr = next, addr != end);
1916 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1917 unsigned long addr, unsigned long end,
1918 unsigned long pfn, pgprot_t prot)
1924 pfn -= addr >> PAGE_SHIFT;
1925 p4d = p4d_alloc(mm, pgd, addr);
1929 next = p4d_addr_end(addr, end);
1930 err = remap_pud_range(mm, p4d, addr, next,
1931 pfn + (addr >> PAGE_SHIFT), prot);
1934 } while (p4d++, addr = next, addr != end);
1939 * remap_pfn_range - remap kernel memory to userspace
1940 * @vma: user vma to map to
1941 * @addr: target user address to start at
1942 * @pfn: page frame number of kernel physical memory address
1943 * @size: size of map area
1944 * @prot: page protection flags for this mapping
1946 * Note: this is only safe if the mm semaphore is held when called.
1948 * Return: %0 on success, negative error code otherwise.
1950 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1951 unsigned long pfn, unsigned long size, pgprot_t prot)
1955 unsigned long end = addr + PAGE_ALIGN(size);
1956 struct mm_struct *mm = vma->vm_mm;
1957 unsigned long remap_pfn = pfn;
1961 * Physically remapped pages are special. Tell the
1962 * rest of the world about it:
1963 * VM_IO tells people not to look at these pages
1964 * (accesses can have side effects).
1965 * VM_PFNMAP tells the core MM that the base pages are just
1966 * raw PFN mappings, and do not have a "struct page" associated
1969 * Disable vma merging and expanding with mremap().
1971 * Omit vma from core dump, even when VM_IO turned off.
1973 * There's a horrible special case to handle copy-on-write
1974 * behaviour that some programs depend on. We mark the "original"
1975 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976 * See vm_normal_page() for details.
1978 if (is_cow_mapping(vma->vm_flags)) {
1979 if (addr != vma->vm_start || end != vma->vm_end)
1981 vma->vm_pgoff = pfn;
1984 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1988 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1990 BUG_ON(addr >= end);
1991 pfn -= addr >> PAGE_SHIFT;
1992 pgd = pgd_offset(mm, addr);
1993 flush_cache_range(vma, addr, end);
1995 next = pgd_addr_end(addr, end);
1996 err = remap_p4d_range(mm, pgd, addr, next,
1997 pfn + (addr >> PAGE_SHIFT), prot);
2000 } while (pgd++, addr = next, addr != end);
2003 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2007 EXPORT_SYMBOL(remap_pfn_range);
2010 * vm_iomap_memory - remap memory to userspace
2011 * @vma: user vma to map to
2012 * @start: start of the physical memory to be mapped
2013 * @len: size of area
2015 * This is a simplified io_remap_pfn_range() for common driver use. The
2016 * driver just needs to give us the physical memory range to be mapped,
2017 * we'll figure out the rest from the vma information.
2019 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020 * whatever write-combining details or similar.
2022 * Return: %0 on success, negative error code otherwise.
2024 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2026 unsigned long vm_len, pfn, pages;
2028 /* Check that the physical memory area passed in looks valid */
2029 if (start + len < start)
2032 * You *really* shouldn't map things that aren't page-aligned,
2033 * but we've historically allowed it because IO memory might
2034 * just have smaller alignment.
2036 len += start & ~PAGE_MASK;
2037 pfn = start >> PAGE_SHIFT;
2038 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2039 if (pfn + pages < pfn)
2042 /* We start the mapping 'vm_pgoff' pages into the area */
2043 if (vma->vm_pgoff > pages)
2045 pfn += vma->vm_pgoff;
2046 pages -= vma->vm_pgoff;
2048 /* Can we fit all of the mapping? */
2049 vm_len = vma->vm_end - vma->vm_start;
2050 if (vm_len >> PAGE_SHIFT > pages)
2053 /* Ok, let it rip */
2054 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2056 EXPORT_SYMBOL(vm_iomap_memory);
2058 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2059 unsigned long addr, unsigned long end,
2060 pte_fn_t fn, void *data, bool create)
2064 spinlock_t *uninitialized_var(ptl);
2067 pte = (mm == &init_mm) ?
2068 pte_alloc_kernel(pmd, addr) :
2069 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2073 pte = (mm == &init_mm) ?
2074 pte_offset_kernel(pmd, addr) :
2075 pte_offset_map_lock(mm, pmd, addr, &ptl);
2078 BUG_ON(pmd_huge(*pmd));
2080 arch_enter_lazy_mmu_mode();
2083 if (create || !pte_none(*pte)) {
2084 err = fn(pte++, addr, data);
2088 } while (addr += PAGE_SIZE, addr != end);
2090 arch_leave_lazy_mmu_mode();
2093 pte_unmap_unlock(pte-1, ptl);
2097 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2098 unsigned long addr, unsigned long end,
2099 pte_fn_t fn, void *data, bool create)
2105 BUG_ON(pud_huge(*pud));
2108 pmd = pmd_alloc(mm, pud, addr);
2112 pmd = pmd_offset(pud, addr);
2115 next = pmd_addr_end(addr, end);
2116 if (create || !pmd_none_or_clear_bad(pmd)) {
2117 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2122 } while (pmd++, addr = next, addr != end);
2126 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2127 unsigned long addr, unsigned long end,
2128 pte_fn_t fn, void *data, bool create)
2135 pud = pud_alloc(mm, p4d, addr);
2139 pud = pud_offset(p4d, addr);
2142 next = pud_addr_end(addr, end);
2143 if (create || !pud_none_or_clear_bad(pud)) {
2144 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2149 } while (pud++, addr = next, addr != end);
2153 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2154 unsigned long addr, unsigned long end,
2155 pte_fn_t fn, void *data, bool create)
2162 p4d = p4d_alloc(mm, pgd, addr);
2166 p4d = p4d_offset(pgd, addr);
2169 next = p4d_addr_end(addr, end);
2170 if (create || !p4d_none_or_clear_bad(p4d)) {
2171 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2176 } while (p4d++, addr = next, addr != end);
2180 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2181 unsigned long size, pte_fn_t fn,
2182 void *data, bool create)
2186 unsigned long end = addr + size;
2189 if (WARN_ON(addr >= end))
2192 pgd = pgd_offset(mm, addr);
2194 next = pgd_addr_end(addr, end);
2195 if (!create && pgd_none_or_clear_bad(pgd))
2197 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2200 } while (pgd++, addr = next, addr != end);
2206 * Scan a region of virtual memory, filling in page tables as necessary
2207 * and calling a provided function on each leaf page table.
2209 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2210 unsigned long size, pte_fn_t fn, void *data)
2212 return __apply_to_page_range(mm, addr, size, fn, data, true);
2214 EXPORT_SYMBOL_GPL(apply_to_page_range);
2217 * Scan a region of virtual memory, calling a provided function on
2218 * each leaf page table where it exists.
2220 * Unlike apply_to_page_range, this does _not_ fill in page tables
2221 * where they are absent.
2223 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2224 unsigned long size, pte_fn_t fn, void *data)
2226 return __apply_to_page_range(mm, addr, size, fn, data, false);
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2231 * handle_pte_fault chooses page fault handler according to an entry which was
2232 * read non-atomically. Before making any commitment, on those architectures
2233 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234 * parts, do_swap_page must check under lock before unmapping the pte and
2235 * proceeding (but do_wp_page is only called after already making such a check;
2236 * and do_anonymous_page can safely check later on).
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239 pte_t *page_table, pte_t orig_pte)
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243 if (sizeof(pte_t) > sizeof(unsigned long)) {
2244 spinlock_t *ptl = pte_lockptr(mm, pmd);
2246 same = pte_same(*page_table, orig_pte);
2250 pte_unmap(page_table);
2254 static inline bool cow_user_page(struct page *dst, struct page *src,
2255 struct vm_fault *vmf)
2260 bool locked = false;
2261 struct vm_area_struct *vma = vmf->vma;
2262 struct mm_struct *mm = vma->vm_mm;
2263 unsigned long addr = vmf->address;
2265 debug_dma_assert_idle(src);
2268 copy_user_highpage(dst, src, addr, vma);
2273 * If the source page was a PFN mapping, we don't have
2274 * a "struct page" for it. We do a best-effort copy by
2275 * just copying from the original user address. If that
2276 * fails, we just zero-fill it. Live with it.
