2 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
34 * 05.04.94 - Multi-page memory management added for v1.1.
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
43 #include <linux/kernel_stat.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
82 #include <trace/events/kmem.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
89 #include <asm/tlbflush.h>
91 #include "pgalloc-track.h"
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 if (!userfaultfd_wp(vmf->vma))
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
122 return pte_marker_uffd_wp(vmf->orig_pte);
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
131 EXPORT_SYMBOL(high_memory);
134 * Randomize the address space (stacks, mmaps, brk, etc.).
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
158 static int __init disable_randmaps(char *s)
160 randomize_va_space = 0;
163 __setup("norandmaps", disable_randmaps);
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
168 unsigned long highest_memmap_pfn __read_mostly;
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 static int __init init_zero_pfn(void)
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
178 early_initcall(init_zero_pfn);
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 trace_rss_stat(mm, member);
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
192 pgtable_t token = pmd_pgtable(*pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
207 pmd = pmd_offset(pud, addr);
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
223 if (end - 1 > ceiling - 1)
226 pmd = pmd_offset(pud, start);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
241 pud = pud_offset(p4d, addr);
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
257 if (end - 1 > ceiling - 1)
260 pud = pud_offset(p4d, start);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
275 p4d = p4d_offset(pgd, addr);
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
287 ceiling &= PGDIR_MASK;
291 if (end - 1 > ceiling - 1)
294 p4d = p4d_offset(pgd, start);
296 p4d_free_tlb(tlb, p4d, start);
300 * This function frees user-level page tables of a process.
302 void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
310 * The next few lines have given us lots of grief...
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
346 if (end - 1 > ceiling - 1)
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
376 next = mas_find(mas, ceiling - 1);
377 if (unlikely(xa_is_zero(next)))
381 * Hide vma from rmap and truncate_pagecache before freeing
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387 unlink_file_vma(vma);
389 if (is_vm_hugetlb_page(vma)) {
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
394 * Optimization: gather nearby vmas into one call down
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 && !is_vm_hugetlb_page(next)) {
399 next = mas_find(mas, ceiling - 1);
400 if (unlikely(xa_is_zero(next)))
403 vma_start_write(vma);
404 unlink_anon_vmas(vma);
405 unlink_file_vma(vma);
407 free_pgd_range(tlb, addr, vma->vm_end,
408 floor, next ? next->vm_start : ceiling);
414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
416 spinlock_t *ptl = pmd_lock(mm, pmd);
418 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
421 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 * visible before the pte is made visible to other CPUs by being
423 * put into page tables.
425 * The other side of the story is the pointer chasing in the page
426 * table walking code (when walking the page table without locking;
427 * ie. most of the time). Fortunately, these data accesses consist
428 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 * being the notable exception) will already guarantee loads are
430 * seen in-order. See the alpha page table accessors for the
431 * smp_rmb() barriers in page table walking code.
433 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
434 pmd_populate(mm, pmd, *pte);
440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
442 pgtable_t new = pte_alloc_one(mm);
446 pmd_install(mm, pmd, &new);
452 int __pte_alloc_kernel(pmd_t *pmd)
454 pte_t *new = pte_alloc_one_kernel(&init_mm);
458 spin_lock(&init_mm.page_table_lock);
459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
460 smp_wmb(); /* See comment in pmd_install() */
461 pmd_populate_kernel(&init_mm, pmd, new);
464 spin_unlock(&init_mm.page_table_lock);
466 pte_free_kernel(&init_mm, new);
470 static inline void init_rss_vec(int *rss)
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
479 for (i = 0; i < NR_MM_COUNTERS; i++)
481 add_mm_counter(mm, i, rss[i]);
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
489 * The calling function must still handle the error.
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 resume = jiffies + 60 * HZ;
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
530 dump_page(page, "bad pte");
531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 mapping ? mapping->a_ops->read_folio : NULL);
539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
565 * And for normal mappings this is false.
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 unsigned long pfn = pte_pfn(pte);
589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 if (likely(!pte_special(pte)))
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
596 if (is_zero_pfn(pfn))
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
609 print_bad_pte(vma, addr, pte, NULL);
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
625 if (!is_cow_mapping(vma->vm_flags))
630 if (is_zero_pfn(pfn))
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
644 return pfn_to_page(pfn);
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
650 struct page *page = vm_normal_page(vma, addr, pte);
653 return page_folio(page);
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
661 unsigned long pfn = pmd_pfn(pmd);
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
678 if (!is_cow_mapping(vma->vm_flags))
685 if (is_huge_zero_pmd(pmd))
687 if (unlikely(pfn > highest_memmap_pfn))
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
695 return pfn_to_page(pfn);
698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 unsigned long addr, pmd_t pmd)
701 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
704 return page_folio(page);
709 static void restore_exclusive_pte(struct vm_area_struct *vma,
710 struct page *page, unsigned long address,
713 struct folio *folio = page_folio(page);
718 orig_pte = ptep_get(ptep);
719 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
720 if (pte_swp_soft_dirty(orig_pte))
721 pte = pte_mksoft_dirty(pte);
723 entry = pte_to_swp_entry(orig_pte);
724 if (pte_swp_uffd_wp(orig_pte))
725 pte = pte_mkuffd_wp(pte);
726 else if (is_writable_device_exclusive_entry(entry))
727 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
729 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
730 PageAnonExclusive(page)), folio);
733 * No need to take a page reference as one was already
734 * created when the swap entry was made.
736 if (folio_test_anon(folio))
737 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
740 * Currently device exclusive access only supports anonymous
741 * memory so the entry shouldn't point to a filebacked page.
745 set_pte_at(vma->vm_mm, address, ptep, pte);
748 * No need to invalidate - it was non-present before. However
749 * secondary CPUs may have mappings that need invalidating.
751 update_mmu_cache(vma, address, ptep);
755 * Tries to restore an exclusive pte if the page lock can be acquired without
759 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
762 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
763 struct page *page = pfn_swap_entry_to_page(entry);
765 if (trylock_page(page)) {
766 restore_exclusive_pte(vma, page, addr, src_pte);
775 * copy one vm_area from one task to the other. Assumes the page tables
776 * already present in the new task to be cleared in the whole range
777 * covered by this vma.
781 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
782 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
783 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
785 unsigned long vm_flags = dst_vma->vm_flags;
786 pte_t orig_pte = ptep_get(src_pte);
787 pte_t pte = orig_pte;
790 swp_entry_t entry = pte_to_swp_entry(orig_pte);
792 if (likely(!non_swap_entry(entry))) {
793 if (swap_duplicate(entry) < 0)
796 /* make sure dst_mm is on swapoff's mmlist. */
797 if (unlikely(list_empty(&dst_mm->mmlist))) {
798 spin_lock(&mmlist_lock);
799 if (list_empty(&dst_mm->mmlist))
800 list_add(&dst_mm->mmlist,
802 spin_unlock(&mmlist_lock);
804 /* Mark the swap entry as shared. */
805 if (pte_swp_exclusive(orig_pte)) {
806 pte = pte_swp_clear_exclusive(orig_pte);
807 set_pte_at(src_mm, addr, src_pte, pte);
810 } else if (is_migration_entry(entry)) {
811 folio = pfn_swap_entry_folio(entry);
813 rss[mm_counter(folio)]++;
815 if (!is_readable_migration_entry(entry) &&
816 is_cow_mapping(vm_flags)) {
818 * COW mappings require pages in both parent and child
819 * to be set to read. A previously exclusive entry is
822 entry = make_readable_migration_entry(
824 pte = swp_entry_to_pte(entry);
825 if (pte_swp_soft_dirty(orig_pte))
826 pte = pte_swp_mksoft_dirty(pte);
827 if (pte_swp_uffd_wp(orig_pte))
828 pte = pte_swp_mkuffd_wp(pte);
829 set_pte_at(src_mm, addr, src_pte, pte);
831 } else if (is_device_private_entry(entry)) {
832 page = pfn_swap_entry_to_page(entry);
833 folio = page_folio(page);
836 * Update rss count even for unaddressable pages, as
837 * they should treated just like normal pages in this
840 * We will likely want to have some new rss counters
841 * for unaddressable pages, at some point. But for now
842 * keep things as they are.
845 rss[mm_counter(folio)]++;
846 /* Cannot fail as these pages cannot get pinned. */
847 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
850 * We do not preserve soft-dirty information, because so
851 * far, checkpoint/restore is the only feature that
852 * requires that. And checkpoint/restore does not work
853 * when a device driver is involved (you cannot easily
854 * save and restore device driver state).
856 if (is_writable_device_private_entry(entry) &&
857 is_cow_mapping(vm_flags)) {
858 entry = make_readable_device_private_entry(
860 pte = swp_entry_to_pte(entry);
861 if (pte_swp_uffd_wp(orig_pte))
862 pte = pte_swp_mkuffd_wp(pte);
863 set_pte_at(src_mm, addr, src_pte, pte);
865 } else if (is_device_exclusive_entry(entry)) {
867 * Make device exclusive entries present by restoring the
868 * original entry then copying as for a present pte. Device
869 * exclusive entries currently only support private writable
870 * (ie. COW) mappings.
872 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
873 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
876 } else if (is_pte_marker_entry(entry)) {
877 pte_marker marker = copy_pte_marker(entry, dst_vma);
880 set_pte_at(dst_mm, addr, dst_pte,
881 make_pte_marker(marker));
884 if (!userfaultfd_wp(dst_vma))
885 pte = pte_swp_clear_uffd_wp(pte);
886 set_pte_at(dst_mm, addr, dst_pte, pte);
891 * Copy a present and normal page.
893 * NOTE! The usual case is that this isn't required;
894 * instead, the caller can just increase the page refcount
895 * and re-use the pte the traditional way.
897 * And if we need a pre-allocated page but don't yet have
898 * one, return a negative error to let the preallocation
899 * code know so that it can do so outside the page table
903 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
904 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
905 struct folio **prealloc, struct page *page)
907 struct folio *new_folio;
910 new_folio = *prealloc;
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
919 copy_user_highpage(&new_folio->page, page, addr, src_vma);
920 __folio_mark_uptodate(new_folio);
921 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
922 folio_add_lru_vma(new_folio, dst_vma);
925 /* All done, just insert the new page copy in the child */
926 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
928 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
929 /* Uffd-wp needs to be delivered to dest pte as well */
930 pte = pte_mkuffd_wp(pte);
931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
935 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
936 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
937 pte_t pte, unsigned long addr, int nr)
939 struct mm_struct *src_mm = src_vma->vm_mm;
941 /* If it's a COW mapping, write protect it both processes. */
942 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
943 wrprotect_ptes(src_mm, addr, src_pte, nr);
944 pte = pte_wrprotect(pte);
947 /* If it's a shared mapping, mark it clean in the child. */
948 if (src_vma->vm_flags & VM_SHARED)
949 pte = pte_mkclean(pte);
950 pte = pte_mkold(pte);
952 if (!userfaultfd_wp(dst_vma))
953 pte = pte_clear_uffd_wp(pte);
955 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
959 * Copy one present PTE, trying to batch-process subsequent PTEs that map
960 * consecutive pages of the same folio by copying them as well.
962 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
963 * Otherwise, returns the number of copied PTEs (at least 1).
966 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
967 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
968 int max_nr, int *rss, struct folio **prealloc)
976 page = vm_normal_page(src_vma, addr, pte);
980 folio = page_folio(page);
983 * If we likely have to copy, just don't bother with batching. Make
984 * sure that the common "small folio" case is as fast as possible
985 * by keeping the batching logic separate.
987 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
988 if (src_vma->vm_flags & VM_SHARED)
989 flags |= FPB_IGNORE_DIRTY;
990 if (!vma_soft_dirty_enabled(src_vma))
991 flags |= FPB_IGNORE_SOFT_DIRTY;
993 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
994 &any_writable, NULL, NULL);
995 folio_ref_add(folio, nr);
996 if (folio_test_anon(folio)) {
997 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
999 folio_ref_sub(folio, nr);
1002 rss[MM_ANONPAGES] += nr;
1003 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1005 folio_dup_file_rmap_ptes(folio, page, nr);
1006 rss[mm_counter_file(folio)] += nr;
1009 pte = pte_mkwrite(pte, src_vma);
1010 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1016 if (folio_test_anon(folio)) {
1018 * If this page may have been pinned by the parent process,
1019 * copy the page immediately for the child so that we'll always
1020 * guarantee the pinned page won't be randomly replaced in the
1023 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1024 /* Page may be pinned, we have to copy. */
1026 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1027 addr, rss, prealloc, page);
1028 return err ? err : 1;
1030 rss[MM_ANONPAGES]++;
1031 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1033 folio_dup_file_rmap_pte(folio, page);
1034 rss[mm_counter_file(folio)]++;
1038 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1042 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1043 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1045 struct folio *new_folio;
1048 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1050 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1056 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1057 folio_put(new_folio);
1060 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1066 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1072 pte_t *orig_src_pte, *orig_dst_pte;
1073 pte_t *src_pte, *dst_pte;
1075 spinlock_t *src_ptl, *dst_ptl;
1076 int progress, max_nr, ret = 0;
1077 int rss[NR_MM_COUNTERS];
1078 swp_entry_t entry = (swp_entry_t){0};
1079 struct folio *prealloc = NULL;
1087 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1088 * error handling here, assume that exclusive mmap_lock on dst and src
1089 * protects anon from unexpected THP transitions; with shmem and file
1090 * protected by mmap_lock-less collapse skipping areas with anon_vma
1091 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1092 * can remove such assumptions later, but this is good enough for now.
1094 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1099 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1101 pte_unmap_unlock(dst_pte, dst_ptl);
1105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1106 orig_src_pte = src_pte;
1107 orig_dst_pte = dst_pte;
1108 arch_enter_lazy_mmu_mode();
1114 * We are holding two locks at this point - either of them
1115 * could generate latencies in another task on another CPU.
1117 if (progress >= 32) {
1119 if (need_resched() ||
1120 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1123 ptent = ptep_get(src_pte);
1124 if (pte_none(ptent)) {
1128 if (unlikely(!pte_present(ptent))) {
1129 ret = copy_nonpresent_pte(dst_mm, src_mm,
1134 entry = pte_to_swp_entry(ptep_get(src_pte));
1136 } else if (ret == -EBUSY) {
1142 ptent = ptep_get(src_pte);
1143 VM_WARN_ON_ONCE(!pte_present(ptent));
1146 * Device exclusive entry restored, continue by copying
1147 * the now present pte.
1149 WARN_ON_ONCE(ret != -ENOENT);
1151 /* copy_present_ptes() will clear `*prealloc' if consumed */
1152 max_nr = (end - addr) / PAGE_SIZE;
1153 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1154 ptent, addr, max_nr, rss, &prealloc);
1156 * If we need a pre-allocated page for this pte, drop the
1157 * locks, allocate, and try again.
1159 if (unlikely(ret == -EAGAIN))
1161 if (unlikely(prealloc)) {
1163 * pre-alloc page cannot be reused by next time so as
1164 * to strictly follow mempolicy (e.g., alloc_page_vma()
1165 * will allocate page according to address). This
1166 * could only happen if one pinned pte changed.
1168 folio_put(prealloc);
1173 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1176 arch_leave_lazy_mmu_mode();
1177 pte_unmap_unlock(orig_src_pte, src_ptl);
1178 add_mm_rss_vec(dst_mm, rss);
1179 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1183 VM_WARN_ON_ONCE(!entry.val);
1184 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1189 } else if (ret == -EBUSY) {
1191 } else if (ret == -EAGAIN) {
1192 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1195 } else if (ret < 0) {
1199 /* We've captured and resolved the error. Reset, try again. */
1205 if (unlikely(prealloc))
1206 folio_put(prealloc);
1211 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1212 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1215 struct mm_struct *dst_mm = dst_vma->vm_mm;
1216 struct mm_struct *src_mm = src_vma->vm_mm;
1217 pmd_t *src_pmd, *dst_pmd;
1220 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1223 src_pmd = pmd_offset(src_pud, addr);
1225 next = pmd_addr_end(addr, end);
1226 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1227 || pmd_devmap(*src_pmd)) {
1229 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1230 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1231 addr, dst_vma, src_vma);
1238 if (pmd_none_or_clear_bad(src_pmd))
1240 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1243 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1248 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1249 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1252 struct mm_struct *dst_mm = dst_vma->vm_mm;
1253 struct mm_struct *src_mm = src_vma->vm_mm;
1254 pud_t *src_pud, *dst_pud;
1257 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1260 src_pud = pud_offset(src_p4d, addr);
1262 next = pud_addr_end(addr, end);
1263 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1266 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1267 err = copy_huge_pud(dst_mm, src_mm,
1268 dst_pud, src_pud, addr, src_vma);
1275 if (pud_none_or_clear_bad(src_pud))
1277 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1280 } while (dst_pud++, src_pud++, addr = next, addr != end);
1285 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1286 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1289 struct mm_struct *dst_mm = dst_vma->vm_mm;
1290 p4d_t *src_p4d, *dst_p4d;
1293 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1296 src_p4d = p4d_offset(src_pgd, addr);
1298 next = p4d_addr_end(addr, end);
1299 if (p4d_none_or_clear_bad(src_p4d))
1301 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1304 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1309 * Return true if the vma needs to copy the pgtable during this fork(). Return
1310 * false when we can speed up fork() by allowing lazy page faults later until
1311 * when the child accesses the memory range.
