1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
7 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT 1
29 * set when this rbio is sitting in the hash, but it is just a cache
32 #define RBIO_CACHE_BIT 2
35 * set when it is safe to trust the stripe_pages for caching
37 #define RBIO_CACHE_READY_BIT 3
39 #define RBIO_CACHE_SIZE 1024
41 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
43 /* Used by the raid56 code to lock stripes for read/modify/write */
44 struct btrfs_stripe_hash {
45 struct list_head hash_list;
49 /* Used by the raid56 code to lock stripes for read/modify/write */
50 struct btrfs_stripe_hash_table {
51 struct list_head stripe_cache;
52 spinlock_t cache_lock;
54 struct btrfs_stripe_hash table[];
58 * A bvec like structure to present a sector inside a page.
60 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
64 unsigned int pgoff:24;
65 unsigned int uptodate:8;
68 static void rmw_rbio_work(struct work_struct *work);
69 static void rmw_rbio_work_locked(struct work_struct *work);
70 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
71 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
74 static void scrub_rbio_work_locked(struct work_struct *work);
76 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78 bitmap_free(rbio->error_bitmap);
79 kfree(rbio->stripe_pages);
80 kfree(rbio->bio_sectors);
81 kfree(rbio->stripe_sectors);
82 kfree(rbio->finish_pointers);
85 static void free_raid_bio(struct btrfs_raid_bio *rbio)
89 if (!refcount_dec_and_test(&rbio->refs))
92 WARN_ON(!list_empty(&rbio->stripe_cache));
93 WARN_ON(!list_empty(&rbio->hash_list));
94 WARN_ON(!bio_list_empty(&rbio->bio_list));
96 for (i = 0; i < rbio->nr_pages; i++) {
97 if (rbio->stripe_pages[i]) {
98 __free_page(rbio->stripe_pages[i]);
99 rbio->stripe_pages[i] = NULL;
103 btrfs_put_bioc(rbio->bioc);
104 free_raid_bio_pointers(rbio);
108 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
110 INIT_WORK(&rbio->work, work_func);
111 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
115 * the stripe hash table is used for locking, and to collect
116 * bios in hopes of making a full stripe
118 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120 struct btrfs_stripe_hash_table *table;
121 struct btrfs_stripe_hash_table *x;
122 struct btrfs_stripe_hash *cur;
123 struct btrfs_stripe_hash *h;
124 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
127 if (info->stripe_hash_table)
131 * The table is large, starting with order 4 and can go as high as
132 * order 7 in case lock debugging is turned on.
134 * Try harder to allocate and fallback to vmalloc to lower the chance
135 * of a failing mount.
137 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
141 spin_lock_init(&table->cache_lock);
142 INIT_LIST_HEAD(&table->stripe_cache);
146 for (i = 0; i < num_entries; i++) {
148 INIT_LIST_HEAD(&cur->hash_list);
149 spin_lock_init(&cur->lock);
152 x = cmpxchg(&info->stripe_hash_table, NULL, table);
158 * caching an rbio means to copy anything from the
159 * bio_sectors array into the stripe_pages array. We
160 * use the page uptodate bit in the stripe cache array
161 * to indicate if it has valid data
163 * once the caching is done, we set the cache ready
166 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
171 ret = alloc_rbio_pages(rbio);
175 for (i = 0; i < rbio->nr_sectors; i++) {
176 /* Some range not covered by bio (partial write), skip it */
177 if (!rbio->bio_sectors[i].page) {
179 * Even if the sector is not covered by bio, if it is
180 * a data sector it should still be uptodate as it is
183 if (i < rbio->nr_data * rbio->stripe_nsectors)
184 ASSERT(rbio->stripe_sectors[i].uptodate);
188 ASSERT(rbio->stripe_sectors[i].page);
189 memcpy_page(rbio->stripe_sectors[i].page,
190 rbio->stripe_sectors[i].pgoff,
191 rbio->bio_sectors[i].page,
192 rbio->bio_sectors[i].pgoff,
193 rbio->bioc->fs_info->sectorsize);
194 rbio->stripe_sectors[i].uptodate = 1;
196 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
200 * we hash on the first logical address of the stripe
202 static int rbio_bucket(struct btrfs_raid_bio *rbio)
204 u64 num = rbio->bioc->full_stripe_logical;
207 * we shift down quite a bit. We're using byte
208 * addressing, and most of the lower bits are zeros.
209 * This tends to upset hash_64, and it consistently
210 * returns just one or two different values.
212 * shifting off the lower bits fixes things.
214 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
217 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
218 unsigned int page_nr)
220 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
221 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
224 ASSERT(page_nr < rbio->nr_pages);
226 for (i = sectors_per_page * page_nr;
227 i < sectors_per_page * page_nr + sectors_per_page;
229 if (!rbio->stripe_sectors[i].uptodate)
236 * Update the stripe_sectors[] array to use correct page and pgoff
238 * Should be called every time any page pointer in stripes_pages[] got modified.
240 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
246 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
247 int page_index = offset >> PAGE_SHIFT;
249 ASSERT(page_index < rbio->nr_pages);
250 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
251 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
255 static void steal_rbio_page(struct btrfs_raid_bio *src,
256 struct btrfs_raid_bio *dest, int page_nr)
258 const u32 sectorsize = src->bioc->fs_info->sectorsize;
259 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
262 if (dest->stripe_pages[page_nr])
263 __free_page(dest->stripe_pages[page_nr]);
264 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
265 src->stripe_pages[page_nr] = NULL;
267 /* Also update the sector->uptodate bits. */
268 for (i = sectors_per_page * page_nr;
269 i < sectors_per_page * page_nr + sectors_per_page; i++)
270 dest->stripe_sectors[i].uptodate = true;
273 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275 const int sector_nr = (page_nr << PAGE_SHIFT) >>
276 rbio->bioc->fs_info->sectorsize_bits;
279 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
280 * we won't have a page which is half data half parity.
282 * Thus if the first sector of the page belongs to data stripes, then
283 * the full page belongs to data stripes.
285 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
289 * Stealing an rbio means taking all the uptodate pages from the stripe array
290 * in the source rbio and putting them into the destination rbio.
292 * This will also update the involved stripe_sectors[] which are referring to
295 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
299 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
302 for (i = 0; i < dest->nr_pages; i++) {
303 struct page *p = src->stripe_pages[i];
306 * We don't need to steal P/Q pages as they will always be
307 * regenerated for RMW or full write anyway.
309 if (!is_data_stripe_page(src, i))
313 * If @src already has RBIO_CACHE_READY_BIT, it should have
314 * all data stripe pages present and uptodate.
317 ASSERT(full_page_sectors_uptodate(src, i));
318 steal_rbio_page(src, dest, i);
320 index_stripe_sectors(dest);
321 index_stripe_sectors(src);
325 * merging means we take the bio_list from the victim and
326 * splice it into the destination. The victim should
327 * be discarded afterwards.
329 * must be called with dest->rbio_list_lock held
331 static void merge_rbio(struct btrfs_raid_bio *dest,
332 struct btrfs_raid_bio *victim)
334 bio_list_merge_init(&dest->bio_list, &victim->bio_list);
335 dest->bio_list_bytes += victim->bio_list_bytes;
336 /* Also inherit the bitmaps from @victim. */
337 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
338 dest->stripe_nsectors);
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
345 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
353 * check the bit again under the hash table lock.
