]> Git Repo - linux.git/blob - fs/btrfs/scrub.c
kconfig: recursive checks drop file/lineno
[linux.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_ctx;
42
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP         8
50
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX           16
58
59 #define SCRUB_TOTAL_STRIPES             (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69         bool is_metadata;
70
71         union {
72                 /*
73                  * Csum pointer for data csum verification.  Should point to a
74                  * sector csum inside scrub_stripe::csums.
75                  *
76                  * NULL if this data sector has no csum.
77                  */
78                 u8 *csum;
79
80                 /*
81                  * Extra info for metadata verification.  All sectors inside a
82                  * tree block share the same generation.
83                  */
84                 u64 generation;
85         };
86 };
87
88 enum scrub_stripe_flags {
89         /* Set when @mirror_num, @dev, @physical and @logical are set. */
90         SCRUB_STRIPE_FLAG_INITIALIZED,
91
92         /* Set when the read-repair is finished. */
93         SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95         /*
96          * Set for data stripes if it's triggered from P/Q stripe.
97          * During such scrub, we should not report errors in data stripes, nor
98          * update the accounting.
99          */
100         SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109         struct scrub_ctx *sctx;
110         struct btrfs_block_group *bg;
111
112         struct page *pages[SCRUB_STRIPE_PAGES];
113         struct scrub_sector_verification *sectors;
114
115         struct btrfs_device *dev;
116         u64 logical;
117         u64 physical;
118
119         u16 mirror_num;
120
121         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122         u16 nr_sectors;
123
124         /*
125          * How many data/meta extents are in this stripe.  Only for scrub status
126          * reporting purposes.
127          */
128         u16 nr_data_extents;
129         u16 nr_meta_extents;
130
131         atomic_t pending_io;
132         wait_queue_head_t io_wait;
133         wait_queue_head_t repair_wait;
134
135         /*
136          * Indicate the states of the stripe.  Bits are defined in
137          * scrub_stripe_flags enum.
138          */
139         unsigned long state;
140
141         /* Indicate which sectors are covered by extent items. */
142         unsigned long extent_sector_bitmap;
143
144         /*
145          * The errors hit during the initial read of the stripe.
146          *
147          * Would be utilized for error reporting and repair.
148          *
149          * The remaining init_nr_* records the number of errors hit, only used
150          * by error reporting.
151          */
152         unsigned long init_error_bitmap;
153         unsigned int init_nr_io_errors;
154         unsigned int init_nr_csum_errors;
155         unsigned int init_nr_meta_errors;
156
157         /*
158          * The following error bitmaps are all for the current status.
159          * Every time we submit a new read, these bitmaps may be updated.
160          *
161          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162          *
163          * IO and csum errors can happen for both metadata and data.
164          */
165         unsigned long error_bitmap;
166         unsigned long io_error_bitmap;
167         unsigned long csum_error_bitmap;
168         unsigned long meta_error_bitmap;
169
170         /* For writeback (repair or replace) error reporting. */
171         unsigned long write_error_bitmap;
172
173         /* Writeback can be concurrent, thus we need to protect the bitmap. */
174         spinlock_t write_error_lock;
175
176         /*
177          * Checksum for the whole stripe if this stripe is inside a data block
178          * group.
179          */
180         u8 *csums;
181
182         struct work_struct work;
183 };
184
185 struct scrub_ctx {
186         struct scrub_stripe     stripes[SCRUB_TOTAL_STRIPES];
187         struct scrub_stripe     *raid56_data_stripes;
188         struct btrfs_fs_info    *fs_info;
189         struct btrfs_path       extent_path;
190         struct btrfs_path       csum_path;
191         int                     first_free;
192         int                     cur_stripe;
193         atomic_t                cancel_req;
194         int                     readonly;
195
196         /* State of IO submission throttling affecting the associated device */
197         ktime_t                 throttle_deadline;
198         u64                     throttle_sent;
199
200         int                     is_dev_replace;
201         u64                     write_pointer;
202
203         struct mutex            wr_lock;
204         struct btrfs_device     *wr_tgtdev;
205
206         /*
207          * statistics
208          */
209         struct btrfs_scrub_progress stat;
210         spinlock_t              stat_lock;
211
212         /*
213          * Use a ref counter to avoid use-after-free issues. Scrub workers
214          * decrement bios_in_flight and workers_pending and then do a wakeup
215          * on the list_wait wait queue. We must ensure the main scrub task
216          * doesn't free the scrub context before or while the workers are
217          * doing the wakeup() call.
218          */
219         refcount_t              refs;
220 };
221
222 struct scrub_warning {
223         struct btrfs_path       *path;
224         u64                     extent_item_size;
225         const char              *errstr;
226         u64                     physical;
227         u64                     logical;
228         struct btrfs_device     *dev;
229 };
230
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233         if (!stripe)
234                 return;
235
236         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237                 if (stripe->pages[i])
238                         __free_page(stripe->pages[i]);
239                 stripe->pages[i] = NULL;
240         }
241         kfree(stripe->sectors);
242         kfree(stripe->csums);
243         stripe->sectors = NULL;
244         stripe->csums = NULL;
245         stripe->sctx = NULL;
246         stripe->state = 0;
247 }
248
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250                              struct scrub_stripe *stripe)
251 {
252         int ret;
253
254         memset(stripe, 0, sizeof(*stripe));
255
256         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257         stripe->state = 0;
258
259         init_waitqueue_head(&stripe->io_wait);
260         init_waitqueue_head(&stripe->repair_wait);
261         atomic_set(&stripe->pending_io, 0);
262         spin_lock_init(&stripe->write_error_lock);
263
264         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265         if (ret < 0)
266                 goto error;
267
268         stripe->sectors = kcalloc(stripe->nr_sectors,
269                                   sizeof(struct scrub_sector_verification),
270                                   GFP_KERNEL);
271         if (!stripe->sectors)
272                 goto error;
273
274         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275                                 fs_info->csum_size, GFP_KERNEL);
276         if (!stripe->csums)
277                 goto error;
278         return 0;
279 error:
280         release_scrub_stripe(stripe);
281         return -ENOMEM;
282 }
283
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293         while (atomic_read(&fs_info->scrub_pause_req)) {
294                 mutex_unlock(&fs_info->scrub_lock);
295                 wait_event(fs_info->scrub_pause_wait,
296                    atomic_read(&fs_info->scrub_pause_req) == 0);
297                 mutex_lock(&fs_info->scrub_lock);
298         }
299 }
300
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303         atomic_inc(&fs_info->scrubs_paused);
304         wake_up(&fs_info->scrub_pause_wait);
305 }
306
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309         mutex_lock(&fs_info->scrub_lock);
310         __scrub_blocked_if_needed(fs_info);
311         atomic_dec(&fs_info->scrubs_paused);
312         mutex_unlock(&fs_info->scrub_lock);
313
314         wake_up(&fs_info->scrub_pause_wait);
315 }
316
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319         scrub_pause_on(fs_info);
320         scrub_pause_off(fs_info);
321 }
322
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325         int i;
326
327         if (!sctx)
328                 return;
329
330         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331                 release_scrub_stripe(&sctx->stripes[i]);
332
333         kvfree(sctx);
334 }
335
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338         if (refcount_dec_and_test(&sctx->refs))
339                 scrub_free_ctx(sctx);
340 }
341
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343                 struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345         struct scrub_ctx *sctx;
346         int             i;
347
348         /* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349          * kvzalloc().
350          */
351         sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352         if (!sctx)
353                 goto nomem;
354         refcount_set(&sctx->refs, 1);
355         sctx->is_dev_replace = is_dev_replace;
356         sctx->fs_info = fs_info;
357         sctx->extent_path.search_commit_root = 1;
358         sctx->extent_path.skip_locking = 1;
359         sctx->csum_path.search_commit_root = 1;
360         sctx->csum_path.skip_locking = 1;
361         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362                 int ret;
363
364                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365                 if (ret < 0)
366                         goto nomem;
367                 sctx->stripes[i].sctx = sctx;
368         }
369         sctx->first_free = 0;
370         atomic_set(&sctx->cancel_req, 0);
371
372         spin_lock_init(&sctx->stat_lock);
373         sctx->throttle_deadline = 0;
374
375         mutex_init(&sctx->wr_lock);
376         if (is_dev_replace) {
377                 WARN_ON(!fs_info->dev_replace.tgtdev);
378                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379         }
380
381         return sctx;
382
383 nomem:
384         scrub_free_ctx(sctx);
385         return ERR_PTR(-ENOMEM);
386 }
387
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389                                      u64 root, void *warn_ctx)
390 {
391         u32 nlink;
392         int ret;
393         int i;
394         unsigned nofs_flag;
395         struct extent_buffer *eb;
396         struct btrfs_inode_item *inode_item;
397         struct scrub_warning *swarn = warn_ctx;
398         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399         struct inode_fs_paths *ipath = NULL;
400         struct btrfs_root *local_root;
401         struct btrfs_key key;
402
403         local_root = btrfs_get_fs_root(fs_info, root, true);
404         if (IS_ERR(local_root)) {
405                 ret = PTR_ERR(local_root);
406                 goto err;
407         }
408
409         /*
410          * this makes the path point to (inum INODE_ITEM ioff)
411          */
412         key.objectid = inum;
413         key.type = BTRFS_INODE_ITEM_KEY;
414         key.offset = 0;
415
416         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417         if (ret) {
418                 btrfs_put_root(local_root);
419                 btrfs_release_path(swarn->path);
420                 goto err;
421         }
422
423         eb = swarn->path->nodes[0];
424         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425                                         struct btrfs_inode_item);
426         nlink = btrfs_inode_nlink(eb, inode_item);
427         btrfs_release_path(swarn->path);
428
429         /*
430          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431          * uses GFP_NOFS in this context, so we keep it consistent but it does
432          * not seem to be strictly necessary.