1314 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1317 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1318 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1319 * contains uffd-wp protection information, that's something we can't
1320 * retrieve from page cache, and skip copying will lose those info.
1322 if (userfaultfd_wp(dst_vma))
1325 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1328 if (src_vma->anon_vma)
1332 * Don't copy ptes where a page fault will fill them correctly. Fork
1333 * becomes much lighter when there are big shared or private readonly
1334 * mappings. The tradeoff is that copy_page_range is more efficient
1341 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1343 pgd_t *src_pgd, *dst_pgd;
1345 unsigned long addr = src_vma->vm_start;
1346 unsigned long end = src_vma->vm_end;
1347 struct mm_struct *dst_mm = dst_vma->vm_mm;
1348 struct mm_struct *src_mm = src_vma->vm_mm;
1349 struct mmu_notifier_range range;
1353 if (!vma_needs_copy(dst_vma, src_vma))
1356 if (is_vm_hugetlb_page(src_vma))
1357 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1359 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1361 * We do not free on error cases below as remove_vma
1362 * gets called on error from higher level routine
1364 ret = track_pfn_copy(src_vma);
1370 * We need to invalidate the secondary MMU mappings only when
1371 * there could be a permission downgrade on the ptes of the
1372 * parent mm. And a permission downgrade will only happen if
1373 * is_cow_mapping() returns true.
1375 is_cow = is_cow_mapping(src_vma->vm_flags);
1378 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1379 0, src_mm, addr, end);
1380 mmu_notifier_invalidate_range_start(&range);
1382 * Disabling preemption is not needed for the write side, as
1383 * the read side doesn't spin, but goes to the mmap_lock.
1385 * Use the raw variant of the seqcount_t write API to avoid
1386 * lockdep complaining about preemptibility.
1388 vma_assert_write_locked(src_vma);
1389 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1393 dst_pgd = pgd_offset(dst_mm, addr);
1394 src_pgd = pgd_offset(src_mm, addr);
1396 next = pgd_addr_end(addr, end);
1397 if (pgd_none_or_clear_bad(src_pgd))
1399 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1401 untrack_pfn_clear(dst_vma);
1405 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1408 raw_write_seqcount_end(&src_mm->write_protect_seq);
1409 mmu_notifier_invalidate_range_end(&range);
1414 /* Whether we should zap all COWed (private) pages too */
1415 static inline bool should_zap_cows(struct zap_details *details)
1417 /* By default, zap all pages */
1421 /* Or, we zap COWed pages only if the caller wants to */
1422 return details->even_cows;
1425 /* Decides whether we should zap this folio with the folio pointer specified */
1426 static inline bool should_zap_folio(struct zap_details *details,
1427 struct folio *folio)
1429 /* If we can make a decision without *folio.. */
1430 if (should_zap_cows(details))
1433 /* Otherwise we should only zap non-anon folios */
1434 return !folio_test_anon(folio);
1437 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1442 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1446 * This function makes sure that we'll replace the none pte with an uffd-wp
1447 * swap special pte marker when necessary. Must be with the pgtable lock held.
1450 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1451 unsigned long addr, pte_t *pte, int nr,
1452 struct zap_details *details, pte_t pteval)
1454 /* Zap on anonymous always means dropping everything */
1455 if (vma_is_anonymous(vma))
1458 if (zap_drop_file_uffd_wp(details))
1462 /* the PFN in the PTE is irrelevant. */
1463 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1471 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1472 struct vm_area_struct *vma, struct folio *folio,
1473 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1474 unsigned long addr, struct zap_details *details, int *rss,
1475 bool *force_flush, bool *force_break)
1477 struct mm_struct *mm = tlb->mm;
1478 bool delay_rmap = false;
1480 if (!folio_test_anon(folio)) {
1481 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1482 if (pte_dirty(ptent)) {
1483 folio_mark_dirty(folio);
1484 if (tlb_delay_rmap(tlb)) {
1486 *force_flush = true;
1489 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1490 folio_mark_accessed(folio);
1491 rss[mm_counter(folio)] -= nr;
1493 /* We don't need up-to-date accessed/dirty bits. */
1494 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1495 rss[MM_ANONPAGES] -= nr;
1497 /* Checking a single PTE in a batch is sufficient. */
1498 arch_check_zapped_pte(vma, ptent);
1499 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1500 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1501 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1505 folio_remove_rmap_ptes(folio, page, nr, vma);
1507 if (unlikely(folio_mapcount(folio) < 0))
1508 print_bad_pte(vma, addr, ptent, page);
1510 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1511 *force_flush = true;
1512 *force_break = true;
1517 * Zap or skip at least one present PTE, trying to batch-process subsequent
1518 * PTEs that map consecutive pages of the same folio.
1520 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1522 static inline int zap_present_ptes(struct mmu_gather *tlb,
1523 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1524 unsigned int max_nr, unsigned long addr,
1525 struct zap_details *details, int *rss, bool *force_flush,
1528 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1529 struct mm_struct *mm = tlb->mm;
1530 struct folio *folio;
1534 page = vm_normal_page(vma, addr, ptent);
1536 /* We don't need up-to-date accessed/dirty bits. */
1537 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1538 arch_check_zapped_pte(vma, ptent);
1539 tlb_remove_tlb_entry(tlb, pte, addr);
1540 if (userfaultfd_pte_wp(vma, ptent))
1541 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1543 ksm_might_unmap_zero_page(mm, ptent);
1547 folio = page_folio(page);
1548 if (unlikely(!should_zap_folio(details, folio)))
1552 * Make sure that the common "small folio" case is as fast as possible
1553 * by keeping the batching logic separate.
1555 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1556 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1559 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1560 addr, details, rss, force_flush,
1564 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1565 details, rss, force_flush, force_break);
1569 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1570 struct vm_area_struct *vma, pmd_t *pmd,
1571 unsigned long addr, unsigned long end,
1572 struct zap_details *details)
1574 bool force_flush = false, force_break = false;
1575 struct mm_struct *mm = tlb->mm;
1576 int rss[NR_MM_COUNTERS];
1583 tlb_change_page_size(tlb, PAGE_SIZE);
1585 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1589 flush_tlb_batched_pending(mm);
1590 arch_enter_lazy_mmu_mode();
1592 pte_t ptent = ptep_get(pte);
1593 struct folio *folio;
1598 if (pte_none(ptent))
1604 if (pte_present(ptent)) {
1605 max_nr = (end - addr) / PAGE_SIZE;
1606 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1607 addr, details, rss, &force_flush,
1609 if (unlikely(force_break)) {
1610 addr += nr * PAGE_SIZE;
1616 entry = pte_to_swp_entry(ptent);
1617 if (is_device_private_entry(entry) ||
1618 is_device_exclusive_entry(entry)) {
1619 page = pfn_swap_entry_to_page(entry);
1620 folio = page_folio(page);
1621 if (unlikely(!should_zap_folio(details, folio)))
1624 * Both device private/exclusive mappings should only
1625 * work with anonymous page so far, so we don't need to
1626 * consider uffd-wp bit when zap. For more information,
1627 * see zap_install_uffd_wp_if_needed().
1629 WARN_ON_ONCE(!vma_is_anonymous(vma));
1630 rss[mm_counter(folio)]--;
1631 if (is_device_private_entry(entry))
1632 folio_remove_rmap_pte(folio, page, vma);
1634 } else if (!non_swap_entry(entry)) {
1635 max_nr = (end - addr) / PAGE_SIZE;
1636 nr = swap_pte_batch(pte, max_nr, ptent);
1637 /* Genuine swap entries, hence a private anon pages */
1638 if (!should_zap_cows(details))
1640 rss[MM_SWAPENTS] -= nr;
1641 free_swap_and_cache_nr(entry, nr);
1642 } else if (is_migration_entry(entry)) {
1643 folio = pfn_swap_entry_folio(entry);
1644 if (!should_zap_folio(details, folio))
1646 rss[mm_counter(folio)]--;
1647 } else if (pte_marker_entry_uffd_wp(entry)) {
1649 * For anon: always drop the marker; for file: only
1650 * drop the marker if explicitly requested.
1652 if (!vma_is_anonymous(vma) &&
1653 !zap_drop_file_uffd_wp(details))
1655 } else if (is_hwpoison_entry(entry) ||
1656 is_poisoned_swp_entry(entry)) {
1657 if (!should_zap_cows(details))
1660 /* We should have covered all the swap entry types */
1661 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1664 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1665 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1666 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1668 add_mm_rss_vec(mm, rss);
1669 arch_leave_lazy_mmu_mode();
1671 /* Do the actual TLB flush before dropping ptl */
1673 tlb_flush_mmu_tlbonly(tlb);
1674 tlb_flush_rmaps(tlb, vma);
1676 pte_unmap_unlock(start_pte, ptl);
1679 * If we forced a TLB flush (either due to running out of
1680 * batch buffers or because we needed to flush dirty TLB
1681 * entries before releasing the ptl), free the batched
1682 * memory too. Come back again if we didn't do everything.
1690 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1691 struct vm_area_struct *vma, pud_t *pud,
1692 unsigned long addr, unsigned long end,
1693 struct zap_details *details)
1698 pmd = pmd_offset(pud, addr);
1700 next = pmd_addr_end(addr, end);
1701 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1702 if (next - addr != HPAGE_PMD_SIZE)
1703 __split_huge_pmd(vma, pmd, addr, false, NULL);
1704 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1709 } else if (details && details->single_folio &&
1710 folio_test_pmd_mappable(details->single_folio) &&
1711 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1712 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1714 * Take and drop THP pmd lock so that we cannot return
1715 * prematurely, while zap_huge_pmd() has cleared *pmd,
1716 * but not yet decremented compound_mapcount().
1720 if (pmd_none(*pmd)) {
1724 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1727 } while (pmd++, cond_resched(), addr != end);
1732 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1733 struct vm_area_struct *vma, p4d_t *p4d,
1734 unsigned long addr, unsigned long end,
1735 struct zap_details *details)
1740 pud = pud_offset(p4d, addr);
1742 next = pud_addr_end(addr, end);
1743 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1744 if (next - addr != HPAGE_PUD_SIZE) {
1745 mmap_assert_locked(tlb->mm);
1746 split_huge_pud(vma, pud, addr);
1747 } else if (zap_huge_pud(tlb, vma, pud, addr))
1751 if (pud_none_or_clear_bad(pud))
1753 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1756 } while (pud++, addr = next, addr != end);
1761 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1762 struct vm_area_struct *vma, pgd_t *pgd,
1763 unsigned long addr, unsigned long end,
1764 struct zap_details *details)
1769 p4d = p4d_offset(pgd, addr);
1771 next = p4d_addr_end(addr, end);
1772 if (p4d_none_or_clear_bad(p4d))
1774 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1775 } while (p4d++, addr = next, addr != end);
1780 void unmap_page_range(struct mmu_gather *tlb,
1781 struct vm_area_struct *vma,
1782 unsigned long addr, unsigned long end,
1783 struct zap_details *details)
1788 BUG_ON(addr >= end);
1789 tlb_start_vma(tlb, vma);
1790 pgd = pgd_offset(vma->vm_mm, addr);
1792 next = pgd_addr_end(addr, end);
1793 if (pgd_none_or_clear_bad(pgd))
1795 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1796 } while (pgd++, addr = next, addr != end);
1797 tlb_end_vma(tlb, vma);
1801 static void unmap_single_vma(struct mmu_gather *tlb,
1802 struct vm_area_struct *vma, unsigned long start_addr,
1803 unsigned long end_addr,
1804 struct zap_details *details, bool mm_wr_locked)
1806 unsigned long start = max(vma->vm_start, start_addr);
1809 if (start >= vma->vm_end)
1811 end = min(vma->vm_end, end_addr);
1812 if (end <= vma->vm_start)
1816 uprobe_munmap(vma, start, end);
1818 if (unlikely(vma->vm_flags & VM_PFNMAP))
1819 untrack_pfn(vma, 0, 0, mm_wr_locked);
1822 if (unlikely(is_vm_hugetlb_page(vma))) {
1824 * It is undesirable to test vma->vm_file as it
1825 * should be non-null for valid hugetlb area.
1826 * However, vm_file will be NULL in the error
1827 * cleanup path of mmap_region. When
1828 * hugetlbfs ->mmap method fails,
1829 * mmap_region() nullifies vma->vm_file
1830 * before calling this function to clean up.
1831 * Since no pte has actually been setup, it is
1832 * safe to do nothing in this case.
1835 zap_flags_t zap_flags = details ?
1836 details->zap_flags : 0;
1837 __unmap_hugepage_range(tlb, vma, start, end,
1841 unmap_page_range(tlb, vma, start, end, details);
1846 * unmap_vmas - unmap a range of memory covered by a list of vma's
1847 * @tlb: address of the caller's struct mmu_gather
1848 * @mas: the maple state
1849 * @vma: the starting vma
1850 * @start_addr: virtual address at which to start unmapping
1851 * @end_addr: virtual address at which to end unmapping
1852 * @tree_end: The maximum index to check
1853 * @mm_wr_locked: lock flag
1855 * Unmap all pages in the vma list.
1857 * Only addresses between `start' and `end' will be unmapped.
1859 * The VMA list must be sorted in ascending virtual address order.
1861 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1862 * range after unmap_vmas() returns. So the only responsibility here is to
1863 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1864 * drops the lock and schedules.
1866 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1867 struct vm_area_struct *vma, unsigned long start_addr,
1868 unsigned long end_addr, unsigned long tree_end,
1871 struct mmu_notifier_range range;
1872 struct zap_details details = {
1873 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1874 /* Careful - we need to zap private pages too! */
1878 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1879 start_addr, end_addr);
1880 mmu_notifier_invalidate_range_start(&range);
1882 unsigned long start = start_addr;
1883 unsigned long end = end_addr;
1884 hugetlb_zap_begin(vma, &start, &end);
1885 unmap_single_vma(tlb, vma, start, end, &details,
1887 hugetlb_zap_end(vma, &details);
1888 vma = mas_find(mas, tree_end - 1);
1889 } while (vma && likely(!xa_is_zero(vma)));
1890 mmu_notifier_invalidate_range_end(&range);
1894 * zap_page_range_single - remove user pages in a given range
1895 * @vma: vm_area_struct holding the applicable pages
1896 * @address: starting address of pages to zap
1897 * @size: number of bytes to zap
1898 * @details: details of shared cache invalidation
1900 * The range must fit into one VMA.
1902 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1903 unsigned long size, struct zap_details *details)
1905 const unsigned long end = address + size;
1906 struct mmu_notifier_range range;
1907 struct mmu_gather tlb;
1910 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1912 hugetlb_zap_begin(vma, &range.start, &range.end);
1913 tlb_gather_mmu(&tlb, vma->vm_mm);
1914 update_hiwater_rss(vma->vm_mm);
1915 mmu_notifier_invalidate_range_start(&range);
1917 * unmap 'address-end' not 'range.start-range.end' as range
1918 * could have been expanded for hugetlb pmd sharing.
1920 unmap_single_vma(&tlb, vma, address, end, details, false);
1921 mmu_notifier_invalidate_range_end(&range);
1922 tlb_finish_mmu(&tlb);
1923 hugetlb_zap_end(vma, details);
1927 * zap_vma_ptes - remove ptes mapping the vma
1928 * @vma: vm_area_struct holding ptes to be zapped
1929 * @address: starting address of pages to zap
1930 * @size: number of bytes to zap
1932 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1934 * The entire address range must be fully contained within the vma.
1937 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1940 if (!range_in_vma(vma, address, address + size) ||
1941 !(vma->vm_flags & VM_PFNMAP))
1944 zap_page_range_single(vma, address, size, NULL);
1946 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1948 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1955 pgd = pgd_offset(mm, addr);
1956 p4d = p4d_alloc(mm, pgd, addr);
1959 pud = pud_alloc(mm, p4d, addr);
1962 pmd = pmd_alloc(mm, pud, addr);
1966 VM_BUG_ON(pmd_trans_huge(*pmd));
1970 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1973 pmd_t *pmd = walk_to_pmd(mm, addr);
1977 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1980 static int validate_page_before_insert(struct page *page)
1982 struct folio *folio = page_folio(page);
1984 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1985 page_has_type(page))
1987 flush_dcache_folio(folio);
1991 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1992 unsigned long addr, struct page *page, pgprot_t prot)
1994 struct folio *folio = page_folio(page);
1996 if (!pte_none(ptep_get(pte)))
1998 /* Ok, finally just insert the thing.. */
2000 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2001 folio_add_file_rmap_pte(folio, page, vma);
2002 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
2007 * This is the old fallback for page remapping.
2009 * For historical reasons, it only allows reserved pages. Only
2010 * old drivers should use this, and they needed to mark their
2011 * pages reserved for the old functions anyway.