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 table = rbio->bioc->fs_info->stripe_hash_table;
359 h = table->table + bucket;
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
370 spin_lock(&rbio->bio_list_lock);
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
403 * prune a given rbio from the cache
405 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
407 struct btrfs_stripe_hash_table *table;
409 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 table = rbio->bioc->fs_info->stripe_hash_table;
414 spin_lock(&table->cache_lock);
415 __remove_rbio_from_cache(rbio);
416 spin_unlock(&table->cache_lock);
420 * remove everything in the cache
422 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424 struct btrfs_stripe_hash_table *table;
425 struct btrfs_raid_bio *rbio;
427 table = info->stripe_hash_table;
429 spin_lock(&table->cache_lock);
430 while (!list_empty(&table->stripe_cache)) {
431 rbio = list_entry(table->stripe_cache.next,
432 struct btrfs_raid_bio,
434 __remove_rbio_from_cache(rbio);
436 spin_unlock(&table->cache_lock);
440 * remove all cached entries and free the hash table
443 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
445 if (!info->stripe_hash_table)
447 btrfs_clear_rbio_cache(info);
448 kvfree(info->stripe_hash_table);
449 info->stripe_hash_table = NULL;
453 * insert an rbio into the stripe cache. It
454 * must have already been prepared by calling
457 * If this rbio was already cached, it gets
458 * moved to the front of the lru.
460 * If the size of the rbio cache is too big, we
463 static void cache_rbio(struct btrfs_raid_bio *rbio)
465 struct btrfs_stripe_hash_table *table;
467 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 table = rbio->bioc->fs_info->stripe_hash_table;
472 spin_lock(&table->cache_lock);
473 spin_lock(&rbio->bio_list_lock);
475 /* bump our ref if we were not in the list before */
476 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
477 refcount_inc(&rbio->refs);
479 if (!list_empty(&rbio->stripe_cache)){
480 list_move(&rbio->stripe_cache, &table->stripe_cache);
482 list_add(&rbio->stripe_cache, &table->stripe_cache);
483 table->cache_size += 1;
486 spin_unlock(&rbio->bio_list_lock);
488 if (table->cache_size > RBIO_CACHE_SIZE) {
489 struct btrfs_raid_bio *found;
491 found = list_entry(table->stripe_cache.prev,
492 struct btrfs_raid_bio,
496 __remove_rbio_from_cache(found);
499 spin_unlock(&table->cache_lock);
503 * helper function to run the xor_blocks api. It is only
504 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 static void run_xor(void **pages, int src_cnt, ssize_t len)
511 void *dest = pages[src_cnt];
514 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
515 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
517 src_cnt -= xor_src_cnt;
518 src_off += xor_src_cnt;
523 * Returns true if the bio list inside this rbio covers an entire stripe (no
526 static int rbio_is_full(struct btrfs_raid_bio *rbio)
528 unsigned long size = rbio->bio_list_bytes;
531 spin_lock(&rbio->bio_list_lock);
532 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
534 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
535 spin_unlock(&rbio->bio_list_lock);
541 * returns 1 if it is safe to merge two rbios together.
542 * The merging is safe if the two rbios correspond to
543 * the same stripe and if they are both going in the same
544 * direction (read vs write), and if neither one is
545 * locked for final IO
547 * The caller is responsible for locking such that
548 * rmw_locked is safe to test
550 static int rbio_can_merge(struct btrfs_raid_bio *last,
551 struct btrfs_raid_bio *cur)
553 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
554 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
558 * we can't merge with cached rbios, since the
559 * idea is that when we merge the destination
560 * rbio is going to run our IO for us. We can
561 * steal from cached rbios though, other functions
564 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
565 test_bit(RBIO_CACHE_BIT, &cur->flags))
568 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
571 /* we can't merge with different operations */
572 if (last->operation != cur->operation)
575 * We've need read the full stripe from the drive.
576 * check and repair the parity and write the new results.
578 * We're not allowed to add any new bios to the
579 * bio list here, anyone else that wants to
580 * change this stripe needs to do their own rmw.
582 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
585 if (last->operation == BTRFS_RBIO_READ_REBUILD)
591 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
592 unsigned int stripe_nr,
593 unsigned int sector_nr)
595 ASSERT(stripe_nr < rbio->real_stripes);
596 ASSERT(sector_nr < rbio->stripe_nsectors);
598 return stripe_nr * rbio->stripe_nsectors + sector_nr;
601 /* Return a sector from rbio->stripe_sectors, not from the bio list */
602 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
603 unsigned int stripe_nr,
604 unsigned int sector_nr)
606 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
610 /* Grab a sector inside P stripe */
611 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
612 unsigned int sector_nr)
614 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
617 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
618 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
619 unsigned int sector_nr)
621 if (rbio->nr_data + 1 == rbio->real_stripes)
623 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
627 * The first stripe in the table for a logical address
628 * has the lock. rbios are added in one of three ways:
630 * 1) Nobody has the stripe locked yet. The rbio is given
631 * the lock and 0 is returned. The caller must start the IO
634 * 2) Someone has the stripe locked, but we're able to merge
635 * with the lock owner. The rbio is freed and the IO will
636 * start automatically along with the existing rbio. 1 is returned.
638 * 3) Someone has the stripe locked, but we're not able to merge.
639 * The rbio is added to the lock owner's plug list, or merged into
640 * an rbio already on the plug list. When the lock owner unlocks,
641 * the next rbio on the list is run and the IO is started automatically.
644 * If we return 0, the caller still owns the rbio and must continue with
645 * IO submission. If we return 1, the caller must assume the rbio has
646 * already been freed.
648 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
650 struct btrfs_stripe_hash *h;
651 struct btrfs_raid_bio *cur;
652 struct btrfs_raid_bio *pending;
653 struct btrfs_raid_bio *freeit = NULL;
654 struct btrfs_raid_bio *cache_drop = NULL;
657 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
660 list_for_each_entry(cur, &h->hash_list, hash_list) {
661 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
664 spin_lock(&cur->bio_list_lock);
666 /* Can we steal this cached rbio's pages? */
667 if (bio_list_empty(&cur->bio_list) &&
668 list_empty(&cur->plug_list) &&
669 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
670 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
671 list_del_init(&cur->hash_list);
672 refcount_dec(&cur->refs);
674 steal_rbio(cur, rbio);
676 spin_unlock(&cur->bio_list_lock);
681 /* Can we merge into the lock owner? */
682 if (rbio_can_merge(cur, rbio)) {
683 merge_rbio(cur, rbio);
684 spin_unlock(&cur->bio_list_lock);
692 * We couldn't merge with the running rbio, see if we can merge
693 * with the pending ones. We don't have to check for rmw_locked
694 * because there is no way they are inside finish_rmw right now
696 list_for_each_entry(pending, &cur->plug_list, plug_list) {
697 if (rbio_can_merge(pending, rbio)) {
698 merge_rbio(pending, rbio);
699 spin_unlock(&cur->bio_list_lock);
707 * No merging, put us on the tail of the plug list, our rbio
708 * will be started with the currently running rbio unlocks
710 list_add_tail(&rbio->plug_list, &cur->plug_list);
711 spin_unlock(&cur->bio_list_lock);
716 refcount_inc(&rbio->refs);
717 list_add(&rbio->hash_list, &h->hash_list);
719 spin_unlock(&h->lock);
721 remove_rbio_from_cache(cache_drop);
723 free_raid_bio(freeit);
727 static void recover_rbio_work_locked(struct work_struct *work);
730 * called as rmw or parity rebuild is completed. If the plug list has more
731 * rbios waiting for this stripe, the next one on the list will be started
733 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
736 struct btrfs_stripe_hash *h;
739 bucket = rbio_bucket(rbio);
740 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
742 if (list_empty(&rbio->plug_list))
746 spin_lock(&rbio->bio_list_lock);
748 if (!list_empty(&rbio->hash_list)) {
750 * if we're still cached and there is no other IO
751 * to perform, just leave this rbio here for others
752 * to steal from later
754 if (list_empty(&rbio->plug_list) &&
755 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
757 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
758 BUG_ON(!bio_list_empty(&rbio->bio_list));
762 list_del_init(&rbio->hash_list);
763 refcount_dec(&rbio->refs);
766 * we use the plug list to hold all the rbios
767 * waiting for the chance to lock this stripe.
