1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 struct ubifs_data_node *dn)
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
57 /* Not found, so it must be a hole */
58 memset(addr, 0, UBIFS_BLOCK_SIZE);
62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 ubifs_inode(inode)->creat_sqnum);
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
70 if (IS_ENCRYPTED(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
76 out_len = UBIFS_BLOCK_SIZE;
77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
87 if (len < UBIFS_BLOCK_SIZE)
88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
93 ubifs_err(c, "bad data node (block %u, inode %lu)",
95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
99 static int do_readpage(struct page *page)
103 unsigned int block, beyond;
104 struct ubifs_data_node *dn;
105 struct inode *inode = page->mapping->host;
106 struct ubifs_info *c = inode->i_sb->s_fs_info;
107 loff_t i_size = i_size_read(inode);
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, page->index, i_size, page->flags);
111 ubifs_assert(c, !PageChecked(page));
112 ubifs_assert(c, !PagePrivate(page));
116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 if (block >= beyond) {
119 /* Reading beyond inode */
120 SetPageChecked(page);
121 memset(addr, 0, PAGE_SIZE);
125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
135 if (block >= beyond) {
136 /* Reading beyond inode */
138 memset(addr, 0, UBIFS_BLOCK_SIZE);
140 ret = read_block(inode, addr, block, dn);
145 } else if (block + 1 == beyond) {
146 int dlen = le32_to_cpu(dn->size);
147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
149 if (ilen && ilen < dlen)
150 memset(addr + ilen, 0, dlen - ilen);
153 if (++i >= UBIFS_BLOCKS_PER_PAGE)
156 addr += UBIFS_BLOCK_SIZE;
159 struct ubifs_info *c = inode->i_sb->s_fs_info;
160 if (err == -ENOENT) {
161 /* Not found, so it must be a hole */
162 SetPageChecked(page);
166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 page->index, inode->i_ino, err);
174 SetPageUptodate(page);
175 ClearPageError(page);
176 flush_dcache_page(page);
182 ClearPageUptodate(page);
184 flush_dcache_page(page);
190 * release_new_page_budget - release budget of a new page.
191 * @c: UBIFS file-system description object
193 * This is a helper function which releases budget corresponding to the budget
194 * of one new page of data.
196 static void release_new_page_budget(struct ubifs_info *c)
198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
200 ubifs_release_budget(c, &req);
204 * release_existing_page_budget - release budget of an existing page.
205 * @c: UBIFS file-system description object
207 * This is a helper function which releases budget corresponding to the budget
208 * of changing one page of data which already exists on the flash media.
210 static void release_existing_page_budget(struct ubifs_info *c)
212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
214 ubifs_release_budget(c, &req);
217 static int write_begin_slow(struct address_space *mapping,
218 loff_t pos, unsigned len, struct page **pagep)
220 struct inode *inode = mapping->host;
221 struct ubifs_info *c = inode->i_sb->s_fs_info;
222 pgoff_t index = pos >> PAGE_SHIFT;
223 struct ubifs_budget_req req = { .new_page = 1 };
224 int err, appending = !!(pos + len > inode->i_size);
227 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
228 inode->i_ino, pos, len, inode->i_size);
231 * At the slow path we have to budget before locking the page, because
232 * budgeting may force write-back, which would wait on locked pages and
233 * deadlock if we had the page locked. At this point we do not know
234 * anything about the page, so assume that this is a new page which is
235 * written to a hole. This corresponds to largest budget. Later the
236 * budget will be amended if this is not true.
239 /* We are appending data, budget for inode change */
242 err = ubifs_budget_space(c, &req);
246 page = grab_cache_page_write_begin(mapping, index);
247 if (unlikely(!page)) {
248 ubifs_release_budget(c, &req);
252 if (!PageUptodate(page)) {
253 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
254 SetPageChecked(page);
256 err = do_readpage(page);
260 ubifs_release_budget(c, &req);
265 SetPageUptodate(page);
266 ClearPageError(page);
269 if (PagePrivate(page))
271 * The page is dirty, which means it was budgeted twice:
272 * o first time the budget was allocated by the task which
273 * made the page dirty and set the PG_private flag;
274 * o and then we budgeted for it for the second time at the
275 * very beginning of this function.
277 * So what we have to do is to release the page budget we
280 release_new_page_budget(c);
281 else if (!PageChecked(page))
283 * We are changing a page which already exists on the media.
284 * This means that changing the page does not make the amount
285 * of indexing information larger, and this part of the budget
286 * which we have already acquired may be released.
288 ubifs_convert_page_budget(c);
291 struct ubifs_inode *ui = ubifs_inode(inode);
294 * 'ubifs_write_end()' is optimized from the fast-path part of
295 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
296 * if data is appended.
298 mutex_lock(&ui->ui_mutex);
301 * The inode is dirty already, so we may free the
302 * budget we allocated.