2013 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2014 struct page *page, pgprot_t prot)
2020 retval = validate_page_before_insert(page);
2024 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2027 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2028 pte_unmap_unlock(pte, ptl);
2033 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2034 unsigned long addr, struct page *page, pgprot_t prot)
2038 if (!page_count(page))
2040 err = validate_page_before_insert(page);
2043 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2046 /* insert_pages() amortizes the cost of spinlock operations
2047 * when inserting pages in a loop.
2049 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2050 struct page **pages, unsigned long *num, pgprot_t prot)
2053 pte_t *start_pte, *pte;
2054 spinlock_t *pte_lock;
2055 struct mm_struct *const mm = vma->vm_mm;
2056 unsigned long curr_page_idx = 0;
2057 unsigned long remaining_pages_total = *num;
2058 unsigned long pages_to_write_in_pmd;
2062 pmd = walk_to_pmd(mm, addr);
2066 pages_to_write_in_pmd = min_t(unsigned long,
2067 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2069 /* Allocate the PTE if necessary; takes PMD lock once only. */
2071 if (pte_alloc(mm, pmd))
2074 while (pages_to_write_in_pmd) {
2076 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2078 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2083 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2084 int err = insert_page_in_batch_locked(vma, pte,
2085 addr, pages[curr_page_idx], prot);
2086 if (unlikely(err)) {
2087 pte_unmap_unlock(start_pte, pte_lock);
2089 remaining_pages_total -= pte_idx;
2095 pte_unmap_unlock(start_pte, pte_lock);
2096 pages_to_write_in_pmd -= batch_size;
2097 remaining_pages_total -= batch_size;
2099 if (remaining_pages_total)
2103 *num = remaining_pages_total;
2108 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2109 * @vma: user vma to map to
2110 * @addr: target start user address of these pages
2111 * @pages: source kernel pages
2112 * @num: in: number of pages to map. out: number of pages that were *not*
2113 * mapped. (0 means all pages were successfully mapped).
2115 * Preferred over vm_insert_page() when inserting multiple pages.
2117 * In case of error, we may have mapped a subset of the provided
2118 * pages. It is the caller's responsibility to account for this case.
2120 * The same restrictions apply as in vm_insert_page().
2122 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2123 struct page **pages, unsigned long *num)
2125 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2127 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2129 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2130 BUG_ON(mmap_read_trylock(vma->vm_mm));
2131 BUG_ON(vma->vm_flags & VM_PFNMAP);
2132 vm_flags_set(vma, VM_MIXEDMAP);
2134 /* Defer page refcount checking till we're about to map that page. */
2135 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2137 EXPORT_SYMBOL(vm_insert_pages);
2140 * vm_insert_page - insert single page into user vma
2141 * @vma: user vma to map to
2142 * @addr: target user address of this page
2143 * @page: source kernel page
2145 * This allows drivers to insert individual pages they've allocated
2148 * The page has to be a nice clean _individual_ kernel allocation.
2149 * If you allocate a compound page, you need to have marked it as
2150 * such (__GFP_COMP), or manually just split the page up yourself
2151 * (see split_page()).
2153 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2154 * took an arbitrary page protection parameter. This doesn't allow
2155 * that. Your vma protection will have to be set up correctly, which
2156 * means that if you want a shared writable mapping, you'd better
2157 * ask for a shared writable mapping!
2159 * The page does not need to be reserved.
2161 * Usually this function is called from f_op->mmap() handler
2162 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2163 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2164 * function from other places, for example from page-fault handler.
2166 * Return: %0 on success, negative error code otherwise.
2168 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2171 if (addr < vma->vm_start || addr >= vma->vm_end)
2173 if (!page_count(page))
2175 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2176 BUG_ON(mmap_read_trylock(vma->vm_mm));
2177 BUG_ON(vma->vm_flags & VM_PFNMAP);
2178 vm_flags_set(vma, VM_MIXEDMAP);
2180 return insert_page(vma, addr, page, vma->vm_page_prot);
2182 EXPORT_SYMBOL(vm_insert_page);
2185 * __vm_map_pages - maps range of kernel pages into user vma
2186 * @vma: user vma to map to
2187 * @pages: pointer to array of source kernel pages
2188 * @num: number of pages in page array
2189 * @offset: user's requested vm_pgoff
2191 * This allows drivers to map range of kernel pages into a user vma.
2193 * Return: 0 on success and error code otherwise.
2195 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2196 unsigned long num, unsigned long offset)
2198 unsigned long count = vma_pages(vma);
2199 unsigned long uaddr = vma->vm_start;
2202 /* Fail if the user requested offset is beyond the end of the object */
2206 /* Fail if the user requested size exceeds available object size */
2207 if (count > num - offset)
2210 for (i = 0; i < count; i++) {
2211 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2221 * vm_map_pages - maps range of kernel pages starts with non zero offset
2222 * @vma: user vma to map to
2223 * @pages: pointer to array of source kernel pages
2224 * @num: number of pages in page array
2226 * Maps an object consisting of @num pages, catering for the user's
2227 * requested vm_pgoff
2229 * If we fail to insert any page into the vma, the function will return
2230 * immediately leaving any previously inserted pages present. Callers
2231 * from the mmap handler may immediately return the error as their caller
2232 * will destroy the vma, removing any successfully inserted pages. Other
2233 * callers should make their own arrangements for calling unmap_region().
2235 * Context: Process context. Called by mmap handlers.
2236 * Return: 0 on success and error code otherwise.
2238 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2241 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2243 EXPORT_SYMBOL(vm_map_pages);
2246 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2247 * @vma: user vma to map to
2248 * @pages: pointer to array of source kernel pages
2249 * @num: number of pages in page array
2251 * Similar to vm_map_pages(), except that it explicitly sets the offset
2252 * to 0. This function is intended for the drivers that did not consider
2255 * Context: Process context. Called by mmap handlers.
2256 * Return: 0 on success and error code otherwise.
2258 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2261 return __vm_map_pages(vma, pages, num, 0);
2263 EXPORT_SYMBOL(vm_map_pages_zero);
2265 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2266 pfn_t pfn, pgprot_t prot, bool mkwrite)
2268 struct mm_struct *mm = vma->vm_mm;
2272 pte = get_locked_pte(mm, addr, &ptl);
2274 return VM_FAULT_OOM;
2275 entry = ptep_get(pte);
2276 if (!pte_none(entry)) {
2279 * For read faults on private mappings the PFN passed
2280 * in may not match the PFN we have mapped if the
2281 * mapped PFN is a writeable COW page. In the mkwrite
2282 * case we are creating a writable PTE for a shared
2283 * mapping and we expect the PFNs to match. If they
2284 * don't match, we are likely racing with block
2285 * allocation and mapping invalidation so just skip the
2288 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2289 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2292 entry = pte_mkyoung(entry);
2293 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2294 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2295 update_mmu_cache(vma, addr, pte);
2300 /* Ok, finally just insert the thing.. */
2301 if (pfn_t_devmap(pfn))
2302 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2304 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2307 entry = pte_mkyoung(entry);
2308 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2311 set_pte_at(mm, addr, pte, entry);
2312 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2315 pte_unmap_unlock(pte, ptl);
2316 return VM_FAULT_NOPAGE;
2320 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2321 * @vma: user vma to map to
2322 * @addr: target user address of this page
2323 * @pfn: source kernel pfn
2324 * @pgprot: pgprot flags for the inserted page
2326 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2327 * to override pgprot on a per-page basis.
2329 * This only makes sense for IO mappings, and it makes no sense for
2330 * COW mappings. In general, using multiple vmas is preferable;
2331 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2334 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2335 * caching- and encryption bits different than those of @vma->vm_page_prot,
2336 * because the caching- or encryption mode may not be known at mmap() time.
2338 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2339 * to set caching and encryption bits for those vmas (except for COW pages).
2340 * This is ensured by core vm only modifying these page table entries using
2341 * functions that don't touch caching- or encryption bits, using pte_modify()
2342 * if needed. (See for example mprotect()).
2344 * Also when new page-table entries are created, this is only done using the
2345 * fault() callback, and never using the value of vma->vm_page_prot,
2346 * except for page-table entries that point to anonymous pages as the result
2349 * Context: Process context. May allocate using %GFP_KERNEL.
2350 * Return: vm_fault_t value.
2352 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2353 unsigned long pfn, pgprot_t pgprot)
2356 * Technically, architectures with pte_special can avoid all these
2357 * restrictions (same for remap_pfn_range). However we would like
2358 * consistency in testing and feature parity among all, so we should
2359 * try to keep these invariants in place for everybody.
2361 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2362 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2363 (VM_PFNMAP|VM_MIXEDMAP));
2364 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2365 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2367 if (addr < vma->vm_start || addr >= vma->vm_end)
2368 return VM_FAULT_SIGBUS;
2370 if (!pfn_modify_allowed(pfn, pgprot))
2371 return VM_FAULT_SIGBUS;
2373 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2375 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2378 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2381 * vmf_insert_pfn - insert single pfn into user vma
2382 * @vma: user vma to map to
2383 * @addr: target user address of this page
2384 * @pfn: source kernel pfn
2386 * Similar to vm_insert_page, this allows drivers to insert individual pages
2387 * they've allocated into a user vma. Same comments apply.
2389 * This function should only be called from a vm_ops->fault handler, and
2390 * in that case the handler should return the result of this function.
2392 * vma cannot be a COW mapping.
2394 * As this is called only for pages that do not currently exist, we
2395 * do not need to flush old virtual caches or the TLB.
2397 * Context: Process context. May allocate using %GFP_KERNEL.
2398 * Return: vm_fault_t value.
2400 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2403 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2405 EXPORT_SYMBOL(vmf_insert_pfn);
2407 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2409 /* these checks mirror the abort conditions in vm_normal_page */
2410 if (vma->vm_flags & VM_MIXEDMAP)
2412 if (pfn_t_devmap(pfn))
2414 if (pfn_t_special(pfn))
2416 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2421 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2422 unsigned long addr, pfn_t pfn, bool mkwrite)
2424 pgprot_t pgprot = vma->vm_page_prot;
2427 BUG_ON(!vm_mixed_ok(vma, pfn));
2429 if (addr < vma->vm_start || addr >= vma->vm_end)
2430 return VM_FAULT_SIGBUS;
2432 track_pfn_insert(vma, &pgprot, pfn);
2434 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2435 return VM_FAULT_SIGBUS;
2438 * If we don't have pte special, then we have to use the pfn_valid()
2439 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2440 * refcount the page if pfn_valid is true (hence insert_page rather
2441 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2442 * without pte special, it would there be refcounted as a normal page.
2444 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2445 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2449 * At this point we are committed to insert_page()
2450 * regardless of whether the caller specified flags that
2451 * result in pfn_t_has_page() == false.
2453 page = pfn_to_page(pfn_t_to_pfn(pfn));
2454 err = insert_page(vma, addr, page, pgprot);
2456 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2460 return VM_FAULT_OOM;
2461 if (err < 0 && err != -EBUSY)
2462 return VM_FAULT_SIGBUS;
2464 return VM_FAULT_NOPAGE;
2467 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2470 return __vm_insert_mixed(vma, addr, pfn, false);
2472 EXPORT_SYMBOL(vmf_insert_mixed);
2475 * If the insertion of PTE failed because someone else already added a
2476 * different entry in the mean time, we treat that as success as we assume
2477 * the same entry was actually inserted.
2479 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2480 unsigned long addr, pfn_t pfn)
2482 return __vm_insert_mixed(vma, addr, pfn, true);
2484 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2487 * maps a range of physical memory into the requested pages. the old
2488 * mappings are removed. any references to nonexistent pages results
2489 * in null mappings (currently treated as "copy-on-access")
2491 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2492 unsigned long addr, unsigned long end,
2493 unsigned long pfn, pgprot_t prot)
2495 pte_t *pte, *mapped_pte;
2499 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2502 arch_enter_lazy_mmu_mode();
2504 BUG_ON(!pte_none(ptep_get(pte)));
2505 if (!pfn_modify_allowed(pfn, prot)) {
2509 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2511 } while (pte++, addr += PAGE_SIZE, addr != end);
2512 arch_leave_lazy_mmu_mode();
2513 pte_unmap_unlock(mapped_pte, ptl);
2517 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2518 unsigned long addr, unsigned long end,
2519 unsigned long pfn, pgprot_t prot)
2525 pfn -= addr >> PAGE_SHIFT;
2526 pmd = pmd_alloc(mm, pud, addr);
2529 VM_BUG_ON(pmd_trans_huge(*pmd));
2531 next = pmd_addr_end(addr, end);
2532 err = remap_pte_range(mm, pmd, addr, next,
2533 pfn + (addr >> PAGE_SHIFT), prot);
2536 } while (pmd++, addr = next, addr != end);
2540 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2541 unsigned long addr, unsigned long end,
2542 unsigned long pfn, pgprot_t prot)
2548 pfn -= addr >> PAGE_SHIFT;
2549 pud = pud_alloc(mm, p4d, addr);
2553 next = pud_addr_end(addr, end);
2554 err = remap_pmd_range(mm, pud, addr, next,
2555 pfn + (addr >> PAGE_SHIFT), prot);
2558 } while (pud++, addr = next, addr != end);
2562 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2563 unsigned long addr, unsigned long end,
2564 unsigned long pfn, pgprot_t prot)
2570 pfn -= addr >> PAGE_SHIFT;
2571 p4d = p4d_alloc(mm, pgd, addr);
2575 next = p4d_addr_end(addr, end);
2576 err = remap_pud_range(mm, p4d, addr, next,
2577 pfn + (addr >> PAGE_SHIFT), prot);
2580 } while (p4d++, addr = next, addr != end);
2585 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2586 * must have pre-validated the caching bits of the pgprot_t.
2588 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2589 unsigned long pfn, unsigned long size, pgprot_t prot)
2593 unsigned long end = addr + PAGE_ALIGN(size);
2594 struct mm_struct *mm = vma->vm_mm;
2597 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2601 * Physically remapped pages are special. Tell the
2602 * rest of the world about it:
2603 * VM_IO tells people not to look at these pages
2604 * (accesses can have side effects).
2605 * VM_PFNMAP tells the core MM that the base pages are just
2606 * raw PFN mappings, and do not have a "struct page" associated
2609 * Disable vma merging and expanding with mremap().
2611 * Omit vma from core dump, even when VM_IO turned off.
2613 * There's a horrible special case to handle copy-on-write
2614 * behaviour that some programs depend on. We mark the "original"
2615 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2616 * See vm_normal_page() for details.
2618 if (is_cow_mapping(vma->vm_flags)) {
2619 if (addr != vma->vm_start || end != vma->vm_end)
2621 vma->vm_pgoff = pfn;
2624 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2626 BUG_ON(addr >= end);
2627 pfn -= addr >> PAGE_SHIFT;
2628 pgd = pgd_offset(mm, addr);
2629 flush_cache_range(vma, addr, end);
2631 next = pgd_addr_end(addr, end);
2632 err = remap_p4d_range(mm, pgd, addr, next,
2633 pfn + (addr >> PAGE_SHIFT), prot);
2636 } while (pgd++, addr = next, addr != end);
2642 * remap_pfn_range - remap kernel memory to userspace
2643 * @vma: user vma to map to
2644 * @addr: target page aligned user address to start at
2645 * @pfn: page frame number of kernel physical memory address
2646 * @size: size of mapping area
2647 * @prot: page protection flags for this mapping
2649 * Note: this is only safe if the mm semaphore is held when called.
2651 * Return: %0 on success, negative error code otherwise.
2653 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2654 unsigned long pfn, unsigned long size, pgprot_t prot)
2658 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2662 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2664 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2667 EXPORT_SYMBOL(remap_pfn_range);
2670 * vm_iomap_memory - remap memory to userspace
2671 * @vma: user vma to map to
2672 * @start: start of the physical memory to be mapped
2673 * @len: size of area
2675 * This is a simplified io_remap_pfn_range() for common driver use. The
2676 * driver just needs to give us the physical memory range to be mapped,
2677 * we'll figure out the rest from the vma information.
2679 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2680 * whatever write-combining details or similar.
2682 * Return: %0 on success, negative error code otherwise.
2684 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2686 unsigned long vm_len, pfn, pages;
2688 /* Check that the physical memory area passed in looks valid */
2689 if (start + len < start)
2692 * You *really* shouldn't map things that aren't page-aligned,
2693 * but we've historically allowed it because IO memory might
2694 * just have smaller alignment.
2696 len += start & ~PAGE_MASK;
2697 pfn = start >> PAGE_SHIFT;
2698 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2699 if (pfn + pages < pfn)
2702 /* We start the mapping 'vm_pgoff' pages into the area */
2703 if (vma->vm_pgoff > pages)
2705 pfn += vma->vm_pgoff;
2706 pages -= vma->vm_pgoff;
2708 /* Can we fit all of the mapping? */
2709 vm_len = vma->vm_end - vma->vm_start;
2710 if (vm_len >> PAGE_SHIFT > pages)
2713 /* Ok, let it rip */
2714 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2716 EXPORT_SYMBOL(vm_iomap_memory);
2718 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2719 unsigned long addr, unsigned long end,
2720 pte_fn_t fn, void *data, bool create,
2721 pgtbl_mod_mask *mask)
2723 pte_t *pte, *mapped_pte;
2728 mapped_pte = pte = (mm == &init_mm) ?
