]> Git Repo - linux.git/blob - fs/xfs/xfs_log.c
net: bridge: Notify about bridge VLANs
[linux.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_log.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
37 #include "xfs_sb.h"
38
39 kmem_zone_t     *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44         struct xlog             *log,
45         struct xlog_ticket      *ticket,
46         struct xlog_in_core     **iclog,
47         xfs_lsn_t               *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51         struct xfs_mount        *mp,
52         struct xfs_buftarg      *log_target,
53         xfs_daddr_t             blk_offset,
54         int                     num_bblks);
55 STATIC int
56 xlog_space_left(
57         struct xlog             *log,
58         atomic64_t              *head);
59 STATIC int
60 xlog_sync(
61         struct xlog             *log,
62         struct xlog_in_core     *iclog);
63 STATIC void
64 xlog_dealloc_log(
65         struct xlog             *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71         struct xlog             *log,
72         int                     aborted,
73         struct xlog_in_core     *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76         struct xlog             *log,
77         int                     len,
78         struct xlog_in_core     **iclog,
79         struct xlog_ticket      *ticket,
80         int                     *continued_write,
81         int                     *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84         struct xlog             *log,
85         struct xlog_in_core     *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88         struct xlog             *log,
89         struct xlog_in_core     *iclog,
90         int                     eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93         struct xlog             *log,
94         struct xlog_in_core     *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98         struct xlog             *log,
99         int                     need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102         struct xlog             *log,
103         struct xlog_ticket      *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106         struct xlog             *log,
107         struct xlog_ticket      *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112         struct xlog             *log,
113         void                    *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116         struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119         struct xlog             *log,
120         struct xlog_in_core     *iclog,
121         int                     count,
122         bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125         struct xlog             *log,
126         struct xlog_in_core     *iclog,
127         xfs_lsn_t               tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137         struct xlog             *log);
138
139 static void
140 xlog_grant_sub_space(
141         struct xlog             *log,
142         atomic64_t              *head,
143         int                     bytes)
144 {
145         int64_t head_val = atomic64_read(head);
146         int64_t new, old;
147
148         do {
149                 int     cycle, space;
150
151                 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153                 space -= bytes;
154                 if (space < 0) {
155                         space += log->l_logsize;
156                         cycle--;
157                 }
158
159                 old = head_val;
160                 new = xlog_assign_grant_head_val(cycle, space);
161                 head_val = atomic64_cmpxchg(head, old, new);
162         } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167         struct xlog             *log,
168         atomic64_t              *head,
169         int                     bytes)
170 {
171         int64_t head_val = atomic64_read(head);
172         int64_t new, old;
173
174         do {
175                 int             tmp;
176                 int             cycle, space;
177
178                 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180                 tmp = log->l_logsize - space;
181                 if (tmp > bytes)
182                         space += bytes;
183                 else {
184                         space = bytes - tmp;
185                         cycle++;
186                 }
187
188                 old = head_val;
189                 new = xlog_assign_grant_head_val(cycle, space);
190                 head_val = atomic64_cmpxchg(head, old, new);
191         } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196         struct xlog_grant_head  *head)
197 {
198         xlog_assign_grant_head(&head->grant, 1, 0);
199         INIT_LIST_HEAD(&head->waiters);
200         spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205         struct xlog_grant_head  *head)
206 {
207         struct xlog_ticket      *tic;
208
209         spin_lock(&head->lock);
210         list_for_each_entry(tic, &head->waiters, t_queue)
211                 wake_up_process(tic->t_task);
212         spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217         struct xlog             *log,
218         struct xlog_grant_head  *head,
219         struct xlog_ticket      *tic)
220 {
221         if (head == &log->l_write_head) {
222                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223                 return tic->t_unit_res;
224         } else {
225                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226                         return tic->t_unit_res * tic->t_cnt;
227                 else
228                         return tic->t_unit_res;