304 ubifs_release_dirty_inode_budget(c, ui);
312 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
313 * @c: UBIFS file-system description object
314 * @page: page to allocate budget for
315 * @ui: UBIFS inode object the page belongs to
316 * @appending: non-zero if the page is appended
318 * This is a helper function for 'ubifs_write_begin()' which allocates budget
319 * for the operation. The budget is allocated differently depending on whether
320 * this is appending, whether the page is dirty or not, and so on. This
321 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
322 * in case of success and %-ENOSPC in case of failure.
324 static int allocate_budget(struct ubifs_info *c, struct page *page,
325 struct ubifs_inode *ui, int appending)
327 struct ubifs_budget_req req = { .fast = 1 };
329 if (PagePrivate(page)) {
332 * The page is dirty and we are not appending, which
333 * means no budget is needed at all.
337 mutex_lock(&ui->ui_mutex);
340 * The page is dirty and we are appending, so the inode
341 * has to be marked as dirty. However, it is already
342 * dirty, so we do not need any budget. We may return,
343 * but @ui->ui_mutex hast to be left locked because we
344 * should prevent write-back from flushing the inode
345 * and freeing the budget. The lock will be released in
346 * 'ubifs_write_end()'.
351 * The page is dirty, we are appending, the inode is clean, so
352 * we need to budget the inode change.
356 if (PageChecked(page))
358 * The page corresponds to a hole and does not
359 * exist on the media. So changing it makes
360 * make the amount of indexing information
361 * larger, and we have to budget for a new
367 * Not a hole, the change will not add any new
368 * indexing information, budget for page
371 req.dirtied_page = 1;
374 mutex_lock(&ui->ui_mutex);
377 * The inode is clean but we will have to mark
378 * it as dirty because we are appending. This
385 return ubifs_budget_space(c, &req);
389 * This function is called when a page of data is going to be written. Since
390 * the page of data will not necessarily go to the flash straight away, UBIFS
391 * has to reserve space on the media for it, which is done by means of
394 * This is the hot-path of the file-system and we are trying to optimize it as
395 * much as possible. For this reasons it is split on 2 parts - slow and fast.
397 * There many budgeting cases:
398 * o a new page is appended - we have to budget for a new page and for
399 * changing the inode; however, if the inode is already dirty, there is
400 * no need to budget for it;
401 * o an existing clean page is changed - we have budget for it; if the page
402 * does not exist on the media (a hole), we have to budget for a new
403 * page; otherwise, we may budget for changing an existing page; the
404 * difference between these cases is that changing an existing page does
405 * not introduce anything new to the FS indexing information, so it does
406 * not grow, and smaller budget is acquired in this case;
407 * o an existing dirty page is changed - no need to budget at all, because
408 * the page budget has been acquired by earlier, when the page has been
411 * UBIFS budgeting sub-system may force write-back if it thinks there is no
412 * space to reserve. This imposes some locking restrictions and makes it
413 * impossible to take into account the above cases, and makes it impossible to
414 * optimize budgeting.
416 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
417 * there is a plenty of flash space and the budget will be acquired quickly,
418 * without forcing write-back. The slow path does not make this assumption.
420 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
421 loff_t pos, unsigned len,
422 struct page **pagep, void **fsdata)
424 struct inode *inode = mapping->host;
425 struct ubifs_info *c = inode->i_sb->s_fs_info;
426 struct ubifs_inode *ui = ubifs_inode(inode);
427 pgoff_t index = pos >> PAGE_SHIFT;
428 int err, appending = !!(pos + len > inode->i_size);
429 int skipped_read = 0;
432 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
433 ubifs_assert(c, !c->ro_media && !c->ro_mount);
435 if (unlikely(c->ro_error))
438 /* Try out the fast-path part first */
439 page = grab_cache_page_write_begin(mapping, index);
443 if (!PageUptodate(page)) {
444 /* The page is not loaded from the flash */
445 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
447 * We change whole page so no need to load it. But we
448 * do not know whether this page exists on the media or
449 * not, so we assume the latter because it requires
450 * larger budget. The assumption is that it is better
451 * to budget a bit more than to read the page from the
452 * media. Thus, we are setting the @PG_checked flag
455 SetPageChecked(page);
458 err = do_readpage(page);
466 SetPageUptodate(page);
467 ClearPageError(page);
470 err = allocate_budget(c, page, ui, appending);
472 ubifs_assert(c, err == -ENOSPC);
474 * If we skipped reading the page because we were going to
475 * write all of it, then it is not up to date.
478 ClearPageChecked(page);
479 ClearPageUptodate(page);
482 * Budgeting failed which means it would have to force
483 * write-back but didn't, because we set the @fast flag in the
484 * request. Write-back cannot be done now, while we have the
485 * page locked, because it would deadlock. Unlock and free
486 * everything and fall-back to slow-path.
489 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
490 mutex_unlock(&ui->ui_mutex);
495 return write_begin_slow(mapping, pos, len, pagep);
499 * Whee, we acquired budgeting quickly - without involving
500 * garbage-collection, committing or forcing write-back. We return
501 * with @ui->ui_mutex locked if we are appending pages, and unlocked
502 * otherwise. This is an optimization (slightly hacky though).