433          */
434         nofs_flag = memalloc_nofs_save();
435         ipath = init_ipath(4096, local_root, swarn->path);
436         memalloc_nofs_restore(nofs_flag);
437         if (IS_ERR(ipath)) {
438                 btrfs_put_root(local_root);
439                 ret = PTR_ERR(ipath);
440                 ipath = NULL;
441                 goto err;
442         }
443         ret = paths_from_inode(inum, ipath);
444
445         if (ret < 0)
446                 goto err;
447
448         /*
449          * we deliberately ignore the bit ipath might have been too small to
450          * hold all of the paths here
451          */
452         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453                 btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455                                   swarn->errstr, swarn->logical,
456                                   btrfs_dev_name(swarn->dev),
457                                   swarn->physical,
458                                   root, inum, offset,
459                                   fs_info->sectorsize, nlink,
460                                   (char *)(unsigned long)ipath->fspath->val[i]);
461
462         btrfs_put_root(local_root);
463         free_ipath(ipath);
464         return 0;
465
466 err:
467         btrfs_warn_in_rcu(fs_info,
468                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469                           swarn->errstr, swarn->logical,
470                           btrfs_dev_name(swarn->dev),
471                           swarn->physical,
472                           root, inum, offset, ret);
473
474         free_ipath(ipath);
475         return 0;
476 }
477
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479                                        bool is_super, u64 logical, u64 physical)
480 {
481         struct btrfs_fs_info *fs_info = dev->fs_info;
482         struct btrfs_path *path;
483         struct btrfs_key found_key;
484         struct extent_buffer *eb;
485         struct btrfs_extent_item *ei;
486         struct scrub_warning swarn;
487         u64 flags = 0;
488         u32 item_size;
489         int ret;
490
491         /* Super block error, no need to search extent tree. */
492         if (is_super) {
493                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494                                   errstr, btrfs_dev_name(dev), physical);
495                 return;
496         }
497         path = btrfs_alloc_path();
498         if (!path)
499                 return;
500
501         swarn.physical = physical;
502         swarn.logical = logical;
503         swarn.errstr = errstr;
504         swarn.dev = NULL;
505
506         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507                                   &flags);
508         if (ret < 0)
509                 goto out;
510
511         swarn.extent_item_size = found_key.offset;
512
513         eb = path->nodes[0];
514         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515         item_size = btrfs_item_size(eb, path->slots[0]);
516
517         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518                 unsigned long ptr = 0;
519                 u8 ref_level;
520                 u64 ref_root;
521
522                 while (true) {
523                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524                                                       item_size, &ref_root,
525                                                       &ref_level);
526                         if (ret < 0) {
527                                 btrfs_warn(fs_info,
528                                 "failed to resolve tree backref for logical %llu: %d",
529                                                   swarn.logical, ret);
530                                 break;
531                         }
532                         if (ret > 0)
533                                 break;
534                         btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536                                 errstr, swarn.logical, btrfs_dev_name(dev),
537                                 swarn.physical, (ref_level ? "node" : "leaf"),
538                                 ref_level, ref_root);
539                 }
540                 btrfs_release_path(path);
541         } else {
542                 struct btrfs_backref_walk_ctx ctx = { 0 };
543
544                 btrfs_release_path(path);
545
546                 ctx.bytenr = found_key.objectid;
547                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548                 ctx.fs_info = fs_info;
549
550                 swarn.path = path;
551                 swarn.dev = dev;
552
553                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554         }
555
556 out:
557         btrfs_free_path(path);
558 }
559
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562         int ret = 0;
563         u64 length;
564
565         if (!btrfs_is_zoned(sctx->fs_info))
566                 return 0;
567
568         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569                 return 0;
570
571         if (sctx->write_pointer < physical) {
572                 length = physical - sctx->write_pointer;
573
574                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575                                                 sctx->write_pointer, length);
576                 if (!ret)
577                         sctx->write_pointer = physical;
578         }
579         return ret;
580 }
581
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587         return stripe->pages[page_index];
588 }
589
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591                                                  int sector_nr)
592 {
593         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606         u8 on_disk_csum[BTRFS_CSUM_SIZE];
607         u8 calculated_csum[BTRFS_CSUM_SIZE];
608         struct btrfs_header *header;
609
610         /*
611          * Here we don't have a good way to attach the pages (and subpages)
612          * to a dummy extent buffer, thus we have to directly grab the members
613          * from pages.
614          */
615         header = (struct btrfs_header *)(page_address(first_page) + first_off);
616         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618         if (logical != btrfs_stack_header_bytenr(header)) {
619                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621                 btrfs_warn_rl(fs_info,
622                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623                               logical, stripe->mirror_num,
624                               btrfs_stack_header_bytenr(header), logical);
625                 return;
626         }
627         if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628                    BTRFS_FSID_SIZE) != 0) {
629                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631                 btrfs_warn_rl(fs_info,
632                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633                               logical, stripe->mirror_num,
634                               header->fsid, fs_info->fs_devices->fsid);
635                 return;
636         }
637         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638                    BTRFS_UUID_SIZE) != 0) {
639                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641                 btrfs_warn_rl(fs_info,
642                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643                               logical, stripe->mirror_num,
644                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645                 return;
646         }
647
648         /* Now check tree block csum. */
649         shash->tfm = fs_info->csum_shash;
650         crypto_shash_init(shash);
651         crypto_shash_update(shash, page_address(first_page) + first_off +
652                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655                 struct page *page = scrub_stripe_get_page(stripe, i);
656                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658                 crypto_shash_update(shash, page_address(page) + page_off,
659                                     fs_info->sectorsize);
660         }
661
662         crypto_shash_final(shash, calculated_csum);
663         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666                 btrfs_warn_rl(fs_info,
667                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668                               logical, stripe->mirror_num,
669                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671                 return;
672         }
673         if (stripe->sectors[sector_nr].generation !=
674             btrfs_stack_header_generation(header)) {
675                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677                 btrfs_warn_rl(fs_info,
678                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679                               logical, stripe->mirror_num,
680                               btrfs_stack_header_generation(header),
681                               stripe->sectors[sector_nr].generation);
682                 return;
683         }
684         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696         u8 csum_buf[BTRFS_CSUM_SIZE];
697         int ret;
698
699         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701         /* Sector not utilized, skip it. */
702         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703                 return;
704
705         /* IO error, no need to check. */
706         if (test_bit(sector_nr, &stripe->io_error_bitmap))
707                 return;
708
709         /* Metadata, verify the full tree block. */
710         if (sector->is_metadata) {
711                 /*
712                  * Check if the tree block crosses the stripe boundary.  If
713                  * crossed the boundary, we cannot verify it but only give a
714                  * warning.
715                  *
716                  * This can only happen on a very old filesystem where chunks
717                  * are not ensured to be stripe aligned.
718                  */
719                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720                         btrfs_warn_rl(fs_info,
721                         "tree block at %llu crosses stripe boundary %llu",
722                                       stripe->logical +
723                                       (sector_nr << fs_info->sectorsize_bits),
724                                       stripe->logical);
725                         return;
726                 }
727                 scrub_verify_one_metadata(stripe, sector_nr);
728                 return;
729         }
730
731         /*
732          * Data is easier, we just verify the data csum (if we have it).  For
733          * cases without csum, we have no other choice but to trust it.
734          */
735         if (!sector->csum) {
736                 clear_bit(sector_nr, &stripe->error_bitmap);
737                 return;
738         }
739
740         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741         if (ret < 0) {
742                 set_bit(sector_nr, &stripe->csum_error_bitmap);
743                 set_bit(sector_nr, &stripe->error_bitmap);
744         } else {
745                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746                 clear_bit(sector_nr, &stripe->error_bitmap);
747         }
748 }
749
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755         int sector_nr;
756
757         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758                 scrub_verify_one_sector(stripe, sector_nr);
759                 if (stripe->sectors[sector_nr].is_metadata)
760                         sector_nr += sectors_per_tree - 1;
761         }
762 }
763
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766         int i;
767
768         for (i = 0; i < stripe->nr_sectors; i++) {
769                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771                         break;
772         }
773         ASSERT(i < stripe->nr_sectors);
774         return i;
775 }
776
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785         struct scrub_stripe *stripe = bbio->private;
786         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787         struct bio_vec *bvec;
788         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789         u32 bio_size = 0;
790         int i;
791
792         ASSERT(sector_nr < stripe->nr_sectors);
793
794         bio_for_each_bvec_all(bvec, &bbio->bio, i)
795                 bio_size += bvec->bv_len;
796
797         if (bbio->bio.bi_status) {
798                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799                            bio_size >> fs_info->sectorsize_bits);
800                 bitmap_set(&stripe->error_bitmap, sector_nr,
801                            bio_size >> fs_info->sectorsize_bits);
802         } else {
803                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804                              bio_size >> fs_info->sectorsize_bits);
805         }
806         bio_put(&bbio->bio);
807         if (atomic_dec_and_test(&stripe->pending_io))
808                 wake_up(&stripe->io_wait);
809 }
810
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813         ASSERT(mirror <= num_copies);
814         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818                                             int mirror, int blocksize, bool wait)
819 {
820         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821         struct btrfs_bio *bbio = NULL;
822         const unsigned long old_error_bitmap = stripe->error_bitmap;
823         int i;
824
825         ASSERT(stripe->mirror_num >= 1);
826         ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829                 struct page *page;
830                 int pgoff;
831                 int ret;
832
833                 page = scrub_stripe_get_page(stripe, i);
834                 pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836                 /* The current sector cannot be merged, submit the bio. */
837                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838                              bbio->bio.bi_iter.bi_size >= blocksize)) {
839                         ASSERT(bbio->bio.bi_iter.bi_size);
840                         atomic_inc(&stripe->pending_io);
841                         btrfs_submit_bio(bbio, mirror);
842                         if (wait)
843                                 wait_scrub_stripe_io(stripe);
844                         bbio = NULL;
845                 }
846
847                 if (!bbio) {
848                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849                                 fs_info, scrub_repair_read_endio, stripe);
850                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
851                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852                 }
853
854                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855                 ASSERT(ret == fs_info->sectorsize);
856         }
857         if (bbio) {
858                 ASSERT(bbio->bio.bi_iter.bi_size);
859                 atomic_inc(&stripe->pending_io);
860                 btrfs_submit_bio(bbio, mirror);
861                 if (wait)
862                         wait_scrub_stripe_io(stripe);
863         }
864 }
865
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867                                        struct scrub_stripe *stripe)
868 {
869         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870                                       DEFAULT_RATELIMIT_BURST);
871         struct btrfs_fs_info *fs_info = sctx->fs_info;
872         struct btrfs_device *dev = NULL;
873         u64 physical = 0;
874         int nr_data_sectors = 0;
875         int nr_meta_sectors = 0;
876         int nr_nodatacsum_sectors = 0;
877         int nr_repaired_sectors = 0;
878         int sector_nr;
879
880         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881                 return;
882
883         /*
884          * Init needed infos for error reporting.
885          *
886          * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887          * thus no need for dev/physical, error reporting still needs dev and physical.
888          */
889         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890                 u64 mapped_len = fs_info->sectorsize;
891                 struct btrfs_io_context *bioc = NULL;
892                 int stripe_index = stripe->mirror_num - 1;
893                 int ret;
894
895                 /* For scrub, our mirror_num should always start at 1. */
896                 ASSERT(stripe->mirror_num >= 1);
897                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898                                       stripe->logical, &mapped_len, &bioc,
899                                       NULL, NULL);
900                 /*
901                  * If we failed, dev will be NULL, and later detailed reports
902                  * will just be skipped.
903                  */
904                 if (ret < 0)
905                         goto skip;
906                 physical = bioc->stripes[stripe_index].physical;
907                 dev = bioc->stripes[stripe_index].dev;
908                 btrfs_put_bioc(bioc);
909         }
910
911 skip:
912         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913                 bool repaired = false;
914
915                 if (stripe->sectors[sector_nr].is_metadata) {
916                         nr_meta_sectors++;
917                 } else {
918                         nr_data_sectors++;
919                         if (!stripe->sectors[sector_nr].csum)
920                                 nr_nodatacsum_sectors++;
921                 }
922
923                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924                     !test_bit(sector_nr, &stripe->error_bitmap)) {
925                         nr_repaired_sectors++;
926                         repaired = true;
927                 }
928
929                 /* Good sector from the beginning, nothing need to be done. */
930                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931                         continue;
932
933                 /*
934                  * Report error for the corrupted sectors.  If repaired, just
935                  * output the message of repaired message.
