2 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
34 * 05.04.94 - Multi-page memory management added for v1.1.
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
43 #include <linux/kernel_stat.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
82 #include <trace/events/kmem.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
89 #include <asm/tlbflush.h>
91 #include "pgalloc-track.h"
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return pte_marker_uffd_wp(vmf->orig_pte);
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
131 EXPORT_SYMBOL(high_memory);
134 * Randomize the address space (stacks, mmaps, brk, etc.).
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
158 static int __init disable_randmaps(char *s)
160 randomize_va_space = 0;
163 __setup("norandmaps", disable_randmaps);
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
168 unsigned long highest_memmap_pfn __read_mostly;
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 static int __init init_zero_pfn(void)
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
178 early_initcall(init_zero_pfn);
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 trace_rss_stat(mm, member);
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
192 pgtable_t token = pmd_pgtable(*pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
207 pmd = pmd_offset(pud, addr);
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
223 if (end - 1 > ceiling - 1)
226 pmd = pmd_offset(pud, start);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
241 pud = pud_offset(p4d, addr);
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
257 if (end - 1 > ceiling - 1)
260 pud = pud_offset(p4d, start);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
275 p4d = p4d_offset(pgd, addr);
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
287 ceiling &= PGDIR_MASK;
291 if (end - 1 > ceiling - 1)
294 p4d = p4d_offset(pgd, start);
296 p4d_free_tlb(tlb, p4d, start);
300 * This function frees user-level page tables of a process.
302 void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
310 * The next few lines have given us lots of grief...
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
346 if (end - 1 > ceiling - 1)
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
376 next = mas_find(mas, ceiling - 1);
379 * Hide vma from rmap and truncate_pagecache before freeing
383 vma_start_write(vma);
384 unlink_anon_vmas(vma);
385 unlink_file_vma(vma);
387 if (is_vm_hugetlb_page(vma)) {
388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 floor, next ? next->vm_start : ceiling);
392 * Optimization: gather nearby vmas into one call down
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 && !is_vm_hugetlb_page(next)) {
397 next = mas_find(mas, ceiling - 1);
399 vma_start_write(vma);
400 unlink_anon_vmas(vma);
401 unlink_file_vma(vma);
403 free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
410 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 spinlock_t *ptl = pmd_lock(mm, pmd);
414 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
417 * Ensure all pte setup (eg. pte page lock and page clearing) are
418 * visible before the pte is made visible to other CPUs by being
419 * put into page tables.
421 * The other side of the story is the pointer chasing in the page
422 * table walking code (when walking the page table without locking;
423 * ie. most of the time). Fortunately, these data accesses consist
424 * of a chain of data-dependent loads, meaning most CPUs (alpha
425 * being the notable exception) will already guarantee loads are
426 * seen in-order. See the alpha page table accessors for the
427 * smp_rmb() barriers in page table walking code.
429 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
430 pmd_populate(mm, pmd, *pte);
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 pgtable_t new = pte_alloc_one(mm);
442 pmd_install(mm, pmd, &new);
448 int __pte_alloc_kernel(pmd_t *pmd)
450 pte_t *new = pte_alloc_one_kernel(&init_mm);
454 spin_lock(&init_mm.page_table_lock);
455 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
456 smp_wmb(); /* See comment in pmd_install() */
457 pmd_populate_kernel(&init_mm, pmd, new);
460 spin_unlock(&init_mm.page_table_lock);
462 pte_free_kernel(&init_mm, new);
466 static inline void init_rss_vec(int *rss)
468 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
475 for (i = 0; i < NR_MM_COUNTERS; i++)
477 add_mm_counter(mm, i, rss[i]);
481 * This function is called to print an error when a bad pte
482 * is found. For example, we might have a PFN-mapped pte in
483 * a region that doesn't allow it.
485 * The calling function must still handle the error.
487 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
488 pte_t pte, struct page *page)
490 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
491 p4d_t *p4d = p4d_offset(pgd, addr);
492 pud_t *pud = pud_offset(p4d, addr);
493 pmd_t *pmd = pmd_offset(pud, addr);
494 struct address_space *mapping;
496 static unsigned long resume;
497 static unsigned long nr_shown;
498 static unsigned long nr_unshown;
501 * Allow a burst of 60 reports, then keep quiet for that minute;
502 * or allow a steady drip of one report per second.
504 if (nr_shown == 60) {
505 if (time_before(jiffies, resume)) {
510 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 resume = jiffies + 60 * HZ;
519 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
520 index = linear_page_index(vma, addr);
522 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 (long long)pte_val(pte), (long long)pmd_val(*pmd));
526 dump_page(page, "bad pte");
527 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
528 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
529 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531 vma->vm_ops ? vma->vm_ops->fault : NULL,
532 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
533 mapping ? mapping->a_ops->read_folio : NULL);
535 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 * vm_normal_page -- This function gets the "struct page" associated with a pte.
541 * "Special" mappings do not wish to be associated with a "struct page" (either
542 * it doesn't exist, or it exists but they don't want to touch it). In this
543 * case, NULL is returned here. "Normal" mappings do have a struct page.
545 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
546 * pte bit, in which case this function is trivial. Secondly, an architecture
547 * may not have a spare pte bit, which requires a more complicated scheme,
550 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
551 * special mapping (even if there are underlying and valid "struct pages").
552 * COWed pages of a VM_PFNMAP are always normal.
554 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
555 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
556 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
557 * mapping will always honor the rule
559 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 * And for normal mappings this is false.
563 * This restricts such mappings to be a linear translation from virtual address
564 * to pfn. To get around this restriction, we allow arbitrary mappings so long
565 * as the vma is not a COW mapping; in that case, we know that all ptes are
566 * special (because none can have been COWed).
569 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
572 * page" backing, however the difference is that _all_ pages with a struct
573 * page (that is, those where pfn_valid is true) are refcounted and considered
574 * normal pages by the VM. The disadvantage is that pages are refcounted
575 * (which can be slower and simply not an option for some PFNMAP users). The
576 * advantage is that we don't have to follow the strict linearity rule of
577 * PFNMAP mappings in order to support COWable mappings.
580 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
583 unsigned long pfn = pte_pfn(pte);
585 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
586 if (likely(!pte_special(pte)))
588 if (vma->vm_ops && vma->vm_ops->find_special_page)
589 return vma->vm_ops->find_special_page(vma, addr);
590 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 if (is_zero_pfn(pfn))
596 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
597 * and will have refcounts incremented on their struct pages
598 * when they are inserted into PTEs, thus they are safe to
599 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
600 * do not have refcounts. Example of legacy ZONE_DEVICE is
601 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 print_bad_pte(vma, addr, pte, NULL);
609 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
612 if (vma->vm_flags & VM_MIXEDMAP) {
618 off = (addr - vma->vm_start) >> PAGE_SHIFT;
619 if (pfn == vma->vm_pgoff + off)
621 if (!is_cow_mapping(vma->vm_flags))
626 if (is_zero_pfn(pfn))
630 if (unlikely(pfn > highest_memmap_pfn)) {
631 print_bad_pte(vma, addr, pte, NULL);
636 * NOTE! We still have PageReserved() pages in the page tables.
637 * eg. VDSO mappings can cause them to exist.
640 return pfn_to_page(pfn);
643 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
646 struct page *page = vm_normal_page(vma, addr, pte);
649 return page_folio(page);
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
657 unsigned long pfn = pmd_pfn(pmd);
660 * There is no pmd_special() but there may be special pmds, e.g.
661 * in a direct-access (dax) mapping, so let's just replicate the
662 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
665 if (vma->vm_flags & VM_MIXEDMAP) {
671 off = (addr - vma->vm_start) >> PAGE_SHIFT;
672 if (pfn == vma->vm_pgoff + off)
674 if (!is_cow_mapping(vma->vm_flags))
681 if (is_huge_zero_pmd(pmd))
683 if (unlikely(pfn > highest_memmap_pfn))
687 * NOTE! We still have PageReserved() pages in the page tables.
688 * eg. VDSO mappings can cause them to exist.
691 return pfn_to_page(pfn);
694 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
695 unsigned long addr, pmd_t pmd)
697 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
700 return page_folio(page);
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706 struct page *page, unsigned long address,
713 orig_pte = ptep_get(ptep);
714 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 if (pte_swp_soft_dirty(orig_pte))
716 pte = pte_mksoft_dirty(pte);
718 entry = pte_to_swp_entry(orig_pte);
719 if (pte_swp_uffd_wp(orig_pte))
720 pte = pte_mkuffd_wp(pte);
721 else if (is_writable_device_exclusive_entry(entry))
722 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
724 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
727 * No need to take a page reference as one was already
728 * created when the swap entry was made.
731 page_add_anon_rmap(page, vma, address, RMAP_NONE);
734 * Currently device exclusive access only supports anonymous
735 * memory so the entry shouldn't point to a filebacked page.
739 set_pte_at(vma->vm_mm, address, ptep, pte);
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
745 update_mmu_cache(vma, address, ptep);
749 * Tries to restore an exclusive pte if the page lock can be acquired without
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
757 struct page *page = pfn_swap_entry_to_page(entry);
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
779 unsigned long vm_flags = dst_vma->vm_flags;
780 pte_t orig_pte = ptep_get(src_pte);
781 pte_t pte = orig_pte;
783 swp_entry_t entry = pte_to_swp_entry(orig_pte);
785 if (likely(!non_swap_entry(entry))) {
786 if (swap_duplicate(entry) < 0)
789 /* make sure dst_mm is on swapoff's mmlist. */
790 if (unlikely(list_empty(&dst_mm->mmlist))) {
791 spin_lock(&mmlist_lock);
792 if (list_empty(&dst_mm->mmlist))
793 list_add(&dst_mm->mmlist,
795 spin_unlock(&mmlist_lock);
797 /* Mark the swap entry as shared. */
798 if (pte_swp_exclusive(orig_pte)) {
799 pte = pte_swp_clear_exclusive(orig_pte);
800 set_pte_at(src_mm, addr, src_pte, pte);
803 } else if (is_migration_entry(entry)) {
804 page = pfn_swap_entry_to_page(entry);
806 rss[mm_counter(page)]++;
808 if (!is_readable_migration_entry(entry) &&
809 is_cow_mapping(vm_flags)) {
811 * COW mappings require pages in both parent and child
812 * to be set to read. A previously exclusive entry is
815 entry = make_readable_migration_entry(
817 pte = swp_entry_to_pte(entry);
818 if (pte_swp_soft_dirty(orig_pte))
819 pte = pte_swp_mksoft_dirty(pte);
820 if (pte_swp_uffd_wp(orig_pte))
821 pte = pte_swp_mkuffd_wp(pte);
822 set_pte_at(src_mm, addr, src_pte, pte);
824 } else if (is_device_private_entry(entry)) {
825 page = pfn_swap_entry_to_page(entry);
828 * Update rss count even for unaddressable pages, as
829 * they should treated just like normal pages in this
832 * We will likely want to have some new rss counters
833 * for unaddressable pages, at some point. But for now
834 * keep things as they are.
837 rss[mm_counter(page)]++;
838 /* Cannot fail as these pages cannot get pinned. */
839 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
842 * We do not preserve soft-dirty information, because so
843 * far, checkpoint/restore is the only feature that
844 * requires that. And checkpoint/restore does not work
845 * when a device driver is involved (you cannot easily
846 * save and restore device driver state).
848 if (is_writable_device_private_entry(entry) &&
849 is_cow_mapping(vm_flags)) {
850 entry = make_readable_device_private_entry(
852 pte = swp_entry_to_pte(entry);
853 if (pte_swp_uffd_wp(orig_pte))
854 pte = pte_swp_mkuffd_wp(pte);
855 set_pte_at(src_mm, addr, src_pte, pte);
857 } else if (is_device_exclusive_entry(entry)) {
859 * Make device exclusive entries present by restoring the
860 * original entry then copying as for a present pte. Device
861 * exclusive entries currently only support private writable
862 * (ie. COW) mappings.
864 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
865 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
868 } else if (is_pte_marker_entry(entry)) {
869 pte_marker marker = copy_pte_marker(entry, dst_vma);
872 set_pte_at(dst_mm, addr, dst_pte,
873 make_pte_marker(marker));
876 if (!userfaultfd_wp(dst_vma))
877 pte = pte_swp_clear_uffd_wp(pte);
878 set_pte_at(dst_mm, addr, dst_pte, pte);
883 * Copy a present and normal page.
885 * NOTE! The usual case is that this isn't required;
886 * instead, the caller can just increase the page refcount
887 * and re-use the pte the traditional way.
889 * And if we need a pre-allocated page but don't yet have
890 * one, return a negative error to let the preallocation
891 * code know so that it can do so outside the page table
895 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 struct folio **prealloc, struct page *page)
899 struct folio *new_folio;
902 new_folio = *prealloc;
907 * We have a prealloc page, all good! Take it
908 * over and copy the page & arm it.
911 copy_user_highpage(&new_folio->page, page, addr, src_vma);
912 __folio_mark_uptodate(new_folio);
913 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
914 folio_add_lru_vma(new_folio, dst_vma);
917 /* All done, just insert the new page copy in the child */
918 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
919 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
920 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
921 /* Uffd-wp needs to be delivered to dest pte as well */
922 pte = pte_mkuffd_wp(pte);
923 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
928 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
929 * is required to copy this pte.
932 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 struct folio **prealloc)
936 struct mm_struct *src_mm = src_vma->vm_mm;
937 unsigned long vm_flags = src_vma->vm_flags;
938 pte_t pte = ptep_get(src_pte);
942 page = vm_normal_page(src_vma, addr, pte);
944 folio = page_folio(page);
945 if (page && folio_test_anon(folio)) {
947 * If this page may have been pinned by the parent process,
948 * copy the page immediately for the child so that we'll always
949 * guarantee the pinned page won't be randomly replaced in the
953 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
954 /* Page may be pinned, we have to copy. */
956 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
957 addr, rss, prealloc, page);
962 page_dup_file_rmap(page, false);
963 rss[mm_counter_file(page)]++;
967 * If it's a COW mapping, write protect it both
968 * in the parent and the child
970 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
971 ptep_set_wrprotect(src_mm, addr, src_pte);
972 pte = pte_wrprotect(pte);
974 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
977 * If it's a shared mapping, mark it clean in
980 if (vm_flags & VM_SHARED)
981 pte = pte_mkclean(pte);
982 pte = pte_mkold(pte);
984 if (!userfaultfd_wp(dst_vma))
985 pte = pte_clear_uffd_wp(pte);
987 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
991 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
992 struct vm_area_struct *vma, unsigned long addr)
994 struct folio *new_folio;
996 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
1000 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1001 folio_put(new_folio);
1004 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1014 struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 struct mm_struct *src_mm = src_vma->vm_mm;
1016 pte_t *orig_src_pte, *orig_dst_pte;
1017 pte_t *src_pte, *dst_pte;
1019 spinlock_t *src_ptl, *dst_ptl;
1020 int progress, ret = 0;
1021 int rss[NR_MM_COUNTERS];
1022 swp_entry_t entry = (swp_entry_t){0};
1023 struct folio *prealloc = NULL;
1030 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1031 * error handling here, assume that exclusive mmap_lock on dst and src
1032 * protects anon from unexpected THP transitions; with shmem and file
1033 * protected by mmap_lock-less collapse skipping areas with anon_vma
1034 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1035 * can remove such assumptions later, but this is good enough for now.
1037 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1042 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1044 pte_unmap_unlock(dst_pte, dst_ptl);
1048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 orig_src_pte = src_pte;
1050 orig_dst_pte = dst_pte;
1051 arch_enter_lazy_mmu_mode();
1055 * We are holding two locks at this point - either of them
1056 * could generate latencies in another task on another CPU.
1058 if (progress >= 32) {
1060 if (need_resched() ||
1061 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1064 ptent = ptep_get(src_pte);
1065 if (pte_none(ptent)) {
1069 if (unlikely(!pte_present(ptent))) {
1070 ret = copy_nonpresent_pte(dst_mm, src_mm,
1075 entry = pte_to_swp_entry(ptep_get(src_pte));
1077 } else if (ret == -EBUSY) {
1085 * Device exclusive entry restored, continue by copying
1086 * the now present pte.
1088 WARN_ON_ONCE(ret != -ENOENT);
1090 /* copy_present_pte() will clear `*prealloc' if consumed */
1091 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1092 addr, rss, &prealloc);
1094 * If we need a pre-allocated page for this pte, drop the
1095 * locks, allocate, and try again.