2278 kaddr = kmap_atomic(dst);
2279 uaddr = (void __user *)(addr & PAGE_MASK);
2282 * On architectures with software "accessed" bits, we would
2283 * take a double page fault, so mark it accessed here.
2285 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2288 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2290 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2292 * Other thread has already handled the fault
2293 * and we don't need to do anything. If it's
2294 * not the case, the fault will be triggered
2295 * again on the same address.
2301 entry = pte_mkyoung(vmf->orig_pte);
2302 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2303 update_mmu_cache(vma, addr, vmf->pte);
2307 * This really shouldn't fail, because the page is there
2308 * in the page tables. But it might just be unreadable,
2309 * in which case we just give up and fill the result with
2312 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2316 /* Re-validate under PTL if the page is still mapped */
2317 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2319 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2320 /* The PTE changed under us. Retry page fault. */
2326 * The same page can be mapped back since last copy attampt.
2327 * Try to copy again under PTL.
2329 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2331 * Give a warn in case there can be some obscure
2344 pte_unmap_unlock(vmf->pte, vmf->ptl);
2345 kunmap_atomic(kaddr);
2346 flush_dcache_page(dst);
2351 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2353 struct file *vm_file = vma->vm_file;
2356 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2359 * Special mappings (e.g. VDSO) do not have any file so fake
2360 * a default GFP_KERNEL for them.
2366 * Notify the address space that the page is about to become writable so that
2367 * it can prohibit this or wait for the page to get into an appropriate state.
2369 * We do this without the lock held, so that it can sleep if it needs to.
2371 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2374 struct page *page = vmf->page;
2375 unsigned int old_flags = vmf->flags;
2377 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2379 if (vmf->vma->vm_file &&
2380 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2381 return VM_FAULT_SIGBUS;
2383 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384 /* Restore original flags so that caller is not surprised */
2385 vmf->flags = old_flags;
2386 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2388 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2390 if (!page->mapping) {
2392 return 0; /* retry */
2394 ret |= VM_FAULT_LOCKED;
2396 VM_BUG_ON_PAGE(!PageLocked(page), page);
2401 * Handle dirtying of a page in shared file mapping on a write fault.
2403 * The function expects the page to be locked and unlocks it.
2405 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2407 struct vm_area_struct *vma = vmf->vma;
2408 struct address_space *mapping;
2409 struct page *page = vmf->page;
2411 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2413 dirtied = set_page_dirty(page);
2414 VM_BUG_ON_PAGE(PageAnon(page), page);
2416 * Take a local copy of the address_space - page.mapping may be zeroed
2417 * by truncate after unlock_page(). The address_space itself remains
2418 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2419 * release semantics to prevent the compiler from undoing this copying.
2421 mapping = page_rmapping(page);
2425 file_update_time(vma->vm_file);
2428 * Throttle page dirtying rate down to writeback speed.
2430 * mapping may be NULL here because some device drivers do not
2431 * set page.mapping but still dirty their pages
2433 * Drop the mmap_sem before waiting on IO, if we can. The file
2434 * is pinning the mapping, as per above.
2436 if ((dirtied || page_mkwrite) && mapping) {
2439 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2440 balance_dirty_pages_ratelimited(mapping);
2443 return VM_FAULT_RETRY;
2451 * Handle write page faults for pages that can be reused in the current vma
2453 * This can happen either due to the mapping being with the VM_SHARED flag,
2454 * or due to us being the last reference standing to the page. In either
2455 * case, all we need to do here is to mark the page as writable and update
2456 * any related book-keeping.
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459 __releases(vmf->ptl)
2461 struct vm_area_struct *vma = vmf->vma;
2462 struct page *page = vmf->page;
2465 * Clear the pages cpupid information as the existing
2466 * information potentially belongs to a now completely
2467 * unrelated process.
2470 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2472 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473 entry = pte_mkyoung(vmf->orig_pte);
2474 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476 update_mmu_cache(vma, vmf->address, vmf->pte);
2477 pte_unmap_unlock(vmf->pte, vmf->ptl);
2481 * Handle the case of a page which we actually need to copy to a new page.
2483 * Called with mmap_sem locked and the old page referenced, but
2484 * without the ptl held.
2486 * High level logic flow:
2488 * - Allocate a page, copy the content of the old page to the new one.
2489 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490 * - Take the PTL. If the pte changed, bail out and release the allocated page
2491 * - If the pte is still the way we remember it, update the page table and all
2492 * relevant references. This includes dropping the reference the page-table
2493 * held to the old page, as well as updating the rmap.
2494 * - In any case, unlock the PTL and drop the reference we took to the old page.
2496 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2498 struct vm_area_struct *vma = vmf->vma;
2499 struct mm_struct *mm = vma->vm_mm;
2500 struct page *old_page = vmf->page;
2501 struct page *new_page = NULL;
2503 int page_copied = 0;
2504 struct mem_cgroup *memcg;
2505 struct mmu_notifier_range range;
2507 if (unlikely(anon_vma_prepare(vma)))
2510 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2511 new_page = alloc_zeroed_user_highpage_movable(vma,
2516 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2521 if (!cow_user_page(new_page, old_page, vmf)) {
2523 * COW failed, if the fault was solved by other,
2524 * it's fine. If not, userspace would re-fault on
2525 * the same address and we will handle the fault
2526 * from the second attempt.
2535 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2538 __SetPageUptodate(new_page);
2540 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2541 vmf->address & PAGE_MASK,
2542 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2543 mmu_notifier_invalidate_range_start(&range);
2546 * Re-check the pte - we dropped the lock
2548 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2549 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2551 if (!PageAnon(old_page)) {
2552 dec_mm_counter_fast(mm,
2553 mm_counter_file(old_page));
2554 inc_mm_counter_fast(mm, MM_ANONPAGES);
2557 inc_mm_counter_fast(mm, MM_ANONPAGES);
2559 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2560 entry = mk_pte(new_page, vma->vm_page_prot);
2561 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2563 * Clear the pte entry and flush it first, before updating the
2564 * pte with the new entry. This will avoid a race condition
2565 * seen in the presence of one thread doing SMC and another
2568 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2569 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2570 mem_cgroup_commit_charge(new_page, memcg, false, false);
2571 lru_cache_add_active_or_unevictable(new_page, vma);
2573 * We call the notify macro here because, when using secondary
2574 * mmu page tables (such as kvm shadow page tables), we want the
2575 * new page to be mapped directly into the secondary page table.
2577 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2578 update_mmu_cache(vma, vmf->address, vmf->pte);
2581 * Only after switching the pte to the new page may
2582 * we remove the mapcount here. Otherwise another
2583 * process may come and find the rmap count decremented
2584 * before the pte is switched to the new page, and
2585 * "reuse" the old page writing into it while our pte
2586 * here still points into it and can be read by other
2589 * The critical issue is to order this
2590 * page_remove_rmap with the ptp_clear_flush above.
2591 * Those stores are ordered by (if nothing else,)
2592 * the barrier present in the atomic_add_negative
2593 * in page_remove_rmap.
2595 * Then the TLB flush in ptep_clear_flush ensures that
2596 * no process can access the old page before the
2597 * decremented mapcount is visible. And the old page
2598 * cannot be reused until after the decremented
2599 * mapcount is visible. So transitively, TLBs to
2600 * old page will be flushed before it can be reused.
2602 page_remove_rmap(old_page, false);
2605 /* Free the old page.. */
2606 new_page = old_page;
2609 mem_cgroup_cancel_charge(new_page, memcg, false);
2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
2617 * No need to double call mmu_notifier->invalidate_range() callback as
2618 * the above ptep_clear_flush_notify() did already call it.
2620 mmu_notifier_invalidate_range_only_end(&range);
2623 * Don't let another task, with possibly unlocked vma,
2624 * keep the mlocked page.
2626 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2627 lock_page(old_page); /* LRU manipulation */
2628 if (PageMlocked(old_page))
2629 munlock_vma_page(old_page);
2630 unlock_page(old_page);
2634 return page_copied ? VM_FAULT_WRITE : 0;
2640 return VM_FAULT_OOM;
2644 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2645 * writeable once the page is prepared
2647 * @vmf: structure describing the fault
2649 * This function handles all that is needed to finish a write page fault in a
2650 * shared mapping due to PTE being read-only once the mapped page is prepared.
2651 * It handles locking of PTE and modifying it.
2653 * The function expects the page to be locked or other protection against
2654 * concurrent faults / writeback (such as DAX radix tree locks).