936                  */
937                 if (repaired) {
938                         if (dev) {
939                                 btrfs_err_rl_in_rcu(fs_info,
940                         "fixed up error at logical %llu on dev %s physical %llu",
941                                             stripe->logical, btrfs_dev_name(dev),
942                                             physical);
943                         } else {
944                                 btrfs_err_rl_in_rcu(fs_info,
945                         "fixed up error at logical %llu on mirror %u",
946                                             stripe->logical, stripe->mirror_num);
947                         }
948                         continue;
949                 }
950
951                 /* The remaining are all for unrepaired. */
952                 if (dev) {
953                         btrfs_err_rl_in_rcu(fs_info,
954         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955                                             stripe->logical, btrfs_dev_name(dev),
956                                             physical);
957                 } else {
958                         btrfs_err_rl_in_rcu(fs_info,
959         "unable to fixup (regular) error at logical %llu on mirror %u",
960                                             stripe->logical, stripe->mirror_num);
961                 }
962
963                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964                         if (__ratelimit(&rs) && dev)
965                                 scrub_print_common_warning("i/o error", dev, false,
966                                                      stripe->logical, physical);
967                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968                         if (__ratelimit(&rs) && dev)
969                                 scrub_print_common_warning("checksum error", dev, false,
970                                                      stripe->logical, physical);
971                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972                         if (__ratelimit(&rs) && dev)
973                                 scrub_print_common_warning("header error", dev, false,
974                                                      stripe->logical, physical);
975         }
976
977         spin_lock(&sctx->stat_lock);
978         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982         sctx->stat.no_csum += nr_nodatacsum_sectors;
983         sctx->stat.read_errors += stripe->init_nr_io_errors;
984         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986         sctx->stat.uncorrectable_errors +=
987                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988         sctx->stat.corrected_errors += nr_repaired_sectors;
989         spin_unlock(&sctx->stat_lock);
990 }
991
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993                                 unsigned long write_bitmap, bool dev_replace);
994
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011         struct scrub_ctx *sctx = stripe->sctx;
1012         struct btrfs_fs_info *fs_info = sctx->fs_info;
1013         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014                                           stripe->bg->length);
1015         unsigned long repaired;
1016         int mirror;
1017         int i;
1018
1019         ASSERT(stripe->mirror_num > 0);
1020
1021         wait_scrub_stripe_io(stripe);
1022         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023         /* Save the initial failed bitmap for later repair and report usage. */
1024         stripe->init_error_bitmap = stripe->error_bitmap;
1025         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026                                                   stripe->nr_sectors);
1027         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028                                                     stripe->nr_sectors);
1029         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030                                                     stripe->nr_sectors);
1031
1032         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033                 goto out;
1034
1035         /*
1036          * Try all remaining mirrors.
1037          *
1038          * Here we still try to read as large block as possible, as this is
1039          * faster and we have extra safety nets to rely on.
1040          */
1041         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042              mirror != stripe->mirror_num;
1043              mirror = calc_next_mirror(mirror, num_copies)) {
1044                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046                 scrub_stripe_submit_repair_read(stripe, mirror,
1047                                                 BTRFS_STRIPE_LEN, false);
1048                 wait_scrub_stripe_io(stripe);
1049                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051                         goto out;
1052         }
1053
1054         /*
1055          * Last safety net, try re-checking all mirrors, including the failed
1056          * one, sector-by-sector.
1057          *
1058          * As if one sector failed the drive's internal csum, the whole read
1059          * containing the offending sector would be marked as error.
1060          * Thus here we do sector-by-sector read.
1061          *
1062          * This can be slow, thus we only try it as the last resort.
1063          */
1064
1065         for (i = 0, mirror = stripe->mirror_num;
1066              i < num_copies;
1067              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070                 scrub_stripe_submit_repair_read(stripe, mirror,
1071                                                 fs_info->sectorsize, true);
1072                 wait_scrub_stripe_io(stripe);
1073                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075                         goto out;
1076         }
1077 out:
1078         /*
1079          * Submit the repaired sectors.  For zoned case, we cannot do repair
1080          * in-place, but queue the bg to be relocated.
1081          */
1082         bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083                       stripe->nr_sectors);
1084         if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085                 if (btrfs_is_zoned(fs_info)) {
1086                         btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087                 } else {
1088                         scrub_write_sectors(sctx, stripe, repaired, false);
1089                         wait_scrub_stripe_io(stripe);
1090                 }
1091         }
1092
1093         scrub_stripe_report_errors(sctx, stripe);
1094         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095         wake_up(&stripe->repair_wait);
1096 }
1097
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100         struct scrub_stripe *stripe = bbio->private;
1101         struct bio_vec *bvec;
1102         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103         int num_sectors;
1104         u32 bio_size = 0;
1105         int i;
1106
1107         ASSERT(sector_nr < stripe->nr_sectors);
1108         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109                 bio_size += bvec->bv_len;
1110         num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112         if (bbio->bio.bi_status) {
1113                 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114                 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115         } else {
1116                 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117         }
1118         bio_put(&bbio->bio);
1119         if (atomic_dec_and_test(&stripe->pending_io)) {
1120                 wake_up(&stripe->io_wait);
1121                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123         }
1124 }
1125
1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128         struct scrub_stripe *stripe = bbio->private;
1129         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130         struct bio_vec *bvec;
1131         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132         u32 bio_size = 0;
1133         int i;
1134
1135         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136                 bio_size += bvec->bv_len;
1137
1138         if (bbio->bio.bi_status) {
1139                 unsigned long flags;
1140
1141                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1142                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143                            bio_size >> fs_info->sectorsize_bits);
1144                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145         }
1146         bio_put(&bbio->bio);
1147
1148         if (atomic_dec_and_test(&stripe->pending_io))
1149                 wake_up(&stripe->io_wait);
1150 }
1151
1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153                                    struct scrub_stripe *stripe,
1154                                    struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156         struct btrfs_fs_info *fs_info = sctx->fs_info;
1157         u32 bio_len = bbio->bio.bi_iter.bi_size;
1158         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159                       stripe->logical;
1160
1161         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162         atomic_inc(&stripe->pending_io);
1163         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164         if (!btrfs_is_zoned(fs_info))
1165                 return;
1166         /*
1167          * For zoned writeback, queue depth must be 1, thus we must wait for
1168          * the write to finish before the next write.
1169          */
1170         wait_scrub_stripe_io(stripe);
1171
1172         /*
1173          * And also need to update the write pointer if write finished
1174          * successfully.
1175          */
1176         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177                       &stripe->write_error_bitmap))
1178                 sctx->write_pointer += bio_len;
1179 }
1180
1181 /*
1182  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183  *
1184  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185  *
1186  * - Only needs logical bytenr and mirror_num
1187  *   Just like the scrub read path
1188  *
1189  * - Would only result in writes to the specified mirror
1190  *   Unlike the regular writeback path, which would write back to all stripes
1191  *
1192  * - Handle dev-replace and read-repair writeback differently
1193  */
1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195                                 unsigned long write_bitmap, bool dev_replace)
1196 {
1197         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198         struct btrfs_bio *bbio = NULL;
1199         int sector_nr;
1200
1201         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204                 int ret;
1205
1206                 /* We should only writeback sectors covered by an extent. */
1207                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209                 /* Cannot merge with previous sector, submit the current one. */
1210                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212                         bbio = NULL;
1213                 }
1214                 if (!bbio) {
1215                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216                                                fs_info, scrub_write_endio, stripe);
1217                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218                                 (sector_nr << fs_info->sectorsize_bits)) >>
1219                                 SECTOR_SHIFT;
1220                 }
1221                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222                 ASSERT(ret == fs_info->sectorsize);
1223         }
1224         if (bbio)
1225                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227
1228 /*
1229  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231  */
1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233                                   unsigned int bio_size)
1234 {
1235         const int time_slice = 1000;
1236         s64 delta;
1237         ktime_t now;
1238         u32 div;
1239         u64 bwlimit;
1240
1241         bwlimit = READ_ONCE(device->scrub_speed_max);
1242         if (bwlimit == 0)
1243                 return;
1244
1245         /*
1246          * Slice is divided into intervals when the IO is submitted, adjust by
1247          * bwlimit and maximum of 64 intervals.
1248          */
1249         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250         div = min_t(u32, 64, div);
1251
1252         /* Start new epoch, set deadline */
1253         now = ktime_get();
1254         if (sctx->throttle_deadline == 0) {
1255                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256                 sctx->throttle_sent = 0;
1257         }
1258
1259         /* Still in the time to send? */
1260         if (ktime_before(now, sctx->throttle_deadline)) {
1261                 /* If current bio is within the limit, send it */
1262                 sctx->throttle_sent += bio_size;
1263                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264                         return;
1265
1266                 /* We're over the limit, sleep until the rest of the slice */
1267                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268         } else {
1269                 /* New request after deadline, start new epoch */
1270                 delta = 0;
1271         }
1272
1273         if (delta) {
1274                 long timeout;
1275
1276                 timeout = div_u64(delta * HZ, 1000);
1277                 schedule_timeout_interruptible(timeout);
1278         }
1279
1280         /* Next call will start the deadline period */
1281         sctx->throttle_deadline = 0;
1282 }
1283
1284 /*
1285  * Given a physical address, this will calculate it's
1286  * logical offset. if this is a parity stripe, it will return
1287  * the most left data stripe's logical offset.
1288  *
1289  * return 0 if it is a data stripe, 1 means parity stripe.
1290  */
1291 static int get_raid56_logic_offset(u64 physical, int num,
1292                                    struct btrfs_chunk_map *map, u64 *offset,
1293                                    u64 *stripe_start)
1294 {
1295         int i;
1296         int j = 0;
1297         u64 last_offset;
1298         const int data_stripes = nr_data_stripes(map);
1299
1300         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301         if (stripe_start)
1302                 *stripe_start = last_offset;
1303
1304         *offset = last_offset;
1305         for (i = 0; i < data_stripes; i++) {
1306                 u32 stripe_nr;
1307                 u32 stripe_index;
1308                 u32 rot;
1309
1310                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311
1312                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314                 /* Work out the disk rotation on this stripe-set */
1315                 rot = stripe_nr % map->num_stripes;
1316                 /* calculate which stripe this data locates */
1317                 rot += i;
1318                 stripe_index = rot % map->num_stripes;
1319                 if (stripe_index == num)
1320                         return 0;
1321                 if (stripe_index < num)
1322                         j++;
1323         }
1324         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325         return 1;
1326 }
1327
1328 /*
1329  * Return 0 if the extent item range covers any byte of the range.
1330  * Return <0 if the extent item is before @search_start.
1331  * Return >0 if the extent item is after @start_start + @search_len.
1332  */
1333 static int compare_extent_item_range(struct btrfs_path *path,
1334                                      u64 search_start, u64 search_len)
1335 {
1336         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337         u64 len;
1338         struct btrfs_key key;
1339
1340         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342                key.type == BTRFS_METADATA_ITEM_KEY);
1343         if (key.type == BTRFS_METADATA_ITEM_KEY)
1344                 len = fs_info->nodesize;
1345         else
1346                 len = key.offset;
1347
1348         if (key.objectid + len <= search_start)
1349                 return -1;
1350         if (key.objectid >= search_start + search_len)
1351                 return 1;
1352         return 0;
1353 }
1354
1355 /*
1356  * Locate one extent item which covers any byte in range
1357  * [@search_start, @search_start + @search_length)
1358  *
1359  * If the path is not initialized, we will initialize the search by doing
1360  * a btrfs_search_slot().
1361  * If the path is already initialized, we will use the path as the initial
1362  * slot, to avoid duplicated btrfs_search_slot() calls.
1363  *
1364  * NOTE: If an extent item starts before @search_start, we will still
1365  * return the extent item. This is for data extent crossing stripe boundary.