2729 pte_alloc_kernel_track(pmd, addr, mask) :
2730 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2734 mapped_pte = pte = (mm == &init_mm) ?
2735 pte_offset_kernel(pmd, addr) :
2736 pte_offset_map_lock(mm, pmd, addr, &ptl);
2741 arch_enter_lazy_mmu_mode();
2745 if (create || !pte_none(ptep_get(pte))) {
2746 err = fn(pte++, addr, data);
2750 } while (addr += PAGE_SIZE, addr != end);
2752 *mask |= PGTBL_PTE_MODIFIED;
2754 arch_leave_lazy_mmu_mode();
2757 pte_unmap_unlock(mapped_pte, ptl);
2761 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2762 unsigned long addr, unsigned long end,
2763 pte_fn_t fn, void *data, bool create,
2764 pgtbl_mod_mask *mask)
2770 BUG_ON(pud_leaf(*pud));
2773 pmd = pmd_alloc_track(mm, pud, addr, mask);
2777 pmd = pmd_offset(pud, addr);
2780 next = pmd_addr_end(addr, end);
2781 if (pmd_none(*pmd) && !create)
2783 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2785 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2790 err = apply_to_pte_range(mm, pmd, addr, next,
2791 fn, data, create, mask);
2794 } while (pmd++, addr = next, addr != end);
2799 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2800 unsigned long addr, unsigned long end,
2801 pte_fn_t fn, void *data, bool create,
2802 pgtbl_mod_mask *mask)
2809 pud = pud_alloc_track(mm, p4d, addr, mask);
2813 pud = pud_offset(p4d, addr);
2816 next = pud_addr_end(addr, end);
2817 if (pud_none(*pud) && !create)
2819 if (WARN_ON_ONCE(pud_leaf(*pud)))
2821 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2826 err = apply_to_pmd_range(mm, pud, addr, next,
2827 fn, data, create, mask);
2830 } while (pud++, addr = next, addr != end);
2835 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2836 unsigned long addr, unsigned long end,
2837 pte_fn_t fn, void *data, bool create,
2838 pgtbl_mod_mask *mask)
2845 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2849 p4d = p4d_offset(pgd, addr);
2852 next = p4d_addr_end(addr, end);
2853 if (p4d_none(*p4d) && !create)
2855 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2857 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2862 err = apply_to_pud_range(mm, p4d, addr, next,
2863 fn, data, create, mask);
2866 } while (p4d++, addr = next, addr != end);
2871 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2872 unsigned long size, pte_fn_t fn,
2873 void *data, bool create)
2876 unsigned long start = addr, next;
2877 unsigned long end = addr + size;
2878 pgtbl_mod_mask mask = 0;
2881 if (WARN_ON(addr >= end))
2884 pgd = pgd_offset(mm, addr);
2886 next = pgd_addr_end(addr, end);
2887 if (pgd_none(*pgd) && !create)
2889 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2891 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2896 err = apply_to_p4d_range(mm, pgd, addr, next,
2897 fn, data, create, &mask);
2900 } while (pgd++, addr = next, addr != end);
2902 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2903 arch_sync_kernel_mappings(start, start + size);
2909 * Scan a region of virtual memory, filling in page tables as necessary
2910 * and calling a provided function on each leaf page table.
2912 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2913 unsigned long size, pte_fn_t fn, void *data)
2915 return __apply_to_page_range(mm, addr, size, fn, data, true);
2917 EXPORT_SYMBOL_GPL(apply_to_page_range);
2920 * Scan a region of virtual memory, calling a provided function on
2921 * each leaf page table where it exists.
2923 * Unlike apply_to_page_range, this does _not_ fill in page tables
2924 * where they are absent.
2926 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2927 unsigned long size, pte_fn_t fn, void *data)
2929 return __apply_to_page_range(mm, addr, size, fn, data, false);
2931 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2934 * handle_pte_fault chooses page fault handler according to an entry which was
2935 * read non-atomically. Before making any commitment, on those architectures
2936 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2937 * parts, do_swap_page must check under lock before unmapping the pte and
2938 * proceeding (but do_wp_page is only called after already making such a check;
2939 * and do_anonymous_page can safely check later on).
2941 static inline int pte_unmap_same(struct vm_fault *vmf)
2944 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2945 if (sizeof(pte_t) > sizeof(unsigned long)) {
2946 spin_lock(vmf->ptl);
2947 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2948 spin_unlock(vmf->ptl);
2951 pte_unmap(vmf->pte);
2958 * 0: copied succeeded
2959 * -EHWPOISON: copy failed due to hwpoison in source page
2960 * -EAGAIN: copied failed (some other reason)
2962 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2963 struct vm_fault *vmf)
2968 struct vm_area_struct *vma = vmf->vma;
2969 struct mm_struct *mm = vma->vm_mm;
2970 unsigned long addr = vmf->address;
2973 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2974 memory_failure_queue(page_to_pfn(src), 0);
2981 * If the source page was a PFN mapping, we don't have
2982 * a "struct page" for it. We do a best-effort copy by
2983 * just copying from the original user address. If that
2984 * fails, we just zero-fill it. Live with it.
2986 kaddr = kmap_local_page(dst);
2987 pagefault_disable();
2988 uaddr = (void __user *)(addr & PAGE_MASK);
2991 * On architectures with software "accessed" bits, we would
2992 * take a double page fault, so mark it accessed here.
2995 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2998 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2999 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3001 * Other thread has already handled the fault
3002 * and update local tlb only
3005 update_mmu_tlb(vma, addr, vmf->pte);
3010 entry = pte_mkyoung(vmf->orig_pte);
3011 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3012 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3016 * This really shouldn't fail, because the page is there
3017 * in the page tables. But it might just be unreadable,
3018 * in which case we just give up and fill the result with
3021 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3025 /* Re-validate under PTL if the page is still mapped */
3026 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3027 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3028 /* The PTE changed under us, update local tlb */
3030 update_mmu_tlb(vma, addr, vmf->pte);
3036 * The same page can be mapped back since last copy attempt.
3037 * Try to copy again under PTL.
3039 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3041 * Give a warn in case there can be some obscure
3054 pte_unmap_unlock(vmf->pte, vmf->ptl);
3056 kunmap_local(kaddr);
3057 flush_dcache_page(dst);
3062 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3064 struct file *vm_file = vma->vm_file;
3067 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3070 * Special mappings (e.g. VDSO) do not have any file so fake
3071 * a default GFP_KERNEL for them.
3077 * Notify the address space that the page is about to become writable so that
3078 * it can prohibit this or wait for the page to get into an appropriate state.
3080 * We do this without the lock held, so that it can sleep if it needs to.
3082 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3085 unsigned int old_flags = vmf->flags;
3087 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3089 if (vmf->vma->vm_file &&
3090 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3091 return VM_FAULT_SIGBUS;
3093 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3094 /* Restore original flags so that caller is not surprised */
3095 vmf->flags = old_flags;
3096 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3098 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3100 if (!folio->mapping) {
3101 folio_unlock(folio);
3102 return 0; /* retry */
3104 ret |= VM_FAULT_LOCKED;
3106 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3111 * Handle dirtying of a page in shared file mapping on a write fault.
3113 * The function expects the page to be locked and unlocks it.
3115 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3117 struct vm_area_struct *vma = vmf->vma;
3118 struct address_space *mapping;
3119 struct folio *folio = page_folio(vmf->page);
3121 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3123 dirtied = folio_mark_dirty(folio);
3124 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3126 * Take a local copy of the address_space - folio.mapping may be zeroed
3127 * by truncate after folio_unlock(). The address_space itself remains
3128 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3129 * release semantics to prevent the compiler from undoing this copying.
3131 mapping = folio_raw_mapping(folio);
3132 folio_unlock(folio);
3135 file_update_time(vma->vm_file);
3138 * Throttle page dirtying rate down to writeback speed.
3140 * mapping may be NULL here because some device drivers do not
3141 * set page.mapping but still dirty their pages
3143 * Drop the mmap_lock before waiting on IO, if we can. The file
3144 * is pinning the mapping, as per above.
3146 if ((dirtied || page_mkwrite) && mapping) {
3149 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3150 balance_dirty_pages_ratelimited(mapping);
3153 return VM_FAULT_COMPLETED;
3161 * Handle write page faults for pages that can be reused in the current vma
3163 * This can happen either due to the mapping being with the VM_SHARED flag,
3164 * or due to us being the last reference standing to the page. In either
3165 * case, all we need to do here is to mark the page as writable and update
3166 * any related book-keeping.
3168 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3169 __releases(vmf->ptl)
3171 struct vm_area_struct *vma = vmf->vma;
3174 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3177 VM_BUG_ON(folio_test_anon(folio) &&
3178 !PageAnonExclusive(vmf->page));
3180 * Clear the folio's cpupid information as the existing
3181 * information potentially belongs to a now completely
3182 * unrelated process.
3184 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3187 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3188 entry = pte_mkyoung(vmf->orig_pte);
3189 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3190 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3191 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3192 pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 count_vm_event(PGREUSE);
3197 * We could add a bitflag somewhere, but for now, we know that all
3198 * vm_ops that have a ->map_pages have been audited and don't need
3199 * the mmap_lock to be held.
3201 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3203 struct vm_area_struct *vma = vmf->vma;
3205 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3208 return VM_FAULT_RETRY;
3212 * vmf_anon_prepare - Prepare to handle an anonymous fault.
3213 * @vmf: The vm_fault descriptor passed from the fault handler.
3215 * When preparing to insert an anonymous page into a VMA from a
3216 * fault handler, call this function rather than anon_vma_prepare().
3217 * If this vma does not already have an associated anon_vma and we are
3218 * only protected by the per-VMA lock, the caller must retry with the
3219 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3220 * determine if this VMA can share its anon_vma, and that's not safe to
3221 * do with only the per-VMA lock held for this VMA.
3223 * Return: 0 if fault handling can proceed. Any other value should be
3224 * returned to the caller.
3226 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3228 struct vm_area_struct *vma = vmf->vma;
3231 if (likely(vma->anon_vma))
3233 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3234 if (!mmap_read_trylock(vma->vm_mm)) {
3236 return VM_FAULT_RETRY;
3239 if (__anon_vma_prepare(vma))
3241 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3242 mmap_read_unlock(vma->vm_mm);
3247 * Handle the case of a page which we actually need to copy to a new page,
3248 * either due to COW or unsharing.
3250 * Called with mmap_lock locked and the old page referenced, but
3251 * without the ptl held.
3253 * High level logic flow:
3255 * - Allocate a page, copy the content of the old page to the new one.
3256 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3257 * - Take the PTL. If the pte changed, bail out and release the allocated page
3258 * - If the pte is still the way we remember it, update the page table and all
3259 * relevant references. This includes dropping the reference the page-table
3260 * held to the old page, as well as updating the rmap.
3261 * - In any case, unlock the PTL and drop the reference we took to the old page.
3263 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3265 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3266 struct vm_area_struct *vma = vmf->vma;
3267 struct mm_struct *mm = vma->vm_mm;
3268 struct folio *old_folio = NULL;
3269 struct folio *new_folio = NULL;
3271 int page_copied = 0;
3272 struct mmu_notifier_range range;
3276 delayacct_wpcopy_start();
3279 old_folio = page_folio(vmf->page);
3280 ret = vmf_anon_prepare(vmf);
3284 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3285 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3292 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3295 * COW failed, if the fault was solved by other,
3296 * it's fine. If not, userspace would re-fault on
3297 * the same address and we will handle the fault
3298 * from the second attempt.
3299 * The -EHWPOISON case will not be retried.
3301 folio_put(new_folio);
3303 folio_put(old_folio);
3305 delayacct_wpcopy_end();
3306 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3308 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3311 __folio_mark_uptodate(new_folio);
3313 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3314 vmf->address & PAGE_MASK,
3315 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3316 mmu_notifier_invalidate_range_start(&range);
3319 * Re-check the pte - we dropped the lock
3321 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3322 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3324 if (!folio_test_anon(old_folio)) {
3325 dec_mm_counter(mm, mm_counter_file(old_folio));
3326 inc_mm_counter(mm, MM_ANONPAGES);
3329 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3330 inc_mm_counter(mm, MM_ANONPAGES);
3332 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3333 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3334 entry = pte_sw_mkyoung(entry);
3335 if (unlikely(unshare)) {
3336 if (pte_soft_dirty(vmf->orig_pte))
3337 entry = pte_mksoft_dirty(entry);
3338 if (pte_uffd_wp(vmf->orig_pte))
3339 entry = pte_mkuffd_wp(entry);
3341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3345 * Clear the pte entry and flush it first, before updating the
3346 * pte with the new entry, to keep TLBs on different CPUs in
3347 * sync. This code used to set the new PTE then flush TLBs, but
3348 * that left a window where the new PTE could be loaded into
3349 * some TLBs while the old PTE remains in others.
3351 ptep_clear_flush(vma, vmf->address, vmf->pte);
3352 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3353 folio_add_lru_vma(new_folio, vma);
3354 BUG_ON(unshare && pte_write(entry));
3355 set_pte_at(mm, vmf->address, vmf->pte, entry);
3356 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3359 * Only after switching the pte to the new page may
3360 * we remove the mapcount here. Otherwise another
3361 * process may come and find the rmap count decremented
3362 * before the pte is switched to the new page, and
3363 * "reuse" the old page writing into it while our pte
3364 * here still points into it and can be read by other
3367 * The critical issue is to order this
3368 * folio_remove_rmap_pte() with the ptp_clear_flush
3369 * above. Those stores are ordered by (if nothing else,)
3370 * the barrier present in the atomic_add_negative
3371 * in folio_remove_rmap_pte();
3373 * Then the TLB flush in ptep_clear_flush ensures that
3374 * no process can access the old page before the
3375 * decremented mapcount is visible. And the old page
3376 * cannot be reused until after the decremented
3377 * mapcount is visible. So transitively, TLBs to
3378 * old page will be flushed before it can be reused.
3380 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3383 /* Free the old page.. */
3384 new_folio = old_folio;
3386 pte_unmap_unlock(vmf->pte, vmf->ptl);
3387 } else if (vmf->pte) {
3388 update_mmu_tlb(vma, vmf->address, vmf->pte);
3389 pte_unmap_unlock(vmf->pte, vmf->ptl);
3392 mmu_notifier_invalidate_range_end(&range);
3395 folio_put(new_folio);
3398 free_swap_cache(old_folio);
3399 folio_put(old_folio);
3402 delayacct_wpcopy_end();
3408 folio_put(old_folio);
3410 delayacct_wpcopy_end();
3415 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3416 * writeable once the page is prepared
3418 * @vmf: structure describing the fault
3419 * @folio: the folio of vmf->page
3421 * This function handles all that is needed to finish a write page fault in a
3422 * shared mapping due to PTE being read-only once the mapped page is prepared.
3423 * It handles locking of PTE and modifying it.
3425 * The function expects the page to be locked or other protection against
3426 * concurrent faults / writeback (such as DAX radix tree locks).
3428 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3429 * we acquired PTE lock.
3431 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3433 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3434 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3437 return VM_FAULT_NOPAGE;
3439 * We might have raced with another page fault while we released the
3440 * pte_offset_map_lock.
3442 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3443 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 return VM_FAULT_NOPAGE;
3447 wp_page_reuse(vmf, folio);
3452 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3455 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3457 struct vm_area_struct *vma = vmf->vma;
3459 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3462 pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 ret = vmf_can_call_fault(vmf);
3467 vmf->flags |= FAULT_FLAG_MKWRITE;
3468 ret = vma->vm_ops->pfn_mkwrite(vmf);
3469 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3471 return finish_mkwrite_fault(vmf, NULL);
3473 wp_page_reuse(vmf, NULL);
3477 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3478 __releases(vmf->ptl)
3480 struct vm_area_struct *vma = vmf->vma;
3485 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3488 pte_unmap_unlock(vmf->pte, vmf->ptl);
3489 tmp = vmf_can_call_fault(vmf);
3495 tmp = do_page_mkwrite(vmf, folio);
3496 if (unlikely(!tmp || (tmp &
3497 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3501 tmp = finish_mkwrite_fault(vmf, folio);
3502 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3503 folio_unlock(folio);
3508 wp_page_reuse(vmf, folio);
3511 ret |= fault_dirty_shared_page(vmf);
3517 static bool wp_can_reuse_anon_folio(struct folio *folio,
3518 struct vm_area_struct *vma)
3521 * We could currently only reuse a subpage of a large folio if no
3522 * other subpages of the large folios are still mapped. However,
3523 * let's just consistently not reuse subpages even if we could
3524 * reuse in that scenario, and give back a large folio a bit
3527 if (folio_test_large(folio))
3531 * We have to verify under folio lock: these early checks are
3532 * just an optimization to avoid locking the folio and freeing
3533 * the swapcache if there is little hope that we can reuse.