510 * cancel_budget - cancel budget.
511 * @c: UBIFS file-system description object
512 * @page: page to cancel budget for
513 * @ui: UBIFS inode object the page belongs to
514 * @appending: non-zero if the page is appended
516 * This is a helper function for a page write operation. It unlocks the
517 * @ui->ui_mutex in case of appending.
519 static void cancel_budget(struct ubifs_info *c, struct page *page,
520 struct ubifs_inode *ui, int appending)
524 ubifs_release_dirty_inode_budget(c, ui);
525 mutex_unlock(&ui->ui_mutex);
527 if (!PagePrivate(page)) {
528 if (PageChecked(page))
529 release_new_page_budget(c);
531 release_existing_page_budget(c);
535 static int ubifs_write_end(struct file *file, struct address_space *mapping,
536 loff_t pos, unsigned len, unsigned copied,
537 struct page *page, void *fsdata)
539 struct inode *inode = mapping->host;
540 struct ubifs_inode *ui = ubifs_inode(inode);
541 struct ubifs_info *c = inode->i_sb->s_fs_info;
542 loff_t end_pos = pos + len;
543 int appending = !!(end_pos > inode->i_size);
545 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
546 inode->i_ino, pos, page->index, len, copied, inode->i_size);
548 if (unlikely(copied < len && len == PAGE_SIZE)) {
550 * VFS copied less data to the page that it intended and
551 * declared in its '->write_begin()' call via the @len
552 * argument. If the page was not up-to-date, and @len was
553 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
554 * not load it from the media (for optimization reasons). This
555 * means that part of the page contains garbage. So read the
558 dbg_gen("copied %d instead of %d, read page and repeat",
560 cancel_budget(c, page, ui, appending);
561 ClearPageChecked(page);
564 * Return 0 to force VFS to repeat the whole operation, or the
565 * error code if 'do_readpage()' fails.
567 copied = do_readpage(page);
571 if (!PagePrivate(page)) {
572 attach_page_private(page, (void *)1);
573 atomic_long_inc(&c->dirty_pg_cnt);
574 __set_page_dirty_nobuffers(page);
578 i_size_write(inode, end_pos);
579 ui->ui_size = end_pos;
581 * Note, we do not set @I_DIRTY_PAGES (which means that the
582 * inode has dirty pages), this has been done in
583 * '__set_page_dirty_nobuffers()'.
585 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
586 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
587 mutex_unlock(&ui->ui_mutex);
597 * populate_page - copy data nodes into a page for bulk-read.
598 * @c: UBIFS file-system description object
600 * @bu: bulk-read information
601 * @n: next zbranch slot
603 * This function returns %0 on success and a negative error code on failure.
605 static int populate_page(struct ubifs_info *c, struct page *page,
606 struct bu_info *bu, int *n)
608 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
609 struct inode *inode = page->mapping->host;
610 loff_t i_size = i_size_read(inode);
611 unsigned int page_block;
615 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
616 inode->i_ino, page->index, i_size, page->flags);
618 addr = zaddr = kmap(page);
620 end_index = (i_size - 1) >> PAGE_SHIFT;
621 if (!i_size || page->index > end_index) {
623 memset(addr, 0, PAGE_SIZE);
627 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
629 int err, len, out_len, dlen;
633 memset(addr, 0, UBIFS_BLOCK_SIZE);
634 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
635 struct ubifs_data_node *dn;
637 dn = bu->buf + (bu->zbranch[nn].offs - offs);
639 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
640 ubifs_inode(inode)->creat_sqnum);
642 len = le32_to_cpu(dn->size);
643 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
646 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
647 out_len = UBIFS_BLOCK_SIZE;
649 if (IS_ENCRYPTED(inode)) {
650 err = ubifs_decrypt(inode, dn, &dlen, page_block);
655 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
656 le16_to_cpu(dn->compr_type));
657 if (err || len != out_len)
660 if (len < UBIFS_BLOCK_SIZE)
661 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
664 read = (i << UBIFS_BLOCK_SHIFT) + len;
665 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
670 memset(addr, 0, UBIFS_BLOCK_SIZE);
672 if (++i >= UBIFS_BLOCKS_PER_PAGE)
674 addr += UBIFS_BLOCK_SIZE;
678 if (end_index == page->index) {
679 int len = i_size & (PAGE_SIZE - 1);
681 if (len && len < read)
682 memset(zaddr + len, 0, read - len);
687 SetPageChecked(page);
691 SetPageUptodate(page);
692 ClearPageError(page);
693 flush_dcache_page(page);
699 ClearPageUptodate(page);
701 flush_dcache_page(page);
703 ubifs_err(c, "bad data node (block %u, inode %lu)",
704 page_block, inode->i_ino);
709 * ubifs_do_bulk_read - do bulk-read.