1366  *
1367  * Return 0 if we found such extent item, and @path will point to the extent item.
1368  * Return >0 if no such extent item can be found, and @path will be released.
1369  * Return <0 if hit fatal error, and @path will be released.
1370  */
1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372                                   struct btrfs_path *path,
1373                                   u64 search_start, u64 search_len)
1374 {
1375         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376         struct btrfs_key key;
1377         int ret;
1378
1379         /* Continue using the existing path */
1380         if (path->nodes[0])
1381                 goto search_forward;
1382
1383         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384                 key.type = BTRFS_METADATA_ITEM_KEY;
1385         else
1386                 key.type = BTRFS_EXTENT_ITEM_KEY;
1387         key.objectid = search_start;
1388         key.offset = (u64)-1;
1389
1390         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391         if (ret < 0)
1392                 return ret;
1393         if (ret == 0) {
1394                 /*
1395                  * Key with offset -1 found, there would have to exist an extent
1396                  * item with such offset, but this is out of the valid range.
1397                  */
1398                 btrfs_release_path(path);
1399                 return -EUCLEAN;
1400         }
1401
1402         /*
1403          * Here we intentionally pass 0 as @min_objectid, as there could be
1404          * an extent item starting before @search_start.
1405          */
1406         ret = btrfs_previous_extent_item(extent_root, path, 0);
1407         if (ret < 0)
1408                 return ret;
1409         /*
1410          * No matter whether we have found an extent item, the next loop will
1411          * properly do every check on the key.
1412          */
1413 search_forward:
1414         while (true) {
1415                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416                 if (key.objectid >= search_start + search_len)
1417                         break;
1418                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419                     key.type != BTRFS_EXTENT_ITEM_KEY)
1420                         goto next;
1421
1422                 ret = compare_extent_item_range(path, search_start, search_len);
1423                 if (ret == 0)
1424                         return ret;
1425                 if (ret > 0)
1426                         break;
1427 next:
1428                 ret = btrfs_next_item(extent_root, path);
1429                 if (ret) {
1430                         /* Either no more items or a fatal error. */
1431                         btrfs_release_path(path);
1432                         return ret;
1433                 }
1434         }
1435         btrfs_release_path(path);
1436         return 1;
1437 }
1438
1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441 {
1442         struct btrfs_key key;
1443         struct btrfs_extent_item *ei;
1444
1445         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447                key.type == BTRFS_EXTENT_ITEM_KEY);
1448         *extent_start_ret = key.objectid;
1449         if (key.type == BTRFS_METADATA_ITEM_KEY)
1450                 *size_ret = path->nodes[0]->fs_info->nodesize;
1451         else
1452                 *size_ret = key.offset;
1453         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456 }
1457
1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459                                         u64 physical, u64 physical_end)
1460 {
1461         struct btrfs_fs_info *fs_info = sctx->fs_info;
1462         int ret = 0;
1463
1464         if (!btrfs_is_zoned(fs_info))
1465                 return 0;
1466
1467         mutex_lock(&sctx->wr_lock);
1468         if (sctx->write_pointer < physical_end) {
1469                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470                                                     physical,
1471                                                     sctx->write_pointer);
1472                 if (ret)
1473                         btrfs_err(fs_info,
1474                                   "zoned: failed to recover write pointer");
1475         }
1476         mutex_unlock(&sctx->wr_lock);
1477         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479         return ret;
1480 }
1481
1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483                                  struct scrub_stripe *stripe,
1484                                  u64 extent_start, u64 extent_len,
1485                                  u64 extent_flags, u64 extent_gen)
1486 {
1487         for (u64 cur_logical = max(stripe->logical, extent_start);
1488              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489                                extent_start + extent_len);
1490              cur_logical += fs_info->sectorsize) {
1491                 const int nr_sector = (cur_logical - stripe->logical) >>
1492                                       fs_info->sectorsize_bits;
1493                 struct scrub_sector_verification *sector =
1494                                                 &stripe->sectors[nr_sector];
1495
1496                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498                         sector->is_metadata = true;
1499                         sector->generation = extent_gen;
1500                 }
1501         }
1502 }
1503
1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505 {
1506         stripe->extent_sector_bitmap = 0;
1507         stripe->init_error_bitmap = 0;
1508         stripe->init_nr_io_errors = 0;
1509         stripe->init_nr_csum_errors = 0;
1510         stripe->init_nr_meta_errors = 0;
1511         stripe->error_bitmap = 0;
1512         stripe->io_error_bitmap = 0;
1513         stripe->csum_error_bitmap = 0;
1514         stripe->meta_error_bitmap = 0;
1515 }
1516
1517 /*
1518  * Locate one stripe which has at least one extent in its range.
1519  *
1520  * Return 0 if found such stripe, and store its info into @stripe.
1521  * Return >0 if there is no such stripe in the specified range.
1522  * Return <0 for error.
1523  */
1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525                                         struct btrfs_path *extent_path,
1526                                         struct btrfs_path *csum_path,
1527                                         struct btrfs_device *dev, u64 physical,
1528                                         int mirror_num, u64 logical_start,
1529                                         u32 logical_len,
1530                                         struct scrub_stripe *stripe)
1531 {
1532         struct btrfs_fs_info *fs_info = bg->fs_info;
1533         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535         const u64 logical_end = logical_start + logical_len;
1536         u64 cur_logical = logical_start;
1537         u64 stripe_end;
1538         u64 extent_start;
1539         u64 extent_len;
1540         u64 extent_flags;
1541         u64 extent_gen;
1542         int ret;
1543
1544         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545                                    stripe->nr_sectors);
1546         scrub_stripe_reset_bitmaps(stripe);
1547
1548         /* The range must be inside the bg. */
1549         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550
1551         ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552                                      logical_len);
1553         /* Either error or not found. */
1554         if (ret)
1555                 goto out;
1556         get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557                         &extent_gen);
1558         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559                 stripe->nr_meta_extents++;
1560         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561                 stripe->nr_data_extents++;
1562         cur_logical = max(extent_start, cur_logical);
1563
1564         /*
1565          * Round down to stripe boundary.
1566          *
1567          * The extra calculation against bg->start is to handle block groups
1568          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569          */
1570         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571                           bg->start;
1572         stripe->physical = physical + stripe->logical - logical_start;
1573         stripe->dev = dev;
1574         stripe->bg = bg;
1575         stripe->mirror_num = mirror_num;
1576         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577
1578         /* Fill the first extent info into stripe->sectors[] array. */
1579         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580                              extent_flags, extent_gen);
1581         cur_logical = extent_start + extent_len;
1582
1583         /* Fill the extent info for the remaining sectors. */
1584         while (cur_logical <= stripe_end) {
1585                 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586                                              stripe_end - cur_logical + 1);
1587                 if (ret < 0)
1588                         goto out;
1589                 if (ret > 0) {
1590                         ret = 0;
1591                         break;
1592                 }
1593                 get_extent_info(extent_path, &extent_start, &extent_len,
1594                                 &extent_flags, &extent_gen);
1595                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596                         stripe->nr_meta_extents++;
1597                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598                         stripe->nr_data_extents++;
1599                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600                                      extent_flags, extent_gen);
1601                 cur_logical = extent_start + extent_len;
1602         }
1603
1604         /* Now fill the data csum. */
1605         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606                 int sector_nr;
1607                 unsigned long csum_bitmap = 0;
1608
1609                 /* Csum space should have already been allocated. */
1610                 ASSERT(stripe->csums);
1611
1612                 /*
1613                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614                  * should contain at most 16 sectors.
1615                  */
1616                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617
1618                 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619                                                 stripe->logical, stripe_end,
1620                                                 stripe->csums, &csum_bitmap);
1621                 if (ret < 0)
1622                         goto out;
1623                 if (ret > 0)
1624                         ret = 0;
1625
1626                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627                         stripe->sectors[sector_nr].csum = stripe->csums +
1628                                 sector_nr * fs_info->csum_size;
1629                 }
1630         }
1631         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632 out:
1633         return ret;
1634 }
1635
1636 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637 {
1638         scrub_stripe_reset_bitmaps(stripe);
1639
1640         stripe->nr_meta_extents = 0;
1641         stripe->nr_data_extents = 0;
1642         stripe->state = 0;
1643
1644         for (int i = 0; i < stripe->nr_sectors; i++) {
1645                 stripe->sectors[i].is_metadata = false;
1646                 stripe->sectors[i].csum = NULL;
1647                 stripe->sectors[i].generation = 0;
1648         }
1649 }
1650
1651 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1652                                             struct scrub_stripe *stripe)
1653 {
1654         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1655         struct btrfs_bio *bbio = NULL;
1656         unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1657                                       stripe->bg->length - stripe->logical) >>
1658                                   fs_info->sectorsize_bits;
1659         u64 stripe_len = BTRFS_STRIPE_LEN;
1660         int mirror = stripe->mirror_num;
1661         int i;
1662
1663         atomic_inc(&stripe->pending_io);
1664
1665         for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1666                 struct page *page = scrub_stripe_get_page(stripe, i);
1667                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1668
1669                 /* We're beyond the chunk boundary, no need to read anymore. */
1670                 if (i >= nr_sectors)
1671                         break;
1672
1673                 /* The current sector cannot be merged, submit the bio. */
1674                 if (bbio &&
1675                     ((i > 0 &&
1676                       !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1677                      bbio->bio.bi_iter.bi_size >= stripe_len)) {
1678                         ASSERT(bbio->bio.bi_iter.bi_size);
1679                         atomic_inc(&stripe->pending_io);
1680                         btrfs_submit_bio(bbio, mirror);
1681                         bbio = NULL;
1682                 }
1683
1684                 if (!bbio) {
1685                         struct btrfs_io_stripe io_stripe = {};
1686                         struct btrfs_io_context *bioc = NULL;
1687                         const u64 logical = stripe->logical +
1688                                             (i << fs_info->sectorsize_bits);
1689                         int err;
1690
1691                         io_stripe.is_scrub = true;
1692                         stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1693                         /*
1694                          * For RST cases, we need to manually split the bbio to
1695                          * follow the RST boundary.
1696                          */
1697                         err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1698                                               &stripe_len, &bioc, &io_stripe, &mirror);
1699                         btrfs_put_bioc(bioc);
1700                         if (err < 0) {
1701                                 set_bit(i, &stripe->io_error_bitmap);
1702                                 set_bit(i, &stripe->error_bitmap);
1703                                 continue;
1704                         }
1705
1706                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1707                                                fs_info, scrub_read_endio, stripe);
1708                         bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1709                 }
1710
1711                 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1712         }
1713
1714         if (bbio) {
1715                 ASSERT(bbio->bio.bi_iter.bi_size);
1716                 atomic_inc(&stripe->pending_io);
1717                 btrfs_submit_bio(bbio, mirror);
1718         }
1719
1720         if (atomic_dec_and_test(&stripe->pending_io)) {
1721                 wake_up(&stripe->io_wait);
1722                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1723                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1724         }
1725 }
1726
1727 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1728                                       struct scrub_stripe *stripe)
1729 {
1730         struct btrfs_fs_info *fs_info = sctx->fs_info;
1731         struct btrfs_bio *bbio;
1732         unsigned int nr_sectors = min(BTRFS_STRIPE_LEN, stripe->bg->start +
1733                                       stripe->bg->length - stripe->logical) >>
1734                                   fs_info->sectorsize_bits;
1735         int mirror = stripe->mirror_num;
1736
1737         ASSERT(stripe->bg);
1738         ASSERT(stripe->mirror_num > 0);
1739         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1740
1741         if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1742                 scrub_submit_extent_sector_read(sctx, stripe);
1743                 return;
1744         }
1745
1746         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1747                                scrub_read_endio, stripe);
1748
1749         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1750         /* Read the whole range inside the chunk boundary. */
1751         for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1752                 struct page *page = scrub_stripe_get_page(stripe, cur);
1753                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1754                 int ret;
1755
1756                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1757                 /* We should have allocated enough bio vectors. */
1758                 ASSERT(ret == fs_info->sectorsize);
1759         }
1760         atomic_inc(&stripe->pending_io);
1761
1762         /*
1763          * For dev-replace, either user asks to avoid the source dev, or
1764          * the device is missing, we try the next mirror instead.