1097 if (unlikely(ret == -EAGAIN))
1099 if (unlikely(prealloc)) {
1101 * pre-alloc page cannot be reused by next time so as
1102 * to strictly follow mempolicy (e.g., alloc_page_vma()
1103 * will allocate page according to address). This
1104 * could only happen if one pinned pte changed.
1106 folio_put(prealloc);
1110 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1112 arch_leave_lazy_mmu_mode();
1113 pte_unmap_unlock(orig_src_pte, src_ptl);
1114 add_mm_rss_vec(dst_mm, rss);
1115 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1119 VM_WARN_ON_ONCE(!entry.val);
1120 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1125 } else if (ret == -EBUSY) {
1127 } else if (ret == -EAGAIN) {
1128 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1135 /* We've captured and resolved the error. Reset, try again. */
1141 if (unlikely(prealloc))
1142 folio_put(prealloc);
1147 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1148 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1151 struct mm_struct *dst_mm = dst_vma->vm_mm;
1152 struct mm_struct *src_mm = src_vma->vm_mm;
1153 pmd_t *src_pmd, *dst_pmd;
1156 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1159 src_pmd = pmd_offset(src_pud, addr);
1161 next = pmd_addr_end(addr, end);
1162 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1163 || pmd_devmap(*src_pmd)) {
1165 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1166 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1167 addr, dst_vma, src_vma);
1174 if (pmd_none_or_clear_bad(src_pmd))
1176 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1179 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1184 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1185 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1188 struct mm_struct *dst_mm = dst_vma->vm_mm;
1189 struct mm_struct *src_mm = src_vma->vm_mm;
1190 pud_t *src_pud, *dst_pud;
1193 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1196 src_pud = pud_offset(src_p4d, addr);
1198 next = pud_addr_end(addr, end);
1199 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1202 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1203 err = copy_huge_pud(dst_mm, src_mm,
1204 dst_pud, src_pud, addr, src_vma);
1211 if (pud_none_or_clear_bad(src_pud))
1213 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1216 } while (dst_pud++, src_pud++, addr = next, addr != end);
1221 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1222 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1225 struct mm_struct *dst_mm = dst_vma->vm_mm;
1226 p4d_t *src_p4d, *dst_p4d;
1229 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1232 src_p4d = p4d_offset(src_pgd, addr);
1234 next = p4d_addr_end(addr, end);
1235 if (p4d_none_or_clear_bad(src_p4d))
1237 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1240 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1245 * Return true if the vma needs to copy the pgtable during this fork(). Return
1246 * false when we can speed up fork() by allowing lazy page faults later until
1247 * when the child accesses the memory range.
1250 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1253 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1254 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1255 * contains uffd-wp protection information, that's something we can't
1256 * retrieve from page cache, and skip copying will lose those info.
1258 if (userfaultfd_wp(dst_vma))
1261 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1264 if (src_vma->anon_vma)
1268 * Don't copy ptes where a page fault will fill them correctly. Fork
1269 * becomes much lighter when there are big shared or private readonly
1270 * mappings. The tradeoff is that copy_page_range is more efficient
1277 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1279 pgd_t *src_pgd, *dst_pgd;
1281 unsigned long addr = src_vma->vm_start;
1282 unsigned long end = src_vma->vm_end;
1283 struct mm_struct *dst_mm = dst_vma->vm_mm;
1284 struct mm_struct *src_mm = src_vma->vm_mm;
1285 struct mmu_notifier_range range;
1289 if (!vma_needs_copy(dst_vma, src_vma))
1292 if (is_vm_hugetlb_page(src_vma))
1293 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1295 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1297 * We do not free on error cases below as remove_vma
1298 * gets called on error from higher level routine
1300 ret = track_pfn_copy(src_vma);
1306 * We need to invalidate the secondary MMU mappings only when
1307 * there could be a permission downgrade on the ptes of the
1308 * parent mm. And a permission downgrade will only happen if
1309 * is_cow_mapping() returns true.
1311 is_cow = is_cow_mapping(src_vma->vm_flags);
1314 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1315 0, src_mm, addr, end);
1316 mmu_notifier_invalidate_range_start(&range);
1318 * Disabling preemption is not needed for the write side, as
1319 * the read side doesn't spin, but goes to the mmap_lock.
1321 * Use the raw variant of the seqcount_t write API to avoid
1322 * lockdep complaining about preemptibility.
1324 vma_assert_write_locked(src_vma);
1325 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1329 dst_pgd = pgd_offset(dst_mm, addr);
1330 src_pgd = pgd_offset(src_mm, addr);
1332 next = pgd_addr_end(addr, end);
1333 if (pgd_none_or_clear_bad(src_pgd))
1335 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1337 untrack_pfn_clear(dst_vma);
1341 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1344 raw_write_seqcount_end(&src_mm->write_protect_seq);
1345 mmu_notifier_invalidate_range_end(&range);
1350 /* Whether we should zap all COWed (private) pages too */
1351 static inline bool should_zap_cows(struct zap_details *details)
1353 /* By default, zap all pages */
1357 /* Or, we zap COWed pages only if the caller wants to */
1358 return details->even_cows;
1361 /* Decides whether we should zap this page with the page pointer specified */
1362 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1364 /* If we can make a decision without *page.. */
1365 if (should_zap_cows(details))
1368 /* E.g. the caller passes NULL for the case of a zero page */
1372 /* Otherwise we should only zap non-anon pages */
1373 return !PageAnon(page);
1376 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1381 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385 * This function makes sure that we'll replace the none pte with an uffd-wp
1386 * swap special pte marker when necessary. Must be with the pgtable lock held.
1389 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1390 unsigned long addr, pte_t *pte,
1391 struct zap_details *details, pte_t pteval)
1393 /* Zap on anonymous always means dropping everything */
1394 if (vma_is_anonymous(vma))
1397 if (zap_drop_file_uffd_wp(details))
1400 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1403 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1404 struct vm_area_struct *vma, pmd_t *pmd,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1408 struct mm_struct *mm = tlb->mm;
1409 int force_flush = 0;
1410 int rss[NR_MM_COUNTERS];
1416 tlb_change_page_size(tlb, PAGE_SIZE);
1418 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1422 flush_tlb_batched_pending(mm);
1423 arch_enter_lazy_mmu_mode();
1425 pte_t ptent = ptep_get(pte);
1428 if (pte_none(ptent))
1434 if (pte_present(ptent)) {
1435 unsigned int delay_rmap;
1437 page = vm_normal_page(vma, addr, ptent);
1438 if (unlikely(!should_zap_page(details, page)))
1440 ptent = ptep_get_and_clear_full(mm, addr, pte,
1442 arch_check_zapped_pte(vma, ptent);
1443 tlb_remove_tlb_entry(tlb, pte, addr);
1444 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1446 if (unlikely(!page)) {
1447 ksm_might_unmap_zero_page(mm, ptent);
1452 if (!PageAnon(page)) {
1453 if (pte_dirty(ptent)) {
1454 set_page_dirty(page);
1455 if (tlb_delay_rmap(tlb)) {
1460 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 mark_page_accessed(page);
1463 rss[mm_counter(page)]--;
1465 page_remove_rmap(page, vma, false);
1466 if (unlikely(page_mapcount(page) < 0))
1467 print_bad_pte(vma, addr, ptent, page);
1469 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1477 entry = pte_to_swp_entry(ptent);
1478 if (is_device_private_entry(entry) ||
1479 is_device_exclusive_entry(entry)) {
1480 page = pfn_swap_entry_to_page(entry);
1481 if (unlikely(!should_zap_page(details, page)))
1484 * Both device private/exclusive mappings should only
1485 * work with anonymous page so far, so we don't need to
1486 * consider uffd-wp bit when zap. For more information,
1487 * see zap_install_uffd_wp_if_needed().
1489 WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 rss[mm_counter(page)]--;
1491 if (is_device_private_entry(entry))
1492 page_remove_rmap(page, vma, false);
1494 } else if (!non_swap_entry(entry)) {
1495 /* Genuine swap entry, hence a private anon page */
1496 if (!should_zap_cows(details))
1499 if (unlikely(!free_swap_and_cache(entry)))
1500 print_bad_pte(vma, addr, ptent, NULL);
1501 } else if (is_migration_entry(entry)) {
1502 page = pfn_swap_entry_to_page(entry);
1503 if (!should_zap_page(details, page))
1505 rss[mm_counter(page)]--;
1506 } else if (pte_marker_entry_uffd_wp(entry)) {
1508 * For anon: always drop the marker; for file: only
1509 * drop the marker if explicitly requested.
1511 if (!vma_is_anonymous(vma) &&
1512 !zap_drop_file_uffd_wp(details))
1514 } else if (is_hwpoison_entry(entry) ||
1515 is_poisoned_swp_entry(entry)) {
1516 if (!should_zap_cows(details))
1519 /* We should have covered all the swap entry types */
1520 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1523 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1524 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1525 } while (pte++, addr += PAGE_SIZE, addr != end);
1527 add_mm_rss_vec(mm, rss);
1528 arch_leave_lazy_mmu_mode();
1530 /* Do the actual TLB flush before dropping ptl */
1532 tlb_flush_mmu_tlbonly(tlb);
1533 tlb_flush_rmaps(tlb, vma);
1535 pte_unmap_unlock(start_pte, ptl);
1538 * If we forced a TLB flush (either due to running out of
1539 * batch buffers or because we needed to flush dirty TLB
1540 * entries before releasing the ptl), free the batched
1541 * memory too. Come back again if we didn't do everything.
1549 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1550 struct vm_area_struct *vma, pud_t *pud,
1551 unsigned long addr, unsigned long end,
1552 struct zap_details *details)
1557 pmd = pmd_offset(pud, addr);
1559 next = pmd_addr_end(addr, end);
1560 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1561 if (next - addr != HPAGE_PMD_SIZE)
1562 __split_huge_pmd(vma, pmd, addr, false, NULL);
1563 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1568 } else if (details && details->single_folio &&
1569 folio_test_pmd_mappable(details->single_folio) &&
1570 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1571 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1573 * Take and drop THP pmd lock so that we cannot return
1574 * prematurely, while zap_huge_pmd() has cleared *pmd,
1575 * but not yet decremented compound_mapcount().
1579 if (pmd_none(*pmd)) {
1583 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1586 } while (pmd++, cond_resched(), addr != end);
1591 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1592 struct vm_area_struct *vma, p4d_t *p4d,
1593 unsigned long addr, unsigned long end,
1594 struct zap_details *details)
1599 pud = pud_offset(p4d, addr);
1601 next = pud_addr_end(addr, end);
1602 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1603 if (next - addr != HPAGE_PUD_SIZE) {
1604 mmap_assert_locked(tlb->mm);
1605 split_huge_pud(vma, pud, addr);
1606 } else if (zap_huge_pud(tlb, vma, pud, addr))
1610 if (pud_none_or_clear_bad(pud))
1612 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1615 } while (pud++, addr = next, addr != end);
1620 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1621 struct vm_area_struct *vma, pgd_t *pgd,
1622 unsigned long addr, unsigned long end,
1623 struct zap_details *details)
1628 p4d = p4d_offset(pgd, addr);
1630 next = p4d_addr_end(addr, end);
1631 if (p4d_none_or_clear_bad(p4d))
1633 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1634 } while (p4d++, addr = next, addr != end);
1639 void unmap_page_range(struct mmu_gather *tlb,
1640 struct vm_area_struct *vma,
1641 unsigned long addr, unsigned long end,
1642 struct zap_details *details)
1647 BUG_ON(addr >= end);
1648 tlb_start_vma(tlb, vma);
1649 pgd = pgd_offset(vma->vm_mm, addr);
1651 next = pgd_addr_end(addr, end);
1652 if (pgd_none_or_clear_bad(pgd))
1654 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1655 } while (pgd++, addr = next, addr != end);
1656 tlb_end_vma(tlb, vma);
1660 static void unmap_single_vma(struct mmu_gather *tlb,
1661 struct vm_area_struct *vma, unsigned long start_addr,
1662 unsigned long end_addr,
1663 struct zap_details *details, bool mm_wr_locked)
1665 unsigned long start = max(vma->vm_start, start_addr);
1668 if (start >= vma->vm_end)
1670 end = min(vma->vm_end, end_addr);
1671 if (end <= vma->vm_start)
1675 uprobe_munmap(vma, start, end);
1677 if (unlikely(vma->vm_flags & VM_PFNMAP))
1678 untrack_pfn(vma, 0, 0, mm_wr_locked);
1681 if (unlikely(is_vm_hugetlb_page(vma))) {
1683 * It is undesirable to test vma->vm_file as it
1684 * should be non-null for valid hugetlb area.
1685 * However, vm_file will be NULL in the error
1686 * cleanup path of mmap_region. When
1687 * hugetlbfs ->mmap method fails,
1688 * mmap_region() nullifies vma->vm_file
1689 * before calling this function to clean up.
1690 * Since no pte has actually been setup, it is
1691 * safe to do nothing in this case.
1694 zap_flags_t zap_flags = details ?
1695 details->zap_flags : 0;
1696 __unmap_hugepage_range(tlb, vma, start, end,
1700 unmap_page_range(tlb, vma, start, end, details);
1705 * unmap_vmas - unmap a range of memory covered by a list of vma's
1706 * @tlb: address of the caller's struct mmu_gather
1707 * @mas: the maple state
1708 * @vma: the starting vma
1709 * @start_addr: virtual address at which to start unmapping
1710 * @end_addr: virtual address at which to end unmapping
1711 * @tree_end: The maximum index to check
1712 * @mm_wr_locked: lock flag
1714 * Unmap all pages in the vma list.
1716 * Only addresses between `start' and `end' will be unmapped.
1718 * The VMA list must be sorted in ascending virtual address order.
1720 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1721 * range after unmap_vmas() returns. So the only responsibility here is to
1722 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1723 * drops the lock and schedules.
1725 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1726 struct vm_area_struct *vma, unsigned long start_addr,
1727 unsigned long end_addr, unsigned long tree_end,
1730 struct mmu_notifier_range range;
1731 struct zap_details details = {
1732 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1733 /* Careful - we need to zap private pages too! */
1737 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1738 start_addr, end_addr);
1739 mmu_notifier_invalidate_range_start(&range);
1741 unsigned long start = start_addr;
1742 unsigned long end = end_addr;
1743 hugetlb_zap_begin(vma, &start, &end);
1744 unmap_single_vma(tlb, vma, start, end, &details,
1746 hugetlb_zap_end(vma, &details);
1747 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1748 mmu_notifier_invalidate_range_end(&range);
1752 * zap_page_range_single - remove user pages in a given range
1753 * @vma: vm_area_struct holding the applicable pages
1754 * @address: starting address of pages to zap
1755 * @size: number of bytes to zap
1756 * @details: details of shared cache invalidation
1758 * The range must fit into one VMA.
1760 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1761 unsigned long size, struct zap_details *details)
1763 const unsigned long end = address + size;
1764 struct mmu_notifier_range range;
1765 struct mmu_gather tlb;
1768 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1770 hugetlb_zap_begin(vma, &range.start, &range.end);
1771 tlb_gather_mmu(&tlb, vma->vm_mm);
1772 update_hiwater_rss(vma->vm_mm);
1773 mmu_notifier_invalidate_range_start(&range);
1775 * unmap 'address-end' not 'range.start-range.end' as range
1776 * could have been expanded for hugetlb pmd sharing.
1778 unmap_single_vma(&tlb, vma, address, end, details, false);
1779 mmu_notifier_invalidate_range_end(&range);
1780 tlb_finish_mmu(&tlb);
1781 hugetlb_zap_end(vma, details);
1785 * zap_vma_ptes - remove ptes mapping the vma
1786 * @vma: vm_area_struct holding ptes to be zapped
1787 * @address: starting address of pages to zap
1788 * @size: number of bytes to zap
1790 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1792 * The entire address range must be fully contained within the vma.
