2 * SPDX-License-Identifier: MIT
4 * Copyright © 2008,2010 Intel Corporation
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
15 #include "display/intel_frontbuffer.h"
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_trace.h"
33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
36 #define __EXEC_OBJECT_HAS_REF BIT(31)
37 #define __EXEC_OBJECT_HAS_PIN BIT(30)
38 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
39 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
40 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
41 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
44 #define __EXEC_HAS_RELOC BIT(31)
45 #define __EXEC_VALIDATED BIT(30)
46 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
47 #define UPDATE PIN_OFFSET_FIXED
49 #define BATCH_OFFSET_BIAS (256*1024)
51 #define __I915_EXEC_ILLEGAL_FLAGS \
52 (__I915_EXEC_UNKNOWN_FLAGS | \
53 I915_EXEC_CONSTANTS_MASK | \
54 I915_EXEC_RESOURCE_STREAMER)
56 /* Catch emission of unexpected errors for CI! */
57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
66 * DOC: User command execution
68 * Userspace submits commands to be executed on the GPU as an instruction
69 * stream within a GEM object we call a batchbuffer. This instructions may
70 * refer to other GEM objects containing auxiliary state such as kernels,
71 * samplers, render targets and even secondary batchbuffers. Userspace does
72 * not know where in the GPU memory these objects reside and so before the
73 * batchbuffer is passed to the GPU for execution, those addresses in the
74 * batchbuffer and auxiliary objects are updated. This is known as relocation,
75 * or patching. To try and avoid having to relocate each object on the next
76 * execution, userspace is told the location of those objects in this pass,
77 * but this remains just a hint as the kernel may choose a new location for
78 * any object in the future.
80 * At the level of talking to the hardware, submitting a batchbuffer for the
81 * GPU to execute is to add content to a buffer from which the HW
82 * command streamer is reading.
84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85 * Execlists, this command is not placed on the same buffer as the
88 * 2. Add a command to invalidate caches to the buffer.
90 * 3. Add a batchbuffer start command to the buffer; the start command is
91 * essentially a token together with the GPU address of the batchbuffer
94 * 4. Add a pipeline flush to the buffer.
96 * 5. Add a memory write command to the buffer to record when the GPU
97 * is done executing the batchbuffer. The memory write writes the
98 * global sequence number of the request, ``i915_request::global_seqno``;
99 * the i915 driver uses the current value in the register to determine
100 * if the GPU has completed the batchbuffer.
102 * 6. Add a user interrupt command to the buffer. This command instructs
103 * the GPU to issue an interrupt when the command, pipeline flush and
104 * memory write are completed.
106 * 7. Inform the hardware of the additional commands added to the buffer
107 * (by updating the tail pointer).
109 * Processing an execbuf ioctl is conceptually split up into a few phases.
111 * 1. Validation - Ensure all the pointers, handles and flags are valid.
112 * 2. Reservation - Assign GPU address space for every object
113 * 3. Relocation - Update any addresses to point to the final locations
114 * 4. Serialisation - Order the request with respect to its dependencies
115 * 5. Construction - Construct a request to execute the batchbuffer
116 * 6. Submission (at some point in the future execution)
118 * Reserving resources for the execbuf is the most complicated phase. We
119 * neither want to have to migrate the object in the address space, nor do
120 * we want to have to update any relocations pointing to this object. Ideally,
121 * we want to leave the object where it is and for all the existing relocations
122 * to match. If the object is given a new address, or if userspace thinks the
123 * object is elsewhere, we have to parse all the relocation entries and update
124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125 * all the target addresses in all of its objects match the value in the
126 * relocation entries and that they all match the presumed offsets given by the
127 * list of execbuffer objects. Using this knowledge, we know that if we haven't
128 * moved any buffers, all the relocation entries are valid and we can skip
129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
132 * The addresses written in the objects must match the corresponding
133 * reloc.presumed_offset which in turn must match the corresponding
136 * Any render targets written to in the batch must be flagged with
139 * To avoid stalling, execobject.offset should match the current
140 * address of that object within the active context.
142 * The reservation is done is multiple phases. First we try and keep any
143 * object already bound in its current location - so as long as meets the
144 * constraints imposed by the new execbuffer. Any object left unbound after the
145 * first pass is then fitted into any available idle space. If an object does
146 * not fit, all objects are removed from the reservation and the process rerun
147 * after sorting the objects into a priority order (more difficult to fit
148 * objects are tried first). Failing that, the entire VM is cleared and we try
149 * to fit the execbuf once last time before concluding that it simply will not
152 * A small complication to all of this is that we allow userspace not only to
153 * specify an alignment and a size for the object in the address space, but
154 * we also allow userspace to specify the exact offset. This objects are
155 * simpler to place (the location is known a priori) all we have to do is make
156 * sure the space is available.
158 * Once all the objects are in place, patching up the buried pointers to point
159 * to the final locations is a fairly simple job of walking over the relocation
160 * entry arrays, looking up the right address and rewriting the value into
161 * the object. Simple! ... The relocation entries are stored in user memory
162 * and so to access them we have to copy them into a local buffer. That copy
163 * has to avoid taking any pagefaults as they may lead back to a GEM object
164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165 * the relocation into multiple passes. First we try to do everything within an
166 * atomic context (avoid the pagefaults) which requires that we never wait. If
167 * we detect that we may wait, or if we need to fault, then we have to fallback
168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169 * bells yet?) Dropping the mutex means that we lose all the state we have
170 * built up so far for the execbuf and we must reset any global data. However,
171 * we do leave the objects pinned in their final locations - which is a
172 * potential issue for concurrent execbufs. Once we have left the mutex, we can
173 * allocate and copy all the relocation entries into a large array at our
174 * leisure, reacquire the mutex, reclaim all the objects and other state and
175 * then proceed to update any incorrect addresses with the objects.
177 * As we process the relocation entries, we maintain a record of whether the
178 * object is being written to. Using NORELOC, we expect userspace to provide
179 * this information instead. We also check whether we can skip the relocation
180 * by comparing the expected value inside the relocation entry with the target's
181 * final address. If they differ, we have to map the current object and rewrite
182 * the 4 or 8 byte pointer within.
184 * Serialising an execbuf is quite simple according to the rules of the GEM
185 * ABI. Execution within each context is ordered by the order of submission.
186 * Writes to any GEM object are in order of submission and are exclusive. Reads
187 * from a GEM object are unordered with respect to other reads, but ordered by
188 * writes. A write submitted after a read cannot occur before the read, and
189 * similarly any read submitted after a write cannot occur before the write.
190 * Writes are ordered between engines such that only one write occurs at any
191 * time (completing any reads beforehand) - using semaphores where available
192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194 * reads before starting, and any read (either using set-domain or pread) must
195 * flush all GPU writes before starting. (Note we only employ a barrier before,
196 * we currently rely on userspace not concurrently starting a new execution
197 * whilst reading or writing to an object. This may be an advantage or not
198 * depending on how much you trust userspace not to shoot themselves in the
199 * foot.) Serialisation may just result in the request being inserted into
200 * a DAG awaiting its turn, but most simple is to wait on the CPU until
201 * all dependencies are resolved.