1765          */
1766         if (sctx->is_dev_replace &&
1767             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1768              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1769              !stripe->dev->bdev)) {
1770                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1771                                                   stripe->bg->length);
1772
1773                 mirror = calc_next_mirror(mirror, num_copies);
1774         }
1775         btrfs_submit_bio(bbio, mirror);
1776 }
1777
1778 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1779 {
1780         int i;
1781
1782         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1783                 if (stripe->sectors[i].is_metadata) {
1784                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1785
1786                         btrfs_err(fs_info,
1787                         "stripe %llu has unrepaired metadata sector at %llu",
1788                                   stripe->logical,
1789                                   stripe->logical + (i << fs_info->sectorsize_bits));
1790                         return true;
1791                 }
1792         }
1793         return false;
1794 }
1795
1796 static void submit_initial_group_read(struct scrub_ctx *sctx,
1797                                       unsigned int first_slot,
1798                                       unsigned int nr_stripes)
1799 {
1800         struct blk_plug plug;
1801
1802         ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1803         ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1804
1805         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1806                               btrfs_stripe_nr_to_offset(nr_stripes));
1807         blk_start_plug(&plug);
1808         for (int i = 0; i < nr_stripes; i++) {
1809                 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1810
1811                 /* Those stripes should be initialized. */
1812                 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1813                 scrub_submit_initial_read(sctx, stripe);
1814         }
1815         blk_finish_plug(&plug);
1816 }
1817
1818 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1819 {
1820         struct btrfs_fs_info *fs_info = sctx->fs_info;
1821         struct scrub_stripe *stripe;
1822         const int nr_stripes = sctx->cur_stripe;
1823         int ret = 0;
1824
1825         if (!nr_stripes)
1826                 return 0;
1827
1828         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1829
1830         /* Submit the stripes which are populated but not submitted. */
1831         if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1832                 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1833
1834                 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1835         }
1836
1837         for (int i = 0; i < nr_stripes; i++) {
1838                 stripe = &sctx->stripes[i];
1839
1840                 wait_event(stripe->repair_wait,
1841                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1842         }
1843
1844         /* Submit for dev-replace. */
1845         if (sctx->is_dev_replace) {
1846                 /*
1847                  * For dev-replace, if we know there is something wrong with
1848                  * metadata, we should immediately abort.
1849                  */
1850                 for (int i = 0; i < nr_stripes; i++) {
1851                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1852                                 ret = -EIO;
1853                                 goto out;
1854                         }
1855                 }
1856                 for (int i = 0; i < nr_stripes; i++) {
1857                         unsigned long good;
1858
1859                         stripe = &sctx->stripes[i];
1860
1861                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1862
1863                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1864                                       &stripe->error_bitmap, stripe->nr_sectors);
1865                         scrub_write_sectors(sctx, stripe, good, true);
1866                 }
1867         }
1868
1869         /* Wait for the above writebacks to finish. */
1870         for (int i = 0; i < nr_stripes; i++) {
1871                 stripe = &sctx->stripes[i];
1872
1873                 wait_scrub_stripe_io(stripe);
1874                 scrub_reset_stripe(stripe);
1875         }
1876 out:
1877         sctx->cur_stripe = 0;
1878         return ret;
1879 }
1880
1881 static void raid56_scrub_wait_endio(struct bio *bio)
1882 {
1883         complete(bio->bi_private);
1884 }
1885
1886 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1887                               struct btrfs_device *dev, int mirror_num,
1888                               u64 logical, u32 length, u64 physical,
1889                               u64 *found_logical_ret)
1890 {
1891         struct scrub_stripe *stripe;
1892         int ret;
1893
1894         /*
1895          * There should always be one slot left, as caller filling the last
1896          * slot should flush them all.
1897          */
1898         ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1899
1900         /* @found_logical_ret must be specified. */
1901         ASSERT(found_logical_ret);
1902
1903         stripe = &sctx->stripes[sctx->cur_stripe];
1904         scrub_reset_stripe(stripe);
1905         ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1906                                            &sctx->csum_path, dev, physical,
1907                                            mirror_num, logical, length, stripe);
1908         /* Either >0 as no more extents or <0 for error. */
1909         if (ret)
1910                 return ret;
1911         *found_logical_ret = stripe->logical;
1912         sctx->cur_stripe++;
1913
1914         /* We filled one group, submit it. */
1915         if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1916                 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1917
1918                 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1919         }
1920
1921         /* Last slot used, flush them all. */
1922         if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1923                 return flush_scrub_stripes(sctx);
1924         return 0;
1925 }
1926
1927 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1928                                       struct btrfs_device *scrub_dev,
1929                                       struct btrfs_block_group *bg,
1930                                       struct btrfs_chunk_map *map,
1931                                       u64 full_stripe_start)
1932 {
1933         DECLARE_COMPLETION_ONSTACK(io_done);
1934         struct btrfs_fs_info *fs_info = sctx->fs_info;
1935         struct btrfs_raid_bio *rbio;
1936         struct btrfs_io_context *bioc = NULL;
1937         struct btrfs_path extent_path = { 0 };
1938         struct btrfs_path csum_path = { 0 };
1939         struct bio *bio;
1940         struct scrub_stripe *stripe;
1941         bool all_empty = true;
1942         const int data_stripes = nr_data_stripes(map);
1943         unsigned long extent_bitmap = 0;
1944         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1945         int ret;
1946
1947         ASSERT(sctx->raid56_data_stripes);
1948
1949         /*
1950          * For data stripe search, we cannot re-use the same extent/csum paths,
1951          * as the data stripe bytenr may be smaller than previous extent.  Thus
1952          * we have to use our own extent/csum paths.
1953          */
1954         extent_path.search_commit_root = 1;
1955         extent_path.skip_locking = 1;
1956         csum_path.search_commit_root = 1;
1957         csum_path.skip_locking = 1;
1958
1959         for (int i = 0; i < data_stripes; i++) {
1960                 int stripe_index;
1961                 int rot;
1962                 u64 physical;
1963
1964                 stripe = &sctx->raid56_data_stripes[i];
1965                 rot = div_u64(full_stripe_start - bg->start,
1966                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1967                 stripe_index = (i + rot) % map->num_stripes;
1968                 physical = map->stripes[stripe_index].physical +
1969                            btrfs_stripe_nr_to_offset(rot);
1970
1971                 scrub_reset_stripe(stripe);
1972                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1973                 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1974                                 map->stripes[stripe_index].dev, physical, 1,
1975                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1976                                 BTRFS_STRIPE_LEN, stripe);
1977                 if (ret < 0)
1978                         goto out;
1979                 /*
1980                  * No extent in this data stripe, need to manually mark them
1981                  * initialized to make later read submission happy.
1982                  */
1983                 if (ret > 0) {
1984                         stripe->logical = full_stripe_start +
1985                                           btrfs_stripe_nr_to_offset(i);
1986                         stripe->dev = map->stripes[stripe_index].dev;
1987                         stripe->mirror_num = 1;
1988                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1989                 }
1990         }
1991
1992         /* Check if all data stripes are empty. */
1993         for (int i = 0; i < data_stripes; i++) {
1994                 stripe = &sctx->raid56_data_stripes[i];
1995                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1996                         all_empty = false;
1997                         break;
1998                 }
1999         }
2000         if (all_empty) {
2001                 ret = 0;
2002                 goto out;
2003         }
2004
2005         for (int i = 0; i < data_stripes; i++) {
2006                 stripe = &sctx->raid56_data_stripes[i];
2007                 scrub_submit_initial_read(sctx, stripe);
2008         }
2009         for (int i = 0; i < data_stripes; i++) {
2010                 stripe = &sctx->raid56_data_stripes[i];
2011
2012                 wait_event(stripe->repair_wait,
2013                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2014         }
2015         /* For now, no zoned support for RAID56. */
2016         ASSERT(!btrfs_is_zoned(sctx->fs_info));
2017
2018         /*
2019          * Now all data stripes are properly verified. Check if we have any
2020          * unrepaired, if so abort immediately or we could further corrupt the
2021          * P/Q stripes.
2022          *
2023          * During the loop, also populate extent_bitmap.
2024          */
2025         for (int i = 0; i < data_stripes; i++) {
2026                 unsigned long error;
2027
2028                 stripe = &sctx->raid56_data_stripes[i];
2029
2030                 /*
2031                  * We should only check the errors where there is an extent.
2032                  * As we may hit an empty data stripe while it's missing.
2033                  */
2034                 bitmap_and(&error, &stripe->error_bitmap,
2035                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
2036                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2037                         btrfs_err(fs_info,
2038 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2039                                   full_stripe_start, i, stripe->nr_sectors,
2040                                   &error);
2041                         ret = -EIO;
2042                         goto out;
2043                 }
2044                 bitmap_or(&extent_bitmap, &extent_bitmap,
2045                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
2046         }
2047
2048         /* Now we can check and regenerate the P/Q stripe. */
2049         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2050         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2051         bio->bi_private = &io_done;
2052         bio->bi_end_io = raid56_scrub_wait_endio;
2053
2054         btrfs_bio_counter_inc_blocked(fs_info);
2055         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2056                               &length, &bioc, NULL, NULL);
2057         if (ret < 0) {
2058                 btrfs_put_bioc(bioc);
2059                 btrfs_bio_counter_dec(fs_info);
2060                 goto out;
2061         }
2062         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2063                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2064         btrfs_put_bioc(bioc);
2065         if (!rbio) {
2066                 ret = -ENOMEM;
2067                 btrfs_bio_counter_dec(fs_info);
2068                 goto out;
2069         }
2070         /* Use the recovered stripes as cache to avoid read them from disk again. */
2071         for (int i = 0; i < data_stripes; i++) {
2072                 stripe = &sctx->raid56_data_stripes[i];
2073
2074                 raid56_parity_cache_data_pages(rbio, stripe->pages,
2075                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2076         }
2077         raid56_parity_submit_scrub_rbio(rbio);
2078         wait_for_completion_io(&io_done);
2079         ret = blk_status_to_errno(bio->bi_status);
2080         bio_put(bio);
2081         btrfs_bio_counter_dec(fs_info);
2082
2083         btrfs_release_path(&extent_path);
2084         btrfs_release_path(&csum_path);
2085 out:
2086         return ret;
2087 }
2088
2089 /*
2090  * Scrub one range which can only has simple mirror based profile.
2091  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2092  *  RAID0/RAID10).
2093  *
2094  * Since we may need to handle a subset of block group, we need @logical_start
2095  * and @logical_length parameter.