768 * hand the lock over to one of them.
770 if (!list_empty(&rbio->plug_list)) {
771 struct btrfs_raid_bio *next;
772 struct list_head *head = rbio->plug_list.next;
774 next = list_entry(head, struct btrfs_raid_bio,
777 list_del_init(&rbio->plug_list);
779 list_add(&next->hash_list, &h->hash_list);
780 refcount_inc(&next->refs);
781 spin_unlock(&rbio->bio_list_lock);
782 spin_unlock(&h->lock);
784 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
785 start_async_work(next, recover_rbio_work_locked);
786 } else if (next->operation == BTRFS_RBIO_WRITE) {
787 steal_rbio(rbio, next);
788 start_async_work(next, rmw_rbio_work_locked);
789 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
790 steal_rbio(rbio, next);
791 start_async_work(next, scrub_rbio_work_locked);
798 spin_unlock(&rbio->bio_list_lock);
799 spin_unlock(&h->lock);
803 remove_rbio_from_cache(rbio);
806 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
813 cur->bi_status = err;
820 * this frees the rbio and runs through all the bios in the
821 * bio_list and calls end_io on them
823 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
825 struct bio *cur = bio_list_get(&rbio->bio_list);
828 kfree(rbio->csum_buf);
829 bitmap_free(rbio->csum_bitmap);
830 rbio->csum_buf = NULL;
831 rbio->csum_bitmap = NULL;
834 * Clear the data bitmap, as the rbio may be cached for later usage.
835 * do this before before unlock_stripe() so there will be no new bio
838 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
841 * At this moment, rbio->bio_list is empty, however since rbio does not
842 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
843 * hash list, rbio may be merged with others so that rbio->bio_list
845 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
846 * more and we can call bio_endio() on all queued bios.
849 extra = bio_list_get(&rbio->bio_list);
852 rbio_endio_bio_list(cur, err);
854 rbio_endio_bio_list(extra, err);
858 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
860 * @rbio: The raid bio
861 * @stripe_nr: Stripe number, valid range [0, real_stripe)
862 * @sector_nr: Sector number inside the stripe,
863 * valid range [0, stripe_nsectors)
864 * @bio_list_only: Whether to use sectors inside the bio list only.
866 * The read/modify/write code wants to reuse the original bio page as much
867 * as possible, and only use stripe_sectors as fallback.
869 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
870 int stripe_nr, int sector_nr,
873 struct sector_ptr *sector;
876 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
877 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
879 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
880 ASSERT(index >= 0 && index < rbio->nr_sectors);
882 spin_lock(&rbio->bio_list_lock);
883 sector = &rbio->bio_sectors[index];
884 if (sector->page || bio_list_only) {
885 /* Don't return sector without a valid page pointer */
888 spin_unlock(&rbio->bio_list_lock);
891 spin_unlock(&rbio->bio_list_lock);
893 return &rbio->stripe_sectors[index];
897 * allocation and initial setup for the btrfs_raid_bio. Not
898 * this does not allocate any pages for rbio->pages.
900 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
901 struct btrfs_io_context *bioc)
903 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
904 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
905 const unsigned int num_pages = stripe_npages * real_stripes;
906 const unsigned int stripe_nsectors =
907 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
908 const unsigned int num_sectors = stripe_nsectors * real_stripes;
909 struct btrfs_raid_bio *rbio;
911 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
912 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
914 * Our current stripe len should be fixed to 64k thus stripe_nsectors
915 * (at most 16) should be no larger than BITS_PER_LONG.
917 ASSERT(stripe_nsectors <= BITS_PER_LONG);
920 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
923 ASSERT(real_stripes >= 2);
924 ASSERT(real_stripes <= U8_MAX);
926 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
928 return ERR_PTR(-ENOMEM);
929 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
931 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
933 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
935 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
936 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
938 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
939 !rbio->finish_pointers || !rbio->error_bitmap) {
940 free_raid_bio_pointers(rbio);
942 return ERR_PTR(-ENOMEM);
945 bio_list_init(&rbio->bio_list);
946 init_waitqueue_head(&rbio->io_wait);
947 INIT_LIST_HEAD(&rbio->plug_list);
948 spin_lock_init(&rbio->bio_list_lock);
949 INIT_LIST_HEAD(&rbio->stripe_cache);
950 INIT_LIST_HEAD(&rbio->hash_list);
951 btrfs_get_bioc(bioc);
953 rbio->nr_pages = num_pages;
954 rbio->nr_sectors = num_sectors;
955 rbio->real_stripes = real_stripes;
956 rbio->stripe_npages = stripe_npages;
957 rbio->stripe_nsectors = stripe_nsectors;
958 refcount_set(&rbio->refs, 1);
959 atomic_set(&rbio->stripes_pending, 0);
961 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
962 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
963 ASSERT(rbio->nr_data > 0);
968 /* allocate pages for all the stripes in the bio, including parity */
969 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
973 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
976 /* Mapping all sectors */
977 index_stripe_sectors(rbio);
981 /* only allocate pages for p/q stripes */
982 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
984 const int data_pages = rbio->nr_data * rbio->stripe_npages;
987 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
988 rbio->stripe_pages + data_pages, 0);
992 index_stripe_sectors(rbio);
997 * Return the total number of errors found in the vertical stripe of @sector_nr.
999 * @faila and @failb will also be updated to the first and second stripe
1000 * number of the errors.
1002 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1003 int *faila, int *failb)
1006 int found_errors = 0;
1008 if (faila || failb) {
1010 * Both @faila and @failb should be valid pointers if any of
1011 * them is specified.
1013 ASSERT(faila && failb);
1018 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1019 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1021 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1024 /* Update faila and failb. */
1027 else if (*failb < 0)
1032 return found_errors;
1036 * Add a single sector @sector into our list of bios for IO.
1038 * Return 0 if everything went well.
1039 * Return <0 for error.
1041 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1042 struct bio_list *bio_list,
1043 struct sector_ptr *sector,
1044 unsigned int stripe_nr,
1045 unsigned int sector_nr,
1048 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1049 struct bio *last = bio_list->tail;
1052 struct btrfs_io_stripe *stripe;
1056 * Note: here stripe_nr has taken device replace into consideration,
1057 * thus it can be larger than rbio->real_stripe.