1795 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1798 if (!range_in_vma(vma, address, address + size) ||
1799 !(vma->vm_flags & VM_PFNMAP))
1802 zap_page_range_single(vma, address, size, NULL);
1804 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1806 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1813 pgd = pgd_offset(mm, addr);
1814 p4d = p4d_alloc(mm, pgd, addr);
1817 pud = pud_alloc(mm, p4d, addr);
1820 pmd = pmd_alloc(mm, pud, addr);
1824 VM_BUG_ON(pmd_trans_huge(*pmd));
1828 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1831 pmd_t *pmd = walk_to_pmd(mm, addr);
1835 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1838 static int validate_page_before_insert(struct page *page)
1840 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1842 flush_dcache_page(page);
1846 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1847 unsigned long addr, struct page *page, pgprot_t prot)
1849 if (!pte_none(ptep_get(pte)))
1851 /* Ok, finally just insert the thing.. */
1853 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1854 page_add_file_rmap(page, vma, false);
1855 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1860 * This is the old fallback for page remapping.
1862 * For historical reasons, it only allows reserved pages. Only
1863 * old drivers should use this, and they needed to mark their
1864 * pages reserved for the old functions anyway.
1866 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1867 struct page *page, pgprot_t prot)
1873 retval = validate_page_before_insert(page);
1877 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1880 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1881 pte_unmap_unlock(pte, ptl);
1886 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1887 unsigned long addr, struct page *page, pgprot_t prot)
1891 if (!page_count(page))
1893 err = validate_page_before_insert(page);
1896 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1899 /* insert_pages() amortizes the cost of spinlock operations
1900 * when inserting pages in a loop.
1902 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1903 struct page **pages, unsigned long *num, pgprot_t prot)
1906 pte_t *start_pte, *pte;
1907 spinlock_t *pte_lock;
1908 struct mm_struct *const mm = vma->vm_mm;
1909 unsigned long curr_page_idx = 0;
1910 unsigned long remaining_pages_total = *num;
1911 unsigned long pages_to_write_in_pmd;
1915 pmd = walk_to_pmd(mm, addr);
1919 pages_to_write_in_pmd = min_t(unsigned long,
1920 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1922 /* Allocate the PTE if necessary; takes PMD lock once only. */
1924 if (pte_alloc(mm, pmd))
1927 while (pages_to_write_in_pmd) {
1929 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1931 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1936 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1937 int err = insert_page_in_batch_locked(vma, pte,
1938 addr, pages[curr_page_idx], prot);
1939 if (unlikely(err)) {
1940 pte_unmap_unlock(start_pte, pte_lock);
1942 remaining_pages_total -= pte_idx;
1948 pte_unmap_unlock(start_pte, pte_lock);
1949 pages_to_write_in_pmd -= batch_size;
1950 remaining_pages_total -= batch_size;
1952 if (remaining_pages_total)
1956 *num = remaining_pages_total;
1961 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1962 * @vma: user vma to map to
1963 * @addr: target start user address of these pages
1964 * @pages: source kernel pages
1965 * @num: in: number of pages to map. out: number of pages that were *not*
1966 * mapped. (0 means all pages were successfully mapped).
1968 * Preferred over vm_insert_page() when inserting multiple pages.
1970 * In case of error, we may have mapped a subset of the provided
1971 * pages. It is the caller's responsibility to account for this case.
1973 * The same restrictions apply as in vm_insert_page().
1975 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1976 struct page **pages, unsigned long *num)
1978 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1980 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1982 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1983 BUG_ON(mmap_read_trylock(vma->vm_mm));
1984 BUG_ON(vma->vm_flags & VM_PFNMAP);
1985 vm_flags_set(vma, VM_MIXEDMAP);
1987 /* Defer page refcount checking till we're about to map that page. */
1988 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1990 EXPORT_SYMBOL(vm_insert_pages);
1993 * vm_insert_page - insert single page into user vma
1994 * @vma: user vma to map to
1995 * @addr: target user address of this page
1996 * @page: source kernel page
1998 * This allows drivers to insert individual pages they've allocated
2001 * The page has to be a nice clean _individual_ kernel allocation.
2002 * If you allocate a compound page, you need to have marked it as
2003 * such (__GFP_COMP), or manually just split the page up yourself
2004 * (see split_page()).
2006 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2007 * took an arbitrary page protection parameter. This doesn't allow
2008 * that. Your vma protection will have to be set up correctly, which
2009 * means that if you want a shared writable mapping, you'd better
2010 * ask for a shared writable mapping!
2012 * The page does not need to be reserved.
2014 * Usually this function is called from f_op->mmap() handler
2015 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2016 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2017 * function from other places, for example from page-fault handler.
2019 * Return: %0 on success, negative error code otherwise.
2021 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2024 if (addr < vma->vm_start || addr >= vma->vm_end)
2026 if (!page_count(page))
2028 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2029 BUG_ON(mmap_read_trylock(vma->vm_mm));
2030 BUG_ON(vma->vm_flags & VM_PFNMAP);
2031 vm_flags_set(vma, VM_MIXEDMAP);
2033 return insert_page(vma, addr, page, vma->vm_page_prot);
2035 EXPORT_SYMBOL(vm_insert_page);
2038 * __vm_map_pages - maps range of kernel pages into user vma
2039 * @vma: user vma to map to
2040 * @pages: pointer to array of source kernel pages
2041 * @num: number of pages in page array
2042 * @offset: user's requested vm_pgoff
2044 * This allows drivers to map range of kernel pages into a user vma.
2046 * Return: 0 on success and error code otherwise.
2048 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2049 unsigned long num, unsigned long offset)
2051 unsigned long count = vma_pages(vma);
2052 unsigned long uaddr = vma->vm_start;
2055 /* Fail if the user requested offset is beyond the end of the object */
2059 /* Fail if the user requested size exceeds available object size */
2060 if (count > num - offset)
2063 for (i = 0; i < count; i++) {
2064 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2074 * vm_map_pages - maps range of kernel pages starts with non zero offset
2075 * @vma: user vma to map to
2076 * @pages: pointer to array of source kernel pages
2077 * @num: number of pages in page array
2079 * Maps an object consisting of @num pages, catering for the user's
2080 * requested vm_pgoff
2082 * If we fail to insert any page into the vma, the function will return
2083 * immediately leaving any previously inserted pages present. Callers
2084 * from the mmap handler may immediately return the error as their caller
2085 * will destroy the vma, removing any successfully inserted pages. Other
2086 * callers should make their own arrangements for calling unmap_region().
2088 * Context: Process context. Called by mmap handlers.
2089 * Return: 0 on success and error code otherwise.
2091 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2094 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2096 EXPORT_SYMBOL(vm_map_pages);
2099 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2100 * @vma: user vma to map to
2101 * @pages: pointer to array of source kernel pages
2102 * @num: number of pages in page array
2104 * Similar to vm_map_pages(), except that it explicitly sets the offset
2105 * to 0. This function is intended for the drivers that did not consider
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2111 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2114 return __vm_map_pages(vma, pages, num, 0);
2116 EXPORT_SYMBOL(vm_map_pages_zero);
2118 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2119 pfn_t pfn, pgprot_t prot, bool mkwrite)
2121 struct mm_struct *mm = vma->vm_mm;
2125 pte = get_locked_pte(mm, addr, &ptl);
2127 return VM_FAULT_OOM;
2128 entry = ptep_get(pte);
2129 if (!pte_none(entry)) {
2132 * For read faults on private mappings the PFN passed
2133 * in may not match the PFN we have mapped if the
2134 * mapped PFN is a writeable COW page. In the mkwrite
2135 * case we are creating a writable PTE for a shared
2136 * mapping and we expect the PFNs to match. If they
2137 * don't match, we are likely racing with block
2138 * allocation and mapping invalidation so just skip the
2141 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2142 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2145 entry = pte_mkyoung(entry);
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2148 update_mmu_cache(vma, addr, pte);
2153 /* Ok, finally just insert the thing.. */
2154 if (pfn_t_devmap(pfn))
2155 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2157 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2160 entry = pte_mkyoung(entry);
2161 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2164 set_pte_at(mm, addr, pte, entry);
2165 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2168 pte_unmap_unlock(pte, ptl);
2169 return VM_FAULT_NOPAGE;
2173 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2174 * @vma: user vma to map to
2175 * @addr: target user address of this page
2176 * @pfn: source kernel pfn
2177 * @pgprot: pgprot flags for the inserted page
2179 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2180 * to override pgprot on a per-page basis.
2182 * This only makes sense for IO mappings, and it makes no sense for
2183 * COW mappings. In general, using multiple vmas is preferable;
2184 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2187 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2188 * caching- and encryption bits different than those of @vma->vm_page_prot,
2189 * because the caching- or encryption mode may not be known at mmap() time.
2191 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2192 * to set caching and encryption bits for those vmas (except for COW pages).
2193 * This is ensured by core vm only modifying these page table entries using
2194 * functions that don't touch caching- or encryption bits, using pte_modify()
2195 * if needed. (See for example mprotect()).
2197 * Also when new page-table entries are created, this is only done using the
2198 * fault() callback, and never using the value of vma->vm_page_prot,
2199 * except for page-table entries that point to anonymous pages as the result
2202 * Context: Process context. May allocate using %GFP_KERNEL.
2203 * Return: vm_fault_t value.
2205 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2206 unsigned long pfn, pgprot_t pgprot)
2209 * Technically, architectures with pte_special can avoid all these
2210 * restrictions (same for remap_pfn_range). However we would like
2211 * consistency in testing and feature parity among all, so we should
2212 * try to keep these invariants in place for everybody.
2214 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2215 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2216 (VM_PFNMAP|VM_MIXEDMAP));
2217 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2218 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220 if (addr < vma->vm_start || addr >= vma->vm_end)
2221 return VM_FAULT_SIGBUS;
2223 if (!pfn_modify_allowed(pfn, pgprot))
2224 return VM_FAULT_SIGBUS;
2226 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2231 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2234 * vmf_insert_pfn - insert single pfn into user vma
2235 * @vma: user vma to map to
2236 * @addr: target user address of this page
2237 * @pfn: source kernel pfn
2239 * Similar to vm_insert_page, this allows drivers to insert individual pages
2240 * they've allocated into a user vma. Same comments apply.
2242 * This function should only be called from a vm_ops->fault handler, and
2243 * in that case the handler should return the result of this function.
2245 * vma cannot be a COW mapping.
2247 * As this is called only for pages that do not currently exist, we
2248 * do not need to flush old virtual caches or the TLB.
2250 * Context: Process context. May allocate using %GFP_KERNEL.
2251 * Return: vm_fault_t value.
2253 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2256 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 EXPORT_SYMBOL(vmf_insert_pfn);
2260 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 /* these checks mirror the abort conditions in vm_normal_page */
2263 if (vma->vm_flags & VM_MIXEDMAP)
2265 if (pfn_t_devmap(pfn))
2267 if (pfn_t_special(pfn))
2269 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2274 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2275 unsigned long addr, pfn_t pfn, bool mkwrite)
2277 pgprot_t pgprot = vma->vm_page_prot;
2280 BUG_ON(!vm_mixed_ok(vma, pfn));
2282 if (addr < vma->vm_start || addr >= vma->vm_end)
2283 return VM_FAULT_SIGBUS;
2285 track_pfn_insert(vma, &pgprot, pfn);
2287 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2288 return VM_FAULT_SIGBUS;
2291 * If we don't have pte special, then we have to use the pfn_valid()
2292 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2293 * refcount the page if pfn_valid is true (hence insert_page rather
2294 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2295 * without pte special, it would there be refcounted as a normal page.
2297 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2298 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2302 * At this point we are committed to insert_page()
2303 * regardless of whether the caller specified flags that
2304 * result in pfn_t_has_page() == false.
2306 page = pfn_to_page(pfn_t_to_pfn(pfn));
2307 err = insert_page(vma, addr, page, pgprot);
2309 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2313 return VM_FAULT_OOM;
2314 if (err < 0 && err != -EBUSY)
2315 return VM_FAULT_SIGBUS;
2317 return VM_FAULT_NOPAGE;
2320 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2323 return __vm_insert_mixed(vma, addr, pfn, false);
2325 EXPORT_SYMBOL(vmf_insert_mixed);
2328 * If the insertion of PTE failed because someone else already added a
2329 * different entry in the mean time, we treat that as success as we assume
2330 * the same entry was actually inserted.
2332 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2333 unsigned long addr, pfn_t pfn)
2335 return __vm_insert_mixed(vma, addr, pfn, true);
2337 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2340 * maps a range of physical memory into the requested pages. the old
2341 * mappings are removed. any references to nonexistent pages results
2342 * in null mappings (currently treated as "copy-on-access")
2344 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 unsigned long addr, unsigned long end,
2346 unsigned long pfn, pgprot_t prot)
2348 pte_t *pte, *mapped_pte;
2352 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2355 arch_enter_lazy_mmu_mode();
2357 BUG_ON(!pte_none(ptep_get(pte)));
2358 if (!pfn_modify_allowed(pfn, prot)) {
2362 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364 } while (pte++, addr += PAGE_SIZE, addr != end);
2365 arch_leave_lazy_mmu_mode();
2366 pte_unmap_unlock(mapped_pte, ptl);
2370 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2378 pfn -= addr >> PAGE_SHIFT;
2379 pmd = pmd_alloc(mm, pud, addr);
2382 VM_BUG_ON(pmd_trans_huge(*pmd));
2384 next = pmd_addr_end(addr, end);
2385 err = remap_pte_range(mm, pmd, addr, next,
2386 pfn + (addr >> PAGE_SHIFT), prot);
2389 } while (pmd++, addr = next, addr != end);
2393 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2394 unsigned long addr, unsigned long end,
2395 unsigned long pfn, pgprot_t prot)
2401 pfn -= addr >> PAGE_SHIFT;
2402 pud = pud_alloc(mm, p4d, addr);
2406 next = pud_addr_end(addr, end);
2407 err = remap_pmd_range(mm, pud, addr, next,
2408 pfn + (addr >> PAGE_SHIFT), prot);
2411 } while (pud++, addr = next, addr != end);
2415 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2416 unsigned long addr, unsigned long end,
2417 unsigned long pfn, pgprot_t prot)
2423 pfn -= addr >> PAGE_SHIFT;
2424 p4d = p4d_alloc(mm, pgd, addr);
2428 next = p4d_addr_end(addr, end);
2429 err = remap_pud_range(mm, p4d, addr, next,
2430 pfn + (addr >> PAGE_SHIFT), prot);
2433 } while (p4d++, addr = next, addr != end);
2438 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2439 * must have pre-validated the caching bits of the pgprot_t.
2441 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2442 unsigned long pfn, unsigned long size, pgprot_t prot)
2446 unsigned long end = addr + PAGE_ALIGN(size);
2447 struct mm_struct *mm = vma->vm_mm;
2450 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2454 * Physically remapped pages are special. Tell the
2455 * rest of the world about it:
2456 * VM_IO tells people not to look at these pages
2457 * (accesses can have side effects).
2458 * VM_PFNMAP tells the core MM that the base pages are just
2459 * raw PFN mappings, and do not have a "struct page" associated
2462 * Disable vma merging and expanding with mremap().
2464 * Omit vma from core dump, even when VM_IO turned off.
2466 * There's a horrible special case to handle copy-on-write
2467 * behaviour that some programs depend on. We mark the "original"
2468 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2469 * See vm_normal_page() for details.
2471 if (is_cow_mapping(vma->vm_flags)) {
2472 if (addr != vma->vm_start || end != vma->vm_end)
2474 vma->vm_pgoff = pfn;
2477 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2479 BUG_ON(addr >= end);
2480 pfn -= addr >> PAGE_SHIFT;
2481 pgd = pgd_offset(mm, addr);
2482 flush_cache_range(vma, addr, end);
2484 next = pgd_addr_end(addr, end);
2485 err = remap_p4d_range(mm, pgd, addr, next,
2486 pfn + (addr >> PAGE_SHIFT), prot);
2489 } while (pgd++, addr = next, addr != end);
2495 * remap_pfn_range - remap kernel memory to userspace
2496 * @vma: user vma to map to
2497 * @addr: target page aligned user address to start at
2498 * @pfn: page frame number of kernel physical memory address
2499 * @size: size of mapping area
2500 * @prot: page protection flags for this mapping
2502 * Note: this is only safe if the mm semaphore is held when called.
2504 * Return: %0 on success, negative error code otherwise.
2506 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2507 unsigned long pfn, unsigned long size, pgprot_t prot)
2511 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2515 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2520 EXPORT_SYMBOL(remap_pfn_range);
2523 * vm_iomap_memory - remap memory to userspace
2524 * @vma: user vma to map to
2525 * @start: start of the physical memory to be mapped
2526 * @len: size of area
2528 * This is a simplified io_remap_pfn_range() for common driver use. The
2529 * driver just needs to give us the physical memory range to be mapped,
2530 * we'll figure out the rest from the vma information.