2096  */
2097 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2098                                struct btrfs_block_group *bg,
2099                                struct btrfs_chunk_map *map,
2100                                u64 logical_start, u64 logical_length,
2101                                struct btrfs_device *device,
2102                                u64 physical, int mirror_num)
2103 {
2104         struct btrfs_fs_info *fs_info = sctx->fs_info;
2105         const u64 logical_end = logical_start + logical_length;
2106         u64 cur_logical = logical_start;
2107         int ret = 0;
2108
2109         /* The range must be inside the bg */
2110         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2111
2112         /* Go through each extent items inside the logical range */
2113         while (cur_logical < logical_end) {
2114                 u64 found_logical = U64_MAX;
2115                 u64 cur_physical = physical + cur_logical - logical_start;
2116
2117                 /* Canceled? */
2118                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2119                     atomic_read(&sctx->cancel_req)) {
2120                         ret = -ECANCELED;
2121                         break;
2122                 }
2123                 /* Paused? */
2124                 if (atomic_read(&fs_info->scrub_pause_req)) {
2125                         /* Push queued extents */
2126                         scrub_blocked_if_needed(fs_info);
2127                 }
2128                 /* Block group removed? */
2129                 spin_lock(&bg->lock);
2130                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2131                         spin_unlock(&bg->lock);
2132                         ret = 0;
2133                         break;
2134                 }
2135                 spin_unlock(&bg->lock);
2136
2137                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2138                                          cur_logical, logical_end - cur_logical,
2139                                          cur_physical, &found_logical);
2140                 if (ret > 0) {
2141                         /* No more extent, just update the accounting */
2142                         sctx->stat.last_physical = physical + logical_length;
2143                         ret = 0;
2144                         break;
2145                 }
2146                 if (ret < 0)
2147                         break;
2148
2149                 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2150                 ASSERT(found_logical != U64_MAX);
2151                 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2152
2153                 /* Don't hold CPU for too long time */
2154                 cond_resched();
2155         }
2156         return ret;
2157 }
2158
2159 /* Calculate the full stripe length for simple stripe based profiles */
2160 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2161 {
2162         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2163                             BTRFS_BLOCK_GROUP_RAID10));
2164
2165         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2166 }
2167
2168 /* Get the logical bytenr for the stripe */
2169 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2170                                      struct btrfs_block_group *bg,
2171                                      int stripe_index)
2172 {
2173         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2174                             BTRFS_BLOCK_GROUP_RAID10));
2175         ASSERT(stripe_index < map->num_stripes);
2176
2177         /*
2178          * (stripe_index / sub_stripes) gives how many data stripes we need to
2179          * skip.
2180          */
2181         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2182                bg->start;
2183 }
2184
2185 /* Get the mirror number for the stripe */
2186 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2187 {
2188         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2189                             BTRFS_BLOCK_GROUP_RAID10));
2190         ASSERT(stripe_index < map->num_stripes);
2191
2192         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2193         return stripe_index % map->sub_stripes + 1;
2194 }
2195
2196 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2197                                struct btrfs_block_group *bg,
2198                                struct btrfs_chunk_map *map,
2199                                struct btrfs_device *device,
2200                                int stripe_index)
2201 {
2202         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2203         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2204         const u64 orig_physical = map->stripes[stripe_index].physical;
2205         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2206         u64 cur_logical = orig_logical;
2207         u64 cur_physical = orig_physical;
2208         int ret = 0;
2209
2210         while (cur_logical < bg->start + bg->length) {
2211                 /*
2212                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2213                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2214                  * this stripe.
2215                  */
2216                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2217                                           BTRFS_STRIPE_LEN, device, cur_physical,
2218                                           mirror_num);
2219                 if (ret)
2220                         return ret;
2221                 /* Skip to next stripe which belongs to the target device */
2222                 cur_logical += logical_increment;
2223                 /* For physical offset, we just go to next stripe */
2224                 cur_physical += BTRFS_STRIPE_LEN;
2225         }
2226         return ret;
2227 }
2228
2229 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2230                                            struct btrfs_block_group *bg,
2231                                            struct btrfs_chunk_map *map,
2232                                            struct btrfs_device *scrub_dev,
2233                                            int stripe_index)
2234 {
2235         struct btrfs_fs_info *fs_info = sctx->fs_info;
2236         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2237         const u64 chunk_logical = bg->start;
2238         int ret;
2239         int ret2;
2240         u64 physical = map->stripes[stripe_index].physical;
2241         const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2242         const u64 physical_end = physical + dev_stripe_len;
2243         u64 logical;
2244         u64 logic_end;
2245         /* The logical increment after finishing one stripe */
2246         u64 increment;
2247         /* Offset inside the chunk */
2248         u64 offset;
2249         u64 stripe_logical;
2250         int stop_loop = 0;
2251
2252         /* Extent_path should be released by now. */
2253         ASSERT(sctx->extent_path.nodes[0] == NULL);
2254
2255         scrub_blocked_if_needed(fs_info);
2256
2257         if (sctx->is_dev_replace &&
2258             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2259                 mutex_lock(&sctx->wr_lock);
2260                 sctx->write_pointer = physical;
2261                 mutex_unlock(&sctx->wr_lock);
2262         }
2263
2264         /* Prepare the extra data stripes used by RAID56. */
2265         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2266                 ASSERT(sctx->raid56_data_stripes == NULL);
2267
2268                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2269                                                     sizeof(struct scrub_stripe),
2270                                                     GFP_KERNEL);
2271                 if (!sctx->raid56_data_stripes) {
2272                         ret = -ENOMEM;
2273                         goto out;
2274                 }
2275                 for (int i = 0; i < nr_data_stripes(map); i++) {
2276                         ret = init_scrub_stripe(fs_info,
2277                                                 &sctx->raid56_data_stripes[i]);
2278                         if (ret < 0)
2279                                 goto out;
2280                         sctx->raid56_data_stripes[i].bg = bg;
2281                         sctx->raid56_data_stripes[i].sctx = sctx;
2282                 }
2283         }
2284         /*
2285          * There used to be a big double loop to handle all profiles using the
2286          * same routine, which grows larger and more gross over time.
2287          *
2288          * So here we handle each profile differently, so simpler profiles
2289          * have simpler scrubbing function.
2290          */
2291         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2292                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2293                 /*
2294                  * Above check rules out all complex profile, the remaining
2295                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2296                  * mirrored duplication without stripe.
2297                  *
2298                  * Only @physical and @mirror_num needs to calculated using
2299                  * @stripe_index.
2300                  */
2301                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2302                                 scrub_dev, map->stripes[stripe_index].physical,
2303                                 stripe_index + 1);
2304                 offset = 0;
2305                 goto out;
2306         }
2307         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2308                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2309                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2310                 goto out;
2311         }
2312
2313         /* Only RAID56 goes through the old code */
2314         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2315         ret = 0;
2316
2317         /* Calculate the logical end of the stripe */
2318         get_raid56_logic_offset(physical_end, stripe_index,
2319                                 map, &logic_end, NULL);
2320         logic_end += chunk_logical;
2321
2322         /* Initialize @offset in case we need to go to out: label */
2323         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2324         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2325
2326         /*
2327          * Due to the rotation, for RAID56 it's better to iterate each stripe
2328          * using their physical offset.
2329          */
2330         while (physical < physical_end) {
2331                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2332                                               &logical, &stripe_logical);
2333                 logical += chunk_logical;
2334                 if (ret) {
2335                         /* it is parity strip */
2336                         stripe_logical += chunk_logical;
2337                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2338                                                          map, stripe_logical);
2339                         if (ret)
2340                                 goto out;
2341                         goto next;
2342                 }
2343
2344                 /*
2345                  * Now we're at a data stripe, scrub each extents in the range.
2346                  *
2347                  * At this stage, if we ignore the repair part, inside each data
2348                  * stripe it is no different than SINGLE profile.
2349                  * We can reuse scrub_simple_mirror() here, as the repair part
2350                  * is still based on @mirror_num.
2351                  */
2352                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2353                                           scrub_dev, physical, 1);
2354                 if (ret < 0)
2355                         goto out;
2356 next:
2357                 logical += increment;
2358                 physical += BTRFS_STRIPE_LEN;
2359                 spin_lock(&sctx->stat_lock);
2360                 if (stop_loop)
2361                         sctx->stat.last_physical =
2362                                 map->stripes[stripe_index].physical + dev_stripe_len;
2363                 else
2364                         sctx->stat.last_physical = physical;
2365                 spin_unlock(&sctx->stat_lock);
2366                 if (stop_loop)
2367                         break;
2368         }
2369 out:
2370         ret2 = flush_scrub_stripes(sctx);
2371         if (!ret)
2372                 ret = ret2;
2373         btrfs_release_path(&sctx->extent_path);
2374         btrfs_release_path(&sctx->csum_path);
2375
2376         if (sctx->raid56_data_stripes) {
2377                 for (int i = 0; i < nr_data_stripes(map); i++)
2378                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2379                 kfree(sctx->raid56_data_stripes);
2380                 sctx->raid56_data_stripes = NULL;
2381         }
2382
2383         if (sctx->is_dev_replace && ret >= 0) {
2384                 int ret2;
2385
2386                 ret2 = sync_write_pointer_for_zoned(sctx,
2387                                 chunk_logical + offset,
2388                                 map->stripes[stripe_index].physical,
2389                                 physical_end);
2390                 if (ret2)
2391                         ret = ret2;
2392         }
2393
2394         return ret < 0 ? ret : 0;
2395 }
2396
2397 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2398                                           struct btrfs_block_group *bg,
2399                                           struct btrfs_device *scrub_dev,
2400                                           u64 dev_offset,
2401                                           u64 dev_extent_len)
2402 {
2403         struct btrfs_fs_info *fs_info = sctx->fs_info;
2404         struct btrfs_chunk_map *map;
2405         int i;
2406         int ret = 0;
2407
2408         map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2409         if (!map) {
2410                 /*
2411                  * Might have been an unused block group deleted by the cleaner
2412                  * kthread or relocation.