1058 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1060 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1061 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1062 ASSERT(sector->page);
1064 stripe = &rbio->bioc->stripes[stripe_nr];
1065 disk_start = stripe->physical + sector_nr * sectorsize;
1067 /* if the device is missing, just fail this stripe */
1068 if (!stripe->dev->bdev) {
1071 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1072 rbio->error_bitmap);
1074 /* Check if we have reached tolerance early. */
1075 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1077 if (found_errors > rbio->bioc->max_errors)
1082 /* see if we can add this page onto our existing bio */
1084 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1085 last_end += last->bi_iter.bi_size;
1088 * we can't merge these if they are from different
1089 * devices or if they are not contiguous
1091 if (last_end == disk_start && !last->bi_status &&
1092 last->bi_bdev == stripe->dev->bdev) {
1093 ret = bio_add_page(last, sector->page, sectorsize,
1095 if (ret == sectorsize)
1100 /* put a new bio on the list */
1101 bio = bio_alloc(stripe->dev->bdev,
1102 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1104 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1105 bio->bi_private = rbio;
1107 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1108 bio_list_add(bio_list, bio);
1112 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1114 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1115 struct bio_vec bvec;
1116 struct bvec_iter iter;
1117 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1118 rbio->bioc->full_stripe_logical;
1120 bio_for_each_segment(bvec, bio, iter) {
1123 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1124 bvec_offset += sectorsize, offset += sectorsize) {
1125 int index = offset / sectorsize;
1126 struct sector_ptr *sector = &rbio->bio_sectors[index];
1128 sector->page = bvec.bv_page;
1129 sector->pgoff = bvec.bv_offset + bvec_offset;
1130 ASSERT(sector->pgoff < PAGE_SIZE);
1136 * helper function to walk our bio list and populate the bio_pages array with
1137 * the result. This seems expensive, but it is faster than constantly
1138 * searching through the bio list as we setup the IO in finish_rmw or stripe
1141 * This must be called before you trust the answers from page_in_rbio
1143 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1147 spin_lock(&rbio->bio_list_lock);
1148 bio_list_for_each(bio, &rbio->bio_list)
1149 index_one_bio(rbio, bio);
1151 spin_unlock(&rbio->bio_list_lock);
1154 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1155 struct raid56_bio_trace_info *trace_info)
1157 const struct btrfs_io_context *bioc = rbio->bioc;
1162 /* We rely on bio->bi_bdev to find the stripe number. */
1166 for (i = 0; i < bioc->num_stripes; i++) {
1167 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1169 trace_info->stripe_nr = i;
1170 trace_info->devid = bioc->stripes[i].dev->devid;
1171 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1172 bioc->stripes[i].physical;
1177 trace_info->devid = -1;
1178 trace_info->offset = -1;
1179 trace_info->stripe_nr = -1;
1182 static inline void bio_list_put(struct bio_list *bio_list)
1186 while ((bio = bio_list_pop(bio_list)))
1190 static void assert_rbio(struct btrfs_raid_bio *rbio)
1192 if (!IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
1193 !IS_ENABLED(CONFIG_BTRFS_ASSERT))
1197 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1198 * we won't go beyond 256 disks anyway.
1200 ASSERT(rbio->real_stripes >= 2);
1201 ASSERT(rbio->nr_data > 0);
1204 * This is another check to make sure nr data stripes is smaller
1205 * than total stripes.
1207 ASSERT(rbio->nr_data < rbio->real_stripes);
1210 /* Generate PQ for one vertical stripe. */
1211 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1213 void **pointers = rbio->finish_pointers;
1214 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1215 struct sector_ptr *sector;
1217 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1219 /* First collect one sector from each data stripe */
1220 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1221 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1222 pointers[stripe] = kmap_local_page(sector->page) +
1226 /* Then add the parity stripe */
1227 sector = rbio_pstripe_sector(rbio, sectornr);
1228 sector->uptodate = 1;
1229 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1233 * RAID6, add the qstripe and call the library function
1234 * to fill in our p/q
1236 sector = rbio_qstripe_sector(rbio, sectornr);
1237 sector->uptodate = 1;
1238 pointers[stripe++] = kmap_local_page(sector->page) +
1242 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1246 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1247 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1249 for (stripe = stripe - 1; stripe >= 0; stripe--)
1250 kunmap_local(pointers[stripe]);
1253 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1254 struct bio_list *bio_list)
1256 /* The total sector number inside the full stripe. */
1257 int total_sector_nr;
1262 ASSERT(bio_list_size(bio_list) == 0);
1264 /* We should have at least one data sector. */
1265 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1268 * Reset errors, as we may have errors inherited from from degraded
1271 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1274 * Start assembly. Make bios for everything from the higher layers (the
1275 * bio_list in our rbio) and our P/Q. Ignore everything else.
1277 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1278 total_sector_nr++) {
1279 struct sector_ptr *sector;
1281 stripe = total_sector_nr / rbio->stripe_nsectors;
1282 sectornr = total_sector_nr % rbio->stripe_nsectors;
1284 /* This vertical stripe has no data, skip it. */
1285 if (!test_bit(sectornr, &rbio->dbitmap))
1288 if (stripe < rbio->nr_data) {
1289 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1293 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1296 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1297 sectornr, REQ_OP_WRITE);
1302 if (likely(!rbio->bioc->replace_nr_stripes))
1306 * Make a copy for the replace target device.
1308 * Thus the source stripe number (in replace_stripe_src) should be valid.
1310 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1312 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1313 total_sector_nr++) {
1314 struct sector_ptr *sector;
1316 stripe = total_sector_nr / rbio->stripe_nsectors;
1317 sectornr = total_sector_nr % rbio->stripe_nsectors;
1320 * For RAID56, there is only one device that can be replaced,
1321 * and replace_stripe_src[0] indicates the stripe number we
1322 * need to copy from.
1324 if (stripe != rbio->bioc->replace_stripe_src) {
1326 * We can skip the whole stripe completely, note
1327 * total_sector_nr will be increased by one anyway.
1329 ASSERT(sectornr == 0);
1330 total_sector_nr += rbio->stripe_nsectors - 1;
1334 /* This vertical stripe has no data, skip it. */
1335 if (!test_bit(sectornr, &rbio->dbitmap))
1338 if (stripe < rbio->nr_data) {
1339 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1343 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1346 ret = rbio_add_io_sector(rbio, bio_list, sector,
1348 sectornr, REQ_OP_WRITE);
1355 bio_list_put(bio_list);
1359 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1361 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1362 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1363 rbio->bioc->full_stripe_logical;
1364 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1366 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1368 bitmap_set(rbio->error_bitmap, total_nr_sector,
1369 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1372 * Special handling for raid56_alloc_missing_rbio() used by
1373 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1374 * pass an empty bio here. Thus we have to find out the missing device
1375 * and mark the stripe error instead.
1377 if (bio->bi_iter.bi_size == 0) {
1378 bool found_missing = false;
1381 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1382 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1383 found_missing = true;
1384 bitmap_set(rbio->error_bitmap,
1385 stripe_nr * rbio->stripe_nsectors,
1386 rbio->stripe_nsectors);
1389 ASSERT(found_missing);
1394 * For subpage case, we can no longer set page Up-to-date directly for
1395 * stripe_pages[], thus we need to locate the sector.