203 * After all of that, is just a matter of closing the request and handing it to
204 * the hardware (well, leaving it in a queue to be executed). However, we also
205 * offer the ability for batchbuffers to be run with elevated privileges so
206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207 * Before any batch is given extra privileges we first must check that it
208 * contains no nefarious instructions, we check that each instruction is from
209 * our whitelist and all registers are also from an allowed list. We first
210 * copy the user's batchbuffer to a shadow (so that the user doesn't have
211 * access to it, either by the CPU or GPU as we scan it) and then parse each
212 * instruction. If everything is ok, we set a flag telling the hardware to run
213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
216 struct i915_execbuffer {
217 struct drm_i915_private *i915; /** i915 backpointer */
218 struct drm_file *file; /** per-file lookup tables and limits */
219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 struct i915_vma **vma;
224 struct intel_engine_cs *engine; /** engine to queue the request to */
225 struct intel_context *context; /* logical state for the request */
226 struct i915_gem_context *gem_context; /** caller's context */
228 struct i915_request *request; /** our request to build */
229 struct i915_vma *batch; /** identity of the batch obj/vma */
231 /** actual size of execobj[] as we may extend it for the cmdparser */
232 unsigned int buffer_count;
234 /** list of vma not yet bound during reservation phase */
235 struct list_head unbound;
237 /** list of vma that have execobj.relocation_count */
238 struct list_head relocs;
241 * Track the most recently used object for relocations, as we
242 * frequently have to perform multiple relocations within the same
246 struct drm_mm_node node; /** temporary GTT binding */
247 unsigned long vaddr; /** Current kmap address */
248 unsigned long page; /** Currently mapped page index */
249 unsigned int gen; /** Cached value of INTEL_GEN */
250 bool use_64bit_reloc : 1;
253 bool needs_unfenced : 1;
255 struct intel_context *ce;
256 struct i915_request *rq;
258 unsigned int rq_size;
261 u64 invalid_flags; /** Set of execobj.flags that are invalid */
262 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
264 u32 batch_start_offset; /** Location within object of batch */
265 u32 batch_len; /** Length of batch within object */
266 u32 batch_flags; /** Flags composed for emit_bb_start() */
269 * Indicate either the size of the hastable used to resolve
270 * relocation handles, or if negative that we are using a direct
271 * index into the execobj[].
274 struct hlist_head *buckets; /** ht for relocation handles */
277 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280 * Used to convert any address to canonical form.
281 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
282 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
283 * addresses to be in a canonical form:
284 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
285 * canonical form [63:48] == [47]."
287 #define GEN8_HIGH_ADDRESS_BIT 47
288 static inline u64 gen8_canonical_addr(u64 address)
290 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
293 static inline u64 gen8_noncanonical_addr(u64 address)
295 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
298 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
300 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
303 static int eb_create(struct i915_execbuffer *eb)
305 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
306 unsigned int size = 1 + ilog2(eb->buffer_count);
309 * Without a 1:1 association between relocation handles and
310 * the execobject[] index, we instead create a hashtable.
311 * We size it dynamically based on available memory, starting
312 * first with 1:1 assocative hash and scaling back until
313 * the allocation succeeds.
315 * Later on we use a positive lut_size to indicate we are
316 * using this hashtable, and a negative value to indicate a
322 /* While we can still reduce the allocation size, don't
323 * raise a warning and allow the allocation to fail.
324 * On the last pass though, we want to try as hard
325 * as possible to perform the allocation and warn
330 flags |= __GFP_NORETRY | __GFP_NOWARN;
332 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
343 eb->lut_size = -eb->buffer_count;
350 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
351 const struct i915_vma *vma,
354 if (vma->node.size < entry->pad_to_size)
357 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
360 if (flags & EXEC_OBJECT_PINNED &&
361 vma->node.start != entry->offset)
364 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
365 vma->node.start < BATCH_OFFSET_BIAS)
368 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
369 (vma->node.start + vma->node.size - 1) >> 32)
372 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
373 !i915_vma_is_map_and_fenceable(vma))
380 eb_pin_vma(struct i915_execbuffer *eb,
381 const struct drm_i915_gem_exec_object2 *entry,
382 struct i915_vma *vma)
384 unsigned int exec_flags = *vma->exec_flags;
388 pin_flags = vma->node.start;
390 pin_flags = entry->offset & PIN_OFFSET_MASK;
392 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
393 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
394 pin_flags |= PIN_GLOBAL;
396 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
399 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
400 if (unlikely(i915_vma_pin_fence(vma))) {
406 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
409 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
410 return !eb_vma_misplaced(entry, vma, exec_flags);
413 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
415 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
417 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
418 __i915_vma_unpin_fence(vma);
420 __i915_vma_unpin(vma);
424 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
426 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
429 __eb_unreserve_vma(vma, *flags);
430 *flags &= ~__EXEC_OBJECT_RESERVED;
434 eb_validate_vma(struct i915_execbuffer *eb,
435 struct drm_i915_gem_exec_object2 *entry,
436 struct i915_vma *vma)
438 if (unlikely(entry->flags & eb->invalid_flags))
441 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
445 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
446 * any non-page-aligned or non-canonical addresses.
448 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
449 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
452 /* pad_to_size was once a reserved field, so sanitize it */
453 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
454 if (unlikely(offset_in_page(entry->pad_to_size)))
457 entry->pad_to_size = 0;
460 if (unlikely(vma->exec_flags)) {
461 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
462 entry->handle, (int)(entry - eb->exec));
467 * From drm_mm perspective address space is continuous,
468 * so from this point we're always using non-canonical
471 entry->offset = gen8_noncanonical_addr(entry->offset);
473 if (!eb->reloc_cache.has_fence) {
474 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
476 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
477 eb->reloc_cache.needs_unfenced) &&
478 i915_gem_object_is_tiled(vma->obj))
479 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
482 if (!(entry->flags & EXEC_OBJECT_PINNED))
483 entry->flags |= eb->context_flags;
489 eb_add_vma(struct i915_execbuffer *eb,
490 unsigned int i, unsigned batch_idx,
491 struct i915_vma *vma)
493 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
496 GEM_BUG_ON(i915_vma_is_closed(vma));
498 if (!(eb->args->flags & __EXEC_VALIDATED)) {
499 err = eb_validate_vma(eb, entry, vma);
504 if (eb->lut_size > 0) {
505 vma->exec_handle = entry->handle;
506 hlist_add_head(&vma->exec_node,
507 &eb->buckets[hash_32(entry->handle,
511 if (entry->relocation_count)
512 list_add_tail(&vma->reloc_link, &eb->relocs);
515 * Stash a pointer from the vma to execobj, so we can query its flags,
516 * size, alignment etc as provided by the user. Also we stash a pointer
517 * to the vma inside the execobj so that we can use a direct lookup
518 * to find the right target VMA when doing relocations.
521 eb->flags[i] = entry->flags;
522 vma->exec_flags = &eb->flags[i];
525 * SNA is doing fancy tricks with compressing batch buffers, which leads
526 * to negative relocation deltas. Usually that works out ok since the
527 * relocate address is still positive, except when the batch is placed
528 * very low in the GTT. Ensure this doesn't happen.
530 * Note that actual hangs have only been observed on gen7, but for
531 * paranoia do it everywhere.
533 if (i == batch_idx) {
534 if (entry->relocation_count &&
535 !(eb->flags[i] & EXEC_OBJECT_PINNED))
536 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
537 if (eb->reloc_cache.has_fence)
538 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
544 if (eb_pin_vma(eb, entry, vma)) {
545 if (entry->offset != vma->node.start) {
546 entry->offset = vma->node.start | UPDATE;
547 eb->args->flags |= __EXEC_HAS_RELOC;
550 eb_unreserve_vma(vma, vma->exec_flags);
552 list_add_tail(&vma->exec_link, &eb->unbound);
553 if (drm_mm_node_allocated(&vma->node))
554 err = i915_vma_unbind(vma);
556 vma->exec_flags = NULL;
561 static inline int use_cpu_reloc(const struct reloc_cache *cache,
562 const struct drm_i915_gem_object *obj)
564 if (!i915_gem_object_has_struct_page(obj))
567 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
570 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
573 return (cache->has_llc ||
575 obj->cache_level != I915_CACHE_NONE);
578 static int eb_reserve_vma(const struct i915_execbuffer *eb,
579 struct i915_vma *vma)
581 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
582 unsigned int exec_flags = *vma->exec_flags;
586 pin_flags = PIN_USER | PIN_NONBLOCK;
587 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
588 pin_flags |= PIN_GLOBAL;
591 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
592 * limit address to the first 4GBs for unflagged objects.