710 * @c: UBIFS file-system description object
711 * @bu: bulk-read information
712 * @page1: first page to read
714 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
716 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
719 pgoff_t offset = page1->index, end_index;
720 struct address_space *mapping = page1->mapping;
721 struct inode *inode = mapping->host;
722 struct ubifs_inode *ui = ubifs_inode(inode);
723 int err, page_idx, page_cnt, ret = 0, n = 0;
724 int allocate = bu->buf ? 0 : 1;
726 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
728 err = ubifs_tnc_get_bu_keys(c, bu);
733 /* Turn off bulk-read at the end of the file */
734 ui->read_in_a_row = 1;
738 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
741 * This happens when there are multiple blocks per page and the
742 * blocks for the first page we are looking for, are not
743 * together. If all the pages were like this, bulk-read would
744 * reduce performance, so we turn it off for a while.
752 * Allocate bulk-read buffer depending on how many data
753 * nodes we are going to read.
755 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
756 bu->zbranch[bu->cnt - 1].len -
758 ubifs_assert(c, bu->buf_len > 0);
759 ubifs_assert(c, bu->buf_len <= c->leb_size);
760 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
765 err = ubifs_tnc_bulk_read(c, bu);
770 err = populate_page(c, page1, bu, &n);
777 isize = i_size_read(inode);
780 end_index = ((isize - 1) >> PAGE_SHIFT);
782 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
783 pgoff_t page_offset = offset + page_idx;
786 if (page_offset > end_index)
788 page = pagecache_get_page(mapping, page_offset,
789 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
793 if (!PageUptodate(page))
794 err = populate_page(c, page, bu, &n);
801 ui->last_page_read = offset + page_idx - 1;
809 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
813 ui->read_in_a_row = ui->bulk_read = 0;
818 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
819 * @page: page from which to start bulk-read.
821 * Some flash media are capable of reading sequentially at faster rates. UBIFS
822 * bulk-read facility is designed to take advantage of that, by reading in one
823 * go consecutive data nodes that are also located consecutively in the same
824 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
826 static int ubifs_bulk_read(struct page *page)
828 struct inode *inode = page->mapping->host;
829 struct ubifs_info *c = inode->i_sb->s_fs_info;
830 struct ubifs_inode *ui = ubifs_inode(inode);
831 pgoff_t index = page->index, last_page_read = ui->last_page_read;
833 int err = 0, allocated = 0;
835 ui->last_page_read = index;
840 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
841 * so don't bother if we cannot lock the mutex.
843 if (!mutex_trylock(&ui->ui_mutex))
846 if (index != last_page_read + 1) {
847 /* Turn off bulk-read if we stop reading sequentially */
848 ui->read_in_a_row = 1;
854 if (!ui->bulk_read) {
855 ui->read_in_a_row += 1;
856 if (ui->read_in_a_row < 3)
858 /* Three reads in a row, so switch on bulk-read */
863 * If possible, try to use pre-allocated bulk-read information, which
864 * is protected by @c->bu_mutex.
866 if (mutex_trylock(&c->bu_mutex))
869 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
877 bu->buf_len = c->max_bu_buf_len;
878 data_key_init(c, &bu->key, inode->i_ino,
879 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
880 err = ubifs_do_bulk_read(c, bu, page);
883 mutex_unlock(&c->bu_mutex);
888 mutex_unlock(&ui->ui_mutex);
892 static int ubifs_readpage(struct file *file, struct page *page)
894 if (ubifs_bulk_read(page))
901 static int do_writepage(struct page *page, int len)
903 int err = 0, i, blen;
907 struct inode *inode = page->mapping->host;
908 struct ubifs_info *c = inode->i_sb->s_fs_info;
911 struct ubifs_inode *ui = ubifs_inode(inode);
912 spin_lock(&ui->ui_lock);
913 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
914 spin_unlock(&ui->ui_lock);
917 /* Update radix tree tags */
918 set_page_writeback(page);
921 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
924 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
925 data_key_init(c, &key, inode->i_ino, block);
926 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
929 if (++i >= UBIFS_BLOCKS_PER_PAGE)
937 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
938 page->index, inode->i_ino, err);
939 ubifs_ro_mode(c, err);
942 ubifs_assert(c, PagePrivate(page));
943 if (PageChecked(page))
944 release_new_page_budget(c);
946 release_existing_page_budget(c);
948 atomic_long_dec(&c->dirty_pg_cnt);
949 detach_page_private(page);
950 ClearPageChecked(page);
954 end_page_writeback(page);
959 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
960 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
961 * situation when a we have an inode with size 0, then a megabyte of data is
962 * appended to the inode, then write-back starts and flushes some amount of the
963 * dirty pages, the journal becomes full, commit happens and finishes, and then
964 * an unclean reboot happens. When the file system is mounted next time, the
965 * inode size would still be 0, but there would be many pages which are beyond
966 * the inode size, they would be indexed and consume flash space. Because the
967 * journal has been committed, the replay would not be able to detect this
968 * situation and correct the inode size. This means UBIFS would have to scan
969 * whole index and correct all inode sizes, which is long an unacceptable.