3535 * KSM doesn't necessarily raise the folio refcount.
3537 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3539 if (!folio_test_lru(folio))
3541 * We cannot easily detect+handle references from
3542 * remote LRU caches or references to LRU folios.
3545 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3547 if (!folio_trylock(folio))
3549 if (folio_test_swapcache(folio))
3550 folio_free_swap(folio);
3551 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3552 folio_unlock(folio);
3556 * Ok, we've got the only folio reference from our mapping
3557 * and the folio is locked, it's dark out, and we're wearing
3558 * sunglasses. Hit it.
3560 folio_move_anon_rmap(folio, vma);
3561 folio_unlock(folio);
3566 * This routine handles present pages, when
3567 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3568 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3569 * (FAULT_FLAG_UNSHARE)
3571 * It is done by copying the page to a new address and decrementing the
3572 * shared-page counter for the old page.
3574 * Note that this routine assumes that the protection checks have been
3575 * done by the caller (the low-level page fault routine in most cases).
3576 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3577 * done any necessary COW.
3579 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3580 * though the page will change only once the write actually happens. This
3581 * avoids a few races, and potentially makes it more efficient.
3583 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3584 * but allow concurrent faults), with pte both mapped and locked.
3585 * We return with mmap_lock still held, but pte unmapped and unlocked.
3587 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3588 __releases(vmf->ptl)
3590 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3591 struct vm_area_struct *vma = vmf->vma;
3592 struct folio *folio = NULL;
3595 if (likely(!unshare)) {
3596 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3597 if (!userfaultfd_wp_async(vma)) {
3598 pte_unmap_unlock(vmf->pte, vmf->ptl);
3599 return handle_userfault(vmf, VM_UFFD_WP);
3603 * Nothing needed (cache flush, TLB invalidations,
3604 * etc.) because we're only removing the uffd-wp bit,
3605 * which is completely invisible to the user.
3607 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3609 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3611 * Update this to be prepared for following up CoW
3614 vmf->orig_pte = pte;
3618 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3619 * is flushed in this case before copying.
3621 if (unlikely(userfaultfd_wp(vmf->vma) &&
3622 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3623 flush_tlb_page(vmf->vma, vmf->address);
3626 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3629 folio = page_folio(vmf->page);
3632 * Shared mapping: we are guaranteed to have VM_WRITE and
3633 * FAULT_FLAG_WRITE set at this point.
3635 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3637 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3640 * We should not cow pages in a shared writeable mapping.
3641 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3644 return wp_pfn_shared(vmf);
3645 return wp_page_shared(vmf, folio);
3649 * Private mapping: create an exclusive anonymous page copy if reuse
3650 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3652 * If we encounter a page that is marked exclusive, we must reuse
3653 * the page without further checks.
3655 if (folio && folio_test_anon(folio) &&
3656 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3657 if (!PageAnonExclusive(vmf->page))
3658 SetPageAnonExclusive(vmf->page);
3659 if (unlikely(unshare)) {
3660 pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 wp_page_reuse(vmf, folio);
3667 * Ok, we need to copy. Oh, well..
3672 pte_unmap_unlock(vmf->pte, vmf->ptl);
3674 if (folio && folio_test_ksm(folio))
3675 count_vm_event(COW_KSM);
3677 return wp_page_copy(vmf);
3680 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3681 unsigned long start_addr, unsigned long end_addr,
3682 struct zap_details *details)
3684 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3687 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3688 pgoff_t first_index,
3690 struct zap_details *details)
3692 struct vm_area_struct *vma;
3693 pgoff_t vba, vea, zba, zea;
3695 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3696 vba = vma->vm_pgoff;
3697 vea = vba + vma_pages(vma) - 1;
3698 zba = max(first_index, vba);
3699 zea = min(last_index, vea);
3701 unmap_mapping_range_vma(vma,
3702 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3703 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3709 * unmap_mapping_folio() - Unmap single folio from processes.
3710 * @folio: The locked folio to be unmapped.
3712 * Unmap this folio from any userspace process which still has it mmaped.
3713 * Typically, for efficiency, the range of nearby pages has already been
3714 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3715 * truncation or invalidation holds the lock on a folio, it may find that
3716 * the page has been remapped again: and then uses unmap_mapping_folio()
3717 * to unmap it finally.
3719 void unmap_mapping_folio(struct folio *folio)
3721 struct address_space *mapping = folio->mapping;
3722 struct zap_details details = { };
3723 pgoff_t first_index;
3726 VM_BUG_ON(!folio_test_locked(folio));
3728 first_index = folio->index;
3729 last_index = folio_next_index(folio) - 1;
3731 details.even_cows = false;
3732 details.single_folio = folio;
3733 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3735 i_mmap_lock_read(mapping);
3736 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3737 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3738 last_index, &details);
3739 i_mmap_unlock_read(mapping);
3743 * unmap_mapping_pages() - Unmap pages from processes.
3744 * @mapping: The address space containing pages to be unmapped.
3745 * @start: Index of first page to be unmapped.
3746 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3747 * @even_cows: Whether to unmap even private COWed pages.
3749 * Unmap the pages in this address space from any userspace process which
3750 * has them mmaped. Generally, you want to remove COWed pages as well when
3751 * a file is being truncated, but not when invalidating pages from the page
3754 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3755 pgoff_t nr, bool even_cows)
3757 struct zap_details details = { };
3758 pgoff_t first_index = start;
3759 pgoff_t last_index = start + nr - 1;
3761 details.even_cows = even_cows;
3762 if (last_index < first_index)
3763 last_index = ULONG_MAX;
3765 i_mmap_lock_read(mapping);
3766 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3767 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3768 last_index, &details);
3769 i_mmap_unlock_read(mapping);
3771 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3774 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3775 * address_space corresponding to the specified byte range in the underlying
3778 * @mapping: the address space containing mmaps to be unmapped.
3779 * @holebegin: byte in first page to unmap, relative to the start of
3780 * the underlying file. This will be rounded down to a PAGE_SIZE
3781 * boundary. Note that this is different from truncate_pagecache(), which
3782 * must keep the partial page. In contrast, we must get rid of
3784 * @holelen: size of prospective hole in bytes. This will be rounded
3785 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3787 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3788 * but 0 when invalidating pagecache, don't throw away private data.
3790 void unmap_mapping_range(struct address_space *mapping,
3791 loff_t const holebegin, loff_t const holelen, int even_cows)
3793 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3794 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3796 /* Check for overflow. */
3797 if (sizeof(holelen) > sizeof(hlen)) {
3799 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3800 if (holeend & ~(long long)ULONG_MAX)
3801 hlen = ULONG_MAX - hba + 1;
3804 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3806 EXPORT_SYMBOL(unmap_mapping_range);
3809 * Restore a potential device exclusive pte to a working pte entry
3811 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3813 struct folio *folio = page_folio(vmf->page);
3814 struct vm_area_struct *vma = vmf->vma;
3815 struct mmu_notifier_range range;
3819 * We need a reference to lock the folio because we don't hold
3820 * the PTL so a racing thread can remove the device-exclusive
3821 * entry and unmap it. If the folio is free the entry must
3822 * have been removed already. If it happens to have already
3823 * been re-allocated after being freed all we do is lock and
3826 if (!folio_try_get(folio))
3829 ret = folio_lock_or_retry(folio, vmf);
3834 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3835 vma->vm_mm, vmf->address & PAGE_MASK,
3836 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3837 mmu_notifier_invalidate_range_start(&range);
3839 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3841 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3842 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3845 pte_unmap_unlock(vmf->pte, vmf->ptl);
3846 folio_unlock(folio);
3849 mmu_notifier_invalidate_range_end(&range);
3853 static inline bool should_try_to_free_swap(struct folio *folio,
3854 struct vm_area_struct *vma,
3855 unsigned int fault_flags)
3857 if (!folio_test_swapcache(folio))
3859 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3860 folio_test_mlocked(folio))
3863 * If we want to map a page that's in the swapcache writable, we
3864 * have to detect via the refcount if we're really the exclusive
3865 * user. Try freeing the swapcache to get rid of the swapcache
3866 * reference only in case it's likely that we'll be the exlusive user.
3868 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3869 folio_ref_count(folio) == 2;
3872 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3874 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3875 vmf->address, &vmf->ptl);
3879 * Be careful so that we will only recover a special uffd-wp pte into a
3880 * none pte. Otherwise it means the pte could have changed, so retry.
3882 * This should also cover the case where e.g. the pte changed
3883 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3884 * So is_pte_marker() check is not enough to safely drop the pte.
3886 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3887 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3888 pte_unmap_unlock(vmf->pte, vmf->ptl);
3892 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3894 if (vma_is_anonymous(vmf->vma))
3895 return do_anonymous_page(vmf);
3897 return do_fault(vmf);
3901 * This is actually a page-missing access, but with uffd-wp special pte
3902 * installed. It means this pte was wr-protected before being unmapped.
3904 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3907 * Just in case there're leftover special ptes even after the region
3908 * got unregistered - we can simply clear them.
3910 if (unlikely(!userfaultfd_wp(vmf->vma)))
3911 return pte_marker_clear(vmf);
3913 return do_pte_missing(vmf);
3916 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3918 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3919 unsigned long marker = pte_marker_get(entry);
3922 * PTE markers should never be empty. If anything weird happened,
3923 * the best thing to do is to kill the process along with its mm.
3925 if (WARN_ON_ONCE(!marker))
3926 return VM_FAULT_SIGBUS;
3928 /* Higher priority than uffd-wp when data corrupted */
3929 if (marker & PTE_MARKER_POISONED)
3930 return VM_FAULT_HWPOISON;
3932 if (pte_marker_entry_uffd_wp(entry))
3933 return pte_marker_handle_uffd_wp(vmf);
3935 /* This is an unknown pte marker */
3936 return VM_FAULT_SIGBUS;
3940 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3941 * but allow concurrent faults), and pte mapped but not yet locked.
3942 * We return with pte unmapped and unlocked.
3944 * We return with the mmap_lock locked or unlocked in the same cases
3945 * as does filemap_fault().
3947 vm_fault_t do_swap_page(struct vm_fault *vmf)
3949 struct vm_area_struct *vma = vmf->vma;
3950 struct folio *swapcache, *folio = NULL;
3952 struct swap_info_struct *si = NULL;
3953 rmap_t rmap_flags = RMAP_NONE;
3954 bool need_clear_cache = false;
3955 bool exclusive = false;
3959 void *shadow = NULL;
3961 if (!pte_unmap_same(vmf))
3964 entry = pte_to_swp_entry(vmf->orig_pte);
3965 if (unlikely(non_swap_entry(entry))) {
3966 if (is_migration_entry(entry)) {
3967 migration_entry_wait(vma->vm_mm, vmf->pmd,
3969 } else if (is_device_exclusive_entry(entry)) {
3970 vmf->page = pfn_swap_entry_to_page(entry);
3971 ret = remove_device_exclusive_entry(vmf);
3972 } else if (is_device_private_entry(entry)) {
3973 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3975 * migrate_to_ram is not yet ready to operate
3979 ret = VM_FAULT_RETRY;
3983 vmf->page = pfn_swap_entry_to_page(entry);
3984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3985 vmf->address, &vmf->ptl);
3986 if (unlikely(!vmf->pte ||
3987 !pte_same(ptep_get(vmf->pte),
3992 * Get a page reference while we know the page can't be
3995 get_page(vmf->page);
3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3998 put_page(vmf->page);
3999 } else if (is_hwpoison_entry(entry)) {
4000 ret = VM_FAULT_HWPOISON;
4001 } else if (is_pte_marker_entry(entry)) {
4002 ret = handle_pte_marker(vmf);
4004 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4005 ret = VM_FAULT_SIGBUS;
4010 /* Prevent swapoff from happening to us. */
4011 si = get_swap_device(entry);
4015 folio = swap_cache_get_folio(entry, vma, vmf->address);
4017 page = folio_file_page(folio, swp_offset(entry));
4021 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4022 __swap_count(entry) == 1) {
4024 * Prevent parallel swapin from proceeding with
4025 * the cache flag. Otherwise, another thread may
4026 * finish swapin first, free the entry, and swapout
4027 * reusing the same entry. It's undetectable as
4028 * pte_same() returns true due to entry reuse.
4030 if (swapcache_prepare(entry)) {
4031 /* Relax a bit to prevent rapid repeated page faults */
4032 schedule_timeout_uninterruptible(1);
4035 need_clear_cache = true;
4037 /* skip swapcache */
4038 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4039 vma, vmf->address, false);
4040 page = &folio->page;
4042 __folio_set_locked(folio);
4043 __folio_set_swapbacked(folio);
4045 if (mem_cgroup_swapin_charge_folio(folio,
4046 vma->vm_mm, GFP_KERNEL,
4051 mem_cgroup_swapin_uncharge_swap(entry);
4053 shadow = get_shadow_from_swap_cache(entry);
4055 workingset_refault(folio, shadow);
4057 folio_add_lru(folio);
4059 /* To provide entry to swap_read_folio() */
4060 folio->swap = entry;
4061 swap_read_folio(folio, true, NULL);
4062 folio->private = NULL;
4065 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4068 folio = page_folio(page);
4074 * Back out if somebody else faulted in this pte
4075 * while we released the pte lock.
4077 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4078 vmf->address, &vmf->ptl);
4079 if (likely(vmf->pte &&
4080 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4085 /* Had to read the page from swap area: Major fault */
4086 ret = VM_FAULT_MAJOR;
4087 count_vm_event(PGMAJFAULT);
4088 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4089 } else if (PageHWPoison(page)) {
4091 * hwpoisoned dirty swapcache pages are kept for killing
4092 * owner processes (which may be unknown at hwpoison time)
4094 ret = VM_FAULT_HWPOISON;
4098 ret |= folio_lock_or_retry(folio, vmf);
4099 if (ret & VM_FAULT_RETRY)
4104 * Make sure folio_free_swap() or swapoff did not release the
4105 * swapcache from under us. The page pin, and pte_same test
4106 * below, are not enough to exclude that. Even if it is still
4107 * swapcache, we need to check that the page's swap has not
4110 if (unlikely(!folio_test_swapcache(folio) ||
4111 page_swap_entry(page).val != entry.val))
4115 * KSM sometimes has to copy on read faults, for example, if
4116 * page->index of !PageKSM() pages would be nonlinear inside the
4117 * anon VMA -- PageKSM() is lost on actual swapout.
4119 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4120 if (unlikely(!folio)) {
4124 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4125 ret = VM_FAULT_HWPOISON;
4129 if (folio != swapcache)
4130 page = folio_page(folio, 0);
4133 * If we want to map a page that's in the swapcache writable, we
4134 * have to detect via the refcount if we're really the exclusive
4135 * owner. Try removing the extra reference from the local LRU
4136 * caches if required.
4138 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4139 !folio_test_ksm(folio) && !folio_test_lru(folio))
4143 folio_throttle_swaprate(folio, GFP_KERNEL);
4146 * Back out if somebody else already faulted in this pte.
4148 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4150 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4153 if (unlikely(!folio_test_uptodate(folio))) {
4154 ret = VM_FAULT_SIGBUS;
4159 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4160 * must never point at an anonymous page in the swapcache that is
4161 * PG_anon_exclusive. Sanity check that this holds and especially, that
4162 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4163 * check after taking the PT lock and making sure that nobody
4164 * concurrently faulted in this page and set PG_anon_exclusive.
4166 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4167 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4170 * Check under PT lock (to protect against concurrent fork() sharing
4171 * the swap entry concurrently) for certainly exclusive pages.
4173 if (!folio_test_ksm(folio)) {
4174 exclusive = pte_swp_exclusive(vmf->orig_pte);
4175 if (folio != swapcache) {
4177 * We have a fresh page that is not exposed to the
4178 * swapcache -> certainly exclusive.
4181 } else if (exclusive && folio_test_writeback(folio) &&
4182 data_race(si->flags & SWP_STABLE_WRITES)) {
4184 * This is tricky: not all swap backends support
4185 * concurrent page modifications while under writeback.
4187 * So if we stumble over such a page in the swapcache
4188 * we must not set the page exclusive, otherwise we can
4189 * map it writable without further checks and modify it
4190 * while still under writeback.
4192 * For these problematic swap backends, simply drop the
4193 * exclusive marker: this is perfectly fine as we start
4194 * writeback only if we fully unmapped the page and
4195 * there are no unexpected references on the page after
4196 * unmapping succeeded. After fully unmapped, no
4197 * further GUP references (FOLL_GET and FOLL_PIN) can
4198 * appear, so dropping the exclusive marker and mapping
4199 * it only R/O is fine.
4206 * Some architectures may have to restore extra metadata to the page
4207 * when reading from swap. This metadata may be indexed by swap entry
4208 * so this must be called before swap_free().
4210 arch_swap_restore(folio_swap(entry, folio), folio);
4213 * Remove the swap entry and conditionally try to free up the swapcache.
