1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Low-level CPU initialisation
4 * Based on arch/arm/kernel/head.S
6 * Copyright (C) 1994-2002 Russell King
7 * Copyright (C) 2003-2012 ARM Ltd.
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/irqchip/arm-gic-v3.h>
16 #include <asm/assembler.h>
18 #include <asm/ptrace.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/cache.h>
21 #include <asm/cputype.h>
23 #include <asm/image.h>
24 #include <asm/kernel-pgtable.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/memory.h>
27 #include <asm/pgtable-hwdef.h>
28 #include <asm/pgtable.h>
31 #include <asm/sysreg.h>
32 #include <asm/thread_info.h>
35 #include "efi-header.S"
37 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
39 #if (TEXT_OFFSET & 0xfff) != 0
40 #error TEXT_OFFSET must be at least 4KB aligned
41 #elif (PAGE_OFFSET & 0x1fffff) != 0
42 #error PAGE_OFFSET must be at least 2MB aligned
43 #elif TEXT_OFFSET > 0x1fffff
44 #error TEXT_OFFSET must be less than 2MB
48 * Kernel startup entry point.
49 * ---------------------------
51 * The requirements are:
52 * MMU = off, D-cache = off, I-cache = on or off,
53 * x0 = physical address to the FDT blob.
55 * This code is mostly position independent so you call this at
56 * __pa(PAGE_OFFSET + TEXT_OFFSET).
58 * Note that the callee-saved registers are used for storing variables
59 * that are useful before the MMU is enabled. The allocations are described
60 * in the entry routines.
65 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
69 * This add instruction has no meaningful effect except that
70 * its opcode forms the magic "MZ" signature required by UEFI.
75 b stext // branch to kernel start, magic
78 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
79 le64sym _kernel_size_le // Effective size of kernel image, little-endian
80 le64sym _kernel_flags_le // Informative flags, little-endian
84 .ascii ARM64_IMAGE_MAGIC // Magic number
86 .long pe_header - _head // Offset to the PE header.
97 * The following callee saved general purpose registers are used on the
98 * primary lowlevel boot path:
100 * Register Scope Purpose
101 * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
102 * x23 stext() .. start_kernel() physical misalignment/KASLR offset
103 * x28 __create_page_tables() callee preserved temp register
104 * x19/x20 __primary_switch() callee preserved temp registers
105 * x24 __primary_switch() .. relocate_kernel()
106 * current RELR displacement
108 SYM_CODE_START(stext)
109 bl preserve_boot_args
110 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
111 adrp x23, __PHYS_OFFSET
112 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
113 bl set_cpu_boot_mode_flag
114 bl __create_page_tables
116 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
118 * On return, the CPU will be ready for the MMU to be turned on and
119 * the TCR will have been set.
121 mov x0, #ARM64_CPU_BOOT_PRIMARY
122 bl __cpu_setup // initialise processor
127 * Preserve the arguments passed by the bootloader in x0 .. x3
129 SYM_CODE_START_LOCAL(preserve_boot_args)
130 mov x21, x0 // x21=FDT
132 adr_l x0, boot_args // record the contents of
133 stp x21, x1, [x0] // x0 .. x3 at kernel entry
134 stp x2, x3, [x0, #16]
136 dmb sy // needed before dc ivac with
139 mov x1, #0x20 // 4 x 8 bytes
140 b __inval_dcache_area // tail call
141 SYM_CODE_END(preserve_boot_args)
144 * Macro to create a table entry to the next page.
146 * tbl: page table address
147 * virt: virtual address
148 * shift: #imm page table shift
149 * ptrs: #imm pointers per table page
152 * Corrupts: ptrs, tmp1, tmp2
153 * Returns: tbl -> next level table page address
155 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
156 add \tmp1, \tbl, #PAGE_SIZE
157 phys_to_pte \tmp2, \tmp1
158 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
159 lsr \tmp1, \virt, #\shift
161 and \tmp1, \tmp1, \ptrs // table index
162 str \tmp2, [\tbl, \tmp1, lsl #3]
163 add \tbl, \tbl, #PAGE_SIZE // next level table page
167 * Macro to populate page table entries, these entries can be pointers to the next level
168 * or last level entries pointing to physical memory.