594 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
595 pin_flags |= PIN_ZONE_4G;
597 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
598 pin_flags |= PIN_MAPPABLE;
600 if (exec_flags & EXEC_OBJECT_PINNED) {
601 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
602 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
603 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
604 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
607 err = i915_vma_pin(vma,
608 entry->pad_to_size, entry->alignment,
613 if (entry->offset != vma->node.start) {
614 entry->offset = vma->node.start | UPDATE;
615 eb->args->flags |= __EXEC_HAS_RELOC;
618 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
619 err = i915_vma_pin_fence(vma);
626 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
629 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
630 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
635 static int eb_reserve(struct i915_execbuffer *eb)
637 const unsigned int count = eb->buffer_count;
638 struct list_head last;
639 struct i915_vma *vma;
640 unsigned int i, pass;
644 * Attempt to pin all of the buffers into the GTT.
645 * This is done in 3 phases:
647 * 1a. Unbind all objects that do not match the GTT constraints for
648 * the execbuffer (fenceable, mappable, alignment etc).
649 * 1b. Increment pin count for already bound objects.
650 * 2. Bind new objects.
651 * 3. Decrement pin count.
653 * This avoid unnecessary unbinding of later objects in order to make
654 * room for the earlier objects *unless* we need to defragment.
660 list_for_each_entry(vma, &eb->unbound, exec_link) {
661 err = eb_reserve_vma(eb, vma);
668 /* Resort *all* the objects into priority order */
669 INIT_LIST_HEAD(&eb->unbound);
670 INIT_LIST_HEAD(&last);
671 for (i = 0; i < count; i++) {
672 unsigned int flags = eb->flags[i];
673 struct i915_vma *vma = eb->vma[i];
675 if (flags & EXEC_OBJECT_PINNED &&
676 flags & __EXEC_OBJECT_HAS_PIN)
679 eb_unreserve_vma(vma, &eb->flags[i]);
681 if (flags & EXEC_OBJECT_PINNED)
682 /* Pinned must have their slot */
683 list_add(&vma->exec_link, &eb->unbound);
684 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
685 /* Map require the lowest 256MiB (aperture) */
686 list_add_tail(&vma->exec_link, &eb->unbound);
687 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
688 /* Prioritise 4GiB region for restricted bo */
689 list_add(&vma->exec_link, &last);
691 list_add_tail(&vma->exec_link, &last);
693 list_splice_tail(&last, &eb->unbound);
700 /* Too fragmented, unbind everything and retry */
701 mutex_lock(&eb->context->vm->mutex);
702 err = i915_gem_evict_vm(eb->context->vm);
703 mutex_unlock(&eb->context->vm->mutex);
714 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
716 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
719 return eb->buffer_count - 1;
722 static int eb_select_context(struct i915_execbuffer *eb)
724 struct i915_gem_context *ctx;
726 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
730 eb->gem_context = ctx;
731 if (rcu_access_pointer(ctx->vm))
732 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
734 eb->context_flags = 0;
735 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
741 static int eb_lookup_vmas(struct i915_execbuffer *eb)
743 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
744 struct drm_i915_gem_object *obj;
745 unsigned int i, batch;
748 if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
751 INIT_LIST_HEAD(&eb->relocs);
752 INIT_LIST_HEAD(&eb->unbound);
754 batch = eb_batch_index(eb);
756 mutex_lock(&eb->gem_context->mutex);
757 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
762 for (i = 0; i < eb->buffer_count; i++) {
763 u32 handle = eb->exec[i].handle;
764 struct i915_lut_handle *lut;
765 struct i915_vma *vma;
767 vma = radix_tree_lookup(handles_vma, handle);
771 obj = i915_gem_object_lookup(eb->file, handle);
772 if (unlikely(!obj)) {
777 vma = i915_vma_instance(obj, eb->context->vm, NULL);
783 lut = i915_lut_handle_alloc();
784 if (unlikely(!lut)) {
789 err = radix_tree_insert(handles_vma, handle, vma);
791 i915_lut_handle_free(lut);
795 /* transfer ref to lut */
796 if (!atomic_fetch_inc(&vma->open_count))
797 i915_vma_reopen(vma);
798 lut->handle = handle;
799 lut->ctx = eb->gem_context;
801 i915_gem_object_lock(obj);
802 list_add(&lut->obj_link, &obj->lut_list);
803 i915_gem_object_unlock(obj);
806 err = eb_add_vma(eb, i, batch, vma);
810 GEM_BUG_ON(vma != eb->vma[i]);
811 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
812 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
813 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
816 mutex_unlock(&eb->gem_context->mutex);
818 eb->args->flags |= __EXEC_VALIDATED;
819 return eb_reserve(eb);
822 i915_gem_object_put(obj);
826 mutex_unlock(&eb->gem_context->mutex);
830 static struct i915_vma *
831 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
833 if (eb->lut_size < 0) {
834 if (handle >= -eb->lut_size)
836 return eb->vma[handle];
838 struct hlist_head *head;
839 struct i915_vma *vma;
841 head = &eb->buckets[hash_32(handle, eb->lut_size)];
842 hlist_for_each_entry(vma, head, exec_node) {
843 if (vma->exec_handle == handle)
850 static void eb_release_vmas(const struct i915_execbuffer *eb)
852 const unsigned int count = eb->buffer_count;
855 for (i = 0; i < count; i++) {
856 struct i915_vma *vma = eb->vma[i];
857 unsigned int flags = eb->flags[i];
862 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
863 vma->exec_flags = NULL;
866 if (flags & __EXEC_OBJECT_HAS_PIN)
867 __eb_unreserve_vma(vma, flags);
869 if (flags & __EXEC_OBJECT_HAS_REF)
874 static void eb_reset_vmas(const struct i915_execbuffer *eb)
877 if (eb->lut_size > 0)
878 memset(eb->buckets, 0,
879 sizeof(struct hlist_head) << eb->lut_size);
882 static void eb_destroy(const struct i915_execbuffer *eb)
884 GEM_BUG_ON(eb->reloc_cache.rq);
886 if (eb->reloc_cache.ce)
887 intel_context_put(eb->reloc_cache.ce);
889 if (eb->lut_size > 0)
894 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
895 const struct i915_vma *target)
897 return gen8_canonical_addr((int)reloc->delta + target->node.start);
900 static void reloc_cache_init(struct reloc_cache *cache,
901 struct drm_i915_private *i915)
905 /* Must be a variable in the struct to allow GCC to unroll. */
906 cache->gen = INTEL_GEN(i915);
907 cache->has_llc = HAS_LLC(i915);
908 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
909 cache->has_fence = cache->gen < 4;
910 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
911 cache->node.allocated = false;
917 static inline void *unmask_page(unsigned long p)
919 return (void *)(uintptr_t)(p & PAGE_MASK);
922 static inline unsigned int unmask_flags(unsigned long p)
924 return p & ~PAGE_MASK;
927 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
929 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
931 struct drm_i915_private *i915 =
932 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
936 static void reloc_gpu_flush(struct reloc_cache *cache)
938 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
939 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
941 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
942 i915_gem_object_unpin_map(cache->rq->batch->obj);
944 intel_gt_chipset_flush(cache->rq->engine->gt);
946 i915_request_add(cache->rq);
950 static void reloc_cache_reset(struct reloc_cache *cache)
955 reloc_gpu_flush(cache);
960 vaddr = unmask_page(cache->vaddr);
961 if (cache->vaddr & KMAP) {
962 if (cache->vaddr & CLFLUSH_AFTER)
965 kunmap_atomic(vaddr);
966 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
968 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
970 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
971 io_mapping_unmap_atomic((void __iomem *)vaddr);
973 if (drm_mm_node_allocated(&cache->node)) {
974 ggtt->vm.clear_range(&ggtt->vm,
977 mutex_lock(&ggtt->vm.mutex);
978 drm_mm_remove_node(&cache->node);
979 mutex_unlock(&ggtt->vm.mutex);
981 i915_vma_unpin((struct i915_vma *)cache->node.mm);
989 static void *reloc_kmap(struct drm_i915_gem_object *obj,
990 struct reloc_cache *cache,
996 kunmap_atomic(unmask_page(cache->vaddr));
998 unsigned int flushes;
1001 err = i915_gem_object_prepare_write(obj, &flushes);
1003 return ERR_PTR(err);
1005 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1006 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1008 cache->vaddr = flushes | KMAP;