2532 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2533 * whatever write-combining details or similar.
2535 * Return: %0 on success, negative error code otherwise.
2537 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 unsigned long vm_len, pfn, pages;
2541 /* Check that the physical memory area passed in looks valid */
2542 if (start + len < start)
2545 * You *really* shouldn't map things that aren't page-aligned,
2546 * but we've historically allowed it because IO memory might
2547 * just have smaller alignment.
2549 len += start & ~PAGE_MASK;
2550 pfn = start >> PAGE_SHIFT;
2551 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2552 if (pfn + pages < pfn)
2555 /* We start the mapping 'vm_pgoff' pages into the area */
2556 if (vma->vm_pgoff > pages)
2558 pfn += vma->vm_pgoff;
2559 pages -= vma->vm_pgoff;
2561 /* Can we fit all of the mapping? */
2562 vm_len = vma->vm_end - vma->vm_start;
2563 if (vm_len >> PAGE_SHIFT > pages)
2566 /* Ok, let it rip */
2567 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 EXPORT_SYMBOL(vm_iomap_memory);
2571 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2572 unsigned long addr, unsigned long end,
2573 pte_fn_t fn, void *data, bool create,
2574 pgtbl_mod_mask *mask)
2576 pte_t *pte, *mapped_pte;
2581 mapped_pte = pte = (mm == &init_mm) ?
2582 pte_alloc_kernel_track(pmd, addr, mask) :
2583 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2587 mapped_pte = pte = (mm == &init_mm) ?
2588 pte_offset_kernel(pmd, addr) :
2589 pte_offset_map_lock(mm, pmd, addr, &ptl);
2594 arch_enter_lazy_mmu_mode();
2598 if (create || !pte_none(ptep_get(pte))) {
2599 err = fn(pte++, addr, data);
2603 } while (addr += PAGE_SIZE, addr != end);
2605 *mask |= PGTBL_PTE_MODIFIED;
2607 arch_leave_lazy_mmu_mode();
2610 pte_unmap_unlock(mapped_pte, ptl);
2614 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2615 unsigned long addr, unsigned long end,
2616 pte_fn_t fn, void *data, bool create,
2617 pgtbl_mod_mask *mask)
2623 BUG_ON(pud_huge(*pud));
2626 pmd = pmd_alloc_track(mm, pud, addr, mask);
2630 pmd = pmd_offset(pud, addr);
2633 next = pmd_addr_end(addr, end);
2634 if (pmd_none(*pmd) && !create)
2636 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2643 err = apply_to_pte_range(mm, pmd, addr, next,
2644 fn, data, create, mask);
2647 } while (pmd++, addr = next, addr != end);
2652 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2653 unsigned long addr, unsigned long end,
2654 pte_fn_t fn, void *data, bool create,
2655 pgtbl_mod_mask *mask)
2662 pud = pud_alloc_track(mm, p4d, addr, mask);
2666 pud = pud_offset(p4d, addr);
2669 next = pud_addr_end(addr, end);
2670 if (pud_none(*pud) && !create)
2672 if (WARN_ON_ONCE(pud_leaf(*pud)))
2674 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2679 err = apply_to_pmd_range(mm, pud, addr, next,
2680 fn, data, create, mask);
2683 } while (pud++, addr = next, addr != end);
2688 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2689 unsigned long addr, unsigned long end,
2690 pte_fn_t fn, void *data, bool create,
2691 pgtbl_mod_mask *mask)
2698 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2702 p4d = p4d_offset(pgd, addr);
2705 next = p4d_addr_end(addr, end);
2706 if (p4d_none(*p4d) && !create)
2708 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2715 err = apply_to_pud_range(mm, p4d, addr, next,
2716 fn, data, create, mask);
2719 } while (p4d++, addr = next, addr != end);
2724 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2725 unsigned long size, pte_fn_t fn,
2726 void *data, bool create)
2729 unsigned long start = addr, next;
2730 unsigned long end = addr + size;
2731 pgtbl_mod_mask mask = 0;
2734 if (WARN_ON(addr >= end))
2737 pgd = pgd_offset(mm, addr);
2739 next = pgd_addr_end(addr, end);
2740 if (pgd_none(*pgd) && !create)
2742 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2749 err = apply_to_p4d_range(mm, pgd, addr, next,
2750 fn, data, create, &mask);
2753 } while (pgd++, addr = next, addr != end);
2755 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2756 arch_sync_kernel_mappings(start, start + size);
2762 * Scan a region of virtual memory, filling in page tables as necessary
2763 * and calling a provided function on each leaf page table.
2765 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 unsigned long size, pte_fn_t fn, void *data)
2768 return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 EXPORT_SYMBOL_GPL(apply_to_page_range);
2773 * Scan a region of virtual memory, calling a provided function on
2774 * each leaf page table where it exists.
2776 * Unlike apply_to_page_range, this does _not_ fill in page tables
2777 * where they are absent.
2779 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2780 unsigned long size, pte_fn_t fn, void *data)
2782 return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2787 * handle_pte_fault chooses page fault handler according to an entry which was
2788 * read non-atomically. Before making any commitment, on those architectures
2789 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2790 * parts, do_swap_page must check under lock before unmapping the pte and
2791 * proceeding (but do_wp_page is only called after already making such a check;
2792 * and do_anonymous_page can safely check later on).
2794 static inline int pte_unmap_same(struct vm_fault *vmf)
2797 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2798 if (sizeof(pte_t) > sizeof(unsigned long)) {
2799 spin_lock(vmf->ptl);
2800 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2801 spin_unlock(vmf->ptl);
2804 pte_unmap(vmf->pte);
2811 * 0: copied succeeded
2812 * -EHWPOISON: copy failed due to hwpoison in source page
2813 * -EAGAIN: copied failed (some other reason)
2815 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2816 struct vm_fault *vmf)
2821 struct vm_area_struct *vma = vmf->vma;
2822 struct mm_struct *mm = vma->vm_mm;
2823 unsigned long addr = vmf->address;
2826 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2827 memory_failure_queue(page_to_pfn(src), 0);
2834 * If the source page was a PFN mapping, we don't have
2835 * a "struct page" for it. We do a best-effort copy by
2836 * just copying from the original user address. If that
2837 * fails, we just zero-fill it. Live with it.
2839 kaddr = kmap_atomic(dst);
2840 uaddr = (void __user *)(addr & PAGE_MASK);
2843 * On architectures with software "accessed" bits, we would
2844 * take a double page fault, so mark it accessed here.
2847 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2850 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2851 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2853 * Other thread has already handled the fault
2854 * and update local tlb only
2857 update_mmu_tlb(vma, addr, vmf->pte);
2862 entry = pte_mkyoung(vmf->orig_pte);
2863 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2864 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2868 * This really shouldn't fail, because the page is there
2869 * in the page tables. But it might just be unreadable,
2870 * in which case we just give up and fill the result with
2873 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2877 /* Re-validate under PTL if the page is still mapped */
2878 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2879 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2880 /* The PTE changed under us, update local tlb */
2882 update_mmu_tlb(vma, addr, vmf->pte);
2888 * The same page can be mapped back since last copy attempt.
2889 * Try to copy again under PTL.
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2893 * Give a warn in case there can be some obscure
2906 pte_unmap_unlock(vmf->pte, vmf->ptl);
2907 kunmap_atomic(kaddr);
2908 flush_dcache_page(dst);
2913 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2915 struct file *vm_file = vma->vm_file;
2918 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2921 * Special mappings (e.g. VDSO) do not have any file so fake
2922 * a default GFP_KERNEL for them.
2928 * Notify the address space that the page is about to become writable so that
2929 * it can prohibit this or wait for the page to get into an appropriate state.
2931 * We do this without the lock held, so that it can sleep if it needs to.
2933 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2936 unsigned int old_flags = vmf->flags;
2938 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2940 if (vmf->vma->vm_file &&
2941 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2942 return VM_FAULT_SIGBUS;
2944 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2945 /* Restore original flags so that caller is not surprised */
2946 vmf->flags = old_flags;
2947 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2949 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2951 if (!folio->mapping) {
2952 folio_unlock(folio);
2953 return 0; /* retry */
2955 ret |= VM_FAULT_LOCKED;
2957 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2962 * Handle dirtying of a page in shared file mapping on a write fault.
2964 * The function expects the page to be locked and unlocks it.
2966 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2968 struct vm_area_struct *vma = vmf->vma;
2969 struct address_space *mapping;
2970 struct folio *folio = page_folio(vmf->page);
2972 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2974 dirtied = folio_mark_dirty(folio);
2975 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2977 * Take a local copy of the address_space - folio.mapping may be zeroed
2978 * by truncate after folio_unlock(). The address_space itself remains
2979 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2980 * release semantics to prevent the compiler from undoing this copying.
2982 mapping = folio_raw_mapping(folio);
2983 folio_unlock(folio);
2986 file_update_time(vma->vm_file);
2989 * Throttle page dirtying rate down to writeback speed.
2991 * mapping may be NULL here because some device drivers do not
2992 * set page.mapping but still dirty their pages
2994 * Drop the mmap_lock before waiting on IO, if we can. The file
2995 * is pinning the mapping, as per above.
2997 if ((dirtied || page_mkwrite) && mapping) {
3000 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3001 balance_dirty_pages_ratelimited(mapping);
3004 return VM_FAULT_COMPLETED;
3012 * Handle write page faults for pages that can be reused in the current vma
3014 * This can happen either due to the mapping being with the VM_SHARED flag,
3015 * or due to us being the last reference standing to the page. In either
3016 * case, all we need to do here is to mark the page as writable and update
3017 * any related book-keeping.
3019 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3020 __releases(vmf->ptl)
3022 struct vm_area_struct *vma = vmf->vma;
3025 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3028 VM_BUG_ON(folio_test_anon(folio) &&
3029 !PageAnonExclusive(vmf->page));
3031 * Clear the folio's cpupid information as the existing
3032 * information potentially belongs to a now completely
3033 * unrelated process.
3035 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3038 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039 entry = pte_mkyoung(vmf->orig_pte);
3040 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3041 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3042 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3043 pte_unmap_unlock(vmf->pte, vmf->ptl);
3044 count_vm_event(PGREUSE);
3048 * We could add a bitflag somewhere, but for now, we know that all
3049 * vm_ops that have a ->map_pages have been audited and don't need
3050 * the mmap_lock to be held.
3052 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3054 struct vm_area_struct *vma = vmf->vma;
3056 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3059 return VM_FAULT_RETRY;
3062 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3064 struct vm_area_struct *vma = vmf->vma;
3066 if (likely(vma->anon_vma))
3068 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3070 return VM_FAULT_RETRY;
3072 if (__anon_vma_prepare(vma))
3073 return VM_FAULT_OOM;
3078 * Handle the case of a page which we actually need to copy to a new page,
3079 * either due to COW or unsharing.
3081 * Called with mmap_lock locked and the old page referenced, but
3082 * without the ptl held.
3084 * High level logic flow:
3086 * - Allocate a page, copy the content of the old page to the new one.
3087 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3088 * - Take the PTL. If the pte changed, bail out and release the allocated page
3089 * - If the pte is still the way we remember it, update the page table and all
3090 * relevant references. This includes dropping the reference the page-table
3091 * held to the old page, as well as updating the rmap.
3092 * - In any case, unlock the PTL and drop the reference we took to the old page.
3094 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3096 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3097 struct vm_area_struct *vma = vmf->vma;
3098 struct mm_struct *mm = vma->vm_mm;
3099 struct folio *old_folio = NULL;
3100 struct folio *new_folio = NULL;
3102 int page_copied = 0;
3103 struct mmu_notifier_range range;
3106 delayacct_wpcopy_start();
3109 old_folio = page_folio(vmf->page);
3110 ret = vmf_anon_prepare(vmf);
3114 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3115 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3120 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3121 vmf->address, false);
3125 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3128 * COW failed, if the fault was solved by other,
3129 * it's fine. If not, userspace would re-fault on
3130 * the same address and we will handle the fault
3131 * from the second attempt.
3132 * The -EHWPOISON case will not be retried.
3134 folio_put(new_folio);
3136 folio_put(old_folio);
3138 delayacct_wpcopy_end();
3139 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3141 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3144 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3146 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3148 __folio_mark_uptodate(new_folio);
3150 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3151 vmf->address & PAGE_MASK,
3152 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3153 mmu_notifier_invalidate_range_start(&range);
3156 * Re-check the pte - we dropped the lock
3158 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3159 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3161 if (!folio_test_anon(old_folio)) {
3162 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3163 inc_mm_counter(mm, MM_ANONPAGES);
3166 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3167 inc_mm_counter(mm, MM_ANONPAGES);
3169 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3170 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3171 entry = pte_sw_mkyoung(entry);
3172 if (unlikely(unshare)) {
3173 if (pte_soft_dirty(vmf->orig_pte))
3174 entry = pte_mksoft_dirty(entry);
3175 if (pte_uffd_wp(vmf->orig_pte))
3176 entry = pte_mkuffd_wp(entry);
3178 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3182 * Clear the pte entry and flush it first, before updating the
3183 * pte with the new entry, to keep TLBs on different CPUs in
3184 * sync. This code used to set the new PTE then flush TLBs, but
3185 * that left a window where the new PTE could be loaded into
3186 * some TLBs while the old PTE remains in others.
3188 ptep_clear_flush(vma, vmf->address, vmf->pte);
3189 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3190 folio_add_lru_vma(new_folio, vma);
3192 * We call the notify macro here because, when using secondary
3193 * mmu page tables (such as kvm shadow page tables), we want the
3194 * new page to be mapped directly into the secondary page table.
3196 BUG_ON(unshare && pte_write(entry));
3197 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3198 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3201 * Only after switching the pte to the new page may
3202 * we remove the mapcount here. Otherwise another
3203 * process may come and find the rmap count decremented
3204 * before the pte is switched to the new page, and
3205 * "reuse" the old page writing into it while our pte
3206 * here still points into it and can be read by other
3209 * The critical issue is to order this
3210 * page_remove_rmap with the ptp_clear_flush above.
3211 * Those stores are ordered by (if nothing else,)
3212 * the barrier present in the atomic_add_negative
3213 * in page_remove_rmap.
3215 * Then the TLB flush in ptep_clear_flush ensures that
3216 * no process can access the old page before the
3217 * decremented mapcount is visible. And the old page
3218 * cannot be reused until after the decremented
3219 * mapcount is visible. So transitively, TLBs to
3220 * old page will be flushed before it can be reused.
3222 page_remove_rmap(vmf->page, vma, false);
3225 /* Free the old page.. */
3226 new_folio = old_folio;
3228 pte_unmap_unlock(vmf->pte, vmf->ptl);
3229 } else if (vmf->pte) {
3230 update_mmu_tlb(vma, vmf->address, vmf->pte);
3231 pte_unmap_unlock(vmf->pte, vmf->ptl);
3234 mmu_notifier_invalidate_range_end(&range);
3237 folio_put(new_folio);
3240 free_swap_cache(&old_folio->page);
3241 folio_put(old_folio);
3244 delayacct_wpcopy_end();
3247 folio_put(new_folio);
3252 folio_put(old_folio);
3254 delayacct_wpcopy_end();
3259 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3260 * writeable once the page is prepared
3262 * @vmf: structure describing the fault
3263 * @folio: the folio of vmf->page
3265 * This function handles all that is needed to finish a write page fault in a
3266 * shared mapping due to PTE being read-only once the mapped page is prepared.
3267 * It handles locking of PTE and modifying it.
3269 * The function expects the page to be locked or other protection against
3270 * concurrent faults / writeback (such as DAX radix tree locks).
3272 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3273 * we acquired PTE lock.
3275 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3277 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3278 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3281 return VM_FAULT_NOPAGE;
3283 * We might have raced with another page fault while we released the
3284 * pte_offset_map_lock.