229         }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234         struct xlog             *log,
235         struct xlog_grant_head  *head,
236         int                     *free_bytes)
237 {
238         struct xlog_ticket      *tic;
239         int                     need_bytes;
240
241         list_for_each_entry(tic, &head->waiters, t_queue) {
242                 need_bytes = xlog_ticket_reservation(log, head, tic);
243                 if (*free_bytes < need_bytes)
244                         return false;
245
246                 *free_bytes -= need_bytes;
247                 trace_xfs_log_grant_wake_up(log, tic);
248                 wake_up_process(tic->t_task);
249         }
250
251         return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256         struct xlog             *log,
257         struct xlog_grant_head  *head,
258         struct xlog_ticket      *tic,
259         int                     need_bytes) __releases(&head->lock)
260                                             __acquires(&head->lock)
261 {
262         list_add_tail(&tic->t_queue, &head->waiters);
263
264         do {
265                 if (XLOG_FORCED_SHUTDOWN(log))
266                         goto shutdown;
267                 xlog_grant_push_ail(log, need_bytes);
268
269                 __set_current_state(TASK_UNINTERRUPTIBLE);
270                 spin_unlock(&head->lock);
271
272                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
273
274                 trace_xfs_log_grant_sleep(log, tic);
275                 schedule();
276                 trace_xfs_log_grant_wake(log, tic);
277
278                 spin_lock(&head->lock);
279                 if (XLOG_FORCED_SHUTDOWN(log))
280                         goto shutdown;
281         } while (xlog_space_left(log, &head->grant) < need_bytes);
282
283         list_del_init(&tic->t_queue);
284         return 0;
285 shutdown:
286         list_del_init(&tic->t_queue);
287         return -EIO;
288 }
289
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309         struct xlog             *log,
310         struct xlog_grant_head  *head,
311         struct xlog_ticket      *tic,
312         int                     *need_bytes)
313 {
314         int                     free_bytes;
315         int                     error = 0;
316
317         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319         /*
320          * If there are other waiters on the queue then give them a chance at
321          * logspace before us.  Wake up the first waiters, if we do not wake
322          * up all the waiters then go to sleep waiting for more free space,
323          * otherwise try to get some space for this transaction.
324          */
325         *need_bytes = xlog_ticket_reservation(log, head, tic);
326         free_bytes = xlog_space_left(log, &head->grant);
327         if (!list_empty_careful(&head->waiters)) {
328                 spin_lock(&head->lock);
329                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330                     free_bytes < *need_bytes) {
331                         error = xlog_grant_head_wait(log, head, tic,
332                                                      *need_bytes);
333                 }
334                 spin_unlock(&head->lock);
335         } else if (free_bytes < *need_bytes) {
336                 spin_lock(&head->lock);
337                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338                 spin_unlock(&head->lock);
339         }
340
341         return error;
342 }
343
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347         tic->t_res_num = 0;
348         tic->t_res_arr_sum = 0;
349         tic->t_res_num_ophdrs = 0;
350 }
351
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356                 /* add to overflow and start again */
357                 tic->t_res_o_flow += tic->t_res_arr_sum;
358                 tic->t_res_num = 0;
359                 tic->t_res_arr_sum = 0;
360         }
361
362         tic->t_res_arr[tic->t_res_num].r_len = len;
363         tic->t_res_arr[tic->t_res_num].r_type = type;
364         tic->t_res_arr_sum += len;
365         tic->t_res_num++;
366 }
367
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373         struct xfs_mount        *mp,
374         struct xlog_ticket      *tic)
375 {
376         struct xlog             *log = mp->m_log;
377         int                     need_bytes;
378         int                     error = 0;
379
380         if (XLOG_FORCED_SHUTDOWN(log))
381                 return -EIO;
382
383         XFS_STATS_INC(mp, xs_try_logspace);
384
385         /*
386          * This is a new transaction on the ticket, so we need to change the
387          * transaction ID so that the next transaction has a different TID in
388          * the log. Just add one to the existing tid so that we can see chains
389          * of rolling transactions in the log easily.
390          */
391         tic->t_tid++;
392
393         xlog_grant_push_ail(log, tic->t_unit_res);
394
395         tic->t_curr_res = tic->t_unit_res;
396         xlog_tic_reset_res(tic);
397
398         if (tic->t_cnt > 0)
399                 return 0;
400
401         trace_xfs_log_regrant(log, tic);
402
403         error = xlog_grant_head_check(log, &log->l_write_head, tic,
404                                       &need_bytes);
405         if (error)
406                 goto out_error;
407
408         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409         trace_xfs_log_regrant_exit(log, tic);
410         xlog_verify_grant_tail(log);
411         return 0;
412
413 out_error:
414         /*
415          * If we are failing, make sure the ticket doesn't have any current
416          * reservations.  We don't want to add this back when the ticket/
417          * transaction gets cancelled.