971 * To prevent situations like this, UBIFS writes pages back only if they are
972 * within the last synchronized inode size, i.e. the size which has been
973 * written to the flash media last time. Otherwise, UBIFS forces inode
974 * write-back, thus making sure the on-flash inode contains current inode size,
975 * and then keeps writing pages back.
977 * Some locking issues explanation. 'ubifs_writepage()' first is called with
978 * the page locked, and it locks @ui_mutex. However, write-back does take inode
979 * @i_mutex, which means other VFS operations may be run on this inode at the
980 * same time. And the problematic one is truncation to smaller size, from where
981 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
982 * then drops the truncated pages. And while dropping the pages, it takes the
983 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
984 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
985 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
987 * XXX(truncate): with the new truncate sequence this is not true anymore,
988 * and the calls to truncate_setsize can be move around freely. They should
989 * be moved to the very end of the truncate sequence.
991 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
992 * inode size. How do we do this if @inode->i_size may became smaller while we
993 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
994 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
995 * internally and updates it under @ui_mutex.
997 * Q: why we do not worry that if we race with truncation, we may end up with a
998 * situation when the inode is truncated while we are in the middle of
999 * 'do_writepage()', so we do write beyond inode size?
1000 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1001 * on the page lock and it would not write the truncated inode node to the
1002 * journal before we have finished.
1004 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1006 struct inode *inode = page->mapping->host;
1007 struct ubifs_info *c = inode->i_sb->s_fs_info;
1008 struct ubifs_inode *ui = ubifs_inode(inode);
1009 loff_t i_size = i_size_read(inode), synced_i_size;
1010 pgoff_t end_index = i_size >> PAGE_SHIFT;
1011 int err, len = i_size & (PAGE_SIZE - 1);
1014 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1015 inode->i_ino, page->index, page->flags);
1016 ubifs_assert(c, PagePrivate(page));
1018 /* Is the page fully outside @i_size? (truncate in progress) */
1019 if (page->index > end_index || (page->index == end_index && !len)) {
1024 spin_lock(&ui->ui_lock);
1025 synced_i_size = ui->synced_i_size;
1026 spin_unlock(&ui->ui_lock);
1028 /* Is the page fully inside @i_size? */
1029 if (page->index < end_index) {
1030 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1031 err = inode->i_sb->s_op->write_inode(inode, NULL);
1035 * The inode has been written, but the write-buffer has
1036 * not been synchronized, so in case of an unclean
1037 * reboot we may end up with some pages beyond inode
1038 * size, but they would be in the journal (because
1039 * commit flushes write buffers) and recovery would deal
1043 return do_writepage(page, PAGE_SIZE);
1047 * The page straddles @i_size. It must be zeroed out on each and every
1048 * writepage invocation because it may be mmapped. "A file is mapped
1049 * in multiples of the page size. For a file that is not a multiple of
1050 * the page size, the remaining memory is zeroed when mapped, and
1051 * writes to that region are not written out to the file."
1053 kaddr = kmap_atomic(page);
1054 memset(kaddr + len, 0, PAGE_SIZE - len);
1055 flush_dcache_page(page);
1056 kunmap_atomic(kaddr);
1058 if (i_size > synced_i_size) {
1059 err = inode->i_sb->s_op->write_inode(inode, NULL);
1064 return do_writepage(page, len);
1072 * do_attr_changes - change inode attributes.
1073 * @inode: inode to change attributes for
1074 * @attr: describes attributes to change
1076 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1078 if (attr->ia_valid & ATTR_UID)
1079 inode->i_uid = attr->ia_uid;
1080 if (attr->ia_valid & ATTR_GID)
1081 inode->i_gid = attr->ia_gid;
1082 if (attr->ia_valid & ATTR_ATIME)
1083 inode->i_atime = attr->ia_atime;
1084 if (attr->ia_valid & ATTR_MTIME)
1085 inode->i_mtime = attr->ia_mtime;
1086 if (attr->ia_valid & ATTR_CTIME)
1087 inode->i_ctime = attr->ia_ctime;
1088 if (attr->ia_valid & ATTR_MODE) {
1089 umode_t mode = attr->ia_mode;
1091 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1093 inode->i_mode = mode;
1098 * do_truncation - truncate an inode.
1099 * @c: UBIFS file-system description object
1100 * @inode: inode to truncate
1101 * @attr: inode attribute changes description
1103 * This function implements VFS '->setattr()' call when the inode is truncated
1104 * to a smaller size. Returns zero in case of success and a negative error code
1105 * in case of failure.
1107 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1108 const struct iattr *attr)
1111 struct ubifs_budget_req req;
1112 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1113 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1114 struct ubifs_inode *ui = ubifs_inode(inode);
1116 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1117 memset(&req, 0, sizeof(struct ubifs_budget_req));
1120 * If this is truncation to a smaller size, and we do not truncate on a
1121 * block boundary, budget for changing one data block, because the last
1122 * block will be re-written.