170 * tbl: page table address
171 * rtbl: pointer to page table or physical memory
172 * index: start index to write
173 * eindex: end index to write - [index, eindex] written to
174 * flags: flags for pagetable entry to or in
175 * inc: increment to rtbl between each entry
176 * tmp1: temporary variable
178 * Preserves: tbl, eindex, flags, inc
179 * Corrupts: index, tmp1
182 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
183 .Lpe\@: phys_to_pte \tmp1, \rtbl
184 orr \tmp1, \tmp1, \flags // tmp1 = table entry
185 str \tmp1, [\tbl, \index, lsl #3]
186 add \rtbl, \rtbl, \inc // rtbl = pa next level
187 add \index, \index, #1
193 * Compute indices of table entries from virtual address range. If multiple entries
194 * were needed in the previous page table level then the next page table level is assumed
195 * to be composed of multiple pages. (This effectively scales the end index).
197 * vstart: virtual address of start of range
198 * vend: virtual address of end of range
199 * shift: shift used to transform virtual address into index
200 * ptrs: number of entries in page table
201 * istart: index in table corresponding to vstart
202 * iend: index in table corresponding to vend
203 * count: On entry: how many extra entries were required in previous level, scales
205 * On exit: returns how many extra entries required for next page table level
207 * Preserves: vstart, vend, shift, ptrs
208 * Returns: istart, iend, count
210 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
211 lsr \iend, \vend, \shift
213 sub \istart, \istart, #1
214 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
216 mul \istart, \istart, \count
217 add \iend, \iend, \istart // iend += (count - 1) * ptrs
218 // our entries span multiple tables
220 lsr \istart, \vstart, \shift
222 sub \count, \count, #1
223 and \istart, \istart, \count
225 sub \count, \iend, \istart
229 * Map memory for specified virtual address range. Each level of page table needed supports
230 * multiple entries. If a level requires n entries the next page table level is assumed to be
231 * formed from n pages.
233 * tbl: location of page table
234 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
235 * vstart: start address to map
236 * vend: end address to map - we map [vstart, vend]
237 * flags: flags to use to map last level entries
238 * phys: physical address corresponding to vstart - physical memory is contiguous
239 * pgds: the number of pgd entries
241 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
242 * Preserves: vstart, vend, flags
243 * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv
245 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
246 add \rtbl, \tbl, #PAGE_SIZE
249 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
250 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
254 #if SWAPPER_PGTABLE_LEVELS > 3
255 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
256 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
261 #if SWAPPER_PGTABLE_LEVELS > 2
262 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
263 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
267 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
268 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
269 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
273 * Setup the initial page tables. We only setup the barest amount which is
274 * required to get the kernel running. The following sections are required:
275 * - identity mapping to enable the MMU (low address, TTBR0)
276 * - first few MB of the kernel linear mapping to jump to once the MMU has
279 SYM_FUNC_START_LOCAL(__create_page_tables)
283 * Invalidate the init page tables to avoid potential dirty cache lines
284 * being evicted. Other page tables are allocated in rodata as part of
285 * the kernel image, and thus are clean to the PoC per the boot
291 bl __inval_dcache_area
294 * Clear the init page tables.
299 1: stp xzr, xzr, [x0], #16
300 stp xzr, xzr, [x0], #16
301 stp xzr, xzr, [x0], #16
302 stp xzr, xzr, [x0], #16
306 mov x7, SWAPPER_MM_MMUFLAGS
309 * Create the identity mapping.
311 adrp x0, idmap_pg_dir
312 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
314 #ifdef CONFIG_ARM64_VA_BITS_52
315 mrs_s x6, SYS_ID_AA64MMFR2_EL1
316 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
322 adr_l x6, vabits_actual
325 dc ivac, x6 // Invalidate potentially stale cache line
328 * VA_BITS may be too small to allow for an ID mapping to be created
329 * that covers system RAM if that is located sufficiently high in the
330 * physical address space. So for the ID map, use an extended virtual
331 * range in that case, and configure an additional translation level
334 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
335 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
336 * this number conveniently equals the number of leading zeroes in
337 * the physical address of __idmap_text_end.