418          */
419         tic->t_curr_res = 0;
420         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421         return error;
422 }
423
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434         struct xfs_mount        *mp,
435         int                     unit_bytes,
436         int                     cnt,
437         struct xlog_ticket      **ticp,
438         uint8_t                 client,
439         bool                    permanent)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return -EIO;
450
451         XFS_STATS_INC(mp, xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return -ENOMEM;
458
459         *ticp = tic;
460
461         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462                                             : tic->t_unit_res);
463
464         trace_xfs_log_reserve(log, tic);
465
466         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467                                       &need_bytes);
468         if (error)
469                 goto out_error;
470
471         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473         trace_xfs_log_reserve_exit(log, tic);
474         xlog_verify_grant_tail(log);
475         return 0;
476
477 out_error:
478         /*
479          * If we are failing, make sure the ticket doesn't have any current
480          * reservations.  We don't want to add this back when the ticket/
481          * transaction gets cancelled.
482          */
483         tic->t_curr_res = 0;
484         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485         return error;
486 }
487
488
489 /*
490  * NOTES:
491  *
492  *      1. currblock field gets updated at startup and after in-core logs
493  *              marked as with WANT_SYNC.
494  */
495
496 /*
497  * This routine is called when a user of a log manager ticket is done with
498  * the reservation.  If the ticket was ever used, then a commit record for
499  * the associated transaction is written out as a log operation header with
500  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
501  * a given ticket.  If the ticket was one with a permanent reservation, then
502  * a few operations are done differently.  Permanent reservation tickets by
503  * default don't release the reservation.  They just commit the current
504  * transaction with the belief that the reservation is still needed.  A flag
505  * must be passed in before permanent reservations are actually released.
506  * When these type of tickets are not released, they need to be set into
507  * the inited state again.  By doing this, a start record will be written
508  * out when the next write occurs.
509  */
510 xfs_lsn_t
511 xfs_log_done(
512         struct xfs_mount        *mp,
513         struct xlog_ticket      *ticket,
514         struct xlog_in_core     **iclog,
515         bool                    regrant)
516 {
517         struct xlog             *log = mp->m_log;
518         xfs_lsn_t               lsn = 0;
519
520         if (XLOG_FORCED_SHUTDOWN(log) ||
521             /*
522              * If nothing was ever written, don't write out commit record.
523              * If we get an error, just continue and give back the log ticket.
524              */
525             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527                 lsn = (xfs_lsn_t) -1;
528                 regrant = false;
529         }
530
531
532         if (!regrant) {
533                 trace_xfs_log_done_nonperm(log, ticket);
534
535                 /*
536                  * Release ticket if not permanent reservation or a specific
537                  * request has been made to release a permanent reservation.
538                  */
539                 xlog_ungrant_log_space(log, ticket);
540         } else {
541                 trace_xfs_log_done_perm(log, ticket);
542
543                 xlog_regrant_reserve_log_space(log, ticket);
544                 /* If this ticket was a permanent reservation and we aren't
545                  * trying to release it, reset the inited flags; so next time
546                  * we write, a start record will be written out.
547                  */
548                 ticket->t_flags |= XLOG_TIC_INITED;
549         }
550
551         xfs_log_ticket_put(ticket);
552         return lsn;
553 }
554
555 /*
556  * Attaches a new iclog I/O completion callback routine during
557  * transaction commit.  If the log is in error state, a non-zero
558  * return code is handed back and the caller is responsible for
559  * executing the callback at an appropriate time.