1009 cache->node.mm = (void *)obj;
1014 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1015 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1021 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1022 struct reloc_cache *cache,
1025 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1026 unsigned long offset;
1030 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1031 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1033 struct i915_vma *vma;
1036 if (i915_gem_object_is_tiled(obj))
1037 return ERR_PTR(-EINVAL);
1039 if (use_cpu_reloc(cache, obj))
1042 i915_gem_object_lock(obj);
1043 err = i915_gem_object_set_to_gtt_domain(obj, true);
1044 i915_gem_object_unlock(obj);
1046 return ERR_PTR(err);
1048 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 PIN_NONBLOCK /* NOWARN */ |
1053 memset(&cache->node, 0, sizeof(cache->node));
1054 mutex_lock(&ggtt->vm.mutex);
1055 err = drm_mm_insert_node_in_range
1056 (&ggtt->vm.mm, &cache->node,
1057 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1058 0, ggtt->mappable_end,
1060 mutex_unlock(&ggtt->vm.mutex);
1061 if (err) /* no inactive aperture space, use cpu reloc */
1064 cache->node.start = vma->node.start;
1065 cache->node.mm = (void *)vma;
1069 offset = cache->node.start;
1070 if (drm_mm_node_allocated(&cache->node)) {
1071 ggtt->vm.insert_page(&ggtt->vm,
1072 i915_gem_object_get_dma_address(obj, page),
1073 offset, I915_CACHE_NONE, 0);
1075 offset += page << PAGE_SHIFT;
1078 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1081 cache->vaddr = (unsigned long)vaddr;
1086 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1087 struct reloc_cache *cache,
1092 if (cache->page == page) {
1093 vaddr = unmask_page(cache->vaddr);
1096 if ((cache->vaddr & KMAP) == 0)
1097 vaddr = reloc_iomap(obj, cache, page);
1099 vaddr = reloc_kmap(obj, cache, page);
1105 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1107 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1108 if (flushes & CLFLUSH_BEFORE) {
1116 * Writes to the same cacheline are serialised by the CPU
1117 * (including clflush). On the write path, we only require
1118 * that it hits memory in an orderly fashion and place
1119 * mb barriers at the start and end of the relocation phase
1120 * to ensure ordering of clflush wrt to the system.
1122 if (flushes & CLFLUSH_AFTER)
1128 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1130 struct drm_i915_gem_object *obj = vma->obj;
1135 if (obj->cache_dirty & ~obj->cache_coherent)
1136 i915_gem_clflush_object(obj, 0);
1137 obj->write_domain = 0;
1139 err = i915_request_await_object(rq, vma->obj, true);
1141 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1143 i915_vma_unlock(vma);
1148 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1149 struct i915_vma *vma,
1152 struct reloc_cache *cache = &eb->reloc_cache;
1153 struct intel_engine_pool_node *pool;
1154 struct i915_request *rq;
1155 struct i915_vma *batch;
1159 pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1161 return PTR_ERR(pool);
1163 cmd = i915_gem_object_pin_map(pool->obj,
1172 batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1173 if (IS_ERR(batch)) {
1174 err = PTR_ERR(batch);
1178 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1182 rq = intel_context_create_request(cache->ce);
1188 err = intel_engine_pool_mark_active(pool, rq);
1192 err = reloc_move_to_gpu(rq, vma);
1196 err = eb->engine->emit_bb_start(rq,
1197 batch->node.start, PAGE_SIZE,
1198 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1202 i915_vma_lock(batch);
1203 err = i915_request_await_object(rq, batch->obj, false);
1205 err = i915_vma_move_to_active(batch, rq, 0);
1206 i915_vma_unlock(batch);
1211 i915_vma_unpin(batch);
1214 cache->rq_cmd = cmd;
1217 /* Return with batch mapping (cmd) still pinned */
1221 i915_request_skip(rq, err);
1223 i915_request_add(rq);
1225 i915_vma_unpin(batch);
1227 i915_gem_object_unpin_map(pool->obj);
1229 intel_engine_pool_put(pool);
1233 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1234 struct i915_vma *vma,
1237 struct reloc_cache *cache = &eb->reloc_cache;
1240 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1241 reloc_gpu_flush(cache);
1243 if (unlikely(!cache->rq)) {
1246 /* If we need to copy for the cmdparser, we will stall anyway */
1247 if (eb_use_cmdparser(eb))
1248 return ERR_PTR(-EWOULDBLOCK);
1250 if (!intel_engine_can_store_dword(eb->engine))
1251 return ERR_PTR(-ENODEV);
1254 struct intel_context *ce;
1257 * The CS pre-parser can pre-fetch commands across
1258 * memory sync points and starting gen12 it is able to
1259 * pre-fetch across BB_START and BB_END boundaries
1260 * (within the same context). We therefore use a
1261 * separate context gen12+ to guarantee that the reloc
1262 * writes land before the parser gets to the target
1265 if (cache->gen >= 12)
1266 ce = intel_context_create(eb->context->gem_context,
1269 ce = intel_context_get(eb->context);
1271 return ERR_CAST(ce);
1276 err = __reloc_gpu_alloc(eb, vma, len);
1278 return ERR_PTR(err);
1281 cmd = cache->rq_cmd + cache->rq_size;
1282 cache->rq_size += len;
1288 relocate_entry(struct i915_vma *vma,
1289 const struct drm_i915_gem_relocation_entry *reloc,
1290 struct i915_execbuffer *eb,
1291 const struct i915_vma *target)
1293 u64 offset = reloc->offset;
1294 u64 target_offset = relocation_target(reloc, target);
1295 bool wide = eb->reloc_cache.use_64bit_reloc;
1298 if (!eb->reloc_cache.vaddr &&
1299 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1300 !dma_resv_test_signaled_rcu(vma->resv, true))) {
1301 const unsigned int gen = eb->reloc_cache.gen;
1307 len = offset & 7 ? 8 : 5;
1313 batch = reloc_gpu(eb, vma, len);
1317 addr = gen8_canonical_addr(vma->node.start + offset);
1320 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1321 *batch++ = lower_32_bits(addr);
1322 *batch++ = upper_32_bits(addr);
1323 *batch++ = lower_32_bits(target_offset);
1325 addr = gen8_canonical_addr(addr + 4);
1327 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1328 *batch++ = lower_32_bits(addr);
1329 *batch++ = upper_32_bits(addr);
1330 *batch++ = upper_32_bits(target_offset);
1332 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1333 *batch++ = lower_32_bits(addr);
1334 *batch++ = upper_32_bits(addr);
1335 *batch++ = lower_32_bits(target_offset);
1336 *batch++ = upper_32_bits(target_offset);
1338 } else if (gen >= 6) {
1339 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1342 *batch++ = target_offset;
1343 } else if (gen >= 4) {
1344 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1347 *batch++ = target_offset;
1349 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1351 *batch++ = target_offset;
1358 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1360 return PTR_ERR(vaddr);
1362 clflush_write32(vaddr + offset_in_page(offset),
1363 lower_32_bits(target_offset),
1364 eb->reloc_cache.vaddr);
1367 offset += sizeof(u32);
1368 target_offset >>= 32;
1374 return target->node.start | UPDATE;
1378 eb_relocate_entry(struct i915_execbuffer *eb,
1379 struct i915_vma *vma,
1380 const struct drm_i915_gem_relocation_entry *reloc)
1382 struct i915_vma *target;
1385 /* we've already hold a reference to all valid objects */
1386 target = eb_get_vma(eb, reloc->target_handle);
1387 if (unlikely(!target))
1390 /* Validate that the target is in a valid r/w GPU domain */
1391 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1392 DRM_DEBUG("reloc with multiple write domains: "
1393 "target %d offset %d "
1394 "read %08x write %08x",
1395 reloc->target_handle,
1396 (int) reloc->offset,
1397 reloc->read_domains,
1398 reloc->write_domain);
1401 if (unlikely((reloc->write_domain | reloc->read_domains)
1402 & ~I915_GEM_GPU_DOMAINS)) {
1403 DRM_DEBUG("reloc with read/write non-GPU domains: "
1404 "target %d offset %d "
1405 "read %08x write %08x",
1406 reloc->target_handle,
1407 (int) reloc->offset,
1408 reloc->read_domains,
1409 reloc->write_domain);
1413 if (reloc->write_domain) {
1414 *target->exec_flags |= EXEC_OBJECT_WRITE;
1417 * Sandybridge PPGTT errata: We need a global gtt mapping
1418 * for MI and pipe_control writes because the gpu doesn't
1419 * properly redirect them through the ppgtt for non_secure
1422 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1423 IS_GEN(eb->i915, 6)) {
1424 err = i915_vma_bind(target, target->obj->cache_level,
1427 "Unexpected failure to bind target VMA!"))