3286 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3287 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3288 pte_unmap_unlock(vmf->pte, vmf->ptl);
3289 return VM_FAULT_NOPAGE;
3291 wp_page_reuse(vmf, folio);
3296 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3299 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3301 struct vm_area_struct *vma = vmf->vma;
3303 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3306 pte_unmap_unlock(vmf->pte, vmf->ptl);
3307 ret = vmf_can_call_fault(vmf);
3311 vmf->flags |= FAULT_FLAG_MKWRITE;
3312 ret = vma->vm_ops->pfn_mkwrite(vmf);
3313 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3315 return finish_mkwrite_fault(vmf, NULL);
3317 wp_page_reuse(vmf, NULL);
3321 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3322 __releases(vmf->ptl)
3324 struct vm_area_struct *vma = vmf->vma;
3329 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3332 pte_unmap_unlock(vmf->pte, vmf->ptl);
3333 tmp = vmf_can_call_fault(vmf);
3339 tmp = do_page_mkwrite(vmf, folio);
3340 if (unlikely(!tmp || (tmp &
3341 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3345 tmp = finish_mkwrite_fault(vmf, folio);
3346 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3347 folio_unlock(folio);
3352 wp_page_reuse(vmf, folio);
3355 ret |= fault_dirty_shared_page(vmf);
3361 static bool wp_can_reuse_anon_folio(struct folio *folio,
3362 struct vm_area_struct *vma)
3365 * We have to verify under folio lock: these early checks are
3366 * just an optimization to avoid locking the folio and freeing
3367 * the swapcache if there is little hope that we can reuse.
3369 * KSM doesn't necessarily raise the folio refcount.
3371 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3373 if (!folio_test_lru(folio))
3375 * We cannot easily detect+handle references from
3376 * remote LRU caches or references to LRU folios.
3379 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3381 if (!folio_trylock(folio))
3383 if (folio_test_swapcache(folio))
3384 folio_free_swap(folio);
3385 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3386 folio_unlock(folio);
3390 * Ok, we've got the only folio reference from our mapping
3391 * and the folio is locked, it's dark out, and we're wearing
3392 * sunglasses. Hit it.
3394 folio_move_anon_rmap(folio, vma);
3395 folio_unlock(folio);
3400 * This routine handles present pages, when
3401 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3402 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3403 * (FAULT_FLAG_UNSHARE)
3405 * It is done by copying the page to a new address and decrementing the
3406 * shared-page counter for the old page.
3408 * Note that this routine assumes that the protection checks have been
3409 * done by the caller (the low-level page fault routine in most cases).
3410 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3411 * done any necessary COW.
3413 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3414 * though the page will change only once the write actually happens. This
3415 * avoids a few races, and potentially makes it more efficient.
3417 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3418 * but allow concurrent faults), with pte both mapped and locked.
3419 * We return with mmap_lock still held, but pte unmapped and unlocked.
3421 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3422 __releases(vmf->ptl)
3424 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3425 struct vm_area_struct *vma = vmf->vma;
3426 struct folio *folio = NULL;
3429 if (likely(!unshare)) {
3430 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3431 if (!userfaultfd_wp_async(vma)) {
3432 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 return handle_userfault(vmf, VM_UFFD_WP);
3437 * Nothing needed (cache flush, TLB invalidations,
3438 * etc.) because we're only removing the uffd-wp bit,
3439 * which is completely invisible to the user.
3441 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3443 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3445 * Update this to be prepared for following up CoW
3448 vmf->orig_pte = pte;
3452 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3453 * is flushed in this case before copying.
3455 if (unlikely(userfaultfd_wp(vmf->vma) &&
3456 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3457 flush_tlb_page(vmf->vma, vmf->address);
3460 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3463 folio = page_folio(vmf->page);
3466 * Shared mapping: we are guaranteed to have VM_WRITE and
3467 * FAULT_FLAG_WRITE set at this point.
3469 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3471 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3474 * We should not cow pages in a shared writeable mapping.
3475 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3478 return wp_pfn_shared(vmf);
3479 return wp_page_shared(vmf, folio);
3483 * Private mapping: create an exclusive anonymous page copy if reuse
3484 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3486 * If we encounter a page that is marked exclusive, we must reuse
3487 * the page without further checks.
3489 if (folio && folio_test_anon(folio) &&
3490 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3491 if (!PageAnonExclusive(vmf->page))
3492 SetPageAnonExclusive(vmf->page);
3493 if (unlikely(unshare)) {
3494 pte_unmap_unlock(vmf->pte, vmf->ptl);
3497 wp_page_reuse(vmf, folio);
3501 * Ok, we need to copy. Oh, well..
3506 pte_unmap_unlock(vmf->pte, vmf->ptl);
3508 if (folio && folio_test_ksm(folio))
3509 count_vm_event(COW_KSM);
3511 return wp_page_copy(vmf);
3514 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3515 unsigned long start_addr, unsigned long end_addr,
3516 struct zap_details *details)
3518 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3521 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3522 pgoff_t first_index,
3524 struct zap_details *details)
3526 struct vm_area_struct *vma;
3527 pgoff_t vba, vea, zba, zea;
3529 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3530 vba = vma->vm_pgoff;
3531 vea = vba + vma_pages(vma) - 1;
3532 zba = max(first_index, vba);
3533 zea = min(last_index, vea);
3535 unmap_mapping_range_vma(vma,
3536 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3537 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3543 * unmap_mapping_folio() - Unmap single folio from processes.
3544 * @folio: The locked folio to be unmapped.
3546 * Unmap this folio from any userspace process which still has it mmaped.
3547 * Typically, for efficiency, the range of nearby pages has already been
3548 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3549 * truncation or invalidation holds the lock on a folio, it may find that
3550 * the page has been remapped again: and then uses unmap_mapping_folio()
3551 * to unmap it finally.
3553 void unmap_mapping_folio(struct folio *folio)
3555 struct address_space *mapping = folio->mapping;
3556 struct zap_details details = { };
3557 pgoff_t first_index;
3560 VM_BUG_ON(!folio_test_locked(folio));
3562 first_index = folio->index;
3563 last_index = folio_next_index(folio) - 1;
3565 details.even_cows = false;
3566 details.single_folio = folio;
3567 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3569 i_mmap_lock_read(mapping);
3570 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3571 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3572 last_index, &details);
3573 i_mmap_unlock_read(mapping);
3577 * unmap_mapping_pages() - Unmap pages from processes.
3578 * @mapping: The address space containing pages to be unmapped.
3579 * @start: Index of first page to be unmapped.
3580 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3581 * @even_cows: Whether to unmap even private COWed pages.
3583 * Unmap the pages in this address space from any userspace process which
3584 * has them mmaped. Generally, you want to remove COWed pages as well when
3585 * a file is being truncated, but not when invalidating pages from the page
3588 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3589 pgoff_t nr, bool even_cows)
3591 struct zap_details details = { };
3592 pgoff_t first_index = start;
3593 pgoff_t last_index = start + nr - 1;
3595 details.even_cows = even_cows;
3596 if (last_index < first_index)
3597 last_index = ULONG_MAX;
3599 i_mmap_lock_read(mapping);
3600 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3601 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3602 last_index, &details);
3603 i_mmap_unlock_read(mapping);
3605 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3608 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3609 * address_space corresponding to the specified byte range in the underlying
3612 * @mapping: the address space containing mmaps to be unmapped.
3613 * @holebegin: byte in first page to unmap, relative to the start of
3614 * the underlying file. This will be rounded down to a PAGE_SIZE
3615 * boundary. Note that this is different from truncate_pagecache(), which
3616 * must keep the partial page. In contrast, we must get rid of
3618 * @holelen: size of prospective hole in bytes. This will be rounded
3619 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3621 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3622 * but 0 when invalidating pagecache, don't throw away private data.
3624 void unmap_mapping_range(struct address_space *mapping,
3625 loff_t const holebegin, loff_t const holelen, int even_cows)
3627 pgoff_t hba = holebegin >> PAGE_SHIFT;
3628 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3630 /* Check for overflow. */
3631 if (sizeof(holelen) > sizeof(hlen)) {
3633 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3634 if (holeend & ~(long long)ULONG_MAX)
3635 hlen = ULONG_MAX - hba + 1;
3638 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3640 EXPORT_SYMBOL(unmap_mapping_range);
3643 * Restore a potential device exclusive pte to a working pte entry
3645 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3647 struct folio *folio = page_folio(vmf->page);
3648 struct vm_area_struct *vma = vmf->vma;
3649 struct mmu_notifier_range range;
3653 * We need a reference to lock the folio because we don't hold
3654 * the PTL so a racing thread can remove the device-exclusive
3655 * entry and unmap it. If the folio is free the entry must
3656 * have been removed already. If it happens to have already
3657 * been re-allocated after being freed all we do is lock and
3660 if (!folio_try_get(folio))
3663 ret = folio_lock_or_retry(folio, vmf);
3668 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3669 vma->vm_mm, vmf->address & PAGE_MASK,
3670 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3671 mmu_notifier_invalidate_range_start(&range);
3673 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3675 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3676 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3679 pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 folio_unlock(folio);
3683 mmu_notifier_invalidate_range_end(&range);
3687 static inline bool should_try_to_free_swap(struct folio *folio,
3688 struct vm_area_struct *vma,
3689 unsigned int fault_flags)
3691 if (!folio_test_swapcache(folio))
3693 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3694 folio_test_mlocked(folio))
3697 * If we want to map a page that's in the swapcache writable, we
3698 * have to detect via the refcount if we're really the exclusive
3699 * user. Try freeing the swapcache to get rid of the swapcache
3700 * reference only in case it's likely that we'll be the exlusive user.
3702 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3703 folio_ref_count(folio) == 2;
3706 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3708 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3709 vmf->address, &vmf->ptl);
3713 * Be careful so that we will only recover a special uffd-wp pte into a
3714 * none pte. Otherwise it means the pte could have changed, so retry.
3716 * This should also cover the case where e.g. the pte changed
3717 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3718 * So is_pte_marker() check is not enough to safely drop the pte.
3720 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3721 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3722 pte_unmap_unlock(vmf->pte, vmf->ptl);
3726 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3728 if (vma_is_anonymous(vmf->vma))
3729 return do_anonymous_page(vmf);
3731 return do_fault(vmf);
3735 * This is actually a page-missing access, but with uffd-wp special pte
3736 * installed. It means this pte was wr-protected before being unmapped.
3738 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3741 * Just in case there're leftover special ptes even after the region
3742 * got unregistered - we can simply clear them.
3744 if (unlikely(!userfaultfd_wp(vmf->vma)))
3745 return pte_marker_clear(vmf);
3747 return do_pte_missing(vmf);
3750 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3752 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3753 unsigned long marker = pte_marker_get(entry);
3756 * PTE markers should never be empty. If anything weird happened,
3757 * the best thing to do is to kill the process along with its mm.
3759 if (WARN_ON_ONCE(!marker))
3760 return VM_FAULT_SIGBUS;
3762 /* Higher priority than uffd-wp when data corrupted */
3763 if (marker & PTE_MARKER_POISONED)
3764 return VM_FAULT_HWPOISON;
3766 if (pte_marker_entry_uffd_wp(entry))
3767 return pte_marker_handle_uffd_wp(vmf);
3769 /* This is an unknown pte marker */
3770 return VM_FAULT_SIGBUS;
3774 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3775 * but allow concurrent faults), and pte mapped but not yet locked.
3776 * We return with pte unmapped and unlocked.
3778 * We return with the mmap_lock locked or unlocked in the same cases
3779 * as does filemap_fault().
3781 vm_fault_t do_swap_page(struct vm_fault *vmf)
3783 struct vm_area_struct *vma = vmf->vma;
3784 struct folio *swapcache, *folio = NULL;
3786 struct swap_info_struct *si = NULL;
3787 rmap_t rmap_flags = RMAP_NONE;
3788 bool exclusive = false;
3792 void *shadow = NULL;
3794 if (!pte_unmap_same(vmf))
3797 entry = pte_to_swp_entry(vmf->orig_pte);
3798 if (unlikely(non_swap_entry(entry))) {
3799 if (is_migration_entry(entry)) {
3800 migration_entry_wait(vma->vm_mm, vmf->pmd,
3802 } else if (is_device_exclusive_entry(entry)) {
3803 vmf->page = pfn_swap_entry_to_page(entry);
3804 ret = remove_device_exclusive_entry(vmf);
3805 } else if (is_device_private_entry(entry)) {
3806 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3808 * migrate_to_ram is not yet ready to operate
3812 ret = VM_FAULT_RETRY;
3816 vmf->page = pfn_swap_entry_to_page(entry);
3817 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818 vmf->address, &vmf->ptl);
3819 if (unlikely(!vmf->pte ||
3820 !pte_same(ptep_get(vmf->pte),
3825 * Get a page reference while we know the page can't be
3828 get_page(vmf->page);
3829 pte_unmap_unlock(vmf->pte, vmf->ptl);
3830 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3831 put_page(vmf->page);
3832 } else if (is_hwpoison_entry(entry)) {
3833 ret = VM_FAULT_HWPOISON;
3834 } else if (is_pte_marker_entry(entry)) {
3835 ret = handle_pte_marker(vmf);
3837 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3838 ret = VM_FAULT_SIGBUS;
3843 /* Prevent swapoff from happening to us. */
3844 si = get_swap_device(entry);
3848 folio = swap_cache_get_folio(entry, vma, vmf->address);
3850 page = folio_file_page(folio, swp_offset(entry));
3854 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3855 __swap_count(entry) == 1) {
3856 /* skip swapcache */
3857 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3858 vma, vmf->address, false);
3859 page = &folio->page;
3861 __folio_set_locked(folio);
3862 __folio_set_swapbacked(folio);
3864 if (mem_cgroup_swapin_charge_folio(folio,
3865 vma->vm_mm, GFP_KERNEL,
3870 mem_cgroup_swapin_uncharge_swap(entry);
3872 shadow = get_shadow_from_swap_cache(entry);
3874 workingset_refault(folio, shadow);
3876 folio_add_lru(folio);
3878 /* To provide entry to swap_readpage() */
3879 folio->swap = entry;
3880 swap_readpage(page, true, NULL);
3881 folio->private = NULL;
3884 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3887 folio = page_folio(page);
3893 * Back out if somebody else faulted in this pte
3894 * while we released the pte lock.
3896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3897 vmf->address, &vmf->ptl);
3898 if (likely(vmf->pte &&
3899 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3904 /* Had to read the page from swap area: Major fault */
3905 ret = VM_FAULT_MAJOR;
3906 count_vm_event(PGMAJFAULT);
3907 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3908 } else if (PageHWPoison(page)) {
3910 * hwpoisoned dirty swapcache pages are kept for killing
3911 * owner processes (which may be unknown at hwpoison time)
3913 ret = VM_FAULT_HWPOISON;
3917 ret |= folio_lock_or_retry(folio, vmf);
3918 if (ret & VM_FAULT_RETRY)
3923 * Make sure folio_free_swap() or swapoff did not release the
3924 * swapcache from under us. The page pin, and pte_same test
3925 * below, are not enough to exclude that. Even if it is still
3926 * swapcache, we need to check that the page's swap has not
3929 if (unlikely(!folio_test_swapcache(folio) ||
3930 page_swap_entry(page).val != entry.val))
3934 * KSM sometimes has to copy on read faults, for example, if
3935 * page->index of !PageKSM() pages would be nonlinear inside the
3936 * anon VMA -- PageKSM() is lost on actual swapout.
3938 page = ksm_might_need_to_copy(page, vma, vmf->address);
3939 if (unlikely(!page)) {
3942 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3943 ret = VM_FAULT_HWPOISON;
3946 folio = page_folio(page);
3949 * If we want to map a page that's in the swapcache writable, we
3950 * have to detect via the refcount if we're really the exclusive
3951 * owner. Try removing the extra reference from the local LRU
3952 * caches if required.
3954 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3955 !folio_test_ksm(folio) && !folio_test_lru(folio))
3959 folio_throttle_swaprate(folio, GFP_KERNEL);
3962 * Back out if somebody else already faulted in this pte.
3964 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3966 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3969 if (unlikely(!folio_test_uptodate(folio))) {
3970 ret = VM_FAULT_SIGBUS;
3975 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3976 * must never point at an anonymous page in the swapcache that is
3977 * PG_anon_exclusive. Sanity check that this holds and especially, that
3978 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3979 * check after taking the PT lock and making sure that nobody
3980 * concurrently faulted in this page and set PG_anon_exclusive.
3982 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3983 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3986 * Check under PT lock (to protect against concurrent fork() sharing
3987 * the swap entry concurrently) for certainly exclusive pages.
3989 if (!folio_test_ksm(folio)) {
3990 exclusive = pte_swp_exclusive(vmf->orig_pte);
3991 if (folio != swapcache) {
3993 * We have a fresh page that is not exposed to the
3994 * swapcache -> certainly exclusive.