4214 * We're already holding a reference on the page but haven't mapped it
4218 if (should_try_to_free_swap(folio, vma, vmf->flags))
4219 folio_free_swap(folio);
4221 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4222 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4223 pte = mk_pte(page, vma->vm_page_prot);
4226 * Same logic as in do_wp_page(); however, optimize for pages that are
4227 * certainly not shared either because we just allocated them without
4228 * exposing them to the swapcache or because the swap entry indicates
4231 if (!folio_test_ksm(folio) &&
4232 (exclusive || folio_ref_count(folio) == 1)) {
4233 if (vmf->flags & FAULT_FLAG_WRITE) {
4234 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4235 vmf->flags &= ~FAULT_FLAG_WRITE;
4237 rmap_flags |= RMAP_EXCLUSIVE;
4239 flush_icache_page(vma, page);
4240 if (pte_swp_soft_dirty(vmf->orig_pte))
4241 pte = pte_mksoft_dirty(pte);
4242 if (pte_swp_uffd_wp(vmf->orig_pte))
4243 pte = pte_mkuffd_wp(pte);
4244 vmf->orig_pte = pte;
4246 /* ksm created a completely new copy */
4247 if (unlikely(folio != swapcache && swapcache)) {
4248 folio_add_new_anon_rmap(folio, vma, vmf->address);
4249 folio_add_lru_vma(folio, vma);
4251 folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4255 VM_BUG_ON(!folio_test_anon(folio) ||
4256 (pte_write(pte) && !PageAnonExclusive(page)));
4257 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4258 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4260 folio_unlock(folio);
4261 if (folio != swapcache && swapcache) {
4263 * Hold the lock to avoid the swap entry to be reused
4264 * until we take the PT lock for the pte_same() check
4265 * (to avoid false positives from pte_same). For
4266 * further safety release the lock after the swap_free
4267 * so that the swap count won't change under a
4268 * parallel locked swapcache.
4270 folio_unlock(swapcache);
4271 folio_put(swapcache);
4274 if (vmf->flags & FAULT_FLAG_WRITE) {
4275 ret |= do_wp_page(vmf);
4276 if (ret & VM_FAULT_ERROR)
4277 ret &= VM_FAULT_ERROR;
4281 /* No need to invalidate - it was non-present before */
4282 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4285 pte_unmap_unlock(vmf->pte, vmf->ptl);
4287 /* Clear the swap cache pin for direct swapin after PTL unlock */
4288 if (need_clear_cache)
4289 swapcache_clear(si, entry);
4291 put_swap_device(si);
4295 pte_unmap_unlock(vmf->pte, vmf->ptl);
4297 folio_unlock(folio);
4300 if (folio != swapcache && swapcache) {
4301 folio_unlock(swapcache);
4302 folio_put(swapcache);
4304 if (need_clear_cache)
4305 swapcache_clear(si, entry);
4307 put_swap_device(si);
4311 static bool pte_range_none(pte_t *pte, int nr_pages)
4315 for (i = 0; i < nr_pages; i++) {
4316 if (!pte_none(ptep_get_lockless(pte + i)))
4323 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4325 struct vm_area_struct *vma = vmf->vma;
4326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4327 unsigned long orders;
4328 struct folio *folio;
4335 * If uffd is active for the vma we need per-page fault fidelity to
4336 * maintain the uffd semantics.
4338 if (unlikely(userfaultfd_armed(vma)))
4342 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4343 * for this vma. Then filter out the orders that can't be allocated over
4344 * the faulting address and still be fully contained in the vma.
4346 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4347 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4348 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4353 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4355 return ERR_PTR(-EAGAIN);
4358 * Find the highest order where the aligned range is completely
4359 * pte_none(). Note that all remaining orders will be completely
4362 order = highest_order(orders);
4364 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4365 if (pte_range_none(pte + pte_index(addr), 1 << order))
4367 order = next_order(&orders, order);
4375 /* Try allocating the highest of the remaining orders. */
4376 gfp = vma_thp_gfp_mask(vma);
4378 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4379 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4381 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4382 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4386 folio_throttle_swaprate(folio, gfp);
4387 clear_huge_page(&folio->page, vmf->address, 1 << order);
4391 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4392 order = next_order(&orders, order);
4397 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4401 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4402 * but allow concurrent faults), and pte mapped but not yet locked.
4403 * We return with mmap_lock still held, but pte unmapped and unlocked.
4405 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4407 struct vm_area_struct *vma = vmf->vma;
4408 unsigned long addr = vmf->address;
4409 struct folio *folio;
4415 /* File mapping without ->vm_ops ? */
4416 if (vma->vm_flags & VM_SHARED)
4417 return VM_FAULT_SIGBUS;
4420 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4421 * be distinguished from a transient failure of pte_offset_map().
4423 if (pte_alloc(vma->vm_mm, vmf->pmd))
4424 return VM_FAULT_OOM;
4426 /* Use the zero-page for reads */
4427 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4428 !mm_forbids_zeropage(vma->vm_mm)) {
4429 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4430 vma->vm_page_prot));
4431 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4432 vmf->address, &vmf->ptl);
4435 if (vmf_pte_changed(vmf)) {
4436 update_mmu_tlb(vma, vmf->address, vmf->pte);
4439 ret = check_stable_address_space(vma->vm_mm);
4442 /* Deliver the page fault to userland, check inside PT lock */
4443 if (userfaultfd_missing(vma)) {
4444 pte_unmap_unlock(vmf->pte, vmf->ptl);
4445 return handle_userfault(vmf, VM_UFFD_MISSING);
4450 /* Allocate our own private page. */
4451 ret = vmf_anon_prepare(vmf);
4454 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4455 folio = alloc_anon_folio(vmf);
4461 nr_pages = folio_nr_pages(folio);
4462 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4465 * The memory barrier inside __folio_mark_uptodate makes sure that
4466 * preceding stores to the page contents become visible before
4467 * the set_pte_at() write.
4469 __folio_mark_uptodate(folio);
4471 entry = mk_pte(&folio->page, vma->vm_page_prot);
4472 entry = pte_sw_mkyoung(entry);
4473 if (vma->vm_flags & VM_WRITE)
4474 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4476 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4479 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4480 update_mmu_tlb(vma, addr, vmf->pte);
4482 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4483 for (i = 0; i < nr_pages; i++)
4484 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
4488 ret = check_stable_address_space(vma->vm_mm);
4492 /* Deliver the page fault to userland, check inside PT lock */
4493 if (userfaultfd_missing(vma)) {
4494 pte_unmap_unlock(vmf->pte, vmf->ptl);
4496 return handle_userfault(vmf, VM_UFFD_MISSING);
4499 folio_ref_add(folio, nr_pages - 1);
4500 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4502 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4504 folio_add_new_anon_rmap(folio, vma, addr);
4505 folio_add_lru_vma(folio, vma);
4507 if (vmf_orig_pte_uffd_wp(vmf))
4508 entry = pte_mkuffd_wp(entry);
4509 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4511 /* No need to invalidate - it was non-present before */
4512 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4515 pte_unmap_unlock(vmf->pte, vmf->ptl);
4521 return VM_FAULT_OOM;
4525 * The mmap_lock must have been held on entry, and may have been
4526 * released depending on flags and vma->vm_ops->fault() return value.
4527 * See filemap_fault() and __lock_page_retry().
4529 static vm_fault_t __do_fault(struct vm_fault *vmf)
4531 struct vm_area_struct *vma = vmf->vma;
4532 struct folio *folio;
4536 * Preallocate pte before we take page_lock because this might lead to
4537 * deadlocks for memcg reclaim which waits for pages under writeback:
4539 * SetPageWriteback(A)
4545 * wait_on_page_writeback(A)
4546 * SetPageWriteback(B)
4548 * # flush A, B to clear the writeback
4550 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4551 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4552 if (!vmf->prealloc_pte)
4553 return VM_FAULT_OOM;
4556 ret = vma->vm_ops->fault(vmf);
4557 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4558 VM_FAULT_DONE_COW)))
4561 folio = page_folio(vmf->page);
4562 if (unlikely(PageHWPoison(vmf->page))) {
4563 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4564 if (ret & VM_FAULT_LOCKED) {
4565 if (page_mapped(vmf->page))
4566 unmap_mapping_folio(folio);
4567 /* Retry if a clean folio was removed from the cache. */
4568 if (mapping_evict_folio(folio->mapping, folio))
4569 poisonret = VM_FAULT_NOPAGE;
4570 folio_unlock(folio);
4577 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4580 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4586 static void deposit_prealloc_pte(struct vm_fault *vmf)
4588 struct vm_area_struct *vma = vmf->vma;
4590 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4592 * We are going to consume the prealloc table,
4593 * count that as nr_ptes.
4595 mm_inc_nr_ptes(vma->vm_mm);
4596 vmf->prealloc_pte = NULL;
4599 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4601 struct folio *folio = page_folio(page);
4602 struct vm_area_struct *vma = vmf->vma;
4603 bool write = vmf->flags & FAULT_FLAG_WRITE;
4604 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4606 vm_fault_t ret = VM_FAULT_FALLBACK;
4608 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4611 if (folio_order(folio) != HPAGE_PMD_ORDER)
4613 page = &folio->page;
4616 * Just backoff if any subpage of a THP is corrupted otherwise
4617 * the corrupted page may mapped by PMD silently to escape the
4618 * check. This kind of THP just can be PTE mapped. Access to
4619 * the corrupted subpage should trigger SIGBUS as expected.
4621 if (unlikely(folio_test_has_hwpoisoned(folio)))
4625 * Archs like ppc64 need additional space to store information
4626 * related to pte entry. Use the preallocated table for that.
4628 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4629 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4630 if (!vmf->prealloc_pte)
4631 return VM_FAULT_OOM;
4634 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4635 if (unlikely(!pmd_none(*vmf->pmd)))
4638 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4640 entry = mk_huge_pmd(page, vma->vm_page_prot);
4642 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4644 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4645 folio_add_file_rmap_pmd(folio, page, vma);
4648 * deposit and withdraw with pmd lock held
4650 if (arch_needs_pgtable_deposit())
4651 deposit_prealloc_pte(vmf);
4653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4655 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4657 /* fault is handled */
4659 count_vm_event(THP_FILE_MAPPED);
4661 spin_unlock(vmf->ptl);
4665 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4667 return VM_FAULT_FALLBACK;
4672 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4673 * @vmf: Fault decription.
4674 * @folio: The folio that contains @page.
4675 * @page: The first page to create a PTE for.
4676 * @nr: The number of PTEs to create.
4677 * @addr: The first address to create a PTE for.
4679 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4680 struct page *page, unsigned int nr, unsigned long addr)
4682 struct vm_area_struct *vma = vmf->vma;
4683 bool write = vmf->flags & FAULT_FLAG_WRITE;
4684 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4687 flush_icache_pages(vma, page, nr);
4688 entry = mk_pte(page, vma->vm_page_prot);
4690 if (prefault && arch_wants_old_prefaulted_pte())
4691 entry = pte_mkold(entry);
4693 entry = pte_sw_mkyoung(entry);
4696 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4697 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
4698 entry = pte_mkuffd_wp(entry);
4699 /* copy-on-write page */
4700 if (write && !(vma->vm_flags & VM_SHARED)) {
4701 VM_BUG_ON_FOLIO(nr != 1, folio);
4702 folio_add_new_anon_rmap(folio, vma, addr);
4703 folio_add_lru_vma(folio, vma);
4705 folio_add_file_rmap_ptes(folio, page, nr, vma);
4707 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4709 /* no need to invalidate: a not-present page won't be cached */
4710 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4713 static bool vmf_pte_changed(struct vm_fault *vmf)
4715 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4716 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4718 return !pte_none(ptep_get(vmf->pte));
4722 * finish_fault - finish page fault once we have prepared the page to fault
4724 * @vmf: structure describing the fault
4726 * This function handles all that is needed to finish a page fault once the
4727 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4728 * given page, adds reverse page mapping, handles memcg charges and LRU
4731 * The function expects the page to be locked and on success it consumes a
4732 * reference of a page being mapped (for the PTE which maps it).
4734 * Return: %0 on success, %VM_FAULT_ code in case of error.
4736 vm_fault_t finish_fault(struct vm_fault *vmf)
4738 struct vm_area_struct *vma = vmf->vma;
4741 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4742 !(vma->vm_flags & VM_SHARED);
4744 /* Did we COW the page? */
4746 page = vmf->cow_page;
4751 * check even for read faults because we might have lost our CoWed
4754 if (!(vma->vm_flags & VM_SHARED)) {
4755 ret = check_stable_address_space(vma->vm_mm);
4760 if (pmd_none(*vmf->pmd)) {
4761 if (PageTransCompound(page)) {
4762 ret = do_set_pmd(vmf, page);
4763 if (ret != VM_FAULT_FALLBACK)
4767 if (vmf->prealloc_pte)
4768 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4769 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4770 return VM_FAULT_OOM;
4773 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4774 vmf->address, &vmf->ptl);
4776 return VM_FAULT_NOPAGE;
4778 /* Re-check under ptl */
4779 if (likely(!vmf_pte_changed(vmf))) {
4780 struct folio *folio = page_folio(page);
4781 int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
4783 set_pte_range(vmf, folio, page, 1, vmf->address);
4784 add_mm_counter(vma->vm_mm, type, 1);
4787 update_mmu_tlb(vma, vmf->address, vmf->pte);
4788 ret = VM_FAULT_NOPAGE;
4791 pte_unmap_unlock(vmf->pte, vmf->ptl);
4795 static unsigned long fault_around_pages __read_mostly =
4796 65536 >> PAGE_SHIFT;
4798 #ifdef CONFIG_DEBUG_FS
4799 static int fault_around_bytes_get(void *data, u64 *val)
4801 *val = fault_around_pages << PAGE_SHIFT;
4806 * fault_around_bytes must be rounded down to the nearest page order as it's
4807 * what do_fault_around() expects to see.
4809 static int fault_around_bytes_set(void *data, u64 val)
4811 if (val / PAGE_SIZE > PTRS_PER_PTE)
4815 * The minimum value is 1 page, however this results in no fault-around
4816 * at all. See should_fault_around().
4818 val = max(val, PAGE_SIZE);
4819 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
4823 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4824 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4826 static int __init fault_around_debugfs(void)
4828 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4829 &fault_around_bytes_fops);
4832 late_initcall(fault_around_debugfs);
4836 * do_fault_around() tries to map few pages around the fault address. The hope
4837 * is that the pages will be needed soon and this will lower the number of
4840 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4841 * not ready to be mapped: not up-to-date, locked, etc.
4843 * This function doesn't cross VMA or page table boundaries, in order to call
4844 * map_pages() and acquire a PTE lock only once.
4846 * fault_around_pages defines how many pages we'll try to map.
4847 * do_fault_around() expects it to be set to a power of two less than or equal
4850 * The virtual address of the area that we map is naturally aligned to
4851 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4852 * (and therefore to page order). This way it's easier to guarantee
4853 * that we don't cross page table boundaries.
4855 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4857 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4858 pgoff_t pte_off = pte_index(vmf->address);
4859 /* The page offset of vmf->address within the VMA. */
4860 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4861 pgoff_t from_pte, to_pte;
4864 /* The PTE offset of the start address, clamped to the VMA. */
4865 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4866 pte_off - min(pte_off, vma_off));
4868 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4869 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4870 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4872 if (pmd_none(*vmf->pmd)) {
4873 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4874 if (!vmf->prealloc_pte)
4875 return VM_FAULT_OOM;
4879 ret = vmf->vma->vm_ops->map_pages(vmf,
4880 vmf->pgoff + from_pte - pte_off,
4881 vmf->pgoff + to_pte - pte_off);
4887 /* Return true if we should do read fault-around, false otherwise */
4888 static inline bool should_fault_around(struct vm_fault *vmf)
4890 /* No ->map_pages? No way to fault around... */
4891 if (!vmf->vma->vm_ops->map_pages)
4894 if (uffd_disable_fault_around(vmf->vma))
4897 /* A single page implies no faulting 'around' at all. */
4898 return fault_around_pages > 1;
4901 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4904 struct folio *folio;
4907 * Let's call ->map_pages() first and use ->fault() as fallback
4908 * if page by the offset is not ready to be mapped (cold cache or
4911 if (should_fault_around(vmf)) {
4912 ret = do_fault_around(vmf);
4917 ret = vmf_can_call_fault(vmf);
4921 ret = __do_fault(vmf);
4922 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4925 ret |= finish_fault(vmf);
4926 folio = page_folio(vmf->page);
4927 folio_unlock(folio);
4928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4933 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4935 struct vm_area_struct *vma = vmf->vma;
4936 struct folio *folio;
4939 ret = vmf_can_call_fault(vmf);
4941 ret = vmf_anon_prepare(vmf);
4945 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4947 return VM_FAULT_OOM;
4949 vmf->cow_page = &folio->page;
4951 ret = __do_fault(vmf);
4952 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4954 if (ret & VM_FAULT_DONE_COW)
4957 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4958 __folio_mark_uptodate(folio);
4960 ret |= finish_fault(vmf);
4961 unlock_page(vmf->page);
4962 put_page(vmf->page);
4963 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4971 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4973 struct vm_area_struct *vma = vmf->vma;
4974 vm_fault_t ret, tmp;
4975 struct folio *folio;
4977 ret = vmf_can_call_fault(vmf);
4981 ret = __do_fault(vmf);
4982 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4985 folio = page_folio(vmf->page);
4988 * Check if the backing address space wants to know that the page is
4989 * about to become writable
4991 if (vma->vm_ops->page_mkwrite) {
4992 folio_unlock(folio);
4993 tmp = do_page_mkwrite(vmf, folio);
4994 if (unlikely(!tmp ||
4995 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5001 ret |= finish_fault(vmf);
5002 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5004 folio_unlock(folio);
5009 ret |= fault_dirty_shared_page(vmf);
5014 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5015 * but allow concurrent faults).