560  */
561 int
562 xfs_log_notify(
563         struct xlog_in_core     *iclog,
564         xfs_log_callback_t      *cb)
565 {
566         int     abortflg;
567
568         spin_lock(&iclog->ic_callback_lock);
569         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570         if (!abortflg) {
571                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573                 cb->cb_next = NULL;
574                 *(iclog->ic_callback_tail) = cb;
575                 iclog->ic_callback_tail = &(cb->cb_next);
576         }
577         spin_unlock(&iclog->ic_callback_lock);
578         return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583         struct xfs_mount        *mp,
584         struct xlog_in_core     *iclog)
585 {
586         if (xlog_state_release_iclog(mp->m_log, iclog)) {
587                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588                 return -EIO;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Mount a log filesystem
596  *
597  * mp           - ubiquitous xfs mount point structure
598  * log_target   - buftarg of on-disk log device
599  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks  - Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606         xfs_mount_t     *mp,
607         xfs_buftarg_t   *log_target,
608         xfs_daddr_t     blk_offset,
609         int             num_bblks)
610 {
611         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
612         int             error = 0;
613         int             min_logfsbs;
614
615         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
616                 xfs_notice(mp, "Mounting V%d Filesystem",
617                            XFS_SB_VERSION_NUM(&mp->m_sb));
618         } else {
619                 xfs_notice(mp,
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621                            XFS_SB_VERSION_NUM(&mp->m_sb));
622                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
623         }
624
625         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626         if (IS_ERR(mp->m_log)) {
627                 error = PTR_ERR(mp->m_log);
628                 goto out;
629         }
630
631         /*
632          * Validate the given log space and drop a critical message via syslog
633          * if the log size is too small that would lead to some unexpected
634          * situations in transaction log space reservation stage.
635          *
636          * Note: we can't just reject the mount if the validation fails.  This
637          * would mean that people would have to downgrade their kernel just to
638          * remedy the situation as there is no way to grow the log (short of
639          * black magic surgery with xfs_db).
640          *
641          * We can, however, reject mounts for CRC format filesystems, as the
642          * mkfs binary being used to make the filesystem should never create a
643          * filesystem with a log that is too small.
644          */
645         min_logfsbs = xfs_log_calc_minimum_size(mp);
646
647         if (mp->m_sb.sb_logblocks < min_logfsbs) {
648                 xfs_warn(mp,
649                 "Log size %d blocks too small, minimum size is %d blocks",
650                          mp->m_sb.sb_logblocks, min_logfsbs);
651                 error = -EINVAL;
652         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
653                 xfs_warn(mp,
654                 "Log size %d blocks too large, maximum size is %lld blocks",
655                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
656                 error = -EINVAL;
657         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
658                 xfs_warn(mp,
659                 "log size %lld bytes too large, maximum size is %lld bytes",
660                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
661                          XFS_MAX_LOG_BYTES);
662                 error = -EINVAL;
663         } else if (mp->m_sb.sb_logsunit > 1 &&
664                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
665                 xfs_warn(mp,
666                 "log stripe unit %u bytes must be a multiple of block size",
667                          mp->m_sb.sb_logsunit);
668                 error = -EINVAL;
669                 fatal = true;
670         }
671         if (error) {
672                 /*
673                  * Log check errors are always fatal on v5; or whenever bad
674                  * metadata leads to a crash.
675                  */
676                 if (fatal) {
677                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
678                         ASSERT(0);
679                         goto out_free_log;
680                 }
681                 xfs_crit(mp, "Log size out of supported range.");
682                 xfs_crit(mp,
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
684         }
685
686         /*
687          * Initialize the AIL now we have a log.
688          */
689         error = xfs_trans_ail_init(mp);
690         if (error) {
691                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
692                 goto out_free_log;
693         }
694         mp->m_log->l_ailp = mp->m_ail;
695
696         /*
697          * skip log recovery on a norecovery mount.  pretend it all
698          * just worked.
699          */
700         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
701                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
702
703                 if (readonly)
704                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
705
706                 error = xlog_recover(mp->m_log);
707
708                 if (readonly)
709                         mp->m_flags |= XFS_MOUNT_RDONLY;
710                 if (error) {
711                         xfs_warn(mp, "log mount/recovery failed: error %d",
712                                 error);
713                         xlog_recover_cancel(mp->m_log);
714                         goto out_destroy_ail;
715                 }
716         }
717
718         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
719                                "log");
720         if (error)
721                 goto out_destroy_ail;
722
723         /* Normal transactions can now occur */
724         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
725
726         /*
727          * Now the log has been fully initialised and we know were our
728          * space grant counters are, we can initialise the permanent ticket
729          * needed for delayed logging to work.
730          */
731         xlog_cil_init_post_recovery(mp->m_log);
732
733         return 0;
734
735 out_destroy_ail:
736         xfs_trans_ail_destroy(mp);
737 out_free_log:
738         xlog_dealloc_log(mp->m_log);
739 out:
740         return error;
741 }
742
743 /*
744  * Finish the recovery of the file system.  This is separate from the
745  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
747  * here.
748  *
749  * If we finish recovery successfully, start the background log work. If we are
750  * not doing recovery, then we have a RO filesystem and we don't need to start
751  * it.