339 adrp x5, __idmap_text_end
341 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
342 b.ge 1f // .. then skip VA range extension
347 dc ivac, x6 // Invalidate potentially stale cache line
350 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
351 #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
354 * If VA_BITS < 48, we have to configure an additional table level.
355 * First, we have to verify our assumption that the current value of
356 * VA_BITS was chosen such that all translation levels are fully
357 * utilised, and that lowering T0SZ will always result in an additional
358 * translation level to be configured.
360 #if VA_BITS != EXTRA_SHIFT
361 #error "Mismatch between VA_BITS and page size/number of translation levels"
365 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
368 * If VA_BITS == 48, we don't have to configure an additional
369 * translation level, but the top-level table has more entries.
371 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
372 str_l x4, idmap_ptrs_per_pgd, x5
375 ldr_l x4, idmap_ptrs_per_pgd
376 mov x5, x3 // __pa(__idmap_text_start)
377 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
379 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
382 * Map the kernel image (starting with PHYS_OFFSET).
385 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
386 add x5, x5, x23 // add KASLR displacement
388 adrp x6, _end // runtime __pa(_end)
389 adrp x3, _text // runtime __pa(_text)
390 sub x6, x6, x3 // _end - _text
391 add x6, x6, x5 // runtime __va(_end)
393 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
396 * Since the page tables have been populated with non-cacheable
397 * accesses (MMU disabled), invalidate the idmap and swapper page
398 * tables again to remove any speculatively loaded cache lines.
400 adrp x0, idmap_pg_dir
404 bl __inval_dcache_area
407 SYM_FUNC_END(__create_page_tables)
410 * The following fragment of code is executed with the MMU enabled.
414 SYM_FUNC_START_LOCAL(__primary_switched)
415 adrp x4, init_thread_union
416 add sp, x4, #THREAD_SIZE
418 msr sp_el0, x5 // Save thread_info
420 adr_l x8, vectors // load VBAR_EL1 with virtual
421 msr vbar_el1, x8 // vector table address
424 stp xzr, x30, [sp, #-16]!
427 str_l x21, __fdt_pointer, x5 // Save FDT pointer
429 ldr_l x4, kimage_vaddr // Save the offset between
430 sub x4, x4, x0 // the kernel virtual and
431 str_l x4, kimage_voffset, x5 // physical mappings
434 adr_l x0, __bss_start
439 dsb ishst // Make zero page visible to PTW
444 #ifdef CONFIG_RANDOMIZE_BASE
445 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
447 mov x0, x21 // pass FDT address in x0
448 bl kaslr_early_init // parse FDT for KASLR options
449 cbz x0, 0f // KASLR disabled? just proceed
450 orr x23, x23, x0 // record KASLR offset
451 ldp x29, x30, [sp], #16 // we must enable KASLR, return
452 ret // to __primary_switch()
459 SYM_FUNC_END(__primary_switched)
461 .pushsection ".rodata", "a"
462 SYM_DATA_START(kimage_vaddr)
463 .quad _text - TEXT_OFFSET
464 SYM_DATA_END(kimage_vaddr)
465 EXPORT_SYMBOL(kimage_vaddr)
469 * end early head section, begin head code that is also used for
470 * hotplug and needs to have the same protections as the text region
472 .section ".idmap.text","awx"
475 * If we're fortunate enough to boot at EL2, ensure that the world is
476 * sane before dropping to EL1.
478 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
479 * booted in EL1 or EL2 respectively.
481 SYM_FUNC_START(el2_setup)
482 msr SPsel, #1 // We want to use SP_EL{1,2}
484 cmp x0, #CurrentEL_EL2
486 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
488 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
492 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
495 #ifdef CONFIG_ARM64_VHE
497 * Check for VHE being present. For the rest of the EL2 setup,
498 * x2 being non-zero indicates that we do have VHE, and that the
499 * kernel is intended to run at EL2.