1397 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1403 for (i = 0; i < rbio->nr_sectors; i++) {
1404 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1406 if (sector->page == page && sector->pgoff == pgoff)
1413 * this sets each page in the bio uptodate. It should only be used on private
1414 * rbio pages, nothing that comes in from the higher layers
1416 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1418 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1419 struct bio_vec *bvec;
1420 struct bvec_iter_all iter_all;
1422 ASSERT(!bio_flagged(bio, BIO_CLONED));
1424 bio_for_each_segment_all(bvec, bio, iter_all) {
1425 struct sector_ptr *sector;
1428 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1429 pgoff += sectorsize) {
1430 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1433 sector->uptodate = 1;
1438 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1440 struct bio_vec *bv = bio_first_bvec_all(bio);
1443 for (i = 0; i < rbio->nr_sectors; i++) {
1444 struct sector_ptr *sector;
1446 sector = &rbio->stripe_sectors[i];
1447 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1449 sector = &rbio->bio_sectors[i];
1450 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1453 ASSERT(i < rbio->nr_sectors);
1457 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1459 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1461 struct bio_vec *bvec;
1464 bio_for_each_bvec_all(bvec, bio, i)
1465 bio_size += bvec->bv_len;
1468 * Since we can have multiple bios touching the error_bitmap, we cannot
1469 * call bitmap_set() without protection.
1471 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1473 for (i = total_sector_nr; i < total_sector_nr +
1474 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1475 set_bit(i, rbio->error_bitmap);
1478 /* Verify the data sectors at read time. */
1479 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1482 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1483 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1484 struct bio_vec *bvec;
1485 struct bvec_iter_all iter_all;
1487 /* No data csum for the whole stripe, no need to verify. */
1488 if (!rbio->csum_bitmap || !rbio->csum_buf)
1491 /* P/Q stripes, they have no data csum to verify against. */
1492 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1495 bio_for_each_segment_all(bvec, bio, iter_all) {
1498 for (bv_offset = bvec->bv_offset;
1499 bv_offset < bvec->bv_offset + bvec->bv_len;
1500 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1501 u8 csum_buf[BTRFS_CSUM_SIZE];
1502 u8 *expected_csum = rbio->csum_buf +
1503 total_sector_nr * fs_info->csum_size;
1506 /* No csum for this sector, skip to the next sector. */
1507 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1510 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1511 bv_offset, csum_buf, expected_csum);
1513 set_bit(total_sector_nr, rbio->error_bitmap);
1518 static void raid_wait_read_end_io(struct bio *bio)
1520 struct btrfs_raid_bio *rbio = bio->bi_private;
1522 if (bio->bi_status) {
1523 rbio_update_error_bitmap(rbio, bio);
1525 set_bio_pages_uptodate(rbio, bio);
1526 verify_bio_data_sectors(rbio, bio);
1530 if (atomic_dec_and_test(&rbio->stripes_pending))
1531 wake_up(&rbio->io_wait);
1534 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1535 struct bio_list *bio_list)
1539 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1540 while ((bio = bio_list_pop(bio_list))) {
1541 bio->bi_end_io = raid_wait_read_end_io;
1543 if (trace_raid56_read_enabled()) {
1544 struct raid56_bio_trace_info trace_info = { 0 };
1546 bio_get_trace_info(rbio, bio, &trace_info);
1547 trace_raid56_read(rbio, bio, &trace_info);
1552 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1555 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1557 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1560 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
1564 index_stripe_sectors(rbio);
1569 * We use plugging call backs to collect full stripes.
1570 * Any time we get a partial stripe write while plugged
1571 * we collect it into a list. When the unplug comes down,
1572 * we sort the list by logical block number and merge
1573 * everything we can into the same rbios
1575 struct btrfs_plug_cb {
1576 struct blk_plug_cb cb;
1577 struct btrfs_fs_info *info;
1578 struct list_head rbio_list;
1582 * rbios on the plug list are sorted for easier merging.
1584 static int plug_cmp(void *priv, const struct list_head *a,
1585 const struct list_head *b)
1587 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1589 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1591 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1592 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1594 if (a_sector < b_sector)
1596 if (a_sector > b_sector)
1601 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1603 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1604 struct btrfs_raid_bio *cur;
1605 struct btrfs_raid_bio *last = NULL;
1607 list_sort(NULL, &plug->rbio_list, plug_cmp);
1609 while (!list_empty(&plug->rbio_list)) {
1610 cur = list_entry(plug->rbio_list.next,
1611 struct btrfs_raid_bio, plug_list);
1612 list_del_init(&cur->plug_list);
1614 if (rbio_is_full(cur)) {
1615 /* We have a full stripe, queue it down. */
1616 start_async_work(cur, rmw_rbio_work);
1620 if (rbio_can_merge(last, cur)) {
1621 merge_rbio(last, cur);
1625 start_async_work(last, rmw_rbio_work);
1630 start_async_work(last, rmw_rbio_work);
1634 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1635 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1637 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1638 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1640 const u32 orig_len = orig_bio->bi_iter.bi_size;
1641 const u32 sectorsize = fs_info->sectorsize;
1644 ASSERT(orig_logical >= full_stripe_start &&
1645 orig_logical + orig_len <= full_stripe_start +
1646 rbio->nr_data * BTRFS_STRIPE_LEN);
1648 bio_list_add(&rbio->bio_list, orig_bio);
1649 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1651 /* Update the dbitmap. */
1652 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1653 cur_logical += sectorsize) {
1654 int bit = ((u32)(cur_logical - full_stripe_start) >>
1655 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1657 set_bit(bit, &rbio->dbitmap);
1662 * our main entry point for writes from the rest of the FS.
1664 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1666 struct btrfs_fs_info *fs_info = bioc->fs_info;
1667 struct btrfs_raid_bio *rbio;
1668 struct btrfs_plug_cb *plug = NULL;
1669 struct blk_plug_cb *cb;
1671 rbio = alloc_rbio(fs_info, bioc);
1673 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1677 rbio->operation = BTRFS_RBIO_WRITE;
1678 rbio_add_bio(rbio, bio);
1681 * Don't plug on full rbios, just get them out the door
1682 * as quickly as we can
1684 if (!rbio_is_full(rbio)) {
1685 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1687 plug = container_of(cb, struct btrfs_plug_cb, cb);
1689 plug->info = fs_info;
1690 INIT_LIST_HEAD(&plug->rbio_list);
1692 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1698 * Either we don't have any existing plug, or we're doing a full stripe,
1699 * queue the rmw work now.
1701 start_async_work(rbio, rmw_rbio_work);
1704 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1705 int stripe_nr, int sector_nr)
1707 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1708 struct sector_ptr *sector;
1709 u8 csum_buf[BTRFS_CSUM_SIZE];
1713 if (!rbio->csum_bitmap || !rbio->csum_buf)
1716 /* No way to verify P/Q as they are not covered by data csum. */
1717 if (stripe_nr >= rbio->nr_data)
1720 * If we're rebuilding a read, we have to use pages from the
1721 * bio list if possible.