1433 * If the relocation already has the right value in it, no
1434 * more work needs to be done.
1436 if (!DBG_FORCE_RELOC &&
1437 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1440 /* Check that the relocation address is valid... */
1441 if (unlikely(reloc->offset >
1442 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1443 DRM_DEBUG("Relocation beyond object bounds: "
1444 "target %d offset %d size %d.\n",
1445 reloc->target_handle,
1450 if (unlikely(reloc->offset & 3)) {
1451 DRM_DEBUG("Relocation not 4-byte aligned: "
1452 "target %d offset %d.\n",
1453 reloc->target_handle,
1454 (int)reloc->offset);
1459 * If we write into the object, we need to force the synchronisation
1460 * barrier, either with an asynchronous clflush or if we executed the
1461 * patching using the GPU (though that should be serialised by the
1462 * timeline). To be completely sure, and since we are required to
1463 * do relocations we are already stalling, disable the user's opt
1464 * out of our synchronisation.
1466 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1468 /* and update the user's relocation entry */
1469 return relocate_entry(vma, reloc, eb, target);
1472 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1474 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1475 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1476 struct drm_i915_gem_relocation_entry __user *urelocs;
1477 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1478 unsigned int remain;
1480 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1481 remain = entry->relocation_count;
1482 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1486 * We must check that the entire relocation array is safe
1487 * to read. However, if the array is not writable the user loses
1488 * the updated relocation values.
1490 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1494 struct drm_i915_gem_relocation_entry *r = stack;
1495 unsigned int count =
1496 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1497 unsigned int copied;
1500 * This is the fast path and we cannot handle a pagefault
1501 * whilst holding the struct mutex lest the user pass in the
1502 * relocations contained within a mmaped bo. For in such a case
1503 * we, the page fault handler would call i915_gem_fault() and
1504 * we would try to acquire the struct mutex again. Obviously
1505 * this is bad and so lockdep complains vehemently.
1507 pagefault_disable();
1508 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1510 if (unlikely(copied)) {
1517 u64 offset = eb_relocate_entry(eb, vma, r);
1519 if (likely(offset == 0)) {
1520 } else if ((s64)offset < 0) {
1521 remain = (int)offset;
1525 * Note that reporting an error now
1526 * leaves everything in an inconsistent
1527 * state as we have *already* changed
1528 * the relocation value inside the
1529 * object. As we have not changed the
1530 * reloc.presumed_offset or will not
1531 * change the execobject.offset, on the
1532 * call we may not rewrite the value
1533 * inside the object, leaving it
1534 * dangling and causing a GPU hang. Unless
1535 * userspace dynamically rebuilds the
1536 * relocations on each execbuf rather than
1537 * presume a static tree.
1539 * We did previously check if the relocations
1540 * were writable (access_ok), an error now
1541 * would be a strange race with mprotect,
1542 * having already demonstrated that we
1543 * can read from this userspace address.
1545 offset = gen8_canonical_addr(offset & ~UPDATE);
1546 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1551 } while (r++, --count);
1552 urelocs += ARRAY_SIZE(stack);
1555 reloc_cache_reset(&eb->reloc_cache);
1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1562 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1563 struct drm_i915_gem_relocation_entry *relocs =
1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1568 for (i = 0; i < entry->relocation_count; i++) {
1569 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1571 if ((s64)offset < 0) {
1578 reloc_cache_reset(&eb->reloc_cache);
1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1584 const char __user *addr, *end;
1586 char __maybe_unused c;
1588 size = entry->relocation_count;
1592 if (size > N_RELOC(ULONG_MAX))
1595 addr = u64_to_user_ptr(entry->relocs_ptr);
1596 size *= sizeof(struct drm_i915_gem_relocation_entry);
1597 if (!access_ok(addr, size))
1601 for (; addr < end; addr += PAGE_SIZE) {
1602 int err = __get_user(c, addr);
1606 return __get_user(c, end - 1);
1609 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1611 const unsigned int count = eb->buffer_count;
1615 for (i = 0; i < count; i++) {
1616 const unsigned int nreloc = eb->exec[i].relocation_count;
1617 struct drm_i915_gem_relocation_entry __user *urelocs;
1618 struct drm_i915_gem_relocation_entry *relocs;
1620 unsigned long copied;
1625 err = check_relocations(&eb->exec[i]);
1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1630 size = nreloc * sizeof(*relocs);
1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1638 /* copy_from_user is limited to < 4GiB */
1642 min_t(u64, BIT_ULL(31), size - copied);
1644 if (__copy_from_user((char *)relocs + copied,
1645 (char __user *)urelocs + copied,
1656 } while (copied < size);
1659 * As we do not update the known relocation offsets after
1660 * relocating (due to the complexities in lock handling),
1661 * we need to mark them as invalid now so that we force the
1662 * relocation processing next time. Just in case the target
1663 * object is evicted and then rebound into its old
1664 * presumed_offset before the next execbuffer - if that
1665 * happened we would make the mistake of assuming that the
1666 * relocations were valid.
1668 if (!user_access_begin(urelocs, size))
1671 for (copied = 0; copied < nreloc; copied++)
1673 &urelocs[copied].presumed_offset,
1677 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1684 struct drm_i915_gem_relocation_entry *relocs =
1685 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1686 if (eb->exec[i].relocation_count)
1692 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1694 const unsigned int count = eb->buffer_count;
1697 if (unlikely(i915_modparams.prefault_disable))
1700 for (i = 0; i < count; i++) {
1703 err = check_relocations(&eb->exec[i]);
1711 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1713 struct drm_device *dev = &eb->i915->drm;
1714 bool have_copy = false;
1715 struct i915_vma *vma;
1719 if (signal_pending(current)) {
1724 /* We may process another execbuffer during the unlock... */
1726 mutex_unlock(&dev->struct_mutex);
1729 * We take 3 passes through the slowpatch.
1731 * 1 - we try to just prefault all the user relocation entries and
1732 * then attempt to reuse the atomic pagefault disabled fast path again.
1734 * 2 - we copy the user entries to a local buffer here outside of the
1735 * local and allow ourselves to wait upon any rendering before
1738 * 3 - we already have a local copy of the relocation entries, but
1739 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1742 err = eb_prefault_relocations(eb);
1743 } else if (!have_copy) {
1744 err = eb_copy_relocations(eb);
1745 have_copy = err == 0;
1751 mutex_lock(&dev->struct_mutex);
1755 /* A frequent cause for EAGAIN are currently unavailable client pages */
1756 flush_workqueue(eb->i915->mm.userptr_wq);
1758 err = i915_mutex_lock_interruptible(dev);
1760 mutex_lock(&dev->struct_mutex);
1764 /* reacquire the objects */
1765 err = eb_lookup_vmas(eb);
1769 GEM_BUG_ON(!eb->batch);
1771 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1773 pagefault_disable();
1774 err = eb_relocate_vma(eb, vma);
1779 err = eb_relocate_vma_slow(eb, vma);
1786 * Leave the user relocations as are, this is the painfully slow path,
1787 * and we want to avoid the complication of dropping the lock whilst
1788 * having buffers reserved in the aperture and so causing spurious
1789 * ENOSPC for random operations.