3997 } else if (exclusive && folio_test_writeback(folio) &&
3998 data_race(si->flags & SWP_STABLE_WRITES)) {
4000 * This is tricky: not all swap backends support
4001 * concurrent page modifications while under writeback.
4003 * So if we stumble over such a page in the swapcache
4004 * we must not set the page exclusive, otherwise we can
4005 * map it writable without further checks and modify it
4006 * while still under writeback.
4008 * For these problematic swap backends, simply drop the
4009 * exclusive marker: this is perfectly fine as we start
4010 * writeback only if we fully unmapped the page and
4011 * there are no unexpected references on the page after
4012 * unmapping succeeded. After fully unmapped, no
4013 * further GUP references (FOLL_GET and FOLL_PIN) can
4014 * appear, so dropping the exclusive marker and mapping
4015 * it only R/O is fine.
4022 * Some architectures may have to restore extra metadata to the page
4023 * when reading from swap. This metadata may be indexed by swap entry
4024 * so this must be called before swap_free().
4026 arch_swap_restore(entry, folio);
4029 * Remove the swap entry and conditionally try to free up the swapcache.
4030 * We're already holding a reference on the page but haven't mapped it
4034 if (should_try_to_free_swap(folio, vma, vmf->flags))
4035 folio_free_swap(folio);
4037 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4038 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4039 pte = mk_pte(page, vma->vm_page_prot);
4042 * Same logic as in do_wp_page(); however, optimize for pages that are
4043 * certainly not shared either because we just allocated them without
4044 * exposing them to the swapcache or because the swap entry indicates
4047 if (!folio_test_ksm(folio) &&
4048 (exclusive || folio_ref_count(folio) == 1)) {
4049 if (vmf->flags & FAULT_FLAG_WRITE) {
4050 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4051 vmf->flags &= ~FAULT_FLAG_WRITE;
4053 rmap_flags |= RMAP_EXCLUSIVE;
4055 flush_icache_page(vma, page);
4056 if (pte_swp_soft_dirty(vmf->orig_pte))
4057 pte = pte_mksoft_dirty(pte);
4058 if (pte_swp_uffd_wp(vmf->orig_pte))
4059 pte = pte_mkuffd_wp(pte);
4060 vmf->orig_pte = pte;
4062 /* ksm created a completely new copy */
4063 if (unlikely(folio != swapcache && swapcache)) {
4064 page_add_new_anon_rmap(page, vma, vmf->address);
4065 folio_add_lru_vma(folio, vma);
4067 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4070 VM_BUG_ON(!folio_test_anon(folio) ||
4071 (pte_write(pte) && !PageAnonExclusive(page)));
4072 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4073 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4075 folio_unlock(folio);
4076 if (folio != swapcache && swapcache) {
4078 * Hold the lock to avoid the swap entry to be reused
4079 * until we take the PT lock for the pte_same() check
4080 * (to avoid false positives from pte_same). For
4081 * further safety release the lock after the swap_free
4082 * so that the swap count won't change under a
4083 * parallel locked swapcache.
4085 folio_unlock(swapcache);
4086 folio_put(swapcache);
4089 if (vmf->flags & FAULT_FLAG_WRITE) {
4090 ret |= do_wp_page(vmf);
4091 if (ret & VM_FAULT_ERROR)
4092 ret &= VM_FAULT_ERROR;
4096 /* No need to invalidate - it was non-present before */
4097 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4100 pte_unmap_unlock(vmf->pte, vmf->ptl);
4103 put_swap_device(si);
4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
4109 folio_unlock(folio);
4112 if (folio != swapcache && swapcache) {
4113 folio_unlock(swapcache);
4114 folio_put(swapcache);
4117 put_swap_device(si);
4122 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4123 * but allow concurrent faults), and pte mapped but not yet locked.
4124 * We return with mmap_lock still held, but pte unmapped and unlocked.
4126 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4128 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4129 struct vm_area_struct *vma = vmf->vma;
4130 struct folio *folio;
4134 /* File mapping without ->vm_ops ? */
4135 if (vma->vm_flags & VM_SHARED)
4136 return VM_FAULT_SIGBUS;
4139 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4140 * be distinguished from a transient failure of pte_offset_map().
4142 if (pte_alloc(vma->vm_mm, vmf->pmd))
4143 return VM_FAULT_OOM;
4145 /* Use the zero-page for reads */
4146 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4147 !mm_forbids_zeropage(vma->vm_mm)) {
4148 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4149 vma->vm_page_prot));
4150 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4151 vmf->address, &vmf->ptl);
4154 if (vmf_pte_changed(vmf)) {
4155 update_mmu_tlb(vma, vmf->address, vmf->pte);
4158 ret = check_stable_address_space(vma->vm_mm);
4161 /* Deliver the page fault to userland, check inside PT lock */
4162 if (userfaultfd_missing(vma)) {
4163 pte_unmap_unlock(vmf->pte, vmf->ptl);
4164 return handle_userfault(vmf, VM_UFFD_MISSING);
4169 /* Allocate our own private page. */
4170 if (unlikely(anon_vma_prepare(vma)))
4172 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4176 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4178 folio_throttle_swaprate(folio, GFP_KERNEL);
4181 * The memory barrier inside __folio_mark_uptodate makes sure that
4182 * preceding stores to the page contents become visible before
4183 * the set_pte_at() write.
4185 __folio_mark_uptodate(folio);
4187 entry = mk_pte(&folio->page, vma->vm_page_prot);
4188 entry = pte_sw_mkyoung(entry);
4189 if (vma->vm_flags & VM_WRITE)
4190 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4192 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4196 if (vmf_pte_changed(vmf)) {
4197 update_mmu_tlb(vma, vmf->address, vmf->pte);
4201 ret = check_stable_address_space(vma->vm_mm);
4205 /* Deliver the page fault to userland, check inside PT lock */
4206 if (userfaultfd_missing(vma)) {
4207 pte_unmap_unlock(vmf->pte, vmf->ptl);
4209 return handle_userfault(vmf, VM_UFFD_MISSING);
4212 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4213 folio_add_new_anon_rmap(folio, vma, vmf->address);
4214 folio_add_lru_vma(folio, vma);
4217 entry = pte_mkuffd_wp(entry);
4218 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4220 /* No need to invalidate - it was non-present before */
4221 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4224 pte_unmap_unlock(vmf->pte, vmf->ptl);
4232 return VM_FAULT_OOM;
4236 * The mmap_lock must have been held on entry, and may have been
4237 * released depending on flags and vma->vm_ops->fault() return value.
4238 * See filemap_fault() and __lock_page_retry().
4240 static vm_fault_t __do_fault(struct vm_fault *vmf)
4242 struct vm_area_struct *vma = vmf->vma;
4246 * Preallocate pte before we take page_lock because this might lead to
4247 * deadlocks for memcg reclaim which waits for pages under writeback:
4249 * SetPageWriteback(A)
4255 * wait_on_page_writeback(A)
4256 * SetPageWriteback(B)
4258 * # flush A, B to clear the writeback
4260 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4261 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4262 if (!vmf->prealloc_pte)
4263 return VM_FAULT_OOM;
4266 ret = vma->vm_ops->fault(vmf);
4267 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4268 VM_FAULT_DONE_COW)))
4271 if (unlikely(PageHWPoison(vmf->page))) {
4272 struct page *page = vmf->page;
4273 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4274 if (ret & VM_FAULT_LOCKED) {
4275 if (page_mapped(page))
4276 unmap_mapping_pages(page_mapping(page),
4277 page->index, 1, false);
4278 /* Retry if a clean page was removed from the cache. */
4279 if (invalidate_inode_page(page))
4280 poisonret = VM_FAULT_NOPAGE;
4288 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4289 lock_page(vmf->page);
4291 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4297 static void deposit_prealloc_pte(struct vm_fault *vmf)
4299 struct vm_area_struct *vma = vmf->vma;
4301 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4303 * We are going to consume the prealloc table,
4304 * count that as nr_ptes.
4306 mm_inc_nr_ptes(vma->vm_mm);
4307 vmf->prealloc_pte = NULL;
4310 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4312 struct vm_area_struct *vma = vmf->vma;
4313 bool write = vmf->flags & FAULT_FLAG_WRITE;
4314 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4316 vm_fault_t ret = VM_FAULT_FALLBACK;
4318 if (!transhuge_vma_suitable(vma, haddr))
4321 page = compound_head(page);
4322 if (compound_order(page) != HPAGE_PMD_ORDER)
4326 * Just backoff if any subpage of a THP is corrupted otherwise
4327 * the corrupted page may mapped by PMD silently to escape the
4328 * check. This kind of THP just can be PTE mapped. Access to
4329 * the corrupted subpage should trigger SIGBUS as expected.
4331 if (unlikely(PageHasHWPoisoned(page)))
4335 * Archs like ppc64 need additional space to store information
4336 * related to pte entry. Use the preallocated table for that.
4338 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4339 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4340 if (!vmf->prealloc_pte)
4341 return VM_FAULT_OOM;
4344 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4345 if (unlikely(!pmd_none(*vmf->pmd)))
4348 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4350 entry = mk_huge_pmd(page, vma->vm_page_prot);
4352 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4354 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4355 page_add_file_rmap(page, vma, true);
4358 * deposit and withdraw with pmd lock held
4360 if (arch_needs_pgtable_deposit())
4361 deposit_prealloc_pte(vmf);
4363 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4365 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4367 /* fault is handled */
4369 count_vm_event(THP_FILE_MAPPED);
4371 spin_unlock(vmf->ptl);
4375 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4377 return VM_FAULT_FALLBACK;
4382 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4383 * @vmf: Fault decription.
4384 * @folio: The folio that contains @page.
4385 * @page: The first page to create a PTE for.
4386 * @nr: The number of PTEs to create.
4387 * @addr: The first address to create a PTE for.
4389 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4390 struct page *page, unsigned int nr, unsigned long addr)
4392 struct vm_area_struct *vma = vmf->vma;
4393 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4394 bool write = vmf->flags & FAULT_FLAG_WRITE;
4395 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4398 flush_icache_pages(vma, page, nr);
4399 entry = mk_pte(page, vma->vm_page_prot);
4401 if (prefault && arch_wants_old_prefaulted_pte())
4402 entry = pte_mkold(entry);
4404 entry = pte_sw_mkyoung(entry);
4407 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4408 if (unlikely(uffd_wp))
4409 entry = pte_mkuffd_wp(entry);
4410 /* copy-on-write page */
4411 if (write && !(vma->vm_flags & VM_SHARED)) {
4412 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4413 VM_BUG_ON_FOLIO(nr != 1, folio);
4414 folio_add_new_anon_rmap(folio, vma, addr);
4415 folio_add_lru_vma(folio, vma);
4417 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4418 folio_add_file_rmap_range(folio, page, nr, vma, false);
4420 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4422 /* no need to invalidate: a not-present page won't be cached */
4423 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4426 static bool vmf_pte_changed(struct vm_fault *vmf)
4428 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4429 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4431 return !pte_none(ptep_get(vmf->pte));
4435 * finish_fault - finish page fault once we have prepared the page to fault
4437 * @vmf: structure describing the fault
4439 * This function handles all that is needed to finish a page fault once the
4440 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4441 * given page, adds reverse page mapping, handles memcg charges and LRU
4444 * The function expects the page to be locked and on success it consumes a
4445 * reference of a page being mapped (for the PTE which maps it).
4447 * Return: %0 on success, %VM_FAULT_ code in case of error.
4449 vm_fault_t finish_fault(struct vm_fault *vmf)
4451 struct vm_area_struct *vma = vmf->vma;
4455 /* Did we COW the page? */
4456 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4457 page = vmf->cow_page;
4462 * check even for read faults because we might have lost our CoWed
4465 if (!(vma->vm_flags & VM_SHARED)) {
4466 ret = check_stable_address_space(vma->vm_mm);
4471 if (pmd_none(*vmf->pmd)) {
4472 if (PageTransCompound(page)) {
4473 ret = do_set_pmd(vmf, page);
4474 if (ret != VM_FAULT_FALLBACK)
4478 if (vmf->prealloc_pte)
4479 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4480 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4481 return VM_FAULT_OOM;
4484 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4485 vmf->address, &vmf->ptl);
4487 return VM_FAULT_NOPAGE;
4489 /* Re-check under ptl */
4490 if (likely(!vmf_pte_changed(vmf))) {
4491 struct folio *folio = page_folio(page);
4493 set_pte_range(vmf, folio, page, 1, vmf->address);
4496 update_mmu_tlb(vma, vmf->address, vmf->pte);
4497 ret = VM_FAULT_NOPAGE;
4500 pte_unmap_unlock(vmf->pte, vmf->ptl);
4504 static unsigned long fault_around_pages __read_mostly =
4505 65536 >> PAGE_SHIFT;
4507 #ifdef CONFIG_DEBUG_FS
4508 static int fault_around_bytes_get(void *data, u64 *val)
4510 *val = fault_around_pages << PAGE_SHIFT;
4515 * fault_around_bytes must be rounded down to the nearest page order as it's
4516 * what do_fault_around() expects to see.
4518 static int fault_around_bytes_set(void *data, u64 val)
4520 if (val / PAGE_SIZE > PTRS_PER_PTE)
4524 * The minimum value is 1 page, however this results in no fault-around
4525 * at all. See should_fault_around().
4527 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4531 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4532 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4534 static int __init fault_around_debugfs(void)
4536 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4537 &fault_around_bytes_fops);
4540 late_initcall(fault_around_debugfs);
4544 * do_fault_around() tries to map few pages around the fault address. The hope
4545 * is that the pages will be needed soon and this will lower the number of
4548 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4549 * not ready to be mapped: not up-to-date, locked, etc.
4551 * This function doesn't cross VMA or page table boundaries, in order to call
4552 * map_pages() and acquire a PTE lock only once.
4554 * fault_around_pages defines how many pages we'll try to map.
4555 * do_fault_around() expects it to be set to a power of two less than or equal
4558 * The virtual address of the area that we map is naturally aligned to
4559 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4560 * (and therefore to page order). This way it's easier to guarantee
4561 * that we don't cross page table boundaries.
4563 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4565 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4566 pgoff_t pte_off = pte_index(vmf->address);
4567 /* The page offset of vmf->address within the VMA. */
4568 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4569 pgoff_t from_pte, to_pte;
4572 /* The PTE offset of the start address, clamped to the VMA. */
4573 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4574 pte_off - min(pte_off, vma_off));
4576 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4577 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4578 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4580 if (pmd_none(*vmf->pmd)) {
4581 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4582 if (!vmf->prealloc_pte)
4583 return VM_FAULT_OOM;
4587 ret = vmf->vma->vm_ops->map_pages(vmf,
4588 vmf->pgoff + from_pte - pte_off,
4589 vmf->pgoff + to_pte - pte_off);
4595 /* Return true if we should do read fault-around, false otherwise */
4596 static inline bool should_fault_around(struct vm_fault *vmf)
4598 /* No ->map_pages? No way to fault around... */
4599 if (!vmf->vma->vm_ops->map_pages)
4602 if (uffd_disable_fault_around(vmf->vma))
4605 /* A single page implies no faulting 'around' at all. */
4606 return fault_around_pages > 1;
4609 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4612 struct folio *folio;
4615 * Let's call ->map_pages() first and use ->fault() as fallback
4616 * if page by the offset is not ready to be mapped (cold cache or
4619 if (should_fault_around(vmf)) {
4620 ret = do_fault_around(vmf);
4625 ret = vmf_can_call_fault(vmf);
4629 ret = __do_fault(vmf);
4630 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4633 ret |= finish_fault(vmf);
4634 folio = page_folio(vmf->page);
4635 folio_unlock(folio);
4636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4641 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4643 struct vm_area_struct *vma = vmf->vma;
4646 ret = vmf_can_call_fault(vmf);
4648 ret = vmf_anon_prepare(vmf);
4652 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4654 return VM_FAULT_OOM;
4656 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4658 put_page(vmf->cow_page);
4659 return VM_FAULT_OOM;
4661 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4663 ret = __do_fault(vmf);
4664 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4666 if (ret & VM_FAULT_DONE_COW)
4669 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4670 __SetPageUptodate(vmf->cow_page);
4672 ret |= finish_fault(vmf);
4673 unlock_page(vmf->page);
4674 put_page(vmf->page);
4675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4679 put_page(vmf->cow_page);
4683 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4685 struct vm_area_struct *vma = vmf->vma;
4686 vm_fault_t ret, tmp;
4687 struct folio *folio;
4689 ret = vmf_can_call_fault(vmf);
4693 ret = __do_fault(vmf);
4694 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4697 folio = page_folio(vmf->page);
4700 * Check if the backing address space wants to know that the page is
4701 * about to become writable
4703 if (vma->vm_ops->page_mkwrite) {
4704 folio_unlock(folio);
4705 tmp = do_page_mkwrite(vmf, folio);
4706 if (unlikely(!tmp ||
4707 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4713 ret |= finish_fault(vmf);
4714 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4716 folio_unlock(folio);
4721 ret |= fault_dirty_shared_page(vmf);
4726 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4727 * but allow concurrent faults).