1723 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1724 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1726 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1729 ASSERT(sector->page);
1731 csum_expected = rbio->csum_buf +
1732 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1734 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1735 csum_buf, csum_expected);
1740 * Recover a vertical stripe specified by @sector_nr.
1741 * @*pointers are the pre-allocated pointers by the caller, so we don't
1742 * need to allocate/free the pointers again and again.
1744 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1745 void **pointers, void **unmap_array)
1747 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1748 struct sector_ptr *sector;
1749 const u32 sectorsize = fs_info->sectorsize;
1757 * Now we just use bitmap to mark the horizontal stripes in
1758 * which we have data when doing parity scrub.
1760 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1761 !test_bit(sector_nr, &rbio->dbitmap))
1764 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1767 * No errors in the vertical stripe, skip it. Can happen for recovery
1768 * which only part of a stripe failed csum check.
1773 if (found_errors > rbio->bioc->max_errors)
1777 * Setup our array of pointers with sectors from each stripe
1779 * NOTE: store a duplicate array of pointers to preserve the
1782 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1784 * If we're rebuilding a read, we have to use pages from the
1785 * bio list if possible.
1787 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1788 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1790 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1792 ASSERT(sector->page);
1793 pointers[stripe_nr] = kmap_local_page(sector->page) +
1795 unmap_array[stripe_nr] = pointers[stripe_nr];
1798 /* All raid6 handling here */
1799 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1800 /* Single failure, rebuild from parity raid5 style */
1802 if (faila == rbio->nr_data)
1804 * Just the P stripe has failed, without
1805 * a bad data or Q stripe.
1806 * We have nothing to do, just skip the
1807 * recovery for this stripe.
1811 * a single failure in raid6 is rebuilt
1812 * in the pstripe code below
1818 * If the q stripe is failed, do a pstripe reconstruction from
1820 * If both the q stripe and the P stripe are failed, we're
1821 * here due to a crc mismatch and we can't give them the
1824 if (failb == rbio->real_stripes - 1) {
1825 if (faila == rbio->real_stripes - 2)
1827 * Only P and Q are corrupted.
1828 * We only care about data stripes recovery,
1829 * can skip this vertical stripe.
1833 * Otherwise we have one bad data stripe and
1834 * a good P stripe. raid5!
1839 if (failb == rbio->real_stripes - 2) {
1840 raid6_datap_recov(rbio->real_stripes, sectorsize,
1843 raid6_2data_recov(rbio->real_stripes, sectorsize,
1844 faila, failb, pointers);
1849 /* Rebuild from P stripe here (raid5 or raid6). */
1850 ASSERT(failb == -1);
1852 /* Copy parity block into failed block to start with */
1853 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1855 /* Rearrange the pointer array */
1856 p = pointers[faila];
1857 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1859 pointers[stripe_nr] = pointers[stripe_nr + 1];
1860 pointers[rbio->nr_data - 1] = p;
1862 /* Xor in the rest */
1863 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1868 * No matter if this is a RMW or recovery, we should have all
1869 * failed sectors repaired in the vertical stripe, thus they are now
1871 * Especially if we determine to cache the rbio, we need to
1872 * have at least all data sectors uptodate.
1874 * If possible, also check if the repaired sector matches its data
1878 ret = verify_one_sector(rbio, faila, sector_nr);
1882 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1883 sector->uptodate = 1;
1886 ret = verify_one_sector(rbio, failb, sector_nr);
1890 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1891 sector->uptodate = 1;
1895 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1896 kunmap_local(unmap_array[stripe_nr]);
1900 static int recover_sectors(struct btrfs_raid_bio *rbio)
1902 void **pointers = NULL;
1903 void **unmap_array = NULL;
1908 * @pointers array stores the pointer for each sector.
1910 * @unmap_array stores copy of pointers that does not get reordered
1911 * during reconstruction so that kunmap_local works.
1913 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1914 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1915 if (!pointers || !unmap_array) {
1920 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1921 spin_lock(&rbio->bio_list_lock);
1922 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1923 spin_unlock(&rbio->bio_list_lock);
1926 index_rbio_pages(rbio);
1928 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1929 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1940 static void recover_rbio(struct btrfs_raid_bio *rbio)
1942 struct bio_list bio_list = BIO_EMPTY_LIST;
1943 int total_sector_nr;
1947 * Either we're doing recover for a read failure or degraded write,
1948 * caller should have set error bitmap correctly.
1950 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1952 /* For recovery, we need to read all sectors including P/Q. */
1953 ret = alloc_rbio_pages(rbio);
1957 index_rbio_pages(rbio);
1960 * Read everything that hasn't failed. However this time we will
1961 * not trust any cached sector.
1962 * As we may read out some stale data but higher layer is not reading
1965 * So here we always re-read everything in recovery path.
1967 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1968 total_sector_nr++) {
1969 int stripe = total_sector_nr / rbio->stripe_nsectors;
1970 int sectornr = total_sector_nr % rbio->stripe_nsectors;
1971 struct sector_ptr *sector;
1974 * Skip the range which has error. It can be a range which is
1975 * marked error (for csum mismatch), or it can be a missing
1978 if (!rbio->bioc->stripes[stripe].dev->bdev ||
1979 test_bit(total_sector_nr, rbio->error_bitmap)) {
1981 * Also set the error bit for missing device, which
1982 * may not yet have its error bit set.
1984 set_bit(total_sector_nr, rbio->error_bitmap);
1988 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1989 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
1990 sectornr, REQ_OP_READ);
1992 bio_list_put(&bio_list);
1997 submit_read_wait_bio_list(rbio, &bio_list);
1998 ret = recover_sectors(rbio);
2000 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2003 static void recover_rbio_work(struct work_struct *work)
2005 struct btrfs_raid_bio *rbio;
2007 rbio = container_of(work, struct btrfs_raid_bio, work);
2008 if (!lock_stripe_add(rbio))
2012 static void recover_rbio_work_locked(struct work_struct *work)
2014 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2017 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2023 * This is for RAID6 extra recovery tries, thus mirror number should
2025 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2028 ASSERT(mirror_num > 2);
2029 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2034 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2036 /* This vertical stripe doesn't have errors. */
2041 * If we found errors, there should be only one error marked
2042 * by previous set_rbio_range_error().
2044 ASSERT(found_errors == 1);
2047 /* Now select another stripe to mark as error. */
2048 failb = rbio->real_stripes - (mirror_num - 1);
2052 /* Set the extra bit in error bitmap. */
2054 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2055 rbio->error_bitmap);
2058 /* We should found at least one vertical stripe with error.*/
2063 * the main entry point for reads from the higher layers. This
2064 * is really only called when the normal read path had a failure,
2065 * so we assume the bio they send down corresponds to a failed part
2068 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2071 struct btrfs_fs_info *fs_info = bioc->fs_info;
2072 struct btrfs_raid_bio *rbio;
2074 rbio = alloc_rbio(fs_info, bioc);
2076 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2081 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2082 rbio_add_bio(rbio, bio);
2084 set_rbio_range_error(rbio, bio);
2088 * for 'mirror == 2', reconstruct from all other stripes.
2089 * for 'mirror_num > 2', select a stripe to fail on every retry.