2656 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2657 * we acquired PTE lock.
2659 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2661 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2662 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2665 * We might have raced with another page fault while we released the
2666 * pte_offset_map_lock.
2668 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2669 pte_unmap_unlock(vmf->pte, vmf->ptl);
2670 return VM_FAULT_NOPAGE;
2677 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2680 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2682 struct vm_area_struct *vma = vmf->vma;
2684 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 vmf->flags |= FAULT_FLAG_MKWRITE;
2689 ret = vma->vm_ops->pfn_mkwrite(vmf);
2690 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2692 return finish_mkwrite_fault(vmf);
2695 return VM_FAULT_WRITE;
2698 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2699 __releases(vmf->ptl)
2701 struct vm_area_struct *vma = vmf->vma;
2702 vm_fault_t ret = VM_FAULT_WRITE;
2704 get_page(vmf->page);
2706 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2709 pte_unmap_unlock(vmf->pte, vmf->ptl);
2710 tmp = do_page_mkwrite(vmf);
2711 if (unlikely(!tmp || (tmp &
2712 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2713 put_page(vmf->page);
2716 tmp = finish_mkwrite_fault(vmf);
2717 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2718 unlock_page(vmf->page);
2719 put_page(vmf->page);
2724 lock_page(vmf->page);
2726 ret |= fault_dirty_shared_page(vmf);
2727 put_page(vmf->page);
2733 * This routine handles present pages, when users try to write
2734 * to a shared page. It is done by copying the page to a new address
2735 * and decrementing the shared-page counter for the old page.
2737 * Note that this routine assumes that the protection checks have been
2738 * done by the caller (the low-level page fault routine in most cases).
2739 * Thus we can safely just mark it writable once we've done any necessary
2742 * We also mark the page dirty at this point even though the page will
2743 * change only once the write actually happens. This avoids a few races,
2744 * and potentially makes it more efficient.
2746 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747 * but allow concurrent faults), with pte both mapped and locked.
2748 * We return with mmap_sem still held, but pte unmapped and unlocked.
2750 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2751 __releases(vmf->ptl)
2753 struct vm_area_struct *vma = vmf->vma;
2755 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2758 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2761 * We should not cow pages in a shared writeable mapping.
2762 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2764 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2765 (VM_WRITE|VM_SHARED))
2766 return wp_pfn_shared(vmf);
2768 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 return wp_page_copy(vmf);
2773 * Take out anonymous pages first, anonymous shared vmas are
2774 * not dirty accountable.
2776 if (PageAnon(vmf->page)) {
2777 int total_map_swapcount;
2778 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2779 page_count(vmf->page) != 1))
2781 if (!trylock_page(vmf->page)) {
2782 get_page(vmf->page);
2783 pte_unmap_unlock(vmf->pte, vmf->ptl);
2784 lock_page(vmf->page);
2785 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2786 vmf->address, &vmf->ptl);
2787 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2788 unlock_page(vmf->page);
2789 pte_unmap_unlock(vmf->pte, vmf->ptl);
2790 put_page(vmf->page);
2793 put_page(vmf->page);
2795 if (PageKsm(vmf->page)) {
2796 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2798 unlock_page(vmf->page);
2802 return VM_FAULT_WRITE;
2804 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2805 if (total_map_swapcount == 1) {
2807 * The page is all ours. Move it to
2808 * our anon_vma so the rmap code will
2809 * not search our parent or siblings.
2810 * Protected against the rmap code by
2813 page_move_anon_rmap(vmf->page, vma);
2815 unlock_page(vmf->page);
2817 return VM_FAULT_WRITE;
2819 unlock_page(vmf->page);
2820 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2821 (VM_WRITE|VM_SHARED))) {
2822 return wp_page_shared(vmf);
2826 * Ok, we need to copy. Oh, well..
2828 get_page(vmf->page);
2830 pte_unmap_unlock(vmf->pte, vmf->ptl);
2831 return wp_page_copy(vmf);
2834 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2835 unsigned long start_addr, unsigned long end_addr,
2836 struct zap_details *details)
2838 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2841 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2842 struct zap_details *details)
2844 struct vm_area_struct *vma;
2845 pgoff_t vba, vea, zba, zea;
2847 vma_interval_tree_foreach(vma, root,
2848 details->first_index, details->last_index) {
2850 vba = vma->vm_pgoff;
2851 vea = vba + vma_pages(vma) - 1;
2852 zba = details->first_index;
2855 zea = details->last_index;
2859 unmap_mapping_range_vma(vma,
2860 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2861 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2867 * unmap_mapping_pages() - Unmap pages from processes.
2868 * @mapping: The address space containing pages to be unmapped.
2869 * @start: Index of first page to be unmapped.
2870 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2871 * @even_cows: Whether to unmap even private COWed pages.
2873 * Unmap the pages in this address space from any userspace process which
2874 * has them mmaped. Generally, you want to remove COWed pages as well when
2875 * a file is being truncated, but not when invalidating pages from the page
2878 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2879 pgoff_t nr, bool even_cows)
2881 struct zap_details details = { };
2883 details.check_mapping = even_cows ? NULL : mapping;
2884 details.first_index = start;
2885 details.last_index = start + nr - 1;
2886 if (details.last_index < details.first_index)
2887 details.last_index = ULONG_MAX;
2889 i_mmap_lock_write(mapping);
2890 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2891 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2892 i_mmap_unlock_write(mapping);
2896 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2897 * address_space corresponding to the specified byte range in the underlying
2900 * @mapping: the address space containing mmaps to be unmapped.
2901 * @holebegin: byte in first page to unmap, relative to the start of
2902 * the underlying file. This will be rounded down to a PAGE_SIZE
2903 * boundary. Note that this is different from truncate_pagecache(), which
2904 * must keep the partial page. In contrast, we must get rid of
2906 * @holelen: size of prospective hole in bytes. This will be rounded
2907 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2909 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910 * but 0 when invalidating pagecache, don't throw away private data.
2912 void unmap_mapping_range(struct address_space *mapping,
2913 loff_t const holebegin, loff_t const holelen, int even_cows)
2915 pgoff_t hba = holebegin >> PAGE_SHIFT;
2916 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2918 /* Check for overflow. */
2919 if (sizeof(holelen) > sizeof(hlen)) {
2921 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2922 if (holeend & ~(long long)ULONG_MAX)
2923 hlen = ULONG_MAX - hba + 1;
2926 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2928 EXPORT_SYMBOL(unmap_mapping_range);
2931 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2932 * but allow concurrent faults), and pte mapped but not yet locked.
2933 * We return with pte unmapped and unlocked.
2935 * We return with the mmap_sem locked or unlocked in the same cases
2936 * as does filemap_fault().
2938 vm_fault_t do_swap_page(struct vm_fault *vmf)
2940 struct vm_area_struct *vma = vmf->vma;
2941 struct page *page = NULL, *swapcache;
2942 struct mem_cgroup *memcg;
2949 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2952 entry = pte_to_swp_entry(vmf->orig_pte);
2953 if (unlikely(non_swap_entry(entry))) {
2954 if (is_migration_entry(entry)) {
2955 migration_entry_wait(vma->vm_mm, vmf->pmd,
2957 } else if (is_device_private_entry(entry)) {
2958 vmf->page = device_private_entry_to_page(entry);
2959 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2960 } else if (is_hwpoison_entry(entry)) {
2961 ret = VM_FAULT_HWPOISON;
2963 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2964 ret = VM_FAULT_SIGBUS;
2970 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2971 page = lookup_swap_cache(entry, vma, vmf->address);
2975 struct swap_info_struct *si = swp_swap_info(entry);
2977 if (si->flags & SWP_SYNCHRONOUS_IO &&
2978 __swap_count(entry) == 1) {
2979 /* skip swapcache */
2980 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2983 __SetPageLocked(page);
2984 __SetPageSwapBacked(page);
2985 set_page_private(page, entry.val);
2986 lru_cache_add_anon(page);
2987 swap_readpage(page, true);
2990 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2997 * Back out if somebody else faulted in this pte
2998 * while we released the pte lock.