4728 * The mmap_lock may have been released depending on flags and our
4729 * return value. See filemap_fault() and __folio_lock_or_retry().
4730 * If mmap_lock is released, vma may become invalid (for example
4731 * by other thread calling munmap()).
4733 static vm_fault_t do_fault(struct vm_fault *vmf)
4735 struct vm_area_struct *vma = vmf->vma;
4736 struct mm_struct *vm_mm = vma->vm_mm;
4740 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4742 if (!vma->vm_ops->fault) {
4743 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4744 vmf->address, &vmf->ptl);
4745 if (unlikely(!vmf->pte))
4746 ret = VM_FAULT_SIGBUS;
4749 * Make sure this is not a temporary clearing of pte
4750 * by holding ptl and checking again. A R/M/W update
4751 * of pte involves: take ptl, clearing the pte so that
4752 * we don't have concurrent modification by hardware
4753 * followed by an update.
4755 if (unlikely(pte_none(ptep_get(vmf->pte))))
4756 ret = VM_FAULT_SIGBUS;
4758 ret = VM_FAULT_NOPAGE;
4760 pte_unmap_unlock(vmf->pte, vmf->ptl);
4762 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4763 ret = do_read_fault(vmf);
4764 else if (!(vma->vm_flags & VM_SHARED))
4765 ret = do_cow_fault(vmf);
4767 ret = do_shared_fault(vmf);
4769 /* preallocated pagetable is unused: free it */
4770 if (vmf->prealloc_pte) {
4771 pte_free(vm_mm, vmf->prealloc_pte);
4772 vmf->prealloc_pte = NULL;
4777 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4778 unsigned long addr, int page_nid, int *flags)
4782 /* Record the current PID acceesing VMA */
4783 vma_set_access_pid_bit(vma);
4785 count_vm_numa_event(NUMA_HINT_FAULTS);
4786 if (page_nid == numa_node_id()) {
4787 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4788 *flags |= TNF_FAULT_LOCAL;
4791 return mpol_misplaced(folio, vma, addr);
4794 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4796 struct vm_area_struct *vma = vmf->vma;
4797 struct folio *folio = NULL;
4798 int nid = NUMA_NO_NODE;
4799 bool writable = false;
4806 * The "pte" at this point cannot be used safely without
4807 * validation through pte_unmap_same(). It's of NUMA type but
4808 * the pfn may be screwed if the read is non atomic.
4810 spin_lock(vmf->ptl);
4811 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4812 pte_unmap_unlock(vmf->pte, vmf->ptl);
4816 /* Get the normal PTE */
4817 old_pte = ptep_get(vmf->pte);
4818 pte = pte_modify(old_pte, vma->vm_page_prot);
4821 * Detect now whether the PTE could be writable; this information
4822 * is only valid while holding the PT lock.
4824 writable = pte_write(pte);
4825 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4826 can_change_pte_writable(vma, vmf->address, pte))
4829 folio = vm_normal_folio(vma, vmf->address, pte);
4830 if (!folio || folio_is_zone_device(folio))
4833 /* TODO: handle PTE-mapped THP */
4834 if (folio_test_large(folio))
4838 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4839 * much anyway since they can be in shared cache state. This misses
4840 * the case where a mapping is writable but the process never writes
4841 * to it but pte_write gets cleared during protection updates and
4842 * pte_dirty has unpredictable behaviour between PTE scan updates,
4843 * background writeback, dirty balancing and application behaviour.
4846 flags |= TNF_NO_GROUP;
4849 * Flag if the folio is shared between multiple address spaces. This
4850 * is later used when determining whether to group tasks together
4852 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4853 flags |= TNF_SHARED;
4855 nid = folio_nid(folio);
4857 * For memory tiering mode, cpupid of slow memory page is used
4858 * to record page access time. So use default value.
4860 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4861 !node_is_toptier(nid))
4862 last_cpupid = (-1 & LAST_CPUPID_MASK);
4864 last_cpupid = folio_last_cpupid(folio);
4865 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4866 if (target_nid == NUMA_NO_NODE) {
4870 pte_unmap_unlock(vmf->pte, vmf->ptl);
4873 /* Migrate to the requested node */
4874 if (migrate_misplaced_folio(folio, vma, target_nid)) {
4876 flags |= TNF_MIGRATED;
4878 flags |= TNF_MIGRATE_FAIL;
4879 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4880 vmf->address, &vmf->ptl);
4881 if (unlikely(!vmf->pte))
4883 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4884 pte_unmap_unlock(vmf->pte, vmf->ptl);
4891 if (nid != NUMA_NO_NODE)
4892 task_numa_fault(last_cpupid, nid, 1, flags);
4896 * Make it present again, depending on how arch implements
4897 * non-accessible ptes, some can allow access by kernel mode.
4899 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4900 pte = pte_modify(old_pte, vma->vm_page_prot);
4901 pte = pte_mkyoung(pte);
4903 pte = pte_mkwrite(pte, vma);
4904 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4905 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4906 pte_unmap_unlock(vmf->pte, vmf->ptl);
4910 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4912 struct vm_area_struct *vma = vmf->vma;
4913 if (vma_is_anonymous(vma))
4914 return do_huge_pmd_anonymous_page(vmf);
4915 if (vma->vm_ops->huge_fault)
4916 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4917 return VM_FAULT_FALLBACK;
4920 /* `inline' is required to avoid gcc 4.1.2 build error */
4921 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4923 struct vm_area_struct *vma = vmf->vma;
4924 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4927 if (vma_is_anonymous(vma)) {
4928 if (likely(!unshare) &&
4929 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4930 if (userfaultfd_wp_async(vmf->vma))
4932 return handle_userfault(vmf, VM_UFFD_WP);
4934 return do_huge_pmd_wp_page(vmf);
4937 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4938 if (vma->vm_ops->huge_fault) {
4939 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4940 if (!(ret & VM_FAULT_FALLBACK))
4946 /* COW or write-notify handled on pte level: split pmd. */
4947 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4949 return VM_FAULT_FALLBACK;
4952 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4955 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4956 struct vm_area_struct *vma = vmf->vma;
4957 /* No support for anonymous transparent PUD pages yet */
4958 if (vma_is_anonymous(vma))
4959 return VM_FAULT_FALLBACK;
4960 if (vma->vm_ops->huge_fault)
4961 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4962 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4963 return VM_FAULT_FALLBACK;
4966 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4968 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4969 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4970 struct vm_area_struct *vma = vmf->vma;
4973 /* No support for anonymous transparent PUD pages yet */
4974 if (vma_is_anonymous(vma))
4976 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4977 if (vma->vm_ops->huge_fault) {
4978 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4979 if (!(ret & VM_FAULT_FALLBACK))
4984 /* COW or write-notify not handled on PUD level: split pud.*/
4985 __split_huge_pud(vma, vmf->pud, vmf->address);
4986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4987 return VM_FAULT_FALLBACK;
4991 * These routines also need to handle stuff like marking pages dirty
4992 * and/or accessed for architectures that don't do it in hardware (most
4993 * RISC architectures). The early dirtying is also good on the i386.
4995 * There is also a hook called "update_mmu_cache()" that architectures
4996 * with external mmu caches can use to update those (ie the Sparc or
4997 * PowerPC hashed page tables that act as extended TLBs).
4999 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5000 * concurrent faults).
5002 * The mmap_lock may have been released depending on flags and our return value.
5003 * See filemap_fault() and __folio_lock_or_retry().
5005 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5009 if (unlikely(pmd_none(*vmf->pmd))) {
5011 * Leave __pte_alloc() until later: because vm_ops->fault may
5012 * want to allocate huge page, and if we expose page table
5013 * for an instant, it will be difficult to retract from
5014 * concurrent faults and from rmap lookups.
5017 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5020 * A regular pmd is established and it can't morph into a huge
5021 * pmd by anon khugepaged, since that takes mmap_lock in write
5022 * mode; but shmem or file collapse to THP could still morph
5023 * it into a huge pmd: just retry later if so.
5025 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5026 vmf->address, &vmf->ptl);
5027 if (unlikely(!vmf->pte))
5029 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5030 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5032 if (pte_none(vmf->orig_pte)) {
5033 pte_unmap(vmf->pte);
5039 return do_pte_missing(vmf);
5041 if (!pte_present(vmf->orig_pte))
5042 return do_swap_page(vmf);
5044 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5045 return do_numa_page(vmf);
5047 spin_lock(vmf->ptl);
5048 entry = vmf->orig_pte;
5049 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5050 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5053 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5054 if (!pte_write(entry))
5055 return do_wp_page(vmf);
5056 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5057 entry = pte_mkdirty(entry);
5059 entry = pte_mkyoung(entry);
5060 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5061 vmf->flags & FAULT_FLAG_WRITE)) {
5062 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5065 /* Skip spurious TLB flush for retried page fault */
5066 if (vmf->flags & FAULT_FLAG_TRIED)
5069 * This is needed only for protection faults but the arch code
5070 * is not yet telling us if this is a protection fault or not.
5071 * This still avoids useless tlb flushes for .text page faults
5074 if (vmf->flags & FAULT_FLAG_WRITE)
5075 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5079 pte_unmap_unlock(vmf->pte, vmf->ptl);
5084 * On entry, we hold either the VMA lock or the mmap_lock
5085 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5086 * the result, the mmap_lock is not held on exit. See filemap_fault()
5087 * and __folio_lock_or_retry().
5089 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5090 unsigned long address, unsigned int flags)
5092 struct vm_fault vmf = {
5094 .address = address & PAGE_MASK,
5095 .real_address = address,
5097 .pgoff = linear_page_index(vma, address),
5098 .gfp_mask = __get_fault_gfp_mask(vma),
5100 struct mm_struct *mm = vma->vm_mm;
5101 unsigned long vm_flags = vma->vm_flags;
5106 pgd = pgd_offset(mm, address);
5107 p4d = p4d_alloc(mm, pgd, address);
5109 return VM_FAULT_OOM;
5111 vmf.pud = pud_alloc(mm, p4d, address);
5113 return VM_FAULT_OOM;
5115 if (pud_none(*vmf.pud) &&
5116 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5117 ret = create_huge_pud(&vmf);
5118 if (!(ret & VM_FAULT_FALLBACK))
5121 pud_t orig_pud = *vmf.pud;
5124 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5127 * TODO once we support anonymous PUDs: NUMA case and
5128 * FAULT_FLAG_UNSHARE handling.
5130 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5131 ret = wp_huge_pud(&vmf, orig_pud);
5132 if (!(ret & VM_FAULT_FALLBACK))
5135 huge_pud_set_accessed(&vmf, orig_pud);
5141 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5143 return VM_FAULT_OOM;
5145 /* Huge pud page fault raced with pmd_alloc? */
5146 if (pud_trans_unstable(vmf.pud))
5149 if (pmd_none(*vmf.pmd) &&
5150 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5151 ret = create_huge_pmd(&vmf);
5152 if (!(ret & VM_FAULT_FALLBACK))
5155 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5157 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5158 VM_BUG_ON(thp_migration_supported() &&
5159 !is_pmd_migration_entry(vmf.orig_pmd));
5160 if (is_pmd_migration_entry(vmf.orig_pmd))
5161 pmd_migration_entry_wait(mm, vmf.pmd);
5164 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5165 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5166 return do_huge_pmd_numa_page(&vmf);
5168 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5169 !pmd_write(vmf.orig_pmd)) {
5170 ret = wp_huge_pmd(&vmf);
5171 if (!(ret & VM_FAULT_FALLBACK))
5174 huge_pmd_set_accessed(&vmf);
5180 return handle_pte_fault(&vmf);
5184 * mm_account_fault - Do page fault accounting
5185 * @mm: mm from which memcg should be extracted. It can be NULL.
5186 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5187 * of perf event counters, but we'll still do the per-task accounting to
5188 * the task who triggered this page fault.
5189 * @address: the faulted address.
5190 * @flags: the fault flags.
5191 * @ret: the fault retcode.
5193 * This will take care of most of the page fault accounting. Meanwhile, it
5194 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5195 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5196 * still be in per-arch page fault handlers at the entry of page fault.
5198 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5199 unsigned long address, unsigned int flags,
5204 /* Incomplete faults will be accounted upon completion. */
5205 if (ret & VM_FAULT_RETRY)
5209 * To preserve the behavior of older kernels, PGFAULT counters record
5210 * both successful and failed faults, as opposed to perf counters,
5211 * which ignore failed cases.
5213 count_vm_event(PGFAULT);
5214 count_memcg_event_mm(mm, PGFAULT);
5217 * Do not account for unsuccessful faults (e.g. when the address wasn't
5218 * valid). That includes arch_vma_access_permitted() failing before
5219 * reaching here. So this is not a "this many hardware page faults"
5220 * counter. We should use the hw profiling for that.
5222 if (ret & VM_FAULT_ERROR)
5226 * We define the fault as a major fault when the final successful fault
5227 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5228 * handle it immediately previously).
5230 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5238 * If the fault is done for GUP, regs will be NULL. We only do the
5239 * accounting for the per thread fault counters who triggered the
5240 * fault, and we skip the perf event updates.
5246 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5248 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5251 #ifdef CONFIG_LRU_GEN
5252 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5254 /* the LRU algorithm only applies to accesses with recency */
5255 current->in_lru_fault = vma_has_recency(vma);
5258 static void lru_gen_exit_fault(void)
5260 current->in_lru_fault = false;
5263 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5267 static void lru_gen_exit_fault(void)
5270 #endif /* CONFIG_LRU_GEN */
5272 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5273 unsigned int *flags)
5275 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5276 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5277 return VM_FAULT_SIGSEGV;
5279 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5280 * just treat it like an ordinary read-fault otherwise.
5282 if (!is_cow_mapping(vma->vm_flags))
5283 *flags &= ~FAULT_FLAG_UNSHARE;
5284 } else if (*flags & FAULT_FLAG_WRITE) {
5285 /* Write faults on read-only mappings are impossible ... */
5286 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5287 return VM_FAULT_SIGSEGV;
5288 /* ... and FOLL_FORCE only applies to COW mappings. */
5289 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5290 !is_cow_mapping(vma->vm_flags)))
5291 return VM_FAULT_SIGSEGV;
5293 #ifdef CONFIG_PER_VMA_LOCK
5295 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5296 * the assumption that lock is dropped on VM_FAULT_RETRY.
5298 if (WARN_ON_ONCE((*flags &
5299 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5300 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5301 return VM_FAULT_SIGSEGV;
5308 * By the time we get here, we already hold the mm semaphore
5310 * The mmap_lock may have been released depending on flags and our
5311 * return value. See filemap_fault() and __folio_lock_or_retry().
5313 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5314 unsigned int flags, struct pt_regs *regs)
5316 /* If the fault handler drops the mmap_lock, vma may be freed */
5317 struct mm_struct *mm = vma->vm_mm;
5320 __set_current_state(TASK_RUNNING);
5322 ret = sanitize_fault_flags(vma, &flags);
5326 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5327 flags & FAULT_FLAG_INSTRUCTION,
5328 flags & FAULT_FLAG_REMOTE)) {
5329 ret = VM_FAULT_SIGSEGV;
5334 * Enable the memcg OOM handling for faults triggered in user
5335 * space. Kernel faults are handled more gracefully.
5337 if (flags & FAULT_FLAG_USER)
5338 mem_cgroup_enter_user_fault();
5340 lru_gen_enter_fault(vma);
5342 if (unlikely(is_vm_hugetlb_page(vma)))
5343 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5345 ret = __handle_mm_fault(vma, address, flags);
5347 lru_gen_exit_fault();
5349 if (flags & FAULT_FLAG_USER) {
5350 mem_cgroup_exit_user_fault();
5352 * The task may have entered a memcg OOM situation but
5353 * if the allocation error was handled gracefully (no
5354 * VM_FAULT_OOM), there is no need to kill anything.