2092 set_rbio_raid6_extra_error(rbio, mirror_num);
2094 start_async_work(rbio, recover_rbio_work);
2097 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2099 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2100 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2101 rbio->bioc->full_stripe_logical);
2102 const u64 start = rbio->bioc->full_stripe_logical;
2103 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2104 fs_info->sectorsize_bits;
2107 /* The rbio should not have its csum buffer initialized. */
2108 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2111 * Skip the csum search if:
2113 * - The rbio doesn't belong to data block groups
2114 * Then we are doing IO for tree blocks, no need to search csums.
2116 * - The rbio belongs to mixed block groups
2117 * This is to avoid deadlock, as we're already holding the full
2118 * stripe lock, if we trigger a metadata read, and it needs to do
2119 * raid56 recovery, we will deadlock.
2121 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2122 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2125 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2126 fs_info->csum_size, GFP_NOFS);
2127 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2129 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2134 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2135 rbio->csum_buf, rbio->csum_bitmap);
2138 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2144 * We failed to allocate memory or grab the csum, but it's not fatal,
2145 * we can still continue. But better to warn users that RMW is no
2146 * longer safe for this particular sub-stripe write.
2148 btrfs_warn_rl(fs_info,
2149 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2150 rbio->bioc->full_stripe_logical, ret);
2152 kfree(rbio->csum_buf);
2153 bitmap_free(rbio->csum_bitmap);
2154 rbio->csum_buf = NULL;
2155 rbio->csum_bitmap = NULL;
2158 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2160 struct bio_list bio_list = BIO_EMPTY_LIST;
2161 int total_sector_nr;
2165 * Fill the data csums we need for data verification. We need to fill
2166 * the csum_bitmap/csum_buf first, as our endio function will try to
2167 * verify the data sectors.
2169 fill_data_csums(rbio);
2172 * Build a list of bios to read all sectors (including data and P/Q).
2174 * This behavior is to compensate the later csum verification and recovery.
2176 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2177 total_sector_nr++) {
2178 struct sector_ptr *sector;
2179 int stripe = total_sector_nr / rbio->stripe_nsectors;
2180 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2182 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2183 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2184 stripe, sectornr, REQ_OP_READ);
2186 bio_list_put(&bio_list);
2192 * We may or may not have any corrupted sectors (including missing dev
2193 * and csum mismatch), just let recover_sectors() to handle them all.
2195 submit_read_wait_bio_list(rbio, &bio_list);
2196 return recover_sectors(rbio);
2199 static void raid_wait_write_end_io(struct bio *bio)
2201 struct btrfs_raid_bio *rbio = bio->bi_private;
2202 blk_status_t err = bio->bi_status;
2205 rbio_update_error_bitmap(rbio, bio);
2207 if (atomic_dec_and_test(&rbio->stripes_pending))
2208 wake_up(&rbio->io_wait);
2211 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2212 struct bio_list *bio_list)
2216 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2217 while ((bio = bio_list_pop(bio_list))) {
2218 bio->bi_end_io = raid_wait_write_end_io;
2220 if (trace_raid56_write_enabled()) {
2221 struct raid56_bio_trace_info trace_info = { 0 };
2223 bio_get_trace_info(rbio, bio, &trace_info);
2224 trace_raid56_write(rbio, bio, &trace_info);
2231 * To determine if we need to read any sector from the disk.
2232 * Should only be utilized in RMW path, to skip cached rbio.
2234 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2238 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2239 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2242 * We have a sector which doesn't have page nor uptodate,
2243 * thus this rbio can not be cached one, as cached one must
2244 * have all its data sectors present and uptodate.
2246 if (!sector->page || !sector->uptodate)
2252 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2254 struct bio_list bio_list;
2259 * Allocate the pages for parity first, as P/Q pages will always be
2260 * needed for both full-stripe and sub-stripe writes.
2262 ret = alloc_rbio_parity_pages(rbio);
2267 * Either full stripe write, or we have every data sector already
2268 * cached, can go to write path immediately.
2270 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2272 * Now we're doing sub-stripe write, also need all data stripes
2273 * to do the full RMW.
2275 ret = alloc_rbio_data_pages(rbio);
2279 index_rbio_pages(rbio);
2281 ret = rmw_read_wait_recover(rbio);
2287 * At this stage we're not allowed to add any new bios to the
2288 * bio list any more, anyone else that wants to change this stripe
2289 * needs to do their own rmw.
2291 spin_lock(&rbio->bio_list_lock);
2292 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2293 spin_unlock(&rbio->bio_list_lock);
2295 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2297 index_rbio_pages(rbio);
2300 * We don't cache full rbios because we're assuming
2301 * the higher layers are unlikely to use this area of
2302 * the disk again soon. If they do use it again,
2303 * hopefully they will send another full bio.
2305 if (!rbio_is_full(rbio))
2306 cache_rbio_pages(rbio);
2308 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2310 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2311 generate_pq_vertical(rbio, sectornr);
2313 bio_list_init(&bio_list);
2314 ret = rmw_assemble_write_bios(rbio, &bio_list);
2318 /* We should have at least one bio assembled. */
2319 ASSERT(bio_list_size(&bio_list));
2320 submit_write_bios(rbio, &bio_list);
2321 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2323 /* We may have more errors than our tolerance during the read. */
2324 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2327 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2328 if (found_errors > rbio->bioc->max_errors) {
2334 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2337 static void rmw_rbio_work(struct work_struct *work)
2339 struct btrfs_raid_bio *rbio;
2341 rbio = container_of(work, struct btrfs_raid_bio, work);
2342 if (lock_stripe_add(rbio) == 0)
2346 static void rmw_rbio_work_locked(struct work_struct *work)
2348 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2352 * The following code is used to scrub/replace the parity stripe
2354 * Caller must have already increased bio_counter for getting @bioc.
2356 * Note: We need make sure all the pages that add into the scrub/replace
2357 * raid bio are correct and not be changed during the scrub/replace. That
2358 * is those pages just hold metadata or file data with checksum.
2361 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2362 struct btrfs_io_context *bioc,
2363 struct btrfs_device *scrub_dev,
2364 unsigned long *dbitmap, int stripe_nsectors)
2366 struct btrfs_fs_info *fs_info = bioc->fs_info;
2367 struct btrfs_raid_bio *rbio;
2370 rbio = alloc_rbio(fs_info, bioc);
2373 bio_list_add(&rbio->bio_list, bio);
2375 * This is a special bio which is used to hold the completion handler
2376 * and make the scrub rbio is similar to the other types
2378 ASSERT(!bio->bi_iter.bi_size);
2379 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2382 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2383 * to the end position, so this search can start from the first parity
2386 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2387 if (bioc->stripes[i].dev == scrub_dev) {
2392 ASSERT(i < rbio->real_stripes);
2394 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2399 * We just scrub the parity that we have correct data on the same horizontal,
2400 * so we needn't allocate all pages for all the stripes.