1124 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1125 req.dirtied_page = 1;
1127 req.dirtied_ino = 1;
1128 /* A funny way to budget for truncation node */
1129 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1130 err = ubifs_budget_space(c, &req);
1133 * Treat truncations to zero as deletion and always allow them,
1134 * just like we do for '->unlink()'.
1136 if (new_size || err != -ENOSPC)
1141 truncate_setsize(inode, new_size);
1144 pgoff_t index = new_size >> PAGE_SHIFT;
1147 page = find_lock_page(inode->i_mapping, index);
1149 if (PageDirty(page)) {
1151 * 'ubifs_jnl_truncate()' will try to truncate
1152 * the last data node, but it contains
1153 * out-of-date data because the page is dirty.
1154 * Write the page now, so that
1155 * 'ubifs_jnl_truncate()' will see an already
1156 * truncated (and up to date) data node.
1158 ubifs_assert(c, PagePrivate(page));
1160 clear_page_dirty_for_io(page);
1161 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1164 err = do_writepage(page, offset);
1169 * We could now tell 'ubifs_jnl_truncate()' not
1170 * to read the last block.
1174 * We could 'kmap()' the page and pass the data
1175 * to 'ubifs_jnl_truncate()' to save it from
1176 * having to read it.
1184 mutex_lock(&ui->ui_mutex);
1185 ui->ui_size = inode->i_size;
1186 /* Truncation changes inode [mc]time */
1187 inode->i_mtime = inode->i_ctime = current_time(inode);
1188 /* Other attributes may be changed at the same time as well */
1189 do_attr_changes(inode, attr);
1190 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1191 mutex_unlock(&ui->ui_mutex);
1195 ubifs_release_budget(c, &req);
1197 c->bi.nospace = c->bi.nospace_rp = 0;
1204 * do_setattr - change inode attributes.
1205 * @c: UBIFS file-system description object
1206 * @inode: inode to change attributes for
1207 * @attr: inode attribute changes description
1209 * This function implements VFS '->setattr()' call for all cases except
1210 * truncations to smaller size. Returns zero in case of success and a negative
1211 * error code in case of failure.
1213 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1214 const struct iattr *attr)
1217 loff_t new_size = attr->ia_size;
1218 struct ubifs_inode *ui = ubifs_inode(inode);
1219 struct ubifs_budget_req req = { .dirtied_ino = 1,
1220 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1222 err = ubifs_budget_space(c, &req);
1226 if (attr->ia_valid & ATTR_SIZE) {
1227 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1228 truncate_setsize(inode, new_size);
1231 mutex_lock(&ui->ui_mutex);
1232 if (attr->ia_valid & ATTR_SIZE) {
1233 /* Truncation changes inode [mc]time */
1234 inode->i_mtime = inode->i_ctime = current_time(inode);
1235 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1236 ui->ui_size = inode->i_size;
1239 do_attr_changes(inode, attr);
1241 release = ui->dirty;
1242 if (attr->ia_valid & ATTR_SIZE)
1244 * Inode length changed, so we have to make sure
1245 * @I_DIRTY_DATASYNC is set.
1247 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1249 mark_inode_dirty_sync(inode);
1250 mutex_unlock(&ui->ui_mutex);
1253 ubifs_release_budget(c, &req);
1255 err = inode->i_sb->s_op->write_inode(inode, NULL);
1259 int ubifs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1263 struct inode *inode = d_inode(dentry);
1264 struct ubifs_info *c = inode->i_sb->s_fs_info;
1266 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1267 inode->i_ino, inode->i_mode, attr->ia_valid);
1268 err = setattr_prepare(&init_user_ns, dentry, attr);
1272 err = dbg_check_synced_i_size(c, inode);
1276 err = fscrypt_prepare_setattr(dentry, attr);
1280 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1281 /* Truncation to a smaller size */
1282 err = do_truncation(c, inode, attr);
1284 err = do_setattr(c, inode, attr);
1289 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1292 struct inode *inode = folio->mapping->host;
1293 struct ubifs_info *c = inode->i_sb->s_fs_info;
1295 ubifs_assert(c, folio_test_private(folio));
1296 if (offset || length < folio_size(folio))
1297 /* Partial folio remains dirty */
1300 if (folio_test_checked(folio))
1301 release_new_page_budget(c);
1303 release_existing_page_budget(c);
1305 atomic_long_dec(&c->dirty_pg_cnt);
1306 folio_detach_private(folio);
1307 folio_clear_checked(folio);
1310 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312 struct inode *inode = file->f_mapping->host;
1313 struct ubifs_info *c = inode->i_sb->s_fs_info;
1316 dbg_gen("syncing inode %lu", inode->i_ino);
1320 * For some really strange reasons VFS does not filter out
1321 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1325 err = file_write_and_wait_range(file, start, end);
1330 /* Synchronize the inode unless this is a 'datasync()' call. */
1331 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1332 err = inode->i_sb->s_op->write_inode(inode, NULL);
1338 * Nodes related to this inode may still sit in a write-buffer. Flush
1341 err = ubifs_sync_wbufs_by_inode(c, inode);
1343 inode_unlock(inode);
1348 * mctime_update_needed - check if mtime or ctime update is needed.