5355 * Just clean up the OOM state peacefully.
5357 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5358 mem_cgroup_oom_synchronize(false);
5361 mm_account_fault(mm, regs, address, flags, ret);
5365 EXPORT_SYMBOL_GPL(handle_mm_fault);
5367 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5368 #include <linux/extable.h>
5370 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5372 if (likely(mmap_read_trylock(mm)))
5375 if (regs && !user_mode(regs)) {
5376 unsigned long ip = instruction_pointer(regs);
5377 if (!search_exception_tables(ip))
5381 return !mmap_read_lock_killable(mm);
5384 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5387 * We don't have this operation yet.
5389 * It should be easy enough to do: it's basically a
5390 * atomic_long_try_cmpxchg_acquire()
5391 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5392 * it also needs the proper lockdep magic etc.
5397 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5399 mmap_read_unlock(mm);
5400 if (regs && !user_mode(regs)) {
5401 unsigned long ip = instruction_pointer(regs);
5402 if (!search_exception_tables(ip))
5405 return !mmap_write_lock_killable(mm);
5409 * Helper for page fault handling.
5411 * This is kind of equivalend to "mmap_read_lock()" followed
5412 * by "find_extend_vma()", except it's a lot more careful about
5413 * the locking (and will drop the lock on failure).
5415 * For example, if we have a kernel bug that causes a page
5416 * fault, we don't want to just use mmap_read_lock() to get
5417 * the mm lock, because that would deadlock if the bug were
5418 * to happen while we're holding the mm lock for writing.
5420 * So this checks the exception tables on kernel faults in
5421 * order to only do this all for instructions that are actually
5422 * expected to fault.
5424 * We can also actually take the mm lock for writing if we
5425 * need to extend the vma, which helps the VM layer a lot.
5427 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5428 unsigned long addr, struct pt_regs *regs)
5430 struct vm_area_struct *vma;
5432 if (!get_mmap_lock_carefully(mm, regs))
5435 vma = find_vma(mm, addr);
5436 if (likely(vma && (vma->vm_start <= addr)))
5440 * Well, dang. We might still be successful, but only
5441 * if we can extend a vma to do so.
5443 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5444 mmap_read_unlock(mm);
5449 * We can try to upgrade the mmap lock atomically,
5450 * in which case we can continue to use the vma
5451 * we already looked up.
5453 * Otherwise we'll have to drop the mmap lock and
5454 * re-take it, and also look up the vma again,
5457 if (!mmap_upgrade_trylock(mm)) {
5458 if (!upgrade_mmap_lock_carefully(mm, regs))
5461 vma = find_vma(mm, addr);
5464 if (vma->vm_start <= addr)
5466 if (!(vma->vm_flags & VM_GROWSDOWN))
5470 if (expand_stack_locked(vma, addr))
5474 mmap_write_downgrade(mm);
5478 mmap_write_unlock(mm);
5483 #ifdef CONFIG_PER_VMA_LOCK
5485 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5486 * stable and not isolated. If the VMA is not found or is being modified the
5487 * function returns NULL.
5489 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5490 unsigned long address)
5492 MA_STATE(mas, &mm->mm_mt, address, address);
5493 struct vm_area_struct *vma;
5497 vma = mas_walk(&mas);
5501 if (!vma_start_read(vma))
5505 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5506 * This check must happen after vma_start_read(); otherwise, a
5507 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5508 * from its anon_vma.
5510 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5511 goto inval_end_read;
5513 /* Check since vm_start/vm_end might change before we lock the VMA */
5514 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5515 goto inval_end_read;
5517 /* Check if the VMA got isolated after we found it */
5518 if (vma->detached) {
5520 count_vm_vma_lock_event(VMA_LOCK_MISS);
5521 /* The area was replaced with another one */
5532 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5535 #endif /* CONFIG_PER_VMA_LOCK */
5537 #ifndef __PAGETABLE_P4D_FOLDED
5539 * Allocate p4d page table.
5540 * We've already handled the fast-path in-line.
5542 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5544 p4d_t *new = p4d_alloc_one(mm, address);
5548 spin_lock(&mm->page_table_lock);
5549 if (pgd_present(*pgd)) { /* Another has populated it */
5552 smp_wmb(); /* See comment in pmd_install() */
5553 pgd_populate(mm, pgd, new);
5555 spin_unlock(&mm->page_table_lock);
5558 #endif /* __PAGETABLE_P4D_FOLDED */
5560 #ifndef __PAGETABLE_PUD_FOLDED
5562 * Allocate page upper directory.
5563 * We've already handled the fast-path in-line.
5565 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5567 pud_t *new = pud_alloc_one(mm, address);
5571 spin_lock(&mm->page_table_lock);
5572 if (!p4d_present(*p4d)) {
5574 smp_wmb(); /* See comment in pmd_install() */
5575 p4d_populate(mm, p4d, new);
5576 } else /* Another has populated it */
5578 spin_unlock(&mm->page_table_lock);
5581 #endif /* __PAGETABLE_PUD_FOLDED */
5583 #ifndef __PAGETABLE_PMD_FOLDED
5585 * Allocate page middle directory.
5586 * We've already handled the fast-path in-line.
5588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5591 pmd_t *new = pmd_alloc_one(mm, address);
5595 ptl = pud_lock(mm, pud);
5596 if (!pud_present(*pud)) {
5598 smp_wmb(); /* See comment in pmd_install() */
5599 pud_populate(mm, pud, new);
5600 } else { /* Another has populated it */
5606 #endif /* __PAGETABLE_PMD_FOLDED */
5609 * follow_pte - look up PTE at a user virtual address
5610 * @mm: the mm_struct of the target address space
5611 * @address: user virtual address
5612 * @ptepp: location to store found PTE
5613 * @ptlp: location to store the lock for the PTE
5615 * On a successful return, the pointer to the PTE is stored in @ptepp;
5616 * the corresponding lock is taken and its location is stored in @ptlp.
5617 * The contents of the PTE are only stable until @ptlp is released;
5618 * any further use, if any, must be protected against invalidation
5619 * with MMU notifiers.
5621 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5622 * should be taken for read.
5624 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5625 * it is not a good general-purpose API.
5627 * Return: zero on success, -ve otherwise.
5629 int follow_pte(struct mm_struct *mm, unsigned long address,
5630 pte_t **ptepp, spinlock_t **ptlp)
5638 pgd = pgd_offset(mm, address);
5639 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5642 p4d = p4d_offset(pgd, address);
5643 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5646 pud = pud_offset(p4d, address);
5647 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5650 pmd = pmd_offset(pud, address);
5651 VM_BUG_ON(pmd_trans_huge(*pmd));
5653 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5656 if (!pte_present(ptep_get(ptep)))
5661 pte_unmap_unlock(ptep, *ptlp);
5665 EXPORT_SYMBOL_GPL(follow_pte);
5668 * follow_pfn - look up PFN at a user virtual address
5669 * @vma: memory mapping
5670 * @address: user virtual address
5671 * @pfn: location to store found PFN
5673 * Only IO mappings and raw PFN mappings are allowed.
5675 * This function does not allow the caller to read the permissions
5676 * of the PTE. Do not use it.
5678 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5680 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5687 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5690 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5693 *pfn = pte_pfn(ptep_get(ptep));
5694 pte_unmap_unlock(ptep, ptl);
5697 EXPORT_SYMBOL(follow_pfn);
5699 #ifdef CONFIG_HAVE_IOREMAP_PROT
5700 int follow_phys(struct vm_area_struct *vma,
5701 unsigned long address, unsigned int flags,
5702 unsigned long *prot, resource_size_t *phys)
5708 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5711 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5713 pte = ptep_get(ptep);
5715 if ((flags & FOLL_WRITE) && !pte_write(pte))
5718 *prot = pgprot_val(pte_pgprot(pte));
5719 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5723 pte_unmap_unlock(ptep, ptl);
5729 * generic_access_phys - generic implementation for iomem mmap access
5730 * @vma: the vma to access
5731 * @addr: userspace address, not relative offset within @vma
5732 * @buf: buffer to read/write
5733 * @len: length of transfer
5734 * @write: set to FOLL_WRITE when writing, otherwise reading
5736 * This is a generic implementation for &vm_operations_struct.access for an
5737 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5740 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5741 void *buf, int len, int write)
5743 resource_size_t phys_addr;
5744 unsigned long prot = 0;
5745 void __iomem *maddr;
5748 int offset = offset_in_page(addr);
5751 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5755 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5757 pte = ptep_get(ptep);
5758 pte_unmap_unlock(ptep, ptl);
5760 prot = pgprot_val(pte_pgprot(pte));
5761 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5763 if ((write & FOLL_WRITE) && !pte_write(pte))
5766 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5770 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5773 if (!pte_same(pte, ptep_get(ptep))) {
5774 pte_unmap_unlock(ptep, ptl);
5781 memcpy_toio(maddr + offset, buf, len);
5783 memcpy_fromio(buf, maddr + offset, len);
5785 pte_unmap_unlock(ptep, ptl);
5791 EXPORT_SYMBOL_GPL(generic_access_phys);
5795 * Access another process' address space as given in mm.
5797 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5798 void *buf, int len, unsigned int gup_flags)
5800 void *old_buf = buf;
5801 int write = gup_flags & FOLL_WRITE;
5803 if (mmap_read_lock_killable(mm))
5806 /* Untag the address before looking up the VMA */
5807 addr = untagged_addr_remote(mm, addr);
5809 /* Avoid triggering the temporary warning in __get_user_pages */
5810 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5813 /* ignore errors, just check how much was successfully transferred */
5817 struct vm_area_struct *vma = NULL;
5818 struct page *page = get_user_page_vma_remote(mm, addr,
5822 /* We might need to expand the stack to access it */
5823 vma = vma_lookup(mm, addr);
5825 vma = expand_stack(mm, addr);
5827 /* mmap_lock was dropped on failure */
5829 return buf - old_buf;
5831 /* Try again if stack expansion worked */
5836 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5837 * we can access using slightly different code.
5840 #ifdef CONFIG_HAVE_IOREMAP_PROT
5841 if (vma->vm_ops && vma->vm_ops->access)
5842 bytes = vma->vm_ops->access(vma, addr, buf,
5849 offset = addr & (PAGE_SIZE-1);
5850 if (bytes > PAGE_SIZE-offset)
5851 bytes = PAGE_SIZE-offset;
5855 copy_to_user_page(vma, page, addr,
5856 maddr + offset, buf, bytes);
5857 set_page_dirty_lock(page);
5859 copy_from_user_page(vma, page, addr,
5860 buf, maddr + offset, bytes);
5869 mmap_read_unlock(mm);
5871 return buf - old_buf;
5875 * access_remote_vm - access another process' address space
5876 * @mm: the mm_struct of the target address space
5877 * @addr: start address to access
5878 * @buf: source or destination buffer
5879 * @len: number of bytes to transfer
5880 * @gup_flags: flags modifying lookup behaviour
5882 * The caller must hold a reference on @mm.
5884 * Return: number of bytes copied from source to destination.
5886 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5887 void *buf, int len, unsigned int gup_flags)
5889 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5893 * Access another process' address space.
5894 * Source/target buffer must be kernel space,
5895 * Do not walk the page table directly, use get_user_pages
5897 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5898 void *buf, int len, unsigned int gup_flags)
5900 struct mm_struct *mm;
5903 mm = get_task_mm(tsk);
5907 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5913 EXPORT_SYMBOL_GPL(access_process_vm);
5916 * Print the name of a VMA.
5918 void print_vma_addr(char *prefix, unsigned long ip)
5920 struct mm_struct *mm = current->mm;
5921 struct vm_area_struct *vma;
5924 * we might be running from an atomic context so we cannot sleep
5926 if (!mmap_read_trylock(mm))
5929 vma = find_vma(mm, ip);
5930 if (vma && vma->vm_file) {
5931 struct file *f = vma->vm_file;
5932 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5936 p = file_path(f, buf, PAGE_SIZE);
5939 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5941 vma->vm_end - vma->vm_start);
5942 free_page((unsigned long)buf);
5945 mmap_read_unlock(mm);
5948 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5949 void __might_fault(const char *file, int line)
5951 if (pagefault_disabled())
5953 __might_sleep(file, line);
5954 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5956 might_lock_read(¤t->mm->mmap_lock);
5959 EXPORT_SYMBOL(__might_fault);
5962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5964 * Process all subpages of the specified huge page with the specified
5965 * operation. The target subpage will be processed last to keep its
5968 static inline int process_huge_page(
5969 unsigned long addr_hint, unsigned int pages_per_huge_page,
5970 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5973 int i, n, base, l, ret;
5974 unsigned long addr = addr_hint &
5975 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5977 /* Process target subpage last to keep its cache lines hot */
5979 n = (addr_hint - addr) / PAGE_SIZE;
5980 if (2 * n <= pages_per_huge_page) {
5981 /* If target subpage in first half of huge page */
5984 /* Process subpages at the end of huge page */
5985 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5987 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5992 /* If target subpage in second half of huge page */
5993 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5994 l = pages_per_huge_page - n;
5995 /* Process subpages at the begin of huge page */
5996 for (i = 0; i < base; i++) {
5998 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6004 * Process remaining subpages in left-right-left-right pattern
6005 * towards the target subpage
6007 for (i = 0; i < l; i++) {
6008 int left_idx = base + i;
6009 int right_idx = base + 2 * l - 1 - i;
6012 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6016 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6023 static void clear_gigantic_page(struct page *page,
6025 unsigned int pages_per_huge_page)
6031 for (i = 0; i < pages_per_huge_page; i++) {
6032 p = nth_page(page, i);
6034 clear_user_highpage(p, addr + i * PAGE_SIZE);
6038 static int clear_subpage(unsigned long addr, int idx, void *arg)
6040 struct page *page = arg;
6042 clear_user_highpage(page + idx, addr);
6046 void clear_huge_page(struct page *page,
6047 unsigned long addr_hint, unsigned int pages_per_huge_page)
6049 unsigned long addr = addr_hint &
6050 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6052 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6053 clear_gigantic_page(page, addr, pages_per_huge_page);
6057 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6060 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6062 struct vm_area_struct *vma,
6063 unsigned int pages_per_huge_page)
6066 struct page *dst_page;
6067 struct page *src_page;
6069 for (i = 0; i < pages_per_huge_page; i++) {
6070 dst_page = folio_page(dst, i);
6071 src_page = folio_page(src, i);
6074 if (copy_mc_user_highpage(dst_page, src_page,
6075 addr + i*PAGE_SIZE, vma)) {
6076 memory_failure_queue(page_to_pfn(src_page), 0);
6083 struct copy_subpage_arg {
6086 struct vm_area_struct *vma;
6089 static int copy_subpage(unsigned long addr, int idx, void *arg)
6091 struct copy_subpage_arg *copy_arg = arg;
6093 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6094 addr, copy_arg->vma)) {
6095 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6101 int copy_user_large_folio(struct folio *dst, struct folio *src,
6102 unsigned long addr_hint, struct vm_area_struct *vma)
6104 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6105 unsigned long addr = addr_hint &
6106 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6107 struct copy_subpage_arg arg = {
6113 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6114 return copy_user_gigantic_page(dst, src, addr, vma,
6115 pages_per_huge_page);
6117 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6120 long copy_folio_from_user(struct folio *dst_folio,
6121 const void __user *usr_src,
6122 bool allow_pagefault)
6125 unsigned long i, rc = 0;
6126 unsigned int nr_pages = folio_nr_pages(dst_folio);
6127 unsigned long ret_val = nr_pages * PAGE_SIZE;
6128 struct page *subpage;
6130 for (i = 0; i < nr_pages; i++) {
6131 subpage = folio_page(dst_folio, i);
6132 kaddr = kmap_local_page(subpage);
6133 if (!allow_pagefault)
6134 pagefault_disable();
6135 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6136 if (!allow_pagefault)
6138 kunmap_local(kaddr);
6140 ret_val -= (PAGE_SIZE - rc);
6144 flush_dcache_page(subpage);
6150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6152 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6154 static struct kmem_cache *page_ptl_cachep;
6156 void __init ptlock_cache_init(void)
6158 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6162 bool ptlock_alloc(struct ptdesc *ptdesc)
6166 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6173 void ptlock_free(struct ptdesc *ptdesc)
6175 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);