501 mrs x2, id_aa64mmfr1_el1
502 ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
507 /* Hyp configuration. */
508 mov_q x0, HCR_HOST_NVHE_FLAGS
510 mov_q x0, HCR_HOST_VHE_FLAGS
516 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
517 * This is not necessary for VHE, since the host kernel runs in EL2,
518 * and EL0 accesses are configured in the later stage of boot process.
519 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
520 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
521 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
522 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
527 orr x0, x0, #3 // Enable EL1 physical timers
530 msr cntvoff_el2, xzr // Clear virtual offset
532 #ifdef CONFIG_ARM_GIC_V3
533 /* GICv3 system register access */
534 mrs x0, id_aa64pfr0_el1
535 ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
538 mrs_s x0, SYS_ICC_SRE_EL2
539 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
540 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
541 msr_s SYS_ICC_SRE_EL2, x0
542 isb // Make sure SRE is now set
543 mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
544 tbz x0, #0, 3f // and check that it sticks
545 msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
550 /* Populate ID registers. */
557 msr hstr_el2, xzr // Disable CP15 traps to EL2
561 mrs x1, id_aa64dfr0_el1
562 sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
564 b.lt 4f // Skip if no PMU present
565 mrs x0, pmcr_el0 // Disable debug access traps
566 ubfx x0, x0, #11, #5 // to EL2 and allow access to
568 csel x3, xzr, x0, lt // all PMU counters from EL1
570 /* Statistical profiling */
571 ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
572 cbz x0, 7f // Skip if SPE not present
574 mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2,
575 and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
576 cbnz x4, 5f // then permit sampling of physical
577 mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
578 1 << SYS_PMSCR_EL2_PA_SHIFT)
579 msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter
581 mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
582 orr x3, x3, x1 // If we don't have VHE, then
583 b 7f // use EL1&0 translation.
584 6: // For VHE, use EL2 translation
585 orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
587 msr mdcr_el2, x3 // Configure debug traps
590 mrs x1, id_aa64mmfr1_el1
591 ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
593 msr_s SYS_LORC_EL1, xzr
596 /* Stage-2 translation */
599 cbz x2, install_el2_stub
601 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
605 SYM_INNER_LABEL(install_el2_stub, SYM_L_LOCAL)
607 * When VHE is not in use, early init of EL2 and EL1 needs to be
609 * When VHE _is_ in use, EL1 will not be used in the host and
610 * requires no configuration, and all non-hyp-specific EL2 setup
611 * will be done via the _EL1 system register aliases in __cpu_setup.
613 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
616 /* Coprocessor traps. */
618 msr cptr_el2, x0 // Disable copro. traps to EL2
620 /* SVE register access */
621 mrs x1, id_aa64pfr0_el1
622 ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
625 bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps
626 msr cptr_el2, x0 // Disable copro. traps to EL2
628 mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector
629 msr_s SYS_ZCR_EL2, x1 // length for EL1.
631 /* Hypervisor stub */
632 7: adr_l x0, __hyp_stub_vectors
636 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
640 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
642 SYM_FUNC_END(el2_setup)
645 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
646 * in w0. See arch/arm64/include/asm/virt.h for more info.
648 SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
649 adr_l x1, __boot_cpu_mode
650 cmp w0, #BOOT_CPU_MODE_EL2
653 1: str w0, [x1] // This CPU has booted in EL1
655 dc ivac, x1 // Invalidate potentially stale cache line
657 SYM_FUNC_END(set_cpu_boot_mode_flag)
660 * These values are written with the MMU off, but read with the MMU on.
661 * Writers will invalidate the corresponding address, discarding up to a
662 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
663 * sufficient alignment that the CWG doesn't overlap another section.
665 .pushsection ".mmuoff.data.write", "aw"
667 * We need to find out the CPU boot mode long after boot, so we need to
668 * store it in a writable variable.
670 * This is not in .bss, because we set it sufficiently early that the boot-time
671 * zeroing of .bss would clobber it.
673 SYM_DATA_START(__boot_cpu_mode)
674 .long BOOT_CPU_MODE_EL2
675 .long BOOT_CPU_MODE_EL1
676 SYM_DATA_END(__boot_cpu_mode)
678 * The booting CPU updates the failed status @__early_cpu_boot_status,
679 * with MMU turned off.