1798 const unsigned int count = eb->buffer_count;
1801 for (i = 0; i < count; i++) {
1802 const struct drm_i915_gem_exec_object2 *entry =
1804 struct drm_i915_gem_relocation_entry *relocs;
1806 if (!entry->relocation_count)
1809 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1817 static int eb_relocate(struct i915_execbuffer *eb)
1819 if (eb_lookup_vmas(eb))
1822 /* The objects are in their final locations, apply the relocations. */
1823 if (eb->args->flags & __EXEC_HAS_RELOC) {
1824 struct i915_vma *vma;
1826 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1827 if (eb_relocate_vma(eb, vma))
1835 return eb_relocate_slow(eb);
1838 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1840 const unsigned int count = eb->buffer_count;
1841 struct ww_acquire_ctx acquire;
1845 ww_acquire_init(&acquire, &reservation_ww_class);
1847 for (i = 0; i < count; i++) {
1848 struct i915_vma *vma = eb->vma[i];
1850 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1854 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1856 if (err == -EDEADLK) {
1861 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1863 swap(eb->flags[i], eb->flags[j]);
1864 swap(eb->vma[i], eb->vma[j]);
1865 eb->vma[i]->exec_flags = &eb->flags[i];
1867 GEM_BUG_ON(vma != eb->vma[0]);
1868 vma->exec_flags = &eb->flags[0];
1870 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1876 ww_acquire_done(&acquire);
1879 unsigned int flags = eb->flags[i];
1880 struct i915_vma *vma = eb->vma[i];
1881 struct drm_i915_gem_object *obj = vma->obj;
1883 assert_vma_held(vma);
1885 if (flags & EXEC_OBJECT_CAPTURE) {
1886 struct i915_capture_list *capture;
1888 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1890 capture->next = eb->request->capture_list;
1892 eb->request->capture_list = capture;
1897 * If the GPU is not _reading_ through the CPU cache, we need
1898 * to make sure that any writes (both previous GPU writes from
1899 * before a change in snooping levels and normal CPU writes)
1900 * caught in that cache are flushed to main memory.
1903 * obj->cache_dirty &&
1904 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1905 * but gcc's optimiser doesn't handle that as well and emits
1906 * two jumps instead of one. Maybe one day...
1908 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1909 if (i915_gem_clflush_object(obj, 0))
1910 flags &= ~EXEC_OBJECT_ASYNC;
1913 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1914 err = i915_request_await_object
1915 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1919 err = i915_vma_move_to_active(vma, eb->request, flags);
1921 i915_vma_unlock(vma);
1923 __eb_unreserve_vma(vma, flags);
1924 vma->exec_flags = NULL;
1926 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1929 ww_acquire_fini(&acquire);
1936 /* Unconditionally flush any chipset caches (for streaming writes). */
1937 intel_gt_chipset_flush(eb->engine->gt);
1941 i915_request_skip(eb->request, err);
1945 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1947 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1950 /* Kernel clipping was a DRI1 misfeature */
1951 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1952 if (exec->num_cliprects || exec->cliprects_ptr)
1956 if (exec->DR4 == 0xffffffff) {
1957 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1960 if (exec->DR1 || exec->DR4)
1963 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1969 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1974 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1975 DRM_DEBUG("sol reset is gen7/rcs only\n");
1979 cs = intel_ring_begin(rq, 4 * 2 + 2);
1983 *cs++ = MI_LOAD_REGISTER_IMM(4);
1984 for (i = 0; i < 4; i++) {
1985 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1989 intel_ring_advance(rq, cs);
1994 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1996 struct intel_engine_pool_node *pool;
1997 struct i915_vma *vma;
2000 pool = intel_engine_get_pool(eb->engine, eb->batch_len);
2002 return ERR_CAST(pool);
2004 err = intel_engine_cmd_parser(eb->engine,
2007 eb->batch_start_offset,
2011 if (err == -EACCES) /* unhandled chained batch */
2018 vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
2022 eb->vma[eb->buffer_count] = i915_vma_get(vma);
2023 eb->flags[eb->buffer_count] =
2024 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2025 vma->exec_flags = &eb->flags[eb->buffer_count];
2028 vma->private = pool;
2032 intel_engine_pool_put(pool);
2037 add_to_client(struct i915_request *rq, struct drm_file *file)
2039 struct drm_i915_file_private *file_priv = file->driver_priv;
2041 rq->file_priv = file_priv;
2043 spin_lock(&file_priv->mm.lock);
2044 list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2045 spin_unlock(&file_priv->mm.lock);
2048 static int eb_submit(struct i915_execbuffer *eb)
2052 err = eb_move_to_gpu(eb);
2056 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2057 err = i915_reset_gen7_sol_offsets(eb->request);
2063 * After we completed waiting for other engines (using HW semaphores)
2064 * then we can signal that this request/batch is ready to run. This
2065 * allows us to determine if the batch is still waiting on the GPU
2066 * or actually running by checking the breadcrumb.
2068 if (eb->engine->emit_init_breadcrumb) {
2069 err = eb->engine->emit_init_breadcrumb(eb->request);
2074 err = eb->engine->emit_bb_start(eb->request,
2075 eb->batch->node.start +
2076 eb->batch_start_offset,
2082 if (i915_gem_context_nopreempt(eb->gem_context))
2083 eb->request->flags |= I915_REQUEST_NOPREEMPT;
2088 static int num_vcs_engines(const struct drm_i915_private *i915)
2090 return hweight64(INTEL_INFO(i915)->engine_mask &
2091 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2095 * Find one BSD ring to dispatch the corresponding BSD command.
2096 * The engine index is returned.
2099 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2100 struct drm_file *file)
2102 struct drm_i915_file_private *file_priv = file->driver_priv;
2104 /* Check whether the file_priv has already selected one ring. */
2105 if ((int)file_priv->bsd_engine < 0)
2106 file_priv->bsd_engine =
2107 get_random_int() % num_vcs_engines(dev_priv);
2109 return file_priv->bsd_engine;
2112 static const enum intel_engine_id user_ring_map[] = {
2113 [I915_EXEC_DEFAULT] = RCS0,
2114 [I915_EXEC_RENDER] = RCS0,
2115 [I915_EXEC_BLT] = BCS0,
2116 [I915_EXEC_BSD] = VCS0,
2117 [I915_EXEC_VEBOX] = VECS0
2120 static struct i915_request *eb_throttle(struct intel_context *ce)
2122 struct intel_ring *ring = ce->ring;
2123 struct intel_timeline *tl = ce->timeline;
2124 struct i915_request *rq;
2127 * Completely unscientific finger-in-the-air estimates for suitable
2128 * maximum user request size (to avoid blocking) and then backoff.
2130 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2134 * Find a request that after waiting upon, there will be at least half
2135 * the ring available. The hysteresis allows us to compete for the
2136 * shared ring and should mean that we sleep less often prior to
2137 * claiming our resources, but not so long that the ring completely
2138 * drains before we can submit our next request.
2140 list_for_each_entry(rq, &tl->requests, link) {
2141 if (rq->ring != ring)
2144 if (__intel_ring_space(rq->postfix,
2145 ring->emit, ring->size) > ring->size / 2)
2148 if (&rq->link == &tl->requests)
2149 return NULL; /* weird, we will check again later for real */
2151 return i915_request_get(rq);
2154 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2156 struct intel_timeline *tl;
2157 struct i915_request *rq;
2161 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2162 * EIO if the GPU is already wedged.