752  */
753 int
754 xfs_log_mount_finish(
755         struct xfs_mount        *mp)
756 {
757         int     error = 0;
758         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
759         bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
760
761         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
762                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
763                 return 0;
764         } else if (readonly) {
765                 /* Allow unlinked processing to proceed */
766                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
767         }
768
769         /*
770          * During the second phase of log recovery, we need iget and
771          * iput to behave like they do for an active filesystem.
772          * xfs_fs_drop_inode needs to be able to prevent the deletion
773          * of inodes before we're done replaying log items on those
774          * inodes.  Turn it off immediately after recovery finishes
775          * so that we don't leak the quota inodes if subsequent mount
776          * activities fail.
777          *
778          * We let all inodes involved in redo item processing end up on
779          * the LRU instead of being evicted immediately so that if we do
780          * something to an unlinked inode, the irele won't cause
781          * premature truncation and freeing of the inode, which results
782          * in log recovery failure.  We have to evict the unreferenced
783          * lru inodes after clearing SB_ACTIVE because we don't
784          * otherwise clean up the lru if there's a subsequent failure in
785          * xfs_mountfs, which leads to us leaking the inodes if nothing
786          * else (e.g. quotacheck) references the inodes before the
787          * mount failure occurs.
788          */
789         mp->m_super->s_flags |= SB_ACTIVE;
790         error = xlog_recover_finish(mp->m_log);
791         if (!error)
792                 xfs_log_work_queue(mp);
793         mp->m_super->s_flags &= ~SB_ACTIVE;
794         evict_inodes(mp->m_super);
795
796         /*
797          * Drain the buffer LRU after log recovery. This is required for v4
798          * filesystems to avoid leaving around buffers with NULL verifier ops,
799          * but we do it unconditionally to make sure we're always in a clean
800          * cache state after mount.
801          *
802          * Don't push in the error case because the AIL may have pending intents
803          * that aren't removed until recovery is cancelled.
804          */
805         if (!error && recovered) {
806                 xfs_log_force(mp, XFS_LOG_SYNC);
807                 xfs_ail_push_all_sync(mp->m_ail);
808         }
809         xfs_wait_buftarg(mp->m_ddev_targp);
810
811         if (readonly)
812                 mp->m_flags |= XFS_MOUNT_RDONLY;
813
814         return error;
815 }
816
817 /*
818  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
819  * the log.
820  */
821 int
822 xfs_log_mount_cancel(
823         struct xfs_mount        *mp)
824 {
825         int                     error;
826
827         error = xlog_recover_cancel(mp->m_log);
828         xfs_log_unmount(mp);
829
830         return error;
831 }
832
833 /*
834  * Final log writes as part of unmount.
835  *
836  * Mark the filesystem clean as unmount happens.  Note that during relocation
837  * this routine needs to be executed as part of source-bag while the
838  * deallocation must not be done until source-end.
839  */
840
841 /*
842  * Unmount record used to have a string "Unmount filesystem--" in the
843  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
844  * We just write the magic number now since that particular field isn't
845  * currently architecture converted and "Unmount" is a bit foo.
846  * As far as I know, there weren't any dependencies on the old behaviour.
847  */
848
849 static int
850 xfs_log_unmount_write(xfs_mount_t *mp)
851 {
852         struct xlog      *log = mp->m_log;
853         xlog_in_core_t   *iclog;
854 #ifdef DEBUG
855         xlog_in_core_t   *first_iclog;
856 #endif
857         xlog_ticket_t   *tic = NULL;
858         xfs_lsn_t        lsn;
859         int              error;
860
861         /*
862          * Don't write out unmount record on norecovery mounts or ro devices.
863          * Or, if we are doing a forced umount (typically because of IO errors).