681 SYM_DATA_START(__early_cpu_boot_status)
683 SYM_DATA_END(__early_cpu_boot_status)
688 * This provides a "holding pen" for platforms to hold all secondary
689 * cores are held until we're ready for them to initialise.
691 SYM_FUNC_START(secondary_holding_pen)
692 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
693 bl set_cpu_boot_mode_flag
695 mov_q x1, MPIDR_HWID_BITMASK
697 adr_l x3, secondary_holding_pen_release
700 b.eq secondary_startup
703 SYM_FUNC_END(secondary_holding_pen)
706 * Secondary entry point that jumps straight into the kernel. Only to
707 * be used where CPUs are brought online dynamically by the kernel.
709 SYM_FUNC_START(secondary_entry)
710 bl el2_setup // Drop to EL1
711 bl set_cpu_boot_mode_flag
713 SYM_FUNC_END(secondary_entry)
715 SYM_FUNC_START_LOCAL(secondary_startup)
717 * Common entry point for secondary CPUs.
719 bl __cpu_secondary_check52bitva
720 mov x0, #ARM64_CPU_BOOT_SECONDARY
721 bl __cpu_setup // initialise processor
722 adrp x1, swapper_pg_dir
724 ldr x8, =__secondary_switched
726 SYM_FUNC_END(secondary_startup)
728 SYM_FUNC_START_LOCAL(__secondary_switched)
733 adr_l x0, secondary_data
734 ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
735 cbz x1, __secondary_too_slow
737 ldr x2, [x0, #CPU_BOOT_TASK]
738 cbz x2, __secondary_too_slow
742 b secondary_start_kernel
743 SYM_FUNC_END(__secondary_switched)
745 SYM_FUNC_START_LOCAL(__secondary_too_slow)
748 b __secondary_too_slow
749 SYM_FUNC_END(__secondary_too_slow)
752 * The booting CPU updates the failed status @__early_cpu_boot_status,
753 * with MMU turned off.
755 * update_early_cpu_boot_status tmp, status
756 * - Corrupts tmp1, tmp2
757 * - Writes 'status' to __early_cpu_boot_status and makes sure
758 * it is committed to memory.
761 .macro update_early_cpu_boot_status status, tmp1, tmp2
763 adr_l \tmp1, __early_cpu_boot_status
766 dc ivac, \tmp1 // Invalidate potentially stale cache line
772 * x0 = SCTLR_EL1 value for turning on the MMU.
773 * x1 = TTBR1_EL1 value
775 * Returns to the caller via x30/lr. This requires the caller to be covered
776 * by the .idmap.text section.
778 * Checks if the selected granule size is supported by the CPU.
779 * If it isn't, park the CPU
781 SYM_FUNC_START(__enable_mmu)
782 mrs x2, ID_AA64MMFR0_EL1
783 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
784 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
785 b.ne __no_granule_support
786 update_early_cpu_boot_status 0, x2, x3
787 adrp x2, idmap_pg_dir
790 msr ttbr0_el1, x2 // load TTBR0
792 msr ttbr1_el1, x1 // load TTBR1
797 * Invalidate the local I-cache so that any instructions fetched
798 * speculatively from the PoC are discarded, since they may have
799 * been dynamically patched at the PoU.
805 SYM_FUNC_END(__enable_mmu)
807 SYM_FUNC_START(__cpu_secondary_check52bitva)
808 #ifdef CONFIG_ARM64_VA_BITS_52
809 ldr_l x0, vabits_actual
813 mrs_s x0, SYS_ID_AA64MMFR2_EL1
814 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
817 update_early_cpu_boot_status \
818 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
825 SYM_FUNC_END(__cpu_secondary_check52bitva)
827 SYM_FUNC_START_LOCAL(__no_granule_support)
828 /* Indicate that this CPU can't boot and is stuck in the kernel */
829 update_early_cpu_boot_status \
830 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
835 SYM_FUNC_END(__no_granule_support)
837 #ifdef CONFIG_RELOCATABLE
838 SYM_FUNC_START_LOCAL(__relocate_kernel)
840 * Iterate over each entry in the relocation table, and apply the
841 * relocations in place.