3000 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3001 vmf->address, &vmf->ptl);
3002 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3004 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3008 /* Had to read the page from swap area: Major fault */
3009 ret = VM_FAULT_MAJOR;
3010 count_vm_event(PGMAJFAULT);
3011 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3012 } else if (PageHWPoison(page)) {
3014 * hwpoisoned dirty swapcache pages are kept for killing
3015 * owner processes (which may be unknown at hwpoison time)
3017 ret = VM_FAULT_HWPOISON;
3018 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3022 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3024 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3026 ret |= VM_FAULT_RETRY;
3031 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3032 * release the swapcache from under us. The page pin, and pte_same
3033 * test below, are not enough to exclude that. Even if it is still
3034 * swapcache, we need to check that the page's swap has not changed.
3036 if (unlikely((!PageSwapCache(page) ||
3037 page_private(page) != entry.val)) && swapcache)
3040 page = ksm_might_need_to_copy(page, vma, vmf->address);
3041 if (unlikely(!page)) {
3047 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3054 * Back out if somebody else already faulted in this pte.
3056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3058 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3061 if (unlikely(!PageUptodate(page))) {
3062 ret = VM_FAULT_SIGBUS;
3067 * The page isn't present yet, go ahead with the fault.
3069 * Be careful about the sequence of operations here.
3070 * To get its accounting right, reuse_swap_page() must be called
3071 * while the page is counted on swap but not yet in mapcount i.e.
3072 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073 * must be called after the swap_free(), or it will never succeed.
3076 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3077 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3078 pte = mk_pte(page, vma->vm_page_prot);
3079 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3080 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3081 vmf->flags &= ~FAULT_FLAG_WRITE;
3082 ret |= VM_FAULT_WRITE;
3083 exclusive = RMAP_EXCLUSIVE;
3085 flush_icache_page(vma, page);
3086 if (pte_swp_soft_dirty(vmf->orig_pte))
3087 pte = pte_mksoft_dirty(pte);
3088 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3089 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3090 vmf->orig_pte = pte;
3092 /* ksm created a completely new copy */
3093 if (unlikely(page != swapcache && swapcache)) {
3094 page_add_new_anon_rmap(page, vma, vmf->address, false);
3095 mem_cgroup_commit_charge(page, memcg, false, false);
3096 lru_cache_add_active_or_unevictable(page, vma);
3098 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3099 mem_cgroup_commit_charge(page, memcg, true, false);
3100 activate_page(page);
3104 if (mem_cgroup_swap_full(page) ||
3105 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3106 try_to_free_swap(page);
3108 if (page != swapcache && swapcache) {
3110 * Hold the lock to avoid the swap entry to be reused
3111 * until we take the PT lock for the pte_same() check
3112 * (to avoid false positives from pte_same). For
3113 * further safety release the lock after the swap_free
3114 * so that the swap count won't change under a
3115 * parallel locked swapcache.
3117 unlock_page(swapcache);
3118 put_page(swapcache);
3121 if (vmf->flags & FAULT_FLAG_WRITE) {
3122 ret |= do_wp_page(vmf);
3123 if (ret & VM_FAULT_ERROR)
3124 ret &= VM_FAULT_ERROR;
3128 /* No need to invalidate - it was non-present before */
3129 update_mmu_cache(vma, vmf->address, vmf->pte);
3131 pte_unmap_unlock(vmf->pte, vmf->ptl);
3135 mem_cgroup_cancel_charge(page, memcg, false);
3136 pte_unmap_unlock(vmf->pte, vmf->ptl);
3141 if (page != swapcache && swapcache) {
3142 unlock_page(swapcache);
3143 put_page(swapcache);
3149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150 * but allow concurrent faults), and pte mapped but not yet locked.
3151 * We return with mmap_sem still held, but pte unmapped and unlocked.
3153 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3155 struct vm_area_struct *vma = vmf->vma;
3156 struct mem_cgroup *memcg;
3161 /* File mapping without ->vm_ops ? */
3162 if (vma->vm_flags & VM_SHARED)
3163 return VM_FAULT_SIGBUS;
3166 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3167 * pte_offset_map() on pmds where a huge pmd might be created
3168 * from a different thread.
3170 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3171 * parallel threads are excluded by other means.
3173 * Here we only have down_read(mmap_sem).
3175 if (pte_alloc(vma->vm_mm, vmf->pmd))
3176 return VM_FAULT_OOM;
3178 /* See the comment in pte_alloc_one_map() */
3179 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3182 /* Use the zero-page for reads */
3183 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3184 !mm_forbids_zeropage(vma->vm_mm)) {
3185 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3186 vma->vm_page_prot));
3187 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3188 vmf->address, &vmf->ptl);
3189 if (!pte_none(*vmf->pte))
3191 ret = check_stable_address_space(vma->vm_mm);
3194 /* Deliver the page fault to userland, check inside PT lock */
3195 if (userfaultfd_missing(vma)) {
3196 pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 return handle_userfault(vmf, VM_UFFD_MISSING);
3202 /* Allocate our own private page. */
3203 if (unlikely(anon_vma_prepare(vma)))
3205 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3209 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3214 * The memory barrier inside __SetPageUptodate makes sure that
3215 * preceding stores to the page contents become visible before
3216 * the set_pte_at() write.
3218 __SetPageUptodate(page);
3220 entry = mk_pte(page, vma->vm_page_prot);
3221 if (vma->vm_flags & VM_WRITE)
3222 entry = pte_mkwrite(pte_mkdirty(entry));
3224 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3226 if (!pte_none(*vmf->pte))
3229 ret = check_stable_address_space(vma->vm_mm);
3233 /* Deliver the page fault to userland, check inside PT lock */
3234 if (userfaultfd_missing(vma)) {
3235 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 mem_cgroup_cancel_charge(page, memcg, false);
3238 return handle_userfault(vmf, VM_UFFD_MISSING);
3241 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3242 page_add_new_anon_rmap(page, vma, vmf->address, false);
3243 mem_cgroup_commit_charge(page, memcg, false, false);
3244 lru_cache_add_active_or_unevictable(page, vma);
3246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3248 /* No need to invalidate - it was non-present before */
3249 update_mmu_cache(vma, vmf->address, vmf->pte);
3251 pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 mem_cgroup_cancel_charge(page, memcg, false);
3260 return VM_FAULT_OOM;
3264 * The mmap_sem must have been held on entry, and may have been
3265 * released depending on flags and vma->vm_ops->fault() return value.
3266 * See filemap_fault() and __lock_page_retry().
3268 static vm_fault_t __do_fault(struct vm_fault *vmf)
3270 struct vm_area_struct *vma = vmf->vma;
3274 * Preallocate pte before we take page_lock because this might lead to
3275 * deadlocks for memcg reclaim which waits for pages under writeback:
3277 * SetPageWriteback(A)
3283 * wait_on_page_writeback(A)
3284 * SetPageWriteback(B)
3286 * # flush A, B to clear the writeback
3288 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3289 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3290 if (!vmf->prealloc_pte)
3291 return VM_FAULT_OOM;
3292 smp_wmb(); /* See comment in __pte_alloc() */
3295 ret = vma->vm_ops->fault(vmf);
3296 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3297 VM_FAULT_DONE_COW)))
3300 if (unlikely(PageHWPoison(vmf->page))) {
3301 if (ret & VM_FAULT_LOCKED)
3302 unlock_page(vmf->page);
3303 put_page(vmf->page);
3305 return VM_FAULT_HWPOISON;
3308 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3309 lock_page(vmf->page);
3311 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3317 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3318 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3319 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3320 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3322 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3324 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3327 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3329 struct vm_area_struct *vma = vmf->vma;
3331 if (!pmd_none(*vmf->pmd))
3333 if (vmf->prealloc_pte) {
3334 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3335 if (unlikely(!pmd_none(*vmf->pmd))) {
3336 spin_unlock(vmf->ptl);
3340 mm_inc_nr_ptes(vma->vm_mm);
3341 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342 spin_unlock(vmf->ptl);
3343 vmf->prealloc_pte = NULL;
3344 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3345 return VM_FAULT_OOM;
3349 * If a huge pmd materialized under us just retry later. Use
3350 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3351 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3352 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3353 * running immediately after a huge pmd fault in a different thread of
3354 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3355 * All we have to ensure is that it is a regular pmd that we can walk
3356 * with pte_offset_map() and we can do that through an atomic read in
3357 * C, which is what pmd_trans_unstable() provides.
3359 if (pmd_devmap_trans_unstable(vmf->pmd))
3360 return VM_FAULT_NOPAGE;
3363 * At this point we know that our vmf->pmd points to a page of ptes
3364 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3365 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3366 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3367 * be valid and we will re-check to make sure the vmf->pte isn't
3368 * pte_none() under vmf->ptl protection when we return to
3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3376 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3377 static void deposit_prealloc_pte(struct vm_fault *vmf)
3379 struct vm_area_struct *vma = vmf->vma;
3381 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3383 * We are going to consume the prealloc table,
3384 * count that as nr_ptes.