5016 * The mmap_lock may have been released depending on flags and our
5017 * return value. See filemap_fault() and __folio_lock_or_retry().
5018 * If mmap_lock is released, vma may become invalid (for example
5019 * by other thread calling munmap()).
5021 static vm_fault_t do_fault(struct vm_fault *vmf)
5023 struct vm_area_struct *vma = vmf->vma;
5024 struct mm_struct *vm_mm = vma->vm_mm;
5028 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5030 if (!vma->vm_ops->fault) {
5031 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5032 vmf->address, &vmf->ptl);
5033 if (unlikely(!vmf->pte))
5034 ret = VM_FAULT_SIGBUS;
5037 * Make sure this is not a temporary clearing of pte
5038 * by holding ptl and checking again. A R/M/W update
5039 * of pte involves: take ptl, clearing the pte so that
5040 * we don't have concurrent modification by hardware
5041 * followed by an update.
5043 if (unlikely(pte_none(ptep_get(vmf->pte))))
5044 ret = VM_FAULT_SIGBUS;
5046 ret = VM_FAULT_NOPAGE;
5048 pte_unmap_unlock(vmf->pte, vmf->ptl);
5050 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5051 ret = do_read_fault(vmf);
5052 else if (!(vma->vm_flags & VM_SHARED))
5053 ret = do_cow_fault(vmf);
5055 ret = do_shared_fault(vmf);
5057 /* preallocated pagetable is unused: free it */
5058 if (vmf->prealloc_pte) {
5059 pte_free(vm_mm, vmf->prealloc_pte);
5060 vmf->prealloc_pte = NULL;
5065 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
5066 unsigned long addr, int page_nid, int *flags)
5068 struct vm_area_struct *vma = vmf->vma;
5072 /* Record the current PID acceesing VMA */
5073 vma_set_access_pid_bit(vma);
5075 count_vm_numa_event(NUMA_HINT_FAULTS);
5076 if (page_nid == numa_node_id()) {
5077 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5078 *flags |= TNF_FAULT_LOCAL;
5081 return mpol_misplaced(folio, vmf, addr);
5084 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5085 unsigned long fault_addr, pte_t *fault_pte,
5090 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5091 pte = pte_modify(old_pte, vma->vm_page_prot);
5092 pte = pte_mkyoung(pte);
5094 pte = pte_mkwrite(pte, vma);
5095 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5096 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5099 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5100 struct folio *folio, pte_t fault_pte,
5101 bool ignore_writable, bool pte_write_upgrade)
5103 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5104 unsigned long start, end, addr = vmf->address;
5105 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5106 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5109 /* Stay within the VMA and within the page table. */
5110 start = max3(addr_start, pt_start, vma->vm_start);
5111 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5113 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5115 /* Restore all PTEs' mapping of the large folio */
5116 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5117 pte_t ptent = ptep_get(start_ptep);
5118 bool writable = false;
5120 if (!pte_present(ptent) || !pte_protnone(ptent))
5123 if (pfn_folio(pte_pfn(ptent)) != folio)
5126 if (!ignore_writable) {
5127 ptent = pte_modify(ptent, vma->vm_page_prot);
5128 writable = pte_write(ptent);
5129 if (!writable && pte_write_upgrade &&
5130 can_change_pte_writable(vma, addr, ptent))
5134 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5138 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5140 struct vm_area_struct *vma = vmf->vma;
5141 struct folio *folio = NULL;
5142 int nid = NUMA_NO_NODE;
5143 bool writable = false, ignore_writable = false;
5144 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5148 int flags = 0, nr_pages;
5151 * The pte cannot be used safely until we verify, while holding the page
5152 * table lock, that its contents have not changed during fault handling.
5154 spin_lock(vmf->ptl);
5155 /* Read the live PTE from the page tables: */
5156 old_pte = ptep_get(vmf->pte);
5158 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5159 pte_unmap_unlock(vmf->pte, vmf->ptl);
5163 pte = pte_modify(old_pte, vma->vm_page_prot);
5166 * Detect now whether the PTE could be writable; this information
5167 * is only valid while holding the PT lock.
5169 writable = pte_write(pte);
5170 if (!writable && pte_write_upgrade &&
5171 can_change_pte_writable(vma, vmf->address, pte))
5174 folio = vm_normal_folio(vma, vmf->address, pte);
5175 if (!folio || folio_is_zone_device(folio))
5179 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5180 * much anyway since they can be in shared cache state. This misses
5181 * the case where a mapping is writable but the process never writes
5182 * to it but pte_write gets cleared during protection updates and
5183 * pte_dirty has unpredictable behaviour between PTE scan updates,
5184 * background writeback, dirty balancing and application behaviour.
5187 flags |= TNF_NO_GROUP;
5190 * Flag if the folio is shared between multiple address spaces. This
5191 * is later used when determining whether to group tasks together
5193 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5194 flags |= TNF_SHARED;
5196 nid = folio_nid(folio);
5197 nr_pages = folio_nr_pages(folio);
5199 * For memory tiering mode, cpupid of slow memory page is used
5200 * to record page access time. So use default value.
5202 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5203 !node_is_toptier(nid))
5204 last_cpupid = (-1 & LAST_CPUPID_MASK);
5206 last_cpupid = folio_last_cpupid(folio);
5207 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
5208 if (target_nid == NUMA_NO_NODE) {
5212 pte_unmap_unlock(vmf->pte, vmf->ptl);
5214 ignore_writable = true;
5216 /* Migrate to the requested node */
5217 if (migrate_misplaced_folio(folio, vma, target_nid)) {
5219 flags |= TNF_MIGRATED;
5221 flags |= TNF_MIGRATE_FAIL;
5222 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5223 vmf->address, &vmf->ptl);
5224 if (unlikely(!vmf->pte))
5226 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5227 pte_unmap_unlock(vmf->pte, vmf->ptl);
5234 if (nid != NUMA_NO_NODE)
5235 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5239 * Make it present again, depending on how arch implements
5240 * non-accessible ptes, some can allow access by kernel mode.
5242 if (folio && folio_test_large(folio))
5243 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5246 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5248 pte_unmap_unlock(vmf->pte, vmf->ptl);
5252 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5254 struct vm_area_struct *vma = vmf->vma;
5255 if (vma_is_anonymous(vma))
5256 return do_huge_pmd_anonymous_page(vmf);
5257 if (vma->vm_ops->huge_fault)
5258 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5259 return VM_FAULT_FALLBACK;
5262 /* `inline' is required to avoid gcc 4.1.2 build error */
5263 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5265 struct vm_area_struct *vma = vmf->vma;
5266 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5269 if (vma_is_anonymous(vma)) {
5270 if (likely(!unshare) &&
5271 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5272 if (userfaultfd_wp_async(vmf->vma))
5274 return handle_userfault(vmf, VM_UFFD_WP);
5276 return do_huge_pmd_wp_page(vmf);
5279 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5280 if (vma->vm_ops->huge_fault) {
5281 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5282 if (!(ret & VM_FAULT_FALLBACK))
5288 /* COW or write-notify handled on pte level: split pmd. */
5289 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5291 return VM_FAULT_FALLBACK;
5294 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5296 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5297 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5298 struct vm_area_struct *vma = vmf->vma;
5299 /* No support for anonymous transparent PUD pages yet */
5300 if (vma_is_anonymous(vma))
5301 return VM_FAULT_FALLBACK;
5302 if (vma->vm_ops->huge_fault)
5303 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5304 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5305 return VM_FAULT_FALLBACK;
5308 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5310 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5311 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5312 struct vm_area_struct *vma = vmf->vma;
5315 /* No support for anonymous transparent PUD pages yet */
5316 if (vma_is_anonymous(vma))
5318 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5319 if (vma->vm_ops->huge_fault) {
5320 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5321 if (!(ret & VM_FAULT_FALLBACK))
5326 /* COW or write-notify not handled on PUD level: split pud.*/
5327 __split_huge_pud(vma, vmf->pud, vmf->address);
5328 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5329 return VM_FAULT_FALLBACK;
5333 * These routines also need to handle stuff like marking pages dirty
5334 * and/or accessed for architectures that don't do it in hardware (most
5335 * RISC architectures). The early dirtying is also good on the i386.
5337 * There is also a hook called "update_mmu_cache()" that architectures
5338 * with external mmu caches can use to update those (ie the Sparc or
5339 * PowerPC hashed page tables that act as extended TLBs).
5341 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5342 * concurrent faults).
5344 * The mmap_lock may have been released depending on flags and our return value.
5345 * See filemap_fault() and __folio_lock_or_retry().
5347 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5351 if (unlikely(pmd_none(*vmf->pmd))) {
5353 * Leave __pte_alloc() until later: because vm_ops->fault may
5354 * want to allocate huge page, and if we expose page table
5355 * for an instant, it will be difficult to retract from
5356 * concurrent faults and from rmap lookups.
5359 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5362 * A regular pmd is established and it can't morph into a huge
5363 * pmd by anon khugepaged, since that takes mmap_lock in write
5364 * mode; but shmem or file collapse to THP could still morph
5365 * it into a huge pmd: just retry later if so.
5367 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5368 vmf->address, &vmf->ptl);
5369 if (unlikely(!vmf->pte))
5371 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5372 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5374 if (pte_none(vmf->orig_pte)) {
5375 pte_unmap(vmf->pte);
5381 return do_pte_missing(vmf);
5383 if (!pte_present(vmf->orig_pte))
5384 return do_swap_page(vmf);
5386 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5387 return do_numa_page(vmf);
5389 spin_lock(vmf->ptl);
5390 entry = vmf->orig_pte;
5391 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5392 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5395 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5396 if (!pte_write(entry))
5397 return do_wp_page(vmf);
5398 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5399 entry = pte_mkdirty(entry);
5401 entry = pte_mkyoung(entry);
5402 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5403 vmf->flags & FAULT_FLAG_WRITE)) {
5404 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5407 /* Skip spurious TLB flush for retried page fault */
5408 if (vmf->flags & FAULT_FLAG_TRIED)
5411 * This is needed only for protection faults but the arch code
5412 * is not yet telling us if this is a protection fault or not.
5413 * This still avoids useless tlb flushes for .text page faults
5416 if (vmf->flags & FAULT_FLAG_WRITE)
5417 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5421 pte_unmap_unlock(vmf->pte, vmf->ptl);
5426 * On entry, we hold either the VMA lock or the mmap_lock
5427 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5428 * the result, the mmap_lock is not held on exit. See filemap_fault()
5429 * and __folio_lock_or_retry().
5431 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5432 unsigned long address, unsigned int flags)
5434 struct vm_fault vmf = {
5436 .address = address & PAGE_MASK,
5437 .real_address = address,
5439 .pgoff = linear_page_index(vma, address),
5440 .gfp_mask = __get_fault_gfp_mask(vma),
5442 struct mm_struct *mm = vma->vm_mm;
5443 unsigned long vm_flags = vma->vm_flags;
5448 pgd = pgd_offset(mm, address);
5449 p4d = p4d_alloc(mm, pgd, address);
5451 return VM_FAULT_OOM;
5453 vmf.pud = pud_alloc(mm, p4d, address);
5455 return VM_FAULT_OOM;
5457 if (pud_none(*vmf.pud) &&
5458 thp_vma_allowable_order(vma, vm_flags,
5459 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5460 ret = create_huge_pud(&vmf);
5461 if (!(ret & VM_FAULT_FALLBACK))
5464 pud_t orig_pud = *vmf.pud;
5467 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5470 * TODO once we support anonymous PUDs: NUMA case and
5471 * FAULT_FLAG_UNSHARE handling.
5473 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5474 ret = wp_huge_pud(&vmf, orig_pud);
5475 if (!(ret & VM_FAULT_FALLBACK))
5478 huge_pud_set_accessed(&vmf, orig_pud);
5484 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5486 return VM_FAULT_OOM;
5488 /* Huge pud page fault raced with pmd_alloc? */
5489 if (pud_trans_unstable(vmf.pud))
5492 if (pmd_none(*vmf.pmd) &&
5493 thp_vma_allowable_order(vma, vm_flags,
5494 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5495 ret = create_huge_pmd(&vmf);
5496 if (!(ret & VM_FAULT_FALLBACK))
5499 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5501 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5502 VM_BUG_ON(thp_migration_supported() &&
5503 !is_pmd_migration_entry(vmf.orig_pmd));
5504 if (is_pmd_migration_entry(vmf.orig_pmd))
5505 pmd_migration_entry_wait(mm, vmf.pmd);
5508 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5509 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5510 return do_huge_pmd_numa_page(&vmf);
5512 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5513 !pmd_write(vmf.orig_pmd)) {
5514 ret = wp_huge_pmd(&vmf);
5515 if (!(ret & VM_FAULT_FALLBACK))
5518 huge_pmd_set_accessed(&vmf);
5524 return handle_pte_fault(&vmf);
5528 * mm_account_fault - Do page fault accounting
5529 * @mm: mm from which memcg should be extracted. It can be NULL.
5530 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5531 * of perf event counters, but we'll still do the per-task accounting to
5532 * the task who triggered this page fault.
5533 * @address: the faulted address.
5534 * @flags: the fault flags.
5535 * @ret: the fault retcode.
5537 * This will take care of most of the page fault accounting. Meanwhile, it
5538 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5539 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5540 * still be in per-arch page fault handlers at the entry of page fault.
5542 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5543 unsigned long address, unsigned int flags,
5548 /* Incomplete faults will be accounted upon completion. */
5549 if (ret & VM_FAULT_RETRY)
5553 * To preserve the behavior of older kernels, PGFAULT counters record
5554 * both successful and failed faults, as opposed to perf counters,
5555 * which ignore failed cases.
5557 count_vm_event(PGFAULT);
5558 count_memcg_event_mm(mm, PGFAULT);
5561 * Do not account for unsuccessful faults (e.g. when the address wasn't
5562 * valid). That includes arch_vma_access_permitted() failing before
5563 * reaching here. So this is not a "this many hardware page faults"
5564 * counter. We should use the hw profiling for that.
5566 if (ret & VM_FAULT_ERROR)
5570 * We define the fault as a major fault when the final successful fault
5571 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5572 * handle it immediately previously).
5574 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5582 * If the fault is done for GUP, regs will be NULL. We only do the
5583 * accounting for the per thread fault counters who triggered the
5584 * fault, and we skip the perf event updates.
5590 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5592 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5595 #ifdef CONFIG_LRU_GEN
5596 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5598 /* the LRU algorithm only applies to accesses with recency */
5599 current->in_lru_fault = vma_has_recency(vma);
5602 static void lru_gen_exit_fault(void)
5604 current->in_lru_fault = false;
5607 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5611 static void lru_gen_exit_fault(void)
5614 #endif /* CONFIG_LRU_GEN */
5616 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5617 unsigned int *flags)
5619 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5620 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5621 return VM_FAULT_SIGSEGV;
5623 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5624 * just treat it like an ordinary read-fault otherwise.
5626 if (!is_cow_mapping(vma->vm_flags))
5627 *flags &= ~FAULT_FLAG_UNSHARE;
5628 } else if (*flags & FAULT_FLAG_WRITE) {
5629 /* Write faults on read-only mappings are impossible ... */
5630 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5631 return VM_FAULT_SIGSEGV;
5632 /* ... and FOLL_FORCE only applies to COW mappings. */
5633 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5634 !is_cow_mapping(vma->vm_flags)))
5635 return VM_FAULT_SIGSEGV;
5637 #ifdef CONFIG_PER_VMA_LOCK
5639 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5640 * the assumption that lock is dropped on VM_FAULT_RETRY.
5642 if (WARN_ON_ONCE((*flags &
5643 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5644 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5645 return VM_FAULT_SIGSEGV;
5652 * By the time we get here, we already hold the mm semaphore
5654 * The mmap_lock may have been released depending on flags and our
5655 * return value. See filemap_fault() and __folio_lock_or_retry().
5657 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5658 unsigned int flags, struct pt_regs *regs)
5660 /* If the fault handler drops the mmap_lock, vma may be freed */
5661 struct mm_struct *mm = vma->vm_mm;
5664 __set_current_state(TASK_RUNNING);
5666 ret = sanitize_fault_flags(vma, &flags);
5670 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5671 flags & FAULT_FLAG_INSTRUCTION,
5672 flags & FAULT_FLAG_REMOTE)) {
5673 ret = VM_FAULT_SIGSEGV;
5678 * Enable the memcg OOM handling for faults triggered in user
5679 * space. Kernel faults are handled more gracefully.