1349 * @inode: the inode to do the check for
1350 * @now: current time
1352 * This helper function checks if the inode mtime/ctime should be updated or
1353 * not. If current values of the time-stamps are within the UBIFS inode time
1354 * granularity, they are not updated. This is an optimization.
1356 static inline int mctime_update_needed(const struct inode *inode,
1357 const struct timespec64 *now)
1359 if (!timespec64_equal(&inode->i_mtime, now) ||
1360 !timespec64_equal(&inode->i_ctime, now))
1366 * ubifs_update_time - update time of inode.
1367 * @inode: inode to update
1369 * This function updates time of the inode.
1371 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1374 struct ubifs_inode *ui = ubifs_inode(inode);
1375 struct ubifs_info *c = inode->i_sb->s_fs_info;
1376 struct ubifs_budget_req req = { .dirtied_ino = 1,
1377 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1380 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1381 return generic_update_time(inode, time, flags);
1383 err = ubifs_budget_space(c, &req);
1387 mutex_lock(&ui->ui_mutex);
1388 if (flags & S_ATIME)
1389 inode->i_atime = *time;
1390 if (flags & S_CTIME)
1391 inode->i_ctime = *time;
1392 if (flags & S_MTIME)
1393 inode->i_mtime = *time;
1395 release = ui->dirty;
1396 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1397 mutex_unlock(&ui->ui_mutex);
1399 ubifs_release_budget(c, &req);
1404 * update_mctime - update mtime and ctime of an inode.
1405 * @inode: inode to update
1407 * This function updates mtime and ctime of the inode if it is not equivalent to
1408 * current time. Returns zero in case of success and a negative error code in
1411 static int update_mctime(struct inode *inode)
1413 struct timespec64 now = current_time(inode);
1414 struct ubifs_inode *ui = ubifs_inode(inode);
1415 struct ubifs_info *c = inode->i_sb->s_fs_info;
1417 if (mctime_update_needed(inode, &now)) {
1419 struct ubifs_budget_req req = { .dirtied_ino = 1,
1420 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1422 err = ubifs_budget_space(c, &req);
1426 mutex_lock(&ui->ui_mutex);
1427 inode->i_mtime = inode->i_ctime = current_time(inode);
1428 release = ui->dirty;
1429 mark_inode_dirty_sync(inode);
1430 mutex_unlock(&ui->ui_mutex);
1432 ubifs_release_budget(c, &req);
1438 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1440 int err = update_mctime(file_inode(iocb->ki_filp));
1444 return generic_file_write_iter(iocb, from);
1447 static bool ubifs_dirty_folio(struct address_space *mapping,
1448 struct folio *folio)
1451 struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1453 ret = filemap_dirty_folio(mapping, folio);
1455 * An attempt to dirty a page without budgeting for it - should not
1458 ubifs_assert(c, ret == false);
1462 #ifdef CONFIG_MIGRATION
1463 static int ubifs_migrate_page(struct address_space *mapping,
1464 struct page *newpage, struct page *page, enum migrate_mode mode)
1468 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1469 if (rc != MIGRATEPAGE_SUCCESS)
1472 if (PagePrivate(page)) {
1473 detach_page_private(page);
1474 attach_page_private(newpage, (void *)1);
1477 if (mode != MIGRATE_SYNC_NO_COPY)
1478 migrate_page_copy(newpage, page);
1480 migrate_page_states(newpage, page);
1481 return MIGRATEPAGE_SUCCESS;
1485 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1487 struct inode *inode = page->mapping->host;
1488 struct ubifs_info *c = inode->i_sb->s_fs_info;
1491 * An attempt to release a dirty page without budgeting for it - should
1494 if (PageWriteback(page))
1496 ubifs_assert(c, PagePrivate(page));
1498 detach_page_private(page);
1499 ClearPageChecked(page);
1504 * mmap()d file has taken write protection fault and is being made writable.
1505 * UBIFS must ensure page is budgeted for.
1507 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1509 struct page *page = vmf->page;
1510 struct inode *inode = file_inode(vmf->vma->vm_file);
1511 struct ubifs_info *c = inode->i_sb->s_fs_info;
1512 struct timespec64 now = current_time(inode);
1513 struct ubifs_budget_req req = { .new_page = 1 };
1514 int err, update_time;
1516 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1517 i_size_read(inode));
1518 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1520 if (unlikely(c->ro_error))
1521 return VM_FAULT_SIGBUS; /* -EROFS */
1524 * We have not locked @page so far so we may budget for changing the
1525 * page. Note, we cannot do this after we locked the page, because
1526 * budgeting may cause write-back which would cause deadlock.