3386 mm_inc_nr_ptes(vma->vm_mm);
3387 vmf->prealloc_pte = NULL;
3390 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3392 struct vm_area_struct *vma = vmf->vma;
3393 bool write = vmf->flags & FAULT_FLAG_WRITE;
3394 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3399 if (!transhuge_vma_suitable(vma, haddr))
3400 return VM_FAULT_FALLBACK;
3402 ret = VM_FAULT_FALLBACK;
3403 page = compound_head(page);
3406 * Archs like ppc64 need additonal space to store information
3407 * related to pte entry. Use the preallocated table for that.
3409 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3410 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3411 if (!vmf->prealloc_pte)
3412 return VM_FAULT_OOM;
3413 smp_wmb(); /* See comment in __pte_alloc() */
3416 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3417 if (unlikely(!pmd_none(*vmf->pmd)))
3420 for (i = 0; i < HPAGE_PMD_NR; i++)
3421 flush_icache_page(vma, page + i);
3423 entry = mk_huge_pmd(page, vma->vm_page_prot);
3425 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3427 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3428 page_add_file_rmap(page, true);
3430 * deposit and withdraw with pmd lock held
3432 if (arch_needs_pgtable_deposit())
3433 deposit_prealloc_pte(vmf);
3435 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3437 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3439 /* fault is handled */
3441 count_vm_event(THP_FILE_MAPPED);
3443 spin_unlock(vmf->ptl);
3447 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3455 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3456 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3458 * @vmf: fault environment
3459 * @memcg: memcg to charge page (only for private mappings)
3460 * @page: page to map
3462 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3465 * Target users are page handler itself and implementations of
3466 * vm_ops->map_pages.
3468 * Return: %0 on success, %VM_FAULT_ code in case of error.
3470 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3473 struct vm_area_struct *vma = vmf->vma;
3474 bool write = vmf->flags & FAULT_FLAG_WRITE;
3478 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3480 VM_BUG_ON_PAGE(memcg, page);
3482 ret = do_set_pmd(vmf, page);
3483 if (ret != VM_FAULT_FALLBACK)
3488 ret = pte_alloc_one_map(vmf);
3493 /* Re-check under ptl */
3494 if (unlikely(!pte_none(*vmf->pte)))
3495 return VM_FAULT_NOPAGE;
3497 flush_icache_page(vma, page);
3498 entry = mk_pte(page, vma->vm_page_prot);
3500 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3501 /* copy-on-write page */
3502 if (write && !(vma->vm_flags & VM_SHARED)) {
3503 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3504 page_add_new_anon_rmap(page, vma, vmf->address, false);
3505 mem_cgroup_commit_charge(page, memcg, false, false);
3506 lru_cache_add_active_or_unevictable(page, vma);
3508 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3509 page_add_file_rmap(page, false);
3511 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3513 /* no need to invalidate: a not-present page won't be cached */
3514 update_mmu_cache(vma, vmf->address, vmf->pte);
3521 * finish_fault - finish page fault once we have prepared the page to fault
3523 * @vmf: structure describing the fault
3525 * This function handles all that is needed to finish a page fault once the
3526 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3527 * given page, adds reverse page mapping, handles memcg charges and LRU
3530 * The function expects the page to be locked and on success it consumes a
3531 * reference of a page being mapped (for the PTE which maps it).
3533 * Return: %0 on success, %VM_FAULT_ code in case of error.
3535 vm_fault_t finish_fault(struct vm_fault *vmf)
3540 /* Did we COW the page? */
3541 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3542 !(vmf->vma->vm_flags & VM_SHARED))
3543 page = vmf->cow_page;
3548 * check even for read faults because we might have lost our CoWed
3551 if (!(vmf->vma->vm_flags & VM_SHARED))
3552 ret = check_stable_address_space(vmf->vma->vm_mm);
3554 ret = alloc_set_pte(vmf, vmf->memcg, page);
3556 pte_unmap_unlock(vmf->pte, vmf->ptl);
3560 static unsigned long fault_around_bytes __read_mostly =
3561 rounddown_pow_of_two(65536);
3563 #ifdef CONFIG_DEBUG_FS
3564 static int fault_around_bytes_get(void *data, u64 *val)
3566 *val = fault_around_bytes;
3571 * fault_around_bytes must be rounded down to the nearest page order as it's
3572 * what do_fault_around() expects to see.
3574 static int fault_around_bytes_set(void *data, u64 val)
3576 if (val / PAGE_SIZE > PTRS_PER_PTE)
3578 if (val > PAGE_SIZE)
3579 fault_around_bytes = rounddown_pow_of_two(val);
3581 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3584 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3585 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3587 static int __init fault_around_debugfs(void)
3589 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3590 &fault_around_bytes_fops);
3593 late_initcall(fault_around_debugfs);
3597 * do_fault_around() tries to map few pages around the fault address. The hope
3598 * is that the pages will be needed soon and this will lower the number of
3601 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3602 * not ready to be mapped: not up-to-date, locked, etc.
3604 * This function is called with the page table lock taken. In the split ptlock
3605 * case the page table lock only protects only those entries which belong to
3606 * the page table corresponding to the fault address.
3608 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3611 * fault_around_bytes defines how many bytes we'll try to map.
3612 * do_fault_around() expects it to be set to a power of two less than or equal
3615 * The virtual address of the area that we map is naturally aligned to
3616 * fault_around_bytes rounded down to the machine page size
3617 * (and therefore to page order). This way it's easier to guarantee
3618 * that we don't cross page table boundaries.
3620 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3622 unsigned long address = vmf->address, nr_pages, mask;
3623 pgoff_t start_pgoff = vmf->pgoff;
3628 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3629 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3631 vmf->address = max(address & mask, vmf->vma->vm_start);
3632 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3636 * end_pgoff is either the end of the page table, the end of
3637 * the vma or nr_pages from start_pgoff, depending what is nearest.
3639 end_pgoff = start_pgoff -
3640 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3642 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3643 start_pgoff + nr_pages - 1);
3645 if (pmd_none(*vmf->pmd)) {
3646 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3647 if (!vmf->prealloc_pte)
3649 smp_wmb(); /* See comment in __pte_alloc() */
3652 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3654 /* Huge page is mapped? Page fault is solved */
3655 if (pmd_trans_huge(*vmf->pmd)) {
3656 ret = VM_FAULT_NOPAGE;
3660 /* ->map_pages() haven't done anything useful. Cold page cache? */
3664 /* check if the page fault is solved */
3665 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3666 if (!pte_none(*vmf->pte))
3667 ret = VM_FAULT_NOPAGE;
3668 pte_unmap_unlock(vmf->pte, vmf->ptl);
3670 vmf->address = address;
3675 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3677 struct vm_area_struct *vma = vmf->vma;
3681 * Let's call ->map_pages() first and use ->fault() as fallback
3682 * if page by the offset is not ready to be mapped (cold cache or
3685 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3686 ret = do_fault_around(vmf);
3691 ret = __do_fault(vmf);
3692 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3695 ret |= finish_fault(vmf);
3696 unlock_page(vmf->page);
3697 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3698 put_page(vmf->page);
3702 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3704 struct vm_area_struct *vma = vmf->vma;
3707 if (unlikely(anon_vma_prepare(vma)))
3708 return VM_FAULT_OOM;
3710 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3712 return VM_FAULT_OOM;
3714 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3715 &vmf->memcg, false)) {
3716 put_page(vmf->cow_page);
3717 return VM_FAULT_OOM;
3720 ret = __do_fault(vmf);
3721 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723 if (ret & VM_FAULT_DONE_COW)
3726 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3727 __SetPageUptodate(vmf->cow_page);
3729 ret |= finish_fault(vmf);
3730 unlock_page(vmf->page);
3731 put_page(vmf->page);
3732 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3736 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3737 put_page(vmf->cow_page);
3741 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3743 struct vm_area_struct *vma = vmf->vma;
3744 vm_fault_t ret, tmp;
3746 ret = __do_fault(vmf);
3747 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3751 * Check if the backing address space wants to know that the page is
3752 * about to become writable
3754 if (vma->vm_ops->page_mkwrite) {
3755 unlock_page(vmf->page);
3756 tmp = do_page_mkwrite(vmf);
3757 if (unlikely(!tmp ||
3758 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3759 put_page(vmf->page);
3764 ret |= finish_fault(vmf);
3765 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3767 unlock_page(vmf->page);
3768 put_page(vmf->page);
3772 ret |= fault_dirty_shared_page(vmf);
3777 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3778 * but allow concurrent faults).