864          */
865         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
866             xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
867                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
868                 return 0;
869         }
870
871         error = xfs_log_force(mp, XFS_LOG_SYNC);
872         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
873
874 #ifdef DEBUG
875         first_iclog = iclog = log->l_iclog;
876         do {
877                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
878                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
879                         ASSERT(iclog->ic_offset == 0);
880                 }
881                 iclog = iclog->ic_next;
882         } while (iclog != first_iclog);
883 #endif
884         if (! (XLOG_FORCED_SHUTDOWN(log))) {
885                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
886                 if (!error) {
887                         /* the data section must be 32 bit size aligned */
888                         struct {
889                             uint16_t magic;
890                             uint16_t pad1;
891                             uint32_t pad2; /* may as well make it 64 bits */
892                         } magic = {
893                                 .magic = XLOG_UNMOUNT_TYPE,
894                         };
895                         struct xfs_log_iovec reg = {
896                                 .i_addr = &magic,
897                                 .i_len = sizeof(magic),
898                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
899                         };
900                         struct xfs_log_vec vec = {
901                                 .lv_niovecs = 1,
902                                 .lv_iovecp = &reg,
903                         };
904
905                         /* remove inited flag, and account for space used */
906                         tic->t_flags = 0;
907                         tic->t_curr_res -= sizeof(magic);
908                         error = xlog_write(log, &vec, tic, &lsn,
909                                            NULL, XLOG_UNMOUNT_TRANS);
910                         /*
911                          * At this point, we're umounting anyway,
912                          * so there's no point in transitioning log state
913                          * to IOERROR. Just continue...
914                          */
915                 }
916
917                 if (error)
918                         xfs_alert(mp, "%s: unmount record failed", __func__);
919
920
921                 spin_lock(&log->l_icloglock);
922                 iclog = log->l_iclog;
923                 atomic_inc(&iclog->ic_refcnt);
924                 xlog_state_want_sync(log, iclog);
925                 spin_unlock(&log->l_icloglock);
926                 error = xlog_state_release_iclog(log, iclog);
927
928                 spin_lock(&log->l_icloglock);
929                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
930                       iclog->ic_state == XLOG_STATE_DIRTY)) {
931                         if (!XLOG_FORCED_SHUTDOWN(log)) {
932                                 xlog_wait(&iclog->ic_force_wait,
933                                                         &log->l_icloglock);
934                         } else {
935                                 spin_unlock(&log->l_icloglock);
936                         }
937                 } else {
938                         spin_unlock(&log->l_icloglock);
939                 }
940                 if (tic) {
941                         trace_xfs_log_umount_write(log, tic);
942                         xlog_ungrant_log_space(log, tic);
943                         xfs_log_ticket_put(tic);
944                 }
945         } else {
946                 /*
947                  * We're already in forced_shutdown mode, couldn't
948                  * even attempt to write out the unmount transaction.
949                  *
950                  * Go through the motions of sync'ing and releasing
951                  * the iclog, even though no I/O will actually happen,
952                  * we need to wait for other log I/Os that may already
953                  * be in progress.  Do this as a separate section of
954                  * code so we'll know if we ever get stuck here that
955                  * we're in this odd situation of trying to unmount
956                  * a file system that went into forced_shutdown as
957                  * the result of an unmount..
958                  */
959                 spin_lock(&log->l_icloglock);
960                 iclog = log->l_iclog;
961                 atomic_inc(&iclog->ic_refcnt);
962
963                 xlog_state_want_sync(log, iclog);
964                 spin_unlock(&log->l_icloglock);
965                 error =  xlog_state_release_iclog(log, iclog);
966
967                 spin_lock(&log->l_icloglock);
968
969                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
970                         || iclog->ic_state == XLOG_STATE_DIRTY
971                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
972
973                                 xlog_wait(&iclog->ic_force_wait,
974                                                         &log->l_icloglock);
975                 } else {
976                         spin_unlock(&log->l_icloglock);
977                 }
978         }
979
980         return error;
981 }       /* xfs_log_unmount_write */
982
983 /*
984  * Empty the log for unmount/freeze.
985  *
986  * To do this, we first need to shut down the background log work so it is not
987  * trying to cover the log as we clean up. We then need to unpin all objects in
988  * the log so we can then flush them out. Once they have completed their IO and
989  * run the callbacks removing themselves from the AIL, we can write the unmount
990  * record.
991  */
992 void
993 xfs_log_quiesce(
994         struct xfs_mount        *mp)
995 {
996         cancel_delayed_work_sync(&mp->m_log->l_work);
997         xfs_log_force(mp, XFS_LOG_SYNC);
998
999         /*
1000          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1001          * will push it, xfs_wait_buftarg() will not wait for it. Further,
1002          * xfs_buf_iowait() cannot be used because it was pushed with the
1003          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1004          * the IO to complete.