2413                  */
2414                 spin_lock(&bg->lock);
2415                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2416                         ret = -EINVAL;
2417                 spin_unlock(&bg->lock);
2418
2419                 return ret;
2420         }
2421         if (map->start != bg->start)
2422                 goto out;
2423         if (map->chunk_len < dev_extent_len)
2424                 goto out;
2425
2426         for (i = 0; i < map->num_stripes; ++i) {
2427                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2428                     map->stripes[i].physical == dev_offset) {
2429                         ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2430                         if (ret)
2431                                 goto out;
2432                 }
2433         }
2434 out:
2435         btrfs_free_chunk_map(map);
2436
2437         return ret;
2438 }
2439
2440 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2441                                           struct btrfs_block_group *cache)
2442 {
2443         struct btrfs_fs_info *fs_info = cache->fs_info;
2444         struct btrfs_trans_handle *trans;
2445
2446         if (!btrfs_is_zoned(fs_info))
2447                 return 0;
2448
2449         btrfs_wait_block_group_reservations(cache);
2450         btrfs_wait_nocow_writers(cache);
2451         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2452
2453         trans = btrfs_join_transaction(root);
2454         if (IS_ERR(trans))
2455                 return PTR_ERR(trans);
2456         return btrfs_commit_transaction(trans);
2457 }
2458
2459 static noinline_for_stack
2460 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2461                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2462 {
2463         struct btrfs_dev_extent *dev_extent = NULL;
2464         struct btrfs_path *path;
2465         struct btrfs_fs_info *fs_info = sctx->fs_info;
2466         struct btrfs_root *root = fs_info->dev_root;
2467         u64 chunk_offset;
2468         int ret = 0;
2469         int ro_set;
2470         int slot;
2471         struct extent_buffer *l;
2472         struct btrfs_key key;
2473         struct btrfs_key found_key;
2474         struct btrfs_block_group *cache;
2475         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2476
2477         path = btrfs_alloc_path();
2478         if (!path)
2479                 return -ENOMEM;
2480
2481         path->reada = READA_FORWARD;
2482         path->search_commit_root = 1;
2483         path->skip_locking = 1;
2484
2485         key.objectid = scrub_dev->devid;
2486         key.offset = 0ull;
2487         key.type = BTRFS_DEV_EXTENT_KEY;
2488
2489         while (1) {
2490                 u64 dev_extent_len;
2491
2492                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2493                 if (ret < 0)
2494                         break;
2495                 if (ret > 0) {
2496                         if (path->slots[0] >=
2497                             btrfs_header_nritems(path->nodes[0])) {
2498                                 ret = btrfs_next_leaf(root, path);
2499                                 if (ret < 0)
2500                                         break;
2501                                 if (ret > 0) {
2502                                         ret = 0;
2503                                         break;
2504                                 }
2505                         } else {
2506                                 ret = 0;
2507                         }
2508                 }
2509
2510                 l = path->nodes[0];
2511                 slot = path->slots[0];
2512
2513                 btrfs_item_key_to_cpu(l, &found_key, slot);
2514
2515                 if (found_key.objectid != scrub_dev->devid)
2516                         break;
2517
2518                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2519                         break;
2520
2521                 if (found_key.offset >= end)
2522                         break;
2523
2524                 if (found_key.offset < key.offset)
2525                         break;
2526
2527                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2528                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2529
2530                 if (found_key.offset + dev_extent_len <= start)
2531                         goto skip;
2532
2533                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2534
2535                 /*
2536                  * get a reference on the corresponding block group to prevent
2537                  * the chunk from going away while we scrub it
2538                  */
2539                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2540
2541                 /* some chunks are removed but not committed to disk yet,
2542                  * continue scrubbing */
2543                 if (!cache)
2544                         goto skip;
2545
2546                 ASSERT(cache->start <= chunk_offset);
2547                 /*
2548                  * We are using the commit root to search for device extents, so
2549                  * that means we could have found a device extent item from a
2550                  * block group that was deleted in the current transaction. The
2551                  * logical start offset of the deleted block group, stored at
2552                  * @chunk_offset, might be part of the logical address range of
2553                  * a new block group (which uses different physical extents).
2554                  * In this case btrfs_lookup_block_group() has returned the new
2555                  * block group, and its start address is less than @chunk_offset.
2556                  *
2557                  * We skip such new block groups, because it's pointless to
2558                  * process them, as we won't find their extents because we search
2559                  * for them using the commit root of the extent tree. For a device
2560                  * replace it's also fine to skip it, we won't miss copying them
2561                  * to the target device because we have the write duplication
2562                  * setup through the regular write path (by btrfs_map_block()),
2563                  * and we have committed a transaction when we started the device
2564                  * replace, right after setting up the device replace state.
2565                  */
2566                 if (cache->start < chunk_offset) {
2567                         btrfs_put_block_group(cache);
2568                         goto skip;
2569                 }
2570
2571                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2572                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2573                                 btrfs_put_block_group(cache);
2574                                 goto skip;
2575                         }
2576                 }
2577
2578                 /*
2579                  * Make sure that while we are scrubbing the corresponding block
2580                  * group doesn't get its logical address and its device extents
2581                  * reused for another block group, which can possibly be of a
2582                  * different type and different profile. We do this to prevent
2583                  * false error detections and crashes due to bogus attempts to
2584                  * repair extents.
2585                  */
2586                 spin_lock(&cache->lock);
2587                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2588                         spin_unlock(&cache->lock);
2589                         btrfs_put_block_group(cache);
2590                         goto skip;
2591                 }
2592                 btrfs_freeze_block_group(cache);
2593                 spin_unlock(&cache->lock);
2594
2595                 /*
2596                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2597                  * to avoid deadlock caused by:
2598                  * btrfs_inc_block_group_ro()
2599                  * -> btrfs_wait_for_commit()
2600                  * -> btrfs_commit_transaction()
2601                  * -> btrfs_scrub_pause()
2602                  */
2603                 scrub_pause_on(fs_info);
2604
2605                 /*
2606                  * Don't do chunk preallocation for scrub.
2607                  *
2608                  * This is especially important for SYSTEM bgs, or we can hit
2609                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2610                  * 1. The only SYSTEM bg is marked RO.
2611                  *    Since SYSTEM bg is small, that's pretty common.
2612                  * 2. New SYSTEM bg will be allocated
2613                  *    Due to regular version will allocate new chunk.
2614                  * 3. New SYSTEM bg is empty and will get cleaned up
2615                  *    Before cleanup really happens, it's marked RO again.
2616                  * 4. Empty SYSTEM bg get scrubbed
2617                  *    We go back to 2.
2618                  *
2619                  * This can easily boost the amount of SYSTEM chunks if cleaner
2620                  * thread can't be triggered fast enough, and use up all space
2621                  * of btrfs_super_block::sys_chunk_array
2622                  *
2623                  * While for dev replace, we need to try our best to mark block
2624                  * group RO, to prevent race between:
2625                  * - Write duplication
2626                  *   Contains latest data
2627                  * - Scrub copy
2628                  *   Contains data from commit tree
2629                  *
2630                  * If target block group is not marked RO, nocow writes can
2631                  * be overwritten by scrub copy, causing data corruption.
2632                  * So for dev-replace, it's not allowed to continue if a block
2633                  * group is not RO.
2634                  */
2635                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2636                 if (!ret && sctx->is_dev_replace) {
2637                         ret = finish_extent_writes_for_zoned(root, cache);
2638                         if (ret) {
2639                                 btrfs_dec_block_group_ro(cache);
2640                                 scrub_pause_off(fs_info);
2641                                 btrfs_put_block_group(cache);
2642                                 break;
2643                         }
2644                 }
2645
2646                 if (ret == 0) {
2647                         ro_set = 1;
2648                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2649                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2650                         /*
2651                          * btrfs_inc_block_group_ro return -ENOSPC when it
2652                          * failed in creating new chunk for metadata.
2653                          * It is not a problem for scrub, because
2654                          * metadata are always cowed, and our scrub paused
2655                          * commit_transactions.
2656                          *
2657                          * For RAID56 chunks, we have to mark them read-only
2658                          * for scrub, as later we would use our own cache
2659                          * out of RAID56 realm.
2660                          * Thus we want the RAID56 bg to be marked RO to
2661                          * prevent RMW from screwing up out cache.
2662                          */
2663                         ro_set = 0;
2664                 } else if (ret == -ETXTBSY) {
2665                         btrfs_warn(fs_info,
2666                    "skipping scrub of block group %llu due to active swapfile",
2667                                    cache->start);
2668                         scrub_pause_off(fs_info);
2669                         ret = 0;
2670                         goto skip_unfreeze;
2671                 } else {
2672                         btrfs_warn(fs_info,
2673                                    "failed setting block group ro: %d", ret);
2674                         btrfs_unfreeze_block_group(cache);
2675                         btrfs_put_block_group(cache);
2676                         scrub_pause_off(fs_info);
2677                         break;
2678                 }
2679
2680                 /*
2681                  * Now the target block is marked RO, wait for nocow writes to
2682                  * finish before dev-replace.
2683                  * COW is fine, as COW never overwrites extents in commit tree.
2684                  */
2685                 if (sctx->is_dev_replace) {
2686                         btrfs_wait_nocow_writers(cache);
2687                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2688                                         cache->length);
2689                 }
2690
2691                 scrub_pause_off(fs_info);
2692                 down_write(&dev_replace->rwsem);
2693                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2694                 dev_replace->cursor_left = found_key.offset;
2695                 dev_replace->item_needs_writeback = 1;
2696                 up_write(&dev_replace->rwsem);
2697
2698                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2699                                   dev_extent_len);
2700                 if (sctx->is_dev_replace &&
2701                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2702                                                       cache, found_key.offset))
2703                         ro_set = 0;
2704
2705                 down_write(&dev_replace->rwsem);
2706                 dev_replace->cursor_left = dev_replace->cursor_right;
2707                 dev_replace->item_needs_writeback = 1;
2708                 up_write(&dev_replace->rwsem);
2709
2710                 if (ro_set)
2711                         btrfs_dec_block_group_ro(cache);
2712
2713                 /*
2714                  * We might have prevented the cleaner kthread from deleting
2715                  * this block group if it was already unused because we raced
2716                  * and set it to RO mode first. So add it back to the unused
2717                  * list, otherwise it might not ever be deleted unless a manual
2718                  * balance is triggered or it becomes used and unused again.