2402 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2404 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2405 int total_sector_nr;
2407 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2408 total_sector_nr++) {
2410 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2411 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2413 if (!test_bit(sectornr, &rbio->dbitmap))
2415 if (rbio->stripe_pages[index])
2417 page = alloc_page(GFP_NOFS);
2420 rbio->stripe_pages[index] = page;
2422 index_stripe_sectors(rbio);
2426 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2428 struct btrfs_io_context *bioc = rbio->bioc;
2429 const u32 sectorsize = bioc->fs_info->sectorsize;
2430 void **pointers = rbio->finish_pointers;
2431 unsigned long *pbitmap = &rbio->finish_pbitmap;
2432 int nr_data = rbio->nr_data;
2436 struct sector_ptr p_sector = { 0 };
2437 struct sector_ptr q_sector = { 0 };
2438 struct bio_list bio_list;
2442 bio_list_init(&bio_list);
2444 if (rbio->real_stripes - rbio->nr_data == 1)
2445 has_qstripe = false;
2446 else if (rbio->real_stripes - rbio->nr_data == 2)
2452 * Replace is running and our P/Q stripe is being replaced, then we
2453 * need to duplicate the final write to replace target.
2455 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2457 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2461 * Because the higher layers(scrubber) are unlikely to
2462 * use this area of the disk again soon, so don't cache
2465 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2467 p_sector.page = alloc_page(GFP_NOFS);
2471 p_sector.uptodate = 1;
2474 /* RAID6, allocate and map temp space for the Q stripe */
2475 q_sector.page = alloc_page(GFP_NOFS);
2476 if (!q_sector.page) {
2477 __free_page(p_sector.page);
2478 p_sector.page = NULL;
2482 q_sector.uptodate = 1;
2483 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2486 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2488 /* Map the parity stripe just once */
2489 pointers[nr_data] = kmap_local_page(p_sector.page);
2491 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2492 struct sector_ptr *sector;
2495 /* first collect one page from each data stripe */
2496 for (stripe = 0; stripe < nr_data; stripe++) {
2497 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2498 pointers[stripe] = kmap_local_page(sector->page) +
2504 /* RAID6, call the library function to fill in our P/Q */
2505 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2509 memcpy(pointers[nr_data], pointers[0], sectorsize);
2510 run_xor(pointers + 1, nr_data - 1, sectorsize);
2513 /* Check scrubbing parity and repair it */
2514 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2515 parity = kmap_local_page(sector->page) + sector->pgoff;
2516 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2517 memcpy(parity, pointers[rbio->scrubp], sectorsize);
2519 /* Parity is right, needn't writeback */
2520 bitmap_clear(&rbio->dbitmap, sectornr, 1);
2521 kunmap_local(parity);
2523 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2524 kunmap_local(pointers[stripe]);
2527 kunmap_local(pointers[nr_data]);
2528 __free_page(p_sector.page);
2529 p_sector.page = NULL;
2530 if (q_sector.page) {
2531 kunmap_local(pointers[rbio->real_stripes - 1]);
2532 __free_page(q_sector.page);
2533 q_sector.page = NULL;
2537 * time to start writing. Make bios for everything from the
2538 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2541 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2542 struct sector_ptr *sector;
2544 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2545 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2546 sectornr, REQ_OP_WRITE);
2555 * Replace is running and our parity stripe needs to be duplicated to
2556 * the target device. Check we have a valid source stripe number.
2558 ASSERT(rbio->bioc->replace_stripe_src >= 0);
2559 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2560 struct sector_ptr *sector;
2562 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2563 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2565 sectornr, REQ_OP_WRITE);
2571 submit_write_bios(rbio, &bio_list);
2575 bio_list_put(&bio_list);
2579 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2581 if (stripe >= 0 && stripe < rbio->nr_data)
2586 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2588 void **pointers = NULL;
2589 void **unmap_array = NULL;
2594 * @pointers array stores the pointer for each sector.
2596 * @unmap_array stores copy of pointers that does not get reordered
2597 * during reconstruction so that kunmap_local works.
2599 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2600 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2601 if (!pointers || !unmap_array) {
2606 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2607 int dfail = 0, failp = -1;
2612 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2614 if (found_errors > rbio->bioc->max_errors) {
2618 if (found_errors == 0)
2621 /* We should have at least one error here. */
2622 ASSERT(faila >= 0 || failb >= 0);
2624 if (is_data_stripe(rbio, faila))
2626 else if (is_parity_stripe(faila))
2629 if (is_data_stripe(rbio, failb))
2631 else if (is_parity_stripe(failb))
2634 * Because we can not use a scrubbing parity to repair the
2635 * data, so the capability of the repair is declined. (In the
2636 * case of RAID5, we can not repair anything.)
2638 if (dfail > rbio->bioc->max_errors - 1) {
2643 * If all data is good, only parity is correctly, just repair
2644 * the parity, no need to recover data stripes.
2650 * Here means we got one corrupted data stripe and one
2651 * corrupted parity on RAID6, if the corrupted parity is
2652 * scrubbing parity, luckily, use the other one to repair the
2653 * data, or we can not repair the data stripe.
2655 if (failp != rbio->scrubp) {
2660 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2670 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2672 struct bio_list bio_list = BIO_EMPTY_LIST;
2673 int total_sector_nr;
2676 /* Build a list of bios to read all the missing parts. */
2677 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2678 total_sector_nr++) {
2679 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2680 int stripe = total_sector_nr / rbio->stripe_nsectors;
2681 struct sector_ptr *sector;
2683 /* No data in the vertical stripe, no need to read. */
2684 if (!test_bit(sectornr, &rbio->dbitmap))
2688 * We want to find all the sectors missing from the rbio and
2689 * read them from the disk. If sector_in_rbio() finds a sector
2690 * in the bio list we don't need to read it off the stripe.
2692 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2696 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2698 * The bio cache may have handed us an uptodate sector. If so,
2701 if (sector->uptodate)
2704 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2705 sectornr, REQ_OP_READ);
2707 bio_list_put(&bio_list);
2712 submit_read_wait_bio_list(rbio, &bio_list);
2716 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2721 ret = alloc_rbio_essential_pages(rbio);
2725 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2727 ret = scrub_assemble_read_bios(rbio);
2731 /* We may have some failures, recover the failed sectors first. */
2732 ret = recover_scrub_rbio(rbio);
2737 * We have every sector properly prepared. Can finish the scrub
2738 * and writeback the good content.
2740 ret = finish_parity_scrub(rbio);
2741 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2742 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2745 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2746 if (found_errors > rbio->bioc->max_errors) {
2752 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2755 static void scrub_rbio_work_locked(struct work_struct *work)
2757 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2760 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2762 if (!lock_stripe_add(rbio))
2763 start_async_work(rbio, scrub_rbio_work_locked);
2767 * This is for scrub call sites where we already have correct data contents.
2768 * This allows us to avoid reading data stripes again.
2770 * Unfortunately here we have to do page copy, other than reusing the pages.
2771 * This is due to the fact rbio has its own page management for its cache.
2773 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2774 struct page **data_pages, u64 data_logical)
2776 const u64 offset_in_full_stripe = data_logical -
2777 rbio->bioc->full_stripe_logical;
2778 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2779 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2780 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2784 * If we hit ENOMEM temporarily, but later at
2785 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2786 * the extra read, not a big deal.
2788 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2789 * the bio would got proper error number set.
2791 ret = alloc_rbio_data_pages(rbio);
2795 /* data_logical must be at stripe boundary and inside the full stripe. */
2796 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2797 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2799 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2800 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2801 struct page *src = data_pages[page_nr];
2803 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2804 for (int sector_nr = sectors_per_page * page_index;
2805 sector_nr < sectors_per_page * (page_index + 1);
2807 rbio->stripe_sectors[sector_nr].uptodate = true;