843 ldr w9, =__rela_offset // offset to reloc table
844 ldr w10, =__rela_size // size of reloc table
846 mov_q x11, KIMAGE_VADDR // default virtual offset
847 add x11, x11, x23 // actual virtual offset
848 add x9, x9, x11 // __va(.rela)
849 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
853 ldp x12, x13, [x9], #24
855 cmp w13, #R_AARCH64_RELATIVE
857 add x14, x14, x23 // relocate
864 * Apply RELR relocations.
866 * RELR is a compressed format for storing relative relocations. The
867 * encoded sequence of entries looks like:
868 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
870 * i.e. start with an address, followed by any number of bitmaps. The
871 * address entry encodes 1 relocation. The subsequent bitmap entries
872 * encode up to 63 relocations each, at subsequent offsets following
873 * the last address entry.
875 * The bitmap entries must have 1 in the least significant bit. The
876 * assumption here is that an address cannot have 1 in lsb. Odd
877 * addresses are not supported. Any odd addresses are stored in the RELA
878 * section, which is handled above.
880 * Excluding the least significant bit in the bitmap, each non-zero
881 * bit in the bitmap represents a relocation to be applied to
882 * a corresponding machine word that follows the base address
883 * word. The second least significant bit represents the machine
884 * word immediately following the initial address, and each bit
885 * that follows represents the next word, in linear order. As such,
886 * a single bitmap can encode up to 63 relocations in a 64-bit object.
888 * In this implementation we store the address of the next RELR table
889 * entry in x9, the address being relocated by the current address or
890 * bitmap entry in x13 and the address being relocated by the current
893 * Because addends are stored in place in the binary, RELR relocations
894 * cannot be applied idempotently. We use x24 to keep track of the
895 * currently applied displacement so that we can correctly relocate if
896 * __relocate_kernel is called twice with non-zero displacements (i.e.
897 * if there is both a physical misalignment and a KASLR displacement).
899 ldr w9, =__relr_offset // offset to reloc table
900 ldr w10, =__relr_size // size of reloc table
901 add x9, x9, x11 // __va(.relr)
902 add x10, x9, x10 // __va(.relr) + sizeof(.relr)
904 sub x15, x23, x24 // delta from previous offset
905 cbz x15, 7f // nothing to do if unchanged
906 mov x24, x23 // save new offset
911 tbnz x11, #0, 3f // branch to handle bitmaps
913 ldr x12, [x13] // relocate address entry
915 str x12, [x13], #8 // adjust to start of bitmap
921 tbz x11, #0, 5f // skip bit if not set
922 ldr x12, [x14] // relocate bit
926 5: add x14, x14, #8 // move to next bit's address
930 * Move to the next bitmap's address. 8 is the word size, and 63 is the
931 * number of significant bits in a bitmap entry.
933 add x13, x13, #(8 * 63)
940 SYM_FUNC_END(__relocate_kernel)
943 SYM_FUNC_START_LOCAL(__primary_switch)
944 #ifdef CONFIG_RANDOMIZE_BASE
945 mov x19, x0 // preserve new SCTLR_EL1 value
946 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
951 #ifdef CONFIG_RELOCATABLE
953 mov x24, #0 // no RELR displacement yet
956 #ifdef CONFIG_RANDOMIZE_BASE
957 ldr x8, =__primary_switched
958 adrp x0, __PHYS_OFFSET
962 * If we return here, we have a KASLR displacement in x23 which we need
963 * to take into account by discarding the current kernel mapping and
964 * creating a new one.
966 pre_disable_mmu_workaround
967 msr sctlr_el1, x20 // disable the MMU
969 bl __create_page_tables // recreate kernel mapping
971 tlbi vmalle1 // Remove any stale TLB entries
974 msr sctlr_el1, x19 // re-enable the MMU
976 ic iallu // flush instructions fetched
977 dsb nsh // via old mapping
983 ldr x8, =__primary_switched
984 adrp x0, __PHYS_OFFSET
986 SYM_FUNC_END(__primary_switch)