2164 err = intel_gt_terminally_wedged(ce->engine->gt);
2169 * Pinning the contexts may generate requests in order to acquire
2170 * GGTT space, so do this first before we reserve a seqno for
2173 err = intel_context_pin(ce);
2178 * Take a local wakeref for preparing to dispatch the execbuf as
2179 * we expect to access the hardware fairly frequently in the
2180 * process, and require the engine to be kept awake between accesses.
2181 * Upon dispatch, we acquire another prolonged wakeref that we hold
2182 * until the timeline is idle, which in turn releases the wakeref
2183 * taken on the engine, and the parent device.
2185 tl = intel_context_timeline_lock(ce);
2191 intel_context_enter(ce);
2192 rq = eb_throttle(ce);
2194 intel_context_timeline_unlock(tl);
2197 if (i915_request_wait(rq,
2198 I915_WAIT_INTERRUPTIBLE,
2199 MAX_SCHEDULE_TIMEOUT) < 0) {
2200 i915_request_put(rq);
2205 i915_request_put(rq);
2208 eb->engine = ce->engine;
2213 mutex_lock(&tl->mutex);
2214 intel_context_exit(ce);
2215 intel_context_timeline_unlock(tl);
2217 intel_context_unpin(ce);
2221 static void eb_unpin_engine(struct i915_execbuffer *eb)
2223 struct intel_context *ce = eb->context;
2224 struct intel_timeline *tl = ce->timeline;
2226 mutex_lock(&tl->mutex);
2227 intel_context_exit(ce);
2228 mutex_unlock(&tl->mutex);
2230 intel_context_unpin(ce);
2234 eb_select_legacy_ring(struct i915_execbuffer *eb,
2235 struct drm_file *file,
2236 struct drm_i915_gem_execbuffer2 *args)
2238 struct drm_i915_private *i915 = eb->i915;
2239 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2241 if (user_ring_id != I915_EXEC_BSD &&
2242 (args->flags & I915_EXEC_BSD_MASK)) {
2243 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2244 "bsd dispatch flags: %d\n", (int)(args->flags));
2248 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2249 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2251 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2252 bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2253 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2254 bsd_idx <= I915_EXEC_BSD_RING2) {
2255 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2258 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2263 return _VCS(bsd_idx);
2266 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2267 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2271 return user_ring_map[user_ring_id];
2275 eb_pin_engine(struct i915_execbuffer *eb,
2276 struct drm_file *file,
2277 struct drm_i915_gem_execbuffer2 *args)
2279 struct intel_context *ce;
2283 if (i915_gem_context_user_engines(eb->gem_context))
2284 idx = args->flags & I915_EXEC_RING_MASK;
2286 idx = eb_select_legacy_ring(eb, file, args);
2288 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2292 err = __eb_pin_engine(eb, ce);
2293 intel_context_put(ce);
2299 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2302 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2306 static struct drm_syncobj **
2307 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2308 struct drm_file *file)
2310 const unsigned long nfences = args->num_cliprects;
2311 struct drm_i915_gem_exec_fence __user *user;
2312 struct drm_syncobj **fences;
2316 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2319 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2320 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2321 if (nfences > min_t(unsigned long,
2322 ULONG_MAX / sizeof(*user),
2323 SIZE_MAX / sizeof(*fences)))
2324 return ERR_PTR(-EINVAL);
2326 user = u64_to_user_ptr(args->cliprects_ptr);
2327 if (!access_ok(user, nfences * sizeof(*user)))
2328 return ERR_PTR(-EFAULT);
2330 fences = kvmalloc_array(nfences, sizeof(*fences),
2331 __GFP_NOWARN | GFP_KERNEL);
2333 return ERR_PTR(-ENOMEM);
2335 for (n = 0; n < nfences; n++) {
2336 struct drm_i915_gem_exec_fence fence;
2337 struct drm_syncobj *syncobj;
2339 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2344 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2349 syncobj = drm_syncobj_find(file, fence.handle);
2351 DRM_DEBUG("Invalid syncobj handle provided\n");
2356 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2357 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2359 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2365 __free_fence_array(fences, n);
2366 return ERR_PTR(err);
2370 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2371 struct drm_syncobj **fences)
2374 __free_fence_array(fences, args->num_cliprects);
2378 await_fence_array(struct i915_execbuffer *eb,
2379 struct drm_syncobj **fences)
2381 const unsigned int nfences = eb->args->num_cliprects;
2385 for (n = 0; n < nfences; n++) {
2386 struct drm_syncobj *syncobj;
2387 struct dma_fence *fence;
2390 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2391 if (!(flags & I915_EXEC_FENCE_WAIT))
2394 fence = drm_syncobj_fence_get(syncobj);
2398 err = i915_request_await_dma_fence(eb->request, fence);
2399 dma_fence_put(fence);
2408 signal_fence_array(struct i915_execbuffer *eb,
2409 struct drm_syncobj **fences)
2411 const unsigned int nfences = eb->args->num_cliprects;
2412 struct dma_fence * const fence = &eb->request->fence;
2415 for (n = 0; n < nfences; n++) {
2416 struct drm_syncobj *syncobj;
2419 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2420 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2423 drm_syncobj_replace_fence(syncobj, fence);
2428 i915_gem_do_execbuffer(struct drm_device *dev,
2429 struct drm_file *file,
2430 struct drm_i915_gem_execbuffer2 *args,
2431 struct drm_i915_gem_exec_object2 *exec,
2432 struct drm_syncobj **fences)
2434 struct i915_execbuffer eb;
2435 struct dma_fence *in_fence = NULL;
2436 struct dma_fence *exec_fence = NULL;
2437 struct sync_file *out_fence = NULL;
2438 int out_fence_fd = -1;
2441 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2442 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2443 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2445 eb.i915 = to_i915(dev);
2448 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2449 args->flags |= __EXEC_HAS_RELOC;
2452 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2454 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2456 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2457 reloc_cache_init(&eb.reloc_cache, eb.i915);
2459 eb.buffer_count = args->buffer_count;
2460 eb.batch_start_offset = args->batch_start_offset;
2461 eb.batch_len = args->batch_len;
2464 if (args->flags & I915_EXEC_SECURE) {
2465 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2468 eb.batch_flags |= I915_DISPATCH_SECURE;
2470 if (args->flags & I915_EXEC_IS_PINNED)
2471 eb.batch_flags |= I915_DISPATCH_PINNED;
2473 if (args->flags & I915_EXEC_FENCE_IN) {
2474 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2479 if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2485 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2492 if (args->flags & I915_EXEC_FENCE_OUT) {
2493 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2494 if (out_fence_fd < 0) {
2496 goto err_exec_fence;
2500 err = eb_create(&eb);
2504 GEM_BUG_ON(!eb.lut_size);
2506 err = eb_select_context(&eb);
2510 err = eb_pin_engine(&eb, file, args);
2514 err = i915_mutex_lock_interruptible(dev);
2518 err = eb_relocate(&eb);
2521 * If the user expects the execobject.offset and
2522 * reloc.presumed_offset to be an exact match,
2523 * as for using NO_RELOC, then we cannot update
2524 * the execobject.offset until we have completed
2527 args->flags &= ~__EXEC_HAS_RELOC;
2531 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2532 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2536 if (eb.batch_start_offset > eb.batch->size ||
2537 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2538 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2543 if (eb_use_cmdparser(&eb)) {
2544 struct i915_vma *vma;
2546 vma = eb_parse(&eb, drm_is_current_master(file));
2554 * Batch parsed and accepted:
2556 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2557 * bit from MI_BATCH_BUFFER_START commands issued in
2558 * the dispatch_execbuffer implementations. We
2559 * specifically don't want that set on batches the
2560 * command parser has accepted.
2562 eb.batch_flags |= I915_DISPATCH_SECURE;
2563 eb.batch_start_offset = 0;
2568 if (eb.batch_len == 0)
2569 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2572 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2573 * batch" bit. Hence we need to pin secure batches into the global gtt.