1005          */
1006         xfs_ail_push_all_sync(mp->m_ail);
1007         xfs_wait_buftarg(mp->m_ddev_targp);
1008         xfs_buf_lock(mp->m_sb_bp);
1009         xfs_buf_unlock(mp->m_sb_bp);
1010
1011         xfs_log_unmount_write(mp);
1012 }
1013
1014 /*
1015  * Shut down and release the AIL and Log.
1016  *
1017  * During unmount, we need to ensure we flush all the dirty metadata objects
1018  * from the AIL so that the log is empty before we write the unmount record to
1019  * the log. Once this is done, we can tear down the AIL and the log.
1020  */
1021 void
1022 xfs_log_unmount(
1023         struct xfs_mount        *mp)
1024 {
1025         xfs_log_quiesce(mp);
1026
1027         xfs_trans_ail_destroy(mp);
1028
1029         xfs_sysfs_del(&mp->m_log->l_kobj);
1030
1031         xlog_dealloc_log(mp->m_log);
1032 }
1033
1034 void
1035 xfs_log_item_init(
1036         struct xfs_mount        *mp,
1037         struct xfs_log_item     *item,
1038         int                     type,
1039         const struct xfs_item_ops *ops)
1040 {
1041         item->li_mountp = mp;
1042         item->li_ailp = mp->m_ail;
1043         item->li_type = type;
1044         item->li_ops = ops;
1045         item->li_lv = NULL;
1046
1047         INIT_LIST_HEAD(&item->li_ail);
1048         INIT_LIST_HEAD(&item->li_cil);
1049         INIT_LIST_HEAD(&item->li_bio_list);
1050 }
1051
1052 /*
1053  * Wake up processes waiting for log space after we have moved the log tail.
1054  */
1055 void
1056 xfs_log_space_wake(
1057         struct xfs_mount        *mp)
1058 {
1059         struct xlog             *log = mp->m_log;
1060         int                     free_bytes;
1061
1062         if (XLOG_FORCED_SHUTDOWN(log))
1063                 return;
1064
1065         if (!list_empty_careful(&log->l_write_head.waiters)) {
1066                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1067
1068                 spin_lock(&log->l_write_head.lock);
1069                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1070                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1071                 spin_unlock(&log->l_write_head.lock);
1072         }
1073
1074         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1075                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1076
1077                 spin_lock(&log->l_reserve_head.lock);
1078                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1079                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1080                 spin_unlock(&log->l_reserve_head.lock);
1081         }
1082 }
1083
1084 /*
1085  * Determine if we have a transaction that has gone to disk that needs to be
1086  * covered. To begin the transition to the idle state firstly the log needs to
1087  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088  * we start attempting to cover the log.
1089  *
1090  * Only if we are then in a state where covering is needed, the caller is
1091  * informed that dummy transactions are required to move the log into the idle
1092  * state.
1093  *
1094  * If there are any items in the AIl or CIL, then we do not want to attempt to
1095  * cover the log as we may be in a situation where there isn't log space
1096  * available to run a dummy transaction and this can lead to deadlocks when the
1097  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1098  * there's no point in running a dummy transaction at this point because we
1099  * can't start trying to idle the log until both the CIL and AIL are empty.
1100  */
1101 static int
1102 xfs_log_need_covered(xfs_mount_t *mp)
1103 {
1104         struct xlog     *log = mp->m_log;
1105         int             needed = 0;
1106
1107         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1108                 return 0;
1109
1110         if (!xlog_cil_empty(log))
1111                 return 0;
1112
1113         spin_lock(&log->l_icloglock);
1114         switch (log->l_covered_state) {
1115         case XLOG_STATE_COVER_DONE:
1116         case XLOG_STATE_COVER_DONE2:
1117         case XLOG_STATE_COVER_IDLE:
1118                 break;
1119         case XLOG_STATE_COVER_NEED:
1120         case XLOG_STATE_COVER_NEED2:
1121                 if (xfs_ail_min_lsn(log->l_ailp))
1122                         break;
1123                 if (!xlog_iclogs_empty(log))
1124                         break;
1125
1126                 needed = 1;
1127                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1128                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1129                 else
1130                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1131                 break;
1132         default:
1133                 needed = 1;
1134                 break;
1135         }
1136         spin_unlock(&log->l_icloglock);
1137         return needed;
1138 }
1139
1140 /*
1141  * We may be holding the log iclog lock upon entering this routine.