3779 * The mmap_sem may have been released depending on flags and our
3780 * return value. See filemap_fault() and __lock_page_or_retry().
3781 * If mmap_sem is released, vma may become invalid (for example
3782 * by other thread calling munmap()).
3784 static vm_fault_t do_fault(struct vm_fault *vmf)
3786 struct vm_area_struct *vma = vmf->vma;
3787 struct mm_struct *vm_mm = vma->vm_mm;
3791 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3793 if (!vma->vm_ops->fault) {
3795 * If we find a migration pmd entry or a none pmd entry, which
3796 * should never happen, return SIGBUS
3798 if (unlikely(!pmd_present(*vmf->pmd)))
3799 ret = VM_FAULT_SIGBUS;
3801 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3806 * Make sure this is not a temporary clearing of pte
3807 * by holding ptl and checking again. A R/M/W update
3808 * of pte involves: take ptl, clearing the pte so that
3809 * we don't have concurrent modification by hardware
3810 * followed by an update.
3812 if (unlikely(pte_none(*vmf->pte)))
3813 ret = VM_FAULT_SIGBUS;
3815 ret = VM_FAULT_NOPAGE;
3817 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3820 ret = do_read_fault(vmf);
3821 else if (!(vma->vm_flags & VM_SHARED))
3822 ret = do_cow_fault(vmf);
3824 ret = do_shared_fault(vmf);
3826 /* preallocated pagetable is unused: free it */
3827 if (vmf->prealloc_pte) {
3828 pte_free(vm_mm, vmf->prealloc_pte);
3829 vmf->prealloc_pte = NULL;
3834 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3835 unsigned long addr, int page_nid,
3840 count_vm_numa_event(NUMA_HINT_FAULTS);
3841 if (page_nid == numa_node_id()) {
3842 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3843 *flags |= TNF_FAULT_LOCAL;
3846 return mpol_misplaced(page, vma, addr);
3849 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3851 struct vm_area_struct *vma = vmf->vma;
3852 struct page *page = NULL;
3853 int page_nid = NUMA_NO_NODE;
3856 bool migrated = false;
3858 bool was_writable = pte_savedwrite(vmf->orig_pte);
3862 * The "pte" at this point cannot be used safely without
3863 * validation through pte_unmap_same(). It's of NUMA type but
3864 * the pfn may be screwed if the read is non atomic.
3866 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3867 spin_lock(vmf->ptl);
3868 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3869 pte_unmap_unlock(vmf->pte, vmf->ptl);
3874 * Make it present again, Depending on how arch implementes non
3875 * accessible ptes, some can allow access by kernel mode.
3877 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3878 pte = pte_modify(old_pte, vma->vm_page_prot);
3879 pte = pte_mkyoung(pte);
3881 pte = pte_mkwrite(pte);
3882 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3883 update_mmu_cache(vma, vmf->address, vmf->pte);
3885 page = vm_normal_page(vma, vmf->address, pte);
3887 pte_unmap_unlock(vmf->pte, vmf->ptl);
3891 /* TODO: handle PTE-mapped THP */
3892 if (PageCompound(page)) {
3893 pte_unmap_unlock(vmf->pte, vmf->ptl);
3898 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3899 * much anyway since they can be in shared cache state. This misses
3900 * the case where a mapping is writable but the process never writes
3901 * to it but pte_write gets cleared during protection updates and
3902 * pte_dirty has unpredictable behaviour between PTE scan updates,
3903 * background writeback, dirty balancing and application behaviour.
3905 if (!pte_write(pte))
3906 flags |= TNF_NO_GROUP;
3909 * Flag if the page is shared between multiple address spaces. This
3910 * is later used when determining whether to group tasks together
3912 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3913 flags |= TNF_SHARED;
3915 last_cpupid = page_cpupid_last(page);
3916 page_nid = page_to_nid(page);
3917 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3919 pte_unmap_unlock(vmf->pte, vmf->ptl);
3920 if (target_nid == NUMA_NO_NODE) {
3925 /* Migrate to the requested node */
3926 migrated = migrate_misplaced_page(page, vma, target_nid);
3928 page_nid = target_nid;
3929 flags |= TNF_MIGRATED;
3931 flags |= TNF_MIGRATE_FAIL;
3934 if (page_nid != NUMA_NO_NODE)
3935 task_numa_fault(last_cpupid, page_nid, 1, flags);
3939 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3941 if (vma_is_anonymous(vmf->vma))
3942 return do_huge_pmd_anonymous_page(vmf);
3943 if (vmf->vma->vm_ops->huge_fault)
3944 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3945 return VM_FAULT_FALLBACK;
3948 /* `inline' is required to avoid gcc 4.1.2 build error */
3949 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3951 if (vma_is_anonymous(vmf->vma))
3952 return do_huge_pmd_wp_page(vmf, orig_pmd);
3953 if (vmf->vma->vm_ops->huge_fault) {
3954 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3956 if (!(ret & VM_FAULT_FALLBACK))
3960 /* COW or write-notify handled on pte level: split pmd. */
3961 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3963 return VM_FAULT_FALLBACK;
3966 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3968 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
3969 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
3970 /* No support for anonymous transparent PUD pages yet */
3971 if (vma_is_anonymous(vmf->vma))
3973 if (vmf->vma->vm_ops->huge_fault) {
3974 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3976 if (!(ret & VM_FAULT_FALLBACK))
3980 /* COW or write-notify not handled on PUD level: split pud.*/
3981 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
3982 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3983 return VM_FAULT_FALLBACK;
3986 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3988 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3989 /* No support for anonymous transparent PUD pages yet */
3990 if (vma_is_anonymous(vmf->vma))
3991 return VM_FAULT_FALLBACK;
3992 if (vmf->vma->vm_ops->huge_fault)
3993 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3994 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3995 return VM_FAULT_FALLBACK;
3999 * These routines also need to handle stuff like marking pages dirty
4000 * and/or accessed for architectures that don't do it in hardware (most
4001 * RISC architectures). The early dirtying is also good on the i386.
4003 * There is also a hook called "update_mmu_cache()" that architectures
4004 * with external mmu caches can use to update those (ie the Sparc or
4005 * PowerPC hashed page tables that act as extended TLBs).
4007 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4008 * concurrent faults).
4010 * The mmap_sem may have been released depending on flags and our return value.
4011 * See filemap_fault() and __lock_page_or_retry().
4013 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4017 if (unlikely(pmd_none(*vmf->pmd))) {
4019 * Leave __pte_alloc() until later: because vm_ops->fault may
4020 * want to allocate huge page, and if we expose page table
4021 * for an instant, it will be difficult to retract from
4022 * concurrent faults and from rmap lookups.
4026 /* See comment in pte_alloc_one_map() */
4027 if (pmd_devmap_trans_unstable(vmf->pmd))
4030 * A regular pmd is established and it can't morph into a huge
4031 * pmd from under us anymore at this point because we hold the
4032 * mmap_sem read mode and khugepaged takes it in write mode.
4033 * So now it's safe to run pte_offset_map().
4035 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4036 vmf->orig_pte = *vmf->pte;
4039 * some architectures can have larger ptes than wordsize,
4040 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4041 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4042 * accesses. The code below just needs a consistent view
4043 * for the ifs and we later double check anyway with the
4044 * ptl lock held. So here a barrier will do.
4047 if (pte_none(vmf->orig_pte)) {
4048 pte_unmap(vmf->pte);
4054 if (vma_is_anonymous(vmf->vma))
4055 return do_anonymous_page(vmf);
4057 return do_fault(vmf);
4060 if (!pte_present(vmf->orig_pte))
4061 return do_swap_page(vmf);
4063 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4064 return do_numa_page(vmf);
4066 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4067 spin_lock(vmf->ptl);
4068 entry = vmf->orig_pte;
4069 if (unlikely(!pte_same(*vmf->pte, entry)))
4071 if (vmf->flags & FAULT_FLAG_WRITE) {
4072 if (!pte_write(entry))
4073 return do_wp_page(vmf);
4074 entry = pte_mkdirty(entry);
4076 entry = pte_mkyoung(entry);
4077 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4078 vmf->flags & FAULT_FLAG_WRITE)) {
4079 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4082 * This is needed only for protection faults but the arch code
4083 * is not yet telling us if this is a protection fault or not.