2574 * hsw should have this fixed, but bdw mucks it up again. */
2575 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2576 struct i915_vma *vma;
2579 * So on first glance it looks freaky that we pin the batch here
2580 * outside of the reservation loop. But:
2581 * - The batch is already pinned into the relevant ppgtt, so we
2582 * already have the backing storage fully allocated.
2583 * - No other BO uses the global gtt (well contexts, but meh),
2584 * so we don't really have issues with multiple objects not
2585 * fitting due to fragmentation.
2586 * So this is actually safe.
2588 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2597 /* All GPU relocation batches must be submitted prior to the user rq */
2598 GEM_BUG_ON(eb.reloc_cache.rq);
2600 /* Allocate a request for this batch buffer nice and early. */
2601 eb.request = i915_request_create(eb.context);
2602 if (IS_ERR(eb.request)) {
2603 err = PTR_ERR(eb.request);
2604 goto err_batch_unpin;
2608 err = i915_request_await_dma_fence(eb.request, in_fence);
2614 err = i915_request_await_execution(eb.request, exec_fence,
2615 eb.engine->bond_execute);
2621 err = await_fence_array(&eb, fences);
2626 if (out_fence_fd != -1) {
2627 out_fence = sync_file_create(&eb.request->fence);
2635 * Whilst this request exists, batch_obj will be on the
2636 * active_list, and so will hold the active reference. Only when this
2637 * request is retired will the the batch_obj be moved onto the
2638 * inactive_list and lose its active reference. Hence we do not need
2639 * to explicitly hold another reference here.
2641 eb.request->batch = eb.batch;
2642 if (eb.batch->private)
2643 intel_engine_pool_mark_active(eb.batch->private, eb.request);
2645 trace_i915_request_queue(eb.request, eb.batch_flags);
2646 err = eb_submit(&eb);
2648 add_to_client(eb.request, file);
2649 i915_request_add(eb.request);
2652 signal_fence_array(&eb, fences);
2656 fd_install(out_fence_fd, out_fence->file);
2657 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2658 args->rsvd2 |= (u64)out_fence_fd << 32;
2661 fput(out_fence->file);
2666 if (eb.batch_flags & I915_DISPATCH_SECURE)
2667 i915_vma_unpin(eb.batch);
2668 if (eb.batch->private)
2669 intel_engine_pool_put(eb.batch->private);
2672 eb_release_vmas(&eb);
2673 mutex_unlock(&dev->struct_mutex);
2675 eb_unpin_engine(&eb);
2677 i915_gem_context_put(eb.gem_context);
2681 if (out_fence_fd != -1)
2682 put_unused_fd(out_fence_fd);
2684 dma_fence_put(exec_fence);
2686 dma_fence_put(in_fence);
2690 static size_t eb_element_size(void)
2692 return (sizeof(struct drm_i915_gem_exec_object2) +
2693 sizeof(struct i915_vma *) +
2694 sizeof(unsigned int));
2697 static bool check_buffer_count(size_t count)
2699 const size_t sz = eb_element_size();
2702 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2703 * array size (see eb_create()). Otherwise, we can accept an array as
2704 * large as can be addressed (though use large arrays at your peril)!
2707 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2711 * Legacy execbuffer just creates an exec2 list from the original exec object
2712 * list array and passes it to the real function.
2715 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2716 struct drm_file *file)
2718 struct drm_i915_gem_execbuffer *args = data;
2719 struct drm_i915_gem_execbuffer2 exec2;
2720 struct drm_i915_gem_exec_object *exec_list = NULL;
2721 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2722 const size_t count = args->buffer_count;
2726 if (!check_buffer_count(count)) {
2727 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2731 exec2.buffers_ptr = args->buffers_ptr;
2732 exec2.buffer_count = args->buffer_count;
2733 exec2.batch_start_offset = args->batch_start_offset;
2734 exec2.batch_len = args->batch_len;
2735 exec2.DR1 = args->DR1;
2736 exec2.DR4 = args->DR4;
2737 exec2.num_cliprects = args->num_cliprects;
2738 exec2.cliprects_ptr = args->cliprects_ptr;
2739 exec2.flags = I915_EXEC_RENDER;
2740 i915_execbuffer2_set_context_id(exec2, 0);
2742 if (!i915_gem_check_execbuffer(&exec2))
2745 /* Copy in the exec list from userland */
2746 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2747 __GFP_NOWARN | GFP_KERNEL);
2748 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2749 __GFP_NOWARN | GFP_KERNEL);
2750 if (exec_list == NULL || exec2_list == NULL) {
2751 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2752 args->buffer_count);
2757 err = copy_from_user(exec_list,
2758 u64_to_user_ptr(args->buffers_ptr),
2759 sizeof(*exec_list) * count);
2761 DRM_DEBUG("copy %d exec entries failed %d\n",
2762 args->buffer_count, err);
2768 for (i = 0; i < args->buffer_count; i++) {
2769 exec2_list[i].handle = exec_list[i].handle;
2770 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2771 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2772 exec2_list[i].alignment = exec_list[i].alignment;
2773 exec2_list[i].offset = exec_list[i].offset;
2774 if (INTEL_GEN(to_i915(dev)) < 4)
2775 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2777 exec2_list[i].flags = 0;
2780 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2781 if (exec2.flags & __EXEC_HAS_RELOC) {
2782 struct drm_i915_gem_exec_object __user *user_exec_list =
2783 u64_to_user_ptr(args->buffers_ptr);
2785 /* Copy the new buffer offsets back to the user's exec list. */
2786 for (i = 0; i < args->buffer_count; i++) {
2787 if (!(exec2_list[i].offset & UPDATE))
2790 exec2_list[i].offset =
2791 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2792 exec2_list[i].offset &= PIN_OFFSET_MASK;
2793 if (__copy_to_user(&user_exec_list[i].offset,
2794 &exec2_list[i].offset,
2795 sizeof(user_exec_list[i].offset)))
2806 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2807 struct drm_file *file)
2809 struct drm_i915_gem_execbuffer2 *args = data;
2810 struct drm_i915_gem_exec_object2 *exec2_list;
2811 struct drm_syncobj **fences = NULL;
2812 const size_t count = args->buffer_count;
2815 if (!check_buffer_count(count)) {
2816 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2820 if (!i915_gem_check_execbuffer(args))
2823 /* Allocate an extra slot for use by the command parser */
2824 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2825 __GFP_NOWARN | GFP_KERNEL);
2826 if (exec2_list == NULL) {
2827 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2831 if (copy_from_user(exec2_list,
2832 u64_to_user_ptr(args->buffers_ptr),
2833 sizeof(*exec2_list) * count)) {
2834 DRM_DEBUG("copy %zd exec entries failed\n", count);
2839 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2840 fences = get_fence_array(args, file);
2841 if (IS_ERR(fences)) {
2843 return PTR_ERR(fences);
2847 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2850 * Now that we have begun execution of the batchbuffer, we ignore
2851 * any new error after this point. Also given that we have already
2852 * updated the associated relocations, we try to write out the current
2853 * object locations irrespective of any error.
2855 if (args->flags & __EXEC_HAS_RELOC) {
2856 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2857 u64_to_user_ptr(args->buffers_ptr);
2860 /* Copy the new buffer offsets back to the user's exec list. */
2862 * Note: count * sizeof(*user_exec_list) does not overflow,
2863 * because we checked 'count' in check_buffer_count().
2865 * And this range already got effectively checked earlier
2866 * when we did the "copy_from_user()" above.
2868 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2871 for (i = 0; i < args->buffer_count; i++) {
2872 if (!(exec2_list[i].offset & UPDATE))
2875 exec2_list[i].offset =
2876 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2877 unsafe_put_user(exec2_list[i].offset,
2878 &user_exec_list[i].offset,
2886 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2887 put_fence_array(args, fences);