5681 if (flags & FAULT_FLAG_USER)
5682 mem_cgroup_enter_user_fault();
5684 lru_gen_enter_fault(vma);
5686 if (unlikely(is_vm_hugetlb_page(vma)))
5687 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5689 ret = __handle_mm_fault(vma, address, flags);
5691 lru_gen_exit_fault();
5693 if (flags & FAULT_FLAG_USER) {
5694 mem_cgroup_exit_user_fault();
5696 * The task may have entered a memcg OOM situation but
5697 * if the allocation error was handled gracefully (no
5698 * VM_FAULT_OOM), there is no need to kill anything.
5699 * Just clean up the OOM state peacefully.
5701 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5702 mem_cgroup_oom_synchronize(false);
5705 mm_account_fault(mm, regs, address, flags, ret);
5709 EXPORT_SYMBOL_GPL(handle_mm_fault);
5711 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5712 #include <linux/extable.h>
5714 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5716 if (likely(mmap_read_trylock(mm)))
5719 if (regs && !user_mode(regs)) {
5720 unsigned long ip = exception_ip(regs);
5721 if (!search_exception_tables(ip))
5725 return !mmap_read_lock_killable(mm);
5728 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5731 * We don't have this operation yet.
5733 * It should be easy enough to do: it's basically a
5734 * atomic_long_try_cmpxchg_acquire()
5735 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5736 * it also needs the proper lockdep magic etc.
5741 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5743 mmap_read_unlock(mm);
5744 if (regs && !user_mode(regs)) {
5745 unsigned long ip = exception_ip(regs);
5746 if (!search_exception_tables(ip))
5749 return !mmap_write_lock_killable(mm);
5753 * Helper for page fault handling.
5755 * This is kind of equivalend to "mmap_read_lock()" followed
5756 * by "find_extend_vma()", except it's a lot more careful about
5757 * the locking (and will drop the lock on failure).
5759 * For example, if we have a kernel bug that causes a page
5760 * fault, we don't want to just use mmap_read_lock() to get
5761 * the mm lock, because that would deadlock if the bug were
5762 * to happen while we're holding the mm lock for writing.
5764 * So this checks the exception tables on kernel faults in
5765 * order to only do this all for instructions that are actually
5766 * expected to fault.
5768 * We can also actually take the mm lock for writing if we
5769 * need to extend the vma, which helps the VM layer a lot.
5771 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5772 unsigned long addr, struct pt_regs *regs)
5774 struct vm_area_struct *vma;
5776 if (!get_mmap_lock_carefully(mm, regs))
5779 vma = find_vma(mm, addr);
5780 if (likely(vma && (vma->vm_start <= addr)))
5784 * Well, dang. We might still be successful, but only
5785 * if we can extend a vma to do so.
5787 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5788 mmap_read_unlock(mm);
5793 * We can try to upgrade the mmap lock atomically,
5794 * in which case we can continue to use the vma
5795 * we already looked up.
5797 * Otherwise we'll have to drop the mmap lock and
5798 * re-take it, and also look up the vma again,
5801 if (!mmap_upgrade_trylock(mm)) {
5802 if (!upgrade_mmap_lock_carefully(mm, regs))
5805 vma = find_vma(mm, addr);
5808 if (vma->vm_start <= addr)
5810 if (!(vma->vm_flags & VM_GROWSDOWN))
5814 if (expand_stack_locked(vma, addr))
5818 mmap_write_downgrade(mm);
5822 mmap_write_unlock(mm);
5827 #ifdef CONFIG_PER_VMA_LOCK
5829 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5830 * stable and not isolated. If the VMA is not found or is being modified the
5831 * function returns NULL.
5833 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5834 unsigned long address)
5836 MA_STATE(mas, &mm->mm_mt, address, address);
5837 struct vm_area_struct *vma;
5841 vma = mas_walk(&mas);
5845 if (!vma_start_read(vma))
5848 /* Check since vm_start/vm_end might change before we lock the VMA */
5849 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5850 goto inval_end_read;
5852 /* Check if the VMA got isolated after we found it */
5853 if (vma->detached) {
5855 count_vm_vma_lock_event(VMA_LOCK_MISS);
5856 /* The area was replaced with another one */
5867 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5870 #endif /* CONFIG_PER_VMA_LOCK */
5872 #ifndef __PAGETABLE_P4D_FOLDED
5874 * Allocate p4d page table.
5875 * We've already handled the fast-path in-line.
5877 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5879 p4d_t *new = p4d_alloc_one(mm, address);
5883 spin_lock(&mm->page_table_lock);
5884 if (pgd_present(*pgd)) { /* Another has populated it */
5887 smp_wmb(); /* See comment in pmd_install() */
5888 pgd_populate(mm, pgd, new);
5890 spin_unlock(&mm->page_table_lock);
5893 #endif /* __PAGETABLE_P4D_FOLDED */
5895 #ifndef __PAGETABLE_PUD_FOLDED
5897 * Allocate page upper directory.
5898 * We've already handled the fast-path in-line.
5900 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5902 pud_t *new = pud_alloc_one(mm, address);
5906 spin_lock(&mm->page_table_lock);
5907 if (!p4d_present(*p4d)) {
5909 smp_wmb(); /* See comment in pmd_install() */
5910 p4d_populate(mm, p4d, new);
5911 } else /* Another has populated it */
5913 spin_unlock(&mm->page_table_lock);
5916 #endif /* __PAGETABLE_PUD_FOLDED */
5918 #ifndef __PAGETABLE_PMD_FOLDED
5920 * Allocate page middle directory.
5921 * We've already handled the fast-path in-line.
5923 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5926 pmd_t *new = pmd_alloc_one(mm, address);
5930 ptl = pud_lock(mm, pud);
5931 if (!pud_present(*pud)) {
5933 smp_wmb(); /* See comment in pmd_install() */
5934 pud_populate(mm, pud, new);
5935 } else { /* Another has populated it */
5941 #endif /* __PAGETABLE_PMD_FOLDED */
5944 * follow_pte - look up PTE at a user virtual address
5945 * @vma: the memory mapping
5946 * @address: user virtual address
5947 * @ptepp: location to store found PTE
5948 * @ptlp: location to store the lock for the PTE
5950 * On a successful return, the pointer to the PTE is stored in @ptepp;
5951 * the corresponding lock is taken and its location is stored in @ptlp.
5953 * The contents of the PTE are only stable until @ptlp is released using
5954 * pte_unmap_unlock(). This function will fail if the PTE is non-present.
5955 * Present PTEs may include PTEs that map refcounted pages, such as
5956 * anonymous folios in COW mappings.
5958 * Callers must be careful when relying on PTE content after
5959 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
5960 * callers must protect against invalidation with MMU notifiers; otherwise
5961 * access to the PFN at a later point in time can trigger use-after-free.
5963 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5964 * should be taken for read.
5966 * This function must not be used to modify PTE content.
5968 * Return: zero on success, -ve otherwise.
5970 int follow_pte(struct vm_area_struct *vma, unsigned long address,
5971 pte_t **ptepp, spinlock_t **ptlp)
5973 struct mm_struct *mm = vma->vm_mm;
5980 mmap_assert_locked(mm);
5981 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5984 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5987 pgd = pgd_offset(mm, address);
5988 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5991 p4d = p4d_offset(pgd, address);
5992 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5995 pud = pud_offset(p4d, address);
5996 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5999 pmd = pmd_offset(pud, address);
6000 VM_BUG_ON(pmd_trans_huge(*pmd));
6002 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
6005 if (!pte_present(ptep_get(ptep)))
6010 pte_unmap_unlock(ptep, *ptlp);
6014 EXPORT_SYMBOL_GPL(follow_pte);
6016 #ifdef CONFIG_HAVE_IOREMAP_PROT
6018 * generic_access_phys - generic implementation for iomem mmap access
6019 * @vma: the vma to access
6020 * @addr: userspace address, not relative offset within @vma
6021 * @buf: buffer to read/write
6022 * @len: length of transfer
6023 * @write: set to FOLL_WRITE when writing, otherwise reading
6025 * This is a generic implementation for &vm_operations_struct.access for an
6026 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6029 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6030 void *buf, int len, int write)
6032 resource_size_t phys_addr;
6033 unsigned long prot = 0;
6034 void __iomem *maddr;
6037 int offset = offset_in_page(addr);
6041 if (follow_pte(vma, addr, &ptep, &ptl))
6043 pte = ptep_get(ptep);
6044 pte_unmap_unlock(ptep, ptl);
6046 prot = pgprot_val(pte_pgprot(pte));
6047 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6049 if ((write & FOLL_WRITE) && !pte_write(pte))
6052 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6056 if (follow_pte(vma, addr, &ptep, &ptl))
6059 if (!pte_same(pte, ptep_get(ptep))) {
6060 pte_unmap_unlock(ptep, ptl);
6067 memcpy_toio(maddr + offset, buf, len);
6069 memcpy_fromio(buf, maddr + offset, len);
6071 pte_unmap_unlock(ptep, ptl);
6077 EXPORT_SYMBOL_GPL(generic_access_phys);
6081 * Access another process' address space as given in mm.
6083 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6084 void *buf, int len, unsigned int gup_flags)
6086 void *old_buf = buf;
6087 int write = gup_flags & FOLL_WRITE;
6089 if (mmap_read_lock_killable(mm))
6092 /* Untag the address before looking up the VMA */
6093 addr = untagged_addr_remote(mm, addr);
6095 /* Avoid triggering the temporary warning in __get_user_pages */
6096 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6099 /* ignore errors, just check how much was successfully transferred */
6103 struct vm_area_struct *vma = NULL;
6104 struct page *page = get_user_page_vma_remote(mm, addr,
6108 /* We might need to expand the stack to access it */
6109 vma = vma_lookup(mm, addr);
6111 vma = expand_stack(mm, addr);
6113 /* mmap_lock was dropped on failure */
6115 return buf - old_buf;
6117 /* Try again if stack expansion worked */
6122 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6123 * we can access using slightly different code.
6126 #ifdef CONFIG_HAVE_IOREMAP_PROT
6127 if (vma->vm_ops && vma->vm_ops->access)
6128 bytes = vma->vm_ops->access(vma, addr, buf,
6135 offset = addr & (PAGE_SIZE-1);
6136 if (bytes > PAGE_SIZE-offset)
6137 bytes = PAGE_SIZE-offset;
6139 maddr = kmap_local_page(page);
6141 copy_to_user_page(vma, page, addr,
6142 maddr + offset, buf, bytes);
6143 set_page_dirty_lock(page);
6145 copy_from_user_page(vma, page, addr,
6146 buf, maddr + offset, bytes);
6148 unmap_and_put_page(page, maddr);
6154 mmap_read_unlock(mm);
6156 return buf - old_buf;
6160 * access_remote_vm - access another process' address space
6161 * @mm: the mm_struct of the target address space
6162 * @addr: start address to access
6163 * @buf: source or destination buffer
6164 * @len: number of bytes to transfer
6165 * @gup_flags: flags modifying lookup behaviour
6167 * The caller must hold a reference on @mm.
6169 * Return: number of bytes copied from source to destination.
6171 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6172 void *buf, int len, unsigned int gup_flags)
6174 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6178 * Access another process' address space.
6179 * Source/target buffer must be kernel space,
6180 * Do not walk the page table directly, use get_user_pages
6182 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6183 void *buf, int len, unsigned int gup_flags)
6185 struct mm_struct *mm;
6188 mm = get_task_mm(tsk);
6192 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6198 EXPORT_SYMBOL_GPL(access_process_vm);
6201 * Print the name of a VMA.
6203 void print_vma_addr(char *prefix, unsigned long ip)
6205 struct mm_struct *mm = current->mm;
6206 struct vm_area_struct *vma;
6209 * we might be running from an atomic context so we cannot sleep
6211 if (!mmap_read_trylock(mm))
6214 vma = vma_lookup(mm, ip);
6215 if (vma && vma->vm_file) {
6216 struct file *f = vma->vm_file;
6217 ip -= vma->vm_start;
6218 ip += vma->vm_pgoff << PAGE_SHIFT;
6219 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6221 vma->vm_end - vma->vm_start);
6223 mmap_read_unlock(mm);
6226 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6227 void __might_fault(const char *file, int line)
6229 if (pagefault_disabled())
6231 __might_sleep(file, line);
6232 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6234 might_lock_read(¤t->mm->mmap_lock);
6237 EXPORT_SYMBOL(__might_fault);
6240 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6242 * Process all subpages of the specified huge page with the specified
6243 * operation. The target subpage will be processed last to keep its
6246 static inline int process_huge_page(
6247 unsigned long addr_hint, unsigned int pages_per_huge_page,
6248 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6251 int i, n, base, l, ret;
6252 unsigned long addr = addr_hint &
6253 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6255 /* Process target subpage last to keep its cache lines hot */
6257 n = (addr_hint - addr) / PAGE_SIZE;
6258 if (2 * n <= pages_per_huge_page) {
6259 /* If target subpage in first half of huge page */
6262 /* Process subpages at the end of huge page */
6263 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6265 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6270 /* If target subpage in second half of huge page */
6271 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6272 l = pages_per_huge_page - n;
6273 /* Process subpages at the begin of huge page */
6274 for (i = 0; i < base; i++) {
6276 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6282 * Process remaining subpages in left-right-left-right pattern
6283 * towards the target subpage
6285 for (i = 0; i < l; i++) {
6286 int left_idx = base + i;
6287 int right_idx = base + 2 * l - 1 - i;
6290 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6294 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6301 static void clear_gigantic_page(struct page *page,
6303 unsigned int pages_per_huge_page)
6309 for (i = 0; i < pages_per_huge_page; i++) {
6310 p = nth_page(page, i);
6312 clear_user_highpage(p, addr + i * PAGE_SIZE);
6316 static int clear_subpage(unsigned long addr, int idx, void *arg)
6318 struct page *page = arg;
6320 clear_user_highpage(nth_page(page, idx), addr);
6324 void clear_huge_page(struct page *page,
6325 unsigned long addr_hint, unsigned int pages_per_huge_page)
6327 unsigned long addr = addr_hint &
6328 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6330 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6331 clear_gigantic_page(page, addr, pages_per_huge_page);
6335 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6338 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6340 struct vm_area_struct *vma,
6341 unsigned int pages_per_huge_page)
6344 struct page *dst_page;
6345 struct page *src_page;
6347 for (i = 0; i < pages_per_huge_page; i++) {
6348 dst_page = folio_page(dst, i);
6349 src_page = folio_page(src, i);
6352 if (copy_mc_user_highpage(dst_page, src_page,
6353 addr + i*PAGE_SIZE, vma)) {
6354 memory_failure_queue(page_to_pfn(src_page), 0);
6361 struct copy_subpage_arg {
6364 struct vm_area_struct *vma;
6367 static int copy_subpage(unsigned long addr, int idx, void *arg)
6369 struct copy_subpage_arg *copy_arg = arg;
6370 struct page *dst = nth_page(copy_arg->dst, idx);
6371 struct page *src = nth_page(copy_arg->src, idx);
6373 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6374 memory_failure_queue(page_to_pfn(src), 0);
6380 int copy_user_large_folio(struct folio *dst, struct folio *src,
6381 unsigned long addr_hint, struct vm_area_struct *vma)
6383 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6384 unsigned long addr = addr_hint &
6385 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6386 struct copy_subpage_arg arg = {
6392 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6393 return copy_user_gigantic_page(dst, src, addr, vma,
6394 pages_per_huge_page);
6396 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6399 long copy_folio_from_user(struct folio *dst_folio,
6400 const void __user *usr_src,
6401 bool allow_pagefault)
6404 unsigned long i, rc = 0;
6405 unsigned int nr_pages = folio_nr_pages(dst_folio);
6406 unsigned long ret_val = nr_pages * PAGE_SIZE;
6407 struct page *subpage;
6409 for (i = 0; i < nr_pages; i++) {
6410 subpage = folio_page(dst_folio, i);
6411 kaddr = kmap_local_page(subpage);
6412 if (!allow_pagefault)
6413 pagefault_disable();
6414 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6415 if (!allow_pagefault)
6417 kunmap_local(kaddr);
6419 ret_val -= (PAGE_SIZE - rc);
6423 flush_dcache_page(subpage);
6429 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6431 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6433 static struct kmem_cache *page_ptl_cachep;
6435 void __init ptlock_cache_init(void)
6437 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6441 bool ptlock_alloc(struct ptdesc *ptdesc)
6445 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6452 void ptlock_free(struct ptdesc *ptdesc)
6454 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6458 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6460 if (is_vm_hugetlb_page(vma))
6461 hugetlb_vma_lock_read(vma);
6464 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6466 if (is_vm_hugetlb_page(vma))
6467 hugetlb_vma_unlock_read(vma);