1528 * At the moment we do not know whether the page is dirty or not, so we
1529 * assume that it is not and budget for a new page. We could look at
1530 * the @PG_private flag and figure this out, but we may race with write
1531 * back and the page state may change by the time we lock it, so this
1532 * would need additional care. We do not bother with this at the
1533 * moment, although it might be good idea to do. Instead, we allocate
1534 * budget for a new page and amend it later on if the page was in fact
1537 * The budgeting-related logic of this function is similar to what we
1538 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1539 * for more comments.
1541 update_time = mctime_update_needed(inode, &now);
1544 * We have to change inode time stamp which requires extra
1547 req.dirtied_ino = 1;
1549 err = ubifs_budget_space(c, &req);
1550 if (unlikely(err)) {
1552 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1554 return VM_FAULT_SIGBUS;
1558 if (unlikely(page->mapping != inode->i_mapping ||
1559 page_offset(page) > i_size_read(inode))) {
1560 /* Page got truncated out from underneath us */
1564 if (PagePrivate(page))
1565 release_new_page_budget(c);
1567 if (!PageChecked(page))
1568 ubifs_convert_page_budget(c);
1569 attach_page_private(page, (void *)1);
1570 atomic_long_inc(&c->dirty_pg_cnt);
1571 __set_page_dirty_nobuffers(page);
1576 struct ubifs_inode *ui = ubifs_inode(inode);
1578 mutex_lock(&ui->ui_mutex);
1579 inode->i_mtime = inode->i_ctime = current_time(inode);
1580 release = ui->dirty;
1581 mark_inode_dirty_sync(inode);
1582 mutex_unlock(&ui->ui_mutex);
1584 ubifs_release_dirty_inode_budget(c, ui);
1587 wait_for_stable_page(page);
1588 return VM_FAULT_LOCKED;
1592 ubifs_release_budget(c, &req);
1593 return VM_FAULT_SIGBUS;
1596 static const struct vm_operations_struct ubifs_file_vm_ops = {
1597 .fault = filemap_fault,
1598 .map_pages = filemap_map_pages,
1599 .page_mkwrite = ubifs_vm_page_mkwrite,
1602 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1606 err = generic_file_mmap(file, vma);
1609 vma->vm_ops = &ubifs_file_vm_ops;
1611 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1612 file_accessed(file);
1617 static const char *ubifs_get_link(struct dentry *dentry,
1618 struct inode *inode,
1619 struct delayed_call *done)
1621 struct ubifs_inode *ui = ubifs_inode(inode);
1623 if (!IS_ENCRYPTED(inode))
1627 return ERR_PTR(-ECHILD);
1629 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1632 static int ubifs_symlink_getattr(struct user_namespace *mnt_userns,
1633 const struct path *path, struct kstat *stat,
1634 u32 request_mask, unsigned int query_flags)
1636 ubifs_getattr(mnt_userns, path, stat, request_mask, query_flags);
1638 if (IS_ENCRYPTED(d_inode(path->dentry)))
1639 return fscrypt_symlink_getattr(path, stat);
1643 const struct address_space_operations ubifs_file_address_operations = {
1644 .readpage = ubifs_readpage,
1645 .writepage = ubifs_writepage,
1646 .write_begin = ubifs_write_begin,
1647 .write_end = ubifs_write_end,
1648 .invalidate_folio = ubifs_invalidate_folio,
1649 .dirty_folio = ubifs_dirty_folio,
1650 #ifdef CONFIG_MIGRATION
1651 .migratepage = ubifs_migrate_page,
1653 .releasepage = ubifs_releasepage,
1656 const struct inode_operations ubifs_file_inode_operations = {
1657 .setattr = ubifs_setattr,
1658 .getattr = ubifs_getattr,
1659 .listxattr = ubifs_listxattr,
1660 .update_time = ubifs_update_time,
1661 .fileattr_get = ubifs_fileattr_get,
1662 .fileattr_set = ubifs_fileattr_set,
1665 const struct inode_operations ubifs_symlink_inode_operations = {
1666 .get_link = ubifs_get_link,
1667 .setattr = ubifs_setattr,
1668 .getattr = ubifs_symlink_getattr,
1669 .listxattr = ubifs_listxattr,
1670 .update_time = ubifs_update_time,
1673 const struct file_operations ubifs_file_operations = {
1674 .llseek = generic_file_llseek,
1675 .read_iter = generic_file_read_iter,
1676 .write_iter = ubifs_write_iter,
1677 .mmap = ubifs_file_mmap,
1678 .fsync = ubifs_fsync,
1679 .unlocked_ioctl = ubifs_ioctl,
1680 .splice_read = generic_file_splice_read,
1681 .splice_write = iter_file_splice_write,
1682 .open = fscrypt_file_open,
1683 #ifdef CONFIG_COMPAT
1684 .compat_ioctl = ubifs_compat_ioctl,