4084 * This still avoids useless tlb flushes for .text page faults
4087 if (vmf->flags & FAULT_FLAG_WRITE)
4088 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4091 pte_unmap_unlock(vmf->pte, vmf->ptl);
4096 * By the time we get here, we already hold the mm semaphore
4098 * The mmap_sem may have been released depending on flags and our
4099 * return value. See filemap_fault() and __lock_page_or_retry().
4101 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4102 unsigned long address, unsigned int flags)
4104 struct vm_fault vmf = {
4106 .address = address & PAGE_MASK,
4108 .pgoff = linear_page_index(vma, address),
4109 .gfp_mask = __get_fault_gfp_mask(vma),
4111 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4112 struct mm_struct *mm = vma->vm_mm;
4117 pgd = pgd_offset(mm, address);
4118 p4d = p4d_alloc(mm, pgd, address);
4120 return VM_FAULT_OOM;
4122 vmf.pud = pud_alloc(mm, p4d, address);
4124 return VM_FAULT_OOM;
4126 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4127 ret = create_huge_pud(&vmf);
4128 if (!(ret & VM_FAULT_FALLBACK))
4131 pud_t orig_pud = *vmf.pud;
4134 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4136 /* NUMA case for anonymous PUDs would go here */
4138 if (dirty && !pud_write(orig_pud)) {
4139 ret = wp_huge_pud(&vmf, orig_pud);
4140 if (!(ret & VM_FAULT_FALLBACK))
4143 huge_pud_set_accessed(&vmf, orig_pud);
4149 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4151 return VM_FAULT_OOM;
4153 /* Huge pud page fault raced with pmd_alloc? */
4154 if (pud_trans_unstable(vmf.pud))
4157 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4158 ret = create_huge_pmd(&vmf);
4159 if (!(ret & VM_FAULT_FALLBACK))
4162 pmd_t orig_pmd = *vmf.pmd;
4165 if (unlikely(is_swap_pmd(orig_pmd))) {
4166 VM_BUG_ON(thp_migration_supported() &&
4167 !is_pmd_migration_entry(orig_pmd));
4168 if (is_pmd_migration_entry(orig_pmd))
4169 pmd_migration_entry_wait(mm, vmf.pmd);
4172 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4173 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4174 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4176 if (dirty && !pmd_write(orig_pmd)) {
4177 ret = wp_huge_pmd(&vmf, orig_pmd);
4178 if (!(ret & VM_FAULT_FALLBACK))
4181 huge_pmd_set_accessed(&vmf, orig_pmd);
4187 return handle_pte_fault(&vmf);
4191 * By the time we get here, we already hold the mm semaphore
4193 * The mmap_sem may have been released depending on flags and our
4194 * return value. See filemap_fault() and __lock_page_or_retry().
4196 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4201 __set_current_state(TASK_RUNNING);
4203 count_vm_event(PGFAULT);
4204 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4206 /* do counter updates before entering really critical section. */
4207 check_sync_rss_stat(current);
4209 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4210 flags & FAULT_FLAG_INSTRUCTION,
4211 flags & FAULT_FLAG_REMOTE))
4212 return VM_FAULT_SIGSEGV;
4215 * Enable the memcg OOM handling for faults triggered in user
4216 * space. Kernel faults are handled more gracefully.
4218 if (flags & FAULT_FLAG_USER)
4219 mem_cgroup_enter_user_fault();
4221 if (unlikely(is_vm_hugetlb_page(vma)))
4222 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4224 ret = __handle_mm_fault(vma, address, flags);
4226 if (flags & FAULT_FLAG_USER) {
4227 mem_cgroup_exit_user_fault();
4229 * The task may have entered a memcg OOM situation but
4230 * if the allocation error was handled gracefully (no
4231 * VM_FAULT_OOM), there is no need to kill anything.
4232 * Just clean up the OOM state peacefully.
4234 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4235 mem_cgroup_oom_synchronize(false);
4240 EXPORT_SYMBOL_GPL(handle_mm_fault);
4242 #ifndef __PAGETABLE_P4D_FOLDED
4244 * Allocate p4d page table.
4245 * We've already handled the fast-path in-line.
4247 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4249 p4d_t *new = p4d_alloc_one(mm, address);
4253 smp_wmb(); /* See comment in __pte_alloc */
4255 spin_lock(&mm->page_table_lock);
4256 if (pgd_present(*pgd)) /* Another has populated it */
4259 pgd_populate(mm, pgd, new);
4260 spin_unlock(&mm->page_table_lock);
4263 #endif /* __PAGETABLE_P4D_FOLDED */
4265 #ifndef __PAGETABLE_PUD_FOLDED
4267 * Allocate page upper directory.
4268 * We've already handled the fast-path in-line.
4270 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4272 pud_t *new = pud_alloc_one(mm, address);
4276 smp_wmb(); /* See comment in __pte_alloc */
4278 spin_lock(&mm->page_table_lock);
4279 #ifndef __ARCH_HAS_5LEVEL_HACK
4280 if (!p4d_present(*p4d)) {
4282 p4d_populate(mm, p4d, new);
4283 } else /* Another has populated it */
4286 if (!pgd_present(*p4d)) {
4288 pgd_populate(mm, p4d, new);
4289 } else /* Another has populated it */
4291 #endif /* __ARCH_HAS_5LEVEL_HACK */
4292 spin_unlock(&mm->page_table_lock);
4295 #endif /* __PAGETABLE_PUD_FOLDED */
4297 #ifndef __PAGETABLE_PMD_FOLDED
4299 * Allocate page middle directory.
4300 * We've already handled the fast-path in-line.
4302 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4305 pmd_t *new = pmd_alloc_one(mm, address);
4309 smp_wmb(); /* See comment in __pte_alloc */
4311 ptl = pud_lock(mm, pud);
4312 if (!pud_present(*pud)) {
4314 pud_populate(mm, pud, new);
4315 } else /* Another has populated it */
4320 #endif /* __PAGETABLE_PMD_FOLDED */
4322 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4323 struct mmu_notifier_range *range,
4324 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4332 pgd = pgd_offset(mm, address);
4333 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4336 p4d = p4d_offset(pgd, address);
4337 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4340 pud = pud_offset(p4d, address);
4341 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4344 pmd = pmd_offset(pud, address);
4345 VM_BUG_ON(pmd_trans_huge(*pmd));
4347 if (pmd_huge(*pmd)) {
4352 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4353 NULL, mm, address & PMD_MASK,
4354 (address & PMD_MASK) + PMD_SIZE);
4355 mmu_notifier_invalidate_range_start(range);
4357 *ptlp = pmd_lock(mm, pmd);
4358 if (pmd_huge(*pmd)) {
4364 mmu_notifier_invalidate_range_end(range);
4367 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4371 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4372 address & PAGE_MASK,
4373 (address & PAGE_MASK) + PAGE_SIZE);
4374 mmu_notifier_invalidate_range_start(range);
4376 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4377 if (!pte_present(*ptep))
4382 pte_unmap_unlock(ptep, *ptlp);
4384 mmu_notifier_invalidate_range_end(range);
4389 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4390 pte_t **ptepp, spinlock_t **ptlp)
4394 /* (void) is needed to make gcc happy */
4395 (void) __cond_lock(*ptlp,
4396 !(res = __follow_pte_pmd(mm, address, NULL,
4397 ptepp, NULL, ptlp)));
4401 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4402 struct mmu_notifier_range *range,
4403 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4407 /* (void) is needed to make gcc happy */
4408 (void) __cond_lock(*ptlp,
4409 !(res = __follow_pte_pmd(mm, address, range,
4410 ptepp, pmdpp, ptlp)));
4413 EXPORT_SYMBOL(follow_pte_pmd);
4416 * follow_pfn - look up PFN at a user virtual address
4417 * @vma: memory mapping
4418 * @address: user virtual address
4419 * @pfn: location to store found PFN
4421 * Only IO mappings and raw PFN mappings are allowed.