2719                  */
2720                 spin_lock(&cache->lock);
2721                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2722                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2723                         spin_unlock(&cache->lock);
2724                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2725                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2726                                                          cache);
2727                         else
2728                                 btrfs_mark_bg_unused(cache);
2729                 } else {
2730                         spin_unlock(&cache->lock);
2731                 }
2732 skip_unfreeze:
2733                 btrfs_unfreeze_block_group(cache);
2734                 btrfs_put_block_group(cache);
2735                 if (ret)
2736                         break;
2737                 if (sctx->is_dev_replace &&
2738                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2739                         ret = -EIO;
2740                         break;
2741                 }
2742                 if (sctx->stat.malloc_errors > 0) {
2743                         ret = -ENOMEM;
2744                         break;
2745                 }
2746 skip:
2747                 key.offset = found_key.offset + dev_extent_len;
2748                 btrfs_release_path(path);
2749         }
2750
2751         btrfs_free_path(path);
2752
2753         return ret;
2754 }
2755
2756 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2757                            struct page *page, u64 physical, u64 generation)
2758 {
2759         struct btrfs_fs_info *fs_info = sctx->fs_info;
2760         struct bio_vec bvec;
2761         struct bio bio;
2762         struct btrfs_super_block *sb = page_address(page);
2763         int ret;
2764
2765         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2766         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2767         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2768         ret = submit_bio_wait(&bio);
2769         bio_uninit(&bio);
2770
2771         if (ret < 0)
2772                 return ret;
2773         ret = btrfs_check_super_csum(fs_info, sb);
2774         if (ret != 0) {
2775                 btrfs_err_rl(fs_info,
2776                         "super block at physical %llu devid %llu has bad csum",
2777                         physical, dev->devid);
2778                 return -EIO;
2779         }
2780         if (btrfs_super_generation(sb) != generation) {
2781                 btrfs_err_rl(fs_info,
2782 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2783                              physical, dev->devid,
2784                              btrfs_super_generation(sb), generation);
2785                 return -EUCLEAN;
2786         }
2787
2788         return btrfs_validate_super(fs_info, sb, -1);
2789 }
2790
2791 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2792                                            struct btrfs_device *scrub_dev)
2793 {
2794         int     i;
2795         u64     bytenr;
2796         u64     gen;
2797         int ret = 0;
2798         struct page *page;
2799         struct btrfs_fs_info *fs_info = sctx->fs_info;
2800
2801         if (BTRFS_FS_ERROR(fs_info))
2802                 return -EROFS;
2803
2804         page = alloc_page(GFP_KERNEL);
2805         if (!page) {
2806                 spin_lock(&sctx->stat_lock);
2807                 sctx->stat.malloc_errors++;
2808                 spin_unlock(&sctx->stat_lock);
2809                 return -ENOMEM;
2810         }
2811
2812         /* Seed devices of a new filesystem has their own generation. */
2813         if (scrub_dev->fs_devices != fs_info->fs_devices)
2814                 gen = scrub_dev->generation;
2815         else
2816                 gen = btrfs_get_last_trans_committed(fs_info);
2817
2818         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2819                 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2820                 if (ret == -ENOENT)
2821                         break;
2822
2823                 if (ret) {
2824                         spin_lock(&sctx->stat_lock);
2825                         sctx->stat.super_errors++;
2826                         spin_unlock(&sctx->stat_lock);
2827                         continue;
2828                 }
2829
2830                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2831                     scrub_dev->commit_total_bytes)
2832                         break;
2833                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2834                         continue;
2835
2836                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2837                 if (ret) {
2838                         spin_lock(&sctx->stat_lock);
2839                         sctx->stat.super_errors++;
2840                         spin_unlock(&sctx->stat_lock);
2841                 }
2842         }
2843         __free_page(page);
2844         return 0;
2845 }
2846
2847 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2848 {
2849         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2850                                         &fs_info->scrub_lock)) {
2851                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2852
2853                 fs_info->scrub_workers = NULL;
2854                 mutex_unlock(&fs_info->scrub_lock);
2855
2856                 if (scrub_workers)
2857                         destroy_workqueue(scrub_workers);
2858         }
2859 }
2860
2861 /*
2862  * get a reference count on fs_info->scrub_workers. start worker if necessary
2863  */
2864 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2865 {
2866         struct workqueue_struct *scrub_workers = NULL;
2867         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2868         int max_active = fs_info->thread_pool_size;
2869         int ret = -ENOMEM;
2870
2871         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2872                 return 0;
2873
2874         scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2875         if (!scrub_workers)
2876                 return -ENOMEM;
2877
2878         mutex_lock(&fs_info->scrub_lock);
2879         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2880                 ASSERT(fs_info->scrub_workers == NULL);
2881                 fs_info->scrub_workers = scrub_workers;
2882                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2883                 mutex_unlock(&fs_info->scrub_lock);
2884                 return 0;
2885         }
2886         /* Other thread raced in and created the workers for us */
2887         refcount_inc(&fs_info->scrub_workers_refcnt);
2888         mutex_unlock(&fs_info->scrub_lock);
2889
2890         ret = 0;
2891
2892         destroy_workqueue(scrub_workers);
2893         return ret;
2894 }
2895
2896 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2897                     u64 end, struct btrfs_scrub_progress *progress,
2898                     int readonly, int is_dev_replace)
2899 {
2900         struct btrfs_dev_lookup_args args = { .devid = devid };
2901         struct scrub_ctx *sctx;
2902         int ret;
2903         struct btrfs_device *dev;
2904         unsigned int nofs_flag;
2905         bool need_commit = false;
2906
2907         if (btrfs_fs_closing(fs_info))
2908                 return -EAGAIN;
2909
2910         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2911         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2912
2913         /*
2914          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2915          * value (max nodesize / min sectorsize), thus nodesize should always
2916          * be fine.
2917          */
2918         ASSERT(fs_info->nodesize <=
2919                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2920
2921         /* Allocate outside of device_list_mutex */
2922         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2923         if (IS_ERR(sctx))
2924                 return PTR_ERR(sctx);
2925
2926         ret = scrub_workers_get(fs_info);
2927         if (ret)
2928                 goto out_free_ctx;
2929
2930         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2931         dev = btrfs_find_device(fs_info->fs_devices, &args);
2932         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2933                      !is_dev_replace)) {
2934                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2935                 ret = -ENODEV;
2936                 goto out;
2937         }
2938
2939         if (!is_dev_replace && !readonly &&
2940             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2941                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2942                 btrfs_err_in_rcu(fs_info,
2943                         "scrub on devid %llu: filesystem on %s is not writable",
2944                                  devid, btrfs_dev_name(dev));
2945                 ret = -EROFS;
2946                 goto out;
2947         }
2948
2949         mutex_lock(&fs_info->scrub_lock);
2950         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2951             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2952                 mutex_unlock(&fs_info->scrub_lock);
2953                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2954                 ret = -EIO;
2955                 goto out;
2956         }
2957
2958         down_read(&fs_info->dev_replace.rwsem);
2959         if (dev->scrub_ctx ||
2960             (!is_dev_replace &&
2961              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2962                 up_read(&fs_info->dev_replace.rwsem);
2963                 mutex_unlock(&fs_info->scrub_lock);
2964                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965                 ret = -EINPROGRESS;
2966                 goto out;
2967         }
2968         up_read(&fs_info->dev_replace.rwsem);
2969
2970         sctx->readonly = readonly;
2971         dev->scrub_ctx = sctx;
2972         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2973
2974         /*
2975          * checking @scrub_pause_req here, we can avoid
2976          * race between committing transaction and scrubbing.
2977          */
2978         __scrub_blocked_if_needed(fs_info);
2979         atomic_inc(&fs_info->scrubs_running);
2980         mutex_unlock(&fs_info->scrub_lock);
2981
2982         /*
2983          * In order to avoid deadlock with reclaim when there is a transaction
2984          * trying to pause scrub, make sure we use GFP_NOFS for all the
2985          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2986          * invoked by our callees. The pausing request is done when the
2987          * transaction commit starts, and it blocks the transaction until scrub
2988          * is paused (done at specific points at scrub_stripe() or right above
2989          * before incrementing fs_info->scrubs_running).
2990          */
2991         nofs_flag = memalloc_nofs_save();
2992         if (!is_dev_replace) {
2993                 u64 old_super_errors;
2994
2995                 spin_lock(&sctx->stat_lock);
2996                 old_super_errors = sctx->stat.super_errors;
2997                 spin_unlock(&sctx->stat_lock);
2998
2999                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3000                 /*
3001                  * by holding device list mutex, we can
3002                  * kick off writing super in log tree sync.
3003                  */
3004                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3005                 ret = scrub_supers(sctx, dev);
3006                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3007
3008                 spin_lock(&sctx->stat_lock);
3009                 /*
3010                  * Super block errors found, but we can not commit transaction
3011                  * at current context, since btrfs_commit_transaction() needs
3012                  * to pause the current running scrub (hold by ourselves).
3013                  */
3014                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3015                         need_commit = true;
3016                 spin_unlock(&sctx->stat_lock);
3017         }
3018
3019         if (!ret)
3020                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3021         memalloc_nofs_restore(nofs_flag);
3022
3023         atomic_dec(&fs_info->scrubs_running);
3024         wake_up(&fs_info->scrub_pause_wait);
3025
3026         if (progress)
3027                 memcpy(progress, &sctx->stat, sizeof(*progress));
3028
3029         if (!is_dev_replace)
3030                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3031                         ret ? "not finished" : "finished", devid, ret);
3032
3033         mutex_lock(&fs_info->scrub_lock);
3034         dev->scrub_ctx = NULL;
3035         mutex_unlock(&fs_info->scrub_lock);
3036
3037         scrub_workers_put(fs_info);
3038         scrub_put_ctx(sctx);
3039
3040         /*
3041          * We found some super block errors before, now try to force a
3042          * transaction commit, as scrub has finished.
3043          */
3044         if (need_commit) {
3045                 struct btrfs_trans_handle *trans;
3046
3047                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3048                 if (IS_ERR(trans)) {
3049                         ret = PTR_ERR(trans);
3050                         btrfs_err(fs_info,
3051         "scrub: failed to start transaction to fix super block errors: %d", ret);
3052                         return ret;
3053                 }
3054                 ret = btrfs_commit_transaction(trans);
3055                 if (ret < 0)
3056                         btrfs_err(fs_info,
3057         "scrub: failed to commit transaction to fix super block errors: %d", ret);
3058         }
3059         return ret;
3060 out:
3061         scrub_workers_put(fs_info);
3062 out_free_ctx:
3063         scrub_free_ctx(sctx);
3064
3065         return ret;
3066 }
3067
3068 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3069 {
3070         mutex_lock(&fs_info->scrub_lock);
3071         atomic_inc(&fs_info->scrub_pause_req);
3072         while (atomic_read(&fs_info->scrubs_paused) !=
3073                atomic_read(&fs_info->scrubs_running)) {
3074                 mutex_unlock(&fs_info->scrub_lock);
3075                 wait_event(fs_info->scrub_pause_wait,
3076                            atomic_read(&fs_info->scrubs_paused) ==
3077                            atomic_read(&fs_info->scrubs_running));
3078                 mutex_lock(&fs_info->scrub_lock);
3079         }
3080         mutex_unlock(&fs_info->scrub_lock);
3081 }
3082
3083 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3084 {
3085         atomic_dec(&fs_info->scrub_pause_req);
3086         wake_up(&fs_info->scrub_pause_wait);
3087 }
3088
3089 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3090 {
3091         mutex_lock(&fs_info->scrub_lock);
3092         if (!atomic_read(&fs_info->scrubs_running)) {
3093                 mutex_unlock(&fs_info->scrub_lock);
3094                 return -ENOTCONN;
3095         }
3096
3097         atomic_inc(&fs_info->scrub_cancel_req);
3098         while (atomic_read(&fs_info->scrubs_running)) {
3099                 mutex_unlock(&fs_info->scrub_lock);
3100                 wait_event(fs_info->scrub_pause_wait,
3101                            atomic_read(&fs_info->scrubs_running) == 0);
3102                 mutex_lock(&fs_info->scrub_lock);
3103         }
3104         atomic_dec(&fs_info->scrub_cancel_req);
3105         mutex_unlock(&fs_info->scrub_lock);
3106
3107         return 0;
3108 }
3109
3110 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3111 {
3112         struct btrfs_fs_info *fs_info = dev->fs_info;
3113         struct scrub_ctx *sctx;
3114
3115         mutex_lock(&fs_info->scrub_lock);
3116         sctx = dev->scrub_ctx;
3117         if (!sctx) {
3118                 mutex_unlock(&fs_info->scrub_lock);
3119                 return -ENOTCONN;
3120         }
3121         atomic_inc(&sctx->cancel_req);
3122         while (dev->scrub_ctx) {
3123                 mutex_unlock(&fs_info->scrub_lock);
3124                 wait_event(fs_info->scrub_pause_wait,
3125                            dev->scrub_ctx == NULL);
3126                 mutex_lock(&fs_info->scrub_lock);
3127         }
3128         mutex_unlock(&fs_info->scrub_lock);
3129
3130         return 0;
3131 }
3132
3133 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3134                          struct btrfs_scrub_progress *progress)
3135 {
3136         struct btrfs_dev_lookup_args args = { .devid = devid };
3137         struct btrfs_device *dev;
3138         struct scrub_ctx *sctx = NULL;
3139
3140         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3141         dev = btrfs_find_device(fs_info->fs_devices, &args);
3142         if (dev)
3143                 sctx = dev->scrub_ctx;
3144         if (sctx)
3145                 memcpy(progress, &sctx->stat, sizeof(*progress));
3146         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3147
3148         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3149 }
This page took 0.20983 seconds and 4 git commands to generate.