4423 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4425 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4432 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4435 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4438 *pfn = pte_pfn(*ptep);
4439 pte_unmap_unlock(ptep, ptl);
4442 EXPORT_SYMBOL(follow_pfn);
4444 #ifdef CONFIG_HAVE_IOREMAP_PROT
4445 int follow_phys(struct vm_area_struct *vma,
4446 unsigned long address, unsigned int flags,
4447 unsigned long *prot, resource_size_t *phys)
4453 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4456 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4460 if ((flags & FOLL_WRITE) && !pte_write(pte))
4463 *prot = pgprot_val(pte_pgprot(pte));
4464 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4468 pte_unmap_unlock(ptep, ptl);
4473 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4474 void *buf, int len, int write)
4476 resource_size_t phys_addr;
4477 unsigned long prot = 0;
4478 void __iomem *maddr;
4479 int offset = addr & (PAGE_SIZE-1);
4481 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4484 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4489 memcpy_toio(maddr + offset, buf, len);
4491 memcpy_fromio(buf, maddr + offset, len);
4496 EXPORT_SYMBOL_GPL(generic_access_phys);
4500 * Access another process' address space as given in mm. If non-NULL, use the
4501 * given task for page fault accounting.
4503 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4504 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4506 struct vm_area_struct *vma;
4507 void *old_buf = buf;
4508 int write = gup_flags & FOLL_WRITE;
4510 if (down_read_killable(&mm->mmap_sem))
4513 /* ignore errors, just check how much was successfully transferred */
4515 int bytes, ret, offset;
4517 struct page *page = NULL;
4519 ret = get_user_pages_remote(tsk, mm, addr, 1,
4520 gup_flags, &page, &vma, NULL);
4522 #ifndef CONFIG_HAVE_IOREMAP_PROT
4526 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4527 * we can access using slightly different code.
4529 vma = find_vma(mm, addr);
4530 if (!vma || vma->vm_start > addr)
4532 if (vma->vm_ops && vma->vm_ops->access)
4533 ret = vma->vm_ops->access(vma, addr, buf,
4541 offset = addr & (PAGE_SIZE-1);
4542 if (bytes > PAGE_SIZE-offset)
4543 bytes = PAGE_SIZE-offset;
4547 copy_to_user_page(vma, page, addr,
4548 maddr + offset, buf, bytes);
4549 set_page_dirty_lock(page);
4551 copy_from_user_page(vma, page, addr,
4552 buf, maddr + offset, bytes);
4561 up_read(&mm->mmap_sem);
4563 return buf - old_buf;
4567 * access_remote_vm - access another process' address space
4568 * @mm: the mm_struct of the target address space
4569 * @addr: start address to access
4570 * @buf: source or destination buffer
4571 * @len: number of bytes to transfer
4572 * @gup_flags: flags modifying lookup behaviour
4574 * The caller must hold a reference on @mm.
4576 * Return: number of bytes copied from source to destination.
4578 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4579 void *buf, int len, unsigned int gup_flags)
4581 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4585 * Access another process' address space.
4586 * Source/target buffer must be kernel space,
4587 * Do not walk the page table directly, use get_user_pages
4589 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4590 void *buf, int len, unsigned int gup_flags)
4592 struct mm_struct *mm;
4595 mm = get_task_mm(tsk);
4599 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4605 EXPORT_SYMBOL_GPL(access_process_vm);
4608 * Print the name of a VMA.
4610 void print_vma_addr(char *prefix, unsigned long ip)
4612 struct mm_struct *mm = current->mm;
4613 struct vm_area_struct *vma;
4616 * we might be running from an atomic context so we cannot sleep
4618 if (!down_read_trylock(&mm->mmap_sem))
4621 vma = find_vma(mm, ip);
4622 if (vma && vma->vm_file) {
4623 struct file *f = vma->vm_file;
4624 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4628 p = file_path(f, buf, PAGE_SIZE);
4631 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4633 vma->vm_end - vma->vm_start);
4634 free_page((unsigned long)buf);
4637 up_read(&mm->mmap_sem);
4640 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4641 void __might_fault(const char *file, int line)
4644 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4645 * holding the mmap_sem, this is safe because kernel memory doesn't
4646 * get paged out, therefore we'll never actually fault, and the
4647 * below annotations will generate false positives.
4649 if (uaccess_kernel())
4651 if (pagefault_disabled())
4653 __might_sleep(file, line, 0);
4654 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4656 might_lock_read(¤t->mm->mmap_sem);
4659 EXPORT_SYMBOL(__might_fault);
4662 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4664 * Process all subpages of the specified huge page with the specified
4665 * operation. The target subpage will be processed last to keep its
4668 static inline void process_huge_page(
4669 unsigned long addr_hint, unsigned int pages_per_huge_page,
4670 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4674 unsigned long addr = addr_hint &
4675 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4677 /* Process target subpage last to keep its cache lines hot */
4679 n = (addr_hint - addr) / PAGE_SIZE;
4680 if (2 * n <= pages_per_huge_page) {
4681 /* If target subpage in first half of huge page */
4684 /* Process subpages at the end of huge page */
4685 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4687 process_subpage(addr + i * PAGE_SIZE, i, arg);
4690 /* If target subpage in second half of huge page */
4691 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4692 l = pages_per_huge_page - n;
4693 /* Process subpages at the begin of huge page */
4694 for (i = 0; i < base; i++) {
4696 process_subpage(addr + i * PAGE_SIZE, i, arg);
4700 * Process remaining subpages in left-right-left-right pattern
4701 * towards the target subpage
4703 for (i = 0; i < l; i++) {
4704 int left_idx = base + i;
4705 int right_idx = base + 2 * l - 1 - i;
4708 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4710 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4714 static void clear_gigantic_page(struct page *page,
4716 unsigned int pages_per_huge_page)
4719 struct page *p = page;
4722 for (i = 0; i < pages_per_huge_page;
4723 i++, p = mem_map_next(p, page, i)) {
4725 clear_user_highpage(p, addr + i * PAGE_SIZE);
4729 static void clear_subpage(unsigned long addr, int idx, void *arg)
4731 struct page *page = arg;
4733 clear_user_highpage(page + idx, addr);
4736 void clear_huge_page(struct page *page,
4737 unsigned long addr_hint, unsigned int pages_per_huge_page)
4739 unsigned long addr = addr_hint &
4740 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4742 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4743 clear_gigantic_page(page, addr, pages_per_huge_page);
4747 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4750 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4752 struct vm_area_struct *vma,
4753 unsigned int pages_per_huge_page)
4756 struct page *dst_base = dst;
4757 struct page *src_base = src;
4759 for (i = 0; i < pages_per_huge_page; ) {
4761 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4764 dst = mem_map_next(dst, dst_base, i);
4765 src = mem_map_next(src, src_base, i);
4769 struct copy_subpage_arg {
4772 struct vm_area_struct *vma;
4775 static void copy_subpage(unsigned long addr, int idx, void *arg)
4777 struct copy_subpage_arg *copy_arg = arg;
4779 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4780 addr, copy_arg->vma);
4783 void copy_user_huge_page(struct page *dst, struct page *src,
4784 unsigned long addr_hint, struct vm_area_struct *vma,
4785 unsigned int pages_per_huge_page)
4787 unsigned long addr = addr_hint &
4788 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4789 struct copy_subpage_arg arg = {
4795 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4796 copy_user_gigantic_page(dst, src, addr, vma,
4797 pages_per_huge_page);
4801 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4804 long copy_huge_page_from_user(struct page *dst_page,
4805 const void __user *usr_src,
4806 unsigned int pages_per_huge_page,
4807 bool allow_pagefault)
4809 void *src = (void *)usr_src;
4811 unsigned long i, rc = 0;
4812 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4814 for (i = 0; i < pages_per_huge_page; i++) {
4815 if (allow_pagefault)
4816 page_kaddr = kmap(dst_page + i);
4818 page_kaddr = kmap_atomic(dst_page + i);
4819 rc = copy_from_user(page_kaddr,
4820 (const void __user *)(src + i * PAGE_SIZE),
4822 if (allow_pagefault)
4823 kunmap(dst_page + i);
4825 kunmap_atomic(page_kaddr);
4827 ret_val -= (PAGE_SIZE - rc);
4835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4837 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4839 static struct kmem_cache *page_ptl_cachep;
4841 void __init ptlock_cache_init(void)
4843 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4847 bool ptlock_alloc(struct page *page)
4851 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4858 void ptlock_free(struct page *page)
4860 kmem_cache_free(page_ptl_cachep, page->ptl);