1142  */
1143 xfs_lsn_t
1144 xlog_assign_tail_lsn_locked(
1145         struct xfs_mount        *mp)
1146 {
1147         struct xlog             *log = mp->m_log;
1148         struct xfs_log_item     *lip;
1149         xfs_lsn_t               tail_lsn;
1150
1151         assert_spin_locked(&mp->m_ail->ail_lock);
1152
1153         /*
1154          * To make sure we always have a valid LSN for the log tail we keep
1155          * track of the last LSN which was committed in log->l_last_sync_lsn,
1156          * and use that when the AIL was empty.
1157          */
1158         lip = xfs_ail_min(mp->m_ail);
1159         if (lip)
1160                 tail_lsn = lip->li_lsn;
1161         else
1162                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1163         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1164         atomic64_set(&log->l_tail_lsn, tail_lsn);
1165         return tail_lsn;
1166 }
1167
1168 xfs_lsn_t
1169 xlog_assign_tail_lsn(
1170         struct xfs_mount        *mp)
1171 {
1172         xfs_lsn_t               tail_lsn;
1173
1174         spin_lock(&mp->m_ail->ail_lock);
1175         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1176         spin_unlock(&mp->m_ail->ail_lock);
1177
1178         return tail_lsn;
1179 }
1180
1181 /*
1182  * Return the space in the log between the tail and the head.  The head
1183  * is passed in the cycle/bytes formal parms.  In the special case where
1184  * the reserve head has wrapped passed the tail, this calculation is no
1185  * longer valid.  In this case, just return 0 which means there is no space
1186  * in the log.  This works for all places where this function is called
1187  * with the reserve head.  Of course, if the write head were to ever
1188  * wrap the tail, we should blow up.  Rather than catch this case here,
1189  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1190  *
1191  * This code also handles the case where the reservation head is behind
1192  * the tail.  The details of this case are described below, but the end
1193  * result is that we return the size of the log as the amount of space left.
1194  */
1195 STATIC int
1196 xlog_space_left(
1197         struct xlog     *log,
1198         atomic64_t      *head)
1199 {
1200         int             free_bytes;
1201         int             tail_bytes;
1202         int             tail_cycle;
1203         int             head_cycle;
1204         int             head_bytes;
1205
1206         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1207         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1208         tail_bytes = BBTOB(tail_bytes);
1209         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1210                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1211         else if (tail_cycle + 1 < head_cycle)
1212                 return 0;
1213         else if (tail_cycle < head_cycle) {
1214                 ASSERT(tail_cycle == (head_cycle - 1));
1215                 free_bytes = tail_bytes - head_bytes;
1216         } else {
1217                 /*
1218                  * The reservation head is behind the tail.
1219                  * In this case we just want to return the size of the
1220                  * log as the amount of space left.
1221                  */
1222                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1223                 xfs_alert(log->l_mp,
1224                           "  tail_cycle = %d, tail_bytes = %d",
1225                           tail_cycle, tail_bytes);
1226                 xfs_alert(log->l_mp,
1227                           "  GH   cycle = %d, GH   bytes = %d",
1228                           head_cycle, head_bytes);
1229                 ASSERT(0);
1230                 free_bytes = log->l_logsize;
1231         }
1232         return free_bytes;
1233 }
1234
1235
1236 /*
1237  * Log function which is called when an io completes.
1238  *
1239  * The log manager needs its own routine, in order to control what
1240  * happens with the buffer after the write completes.
1241  */
1242 static void
1243 xlog_iodone(xfs_buf_t *bp)
1244 {
1245         struct xlog_in_core     *iclog = bp->b_log_item;
1246         struct xlog             *l = iclog->ic_log;
1247         int                     aborted = 0;
1248
1249         /*
1250          * Race to shutdown the filesystem if we see an error or the iclog is in
1251          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252          * CRC errors into log recovery.
1253          */
1254         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1255             iclog->ic_state & XLOG_STATE_IOABORT) {
1256                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1257                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1258
1259                 xfs_buf_ioerror_alert(bp, __func__);
1260                 xfs_buf_stale(bp);
1261                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1262                 /*
1263                  * This flag will be propagated to the trans-committed
1264                  * callback routines to let them know that the log-commit
1265                  * didn't succeed.
1266                  */
1267                 aborted = XFS_LI_ABORTED;
1268         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1269                 aborted = XFS_LI_ABORTED;
1270         }
1271
1272         /* log I/O is always issued ASYNC */
1273         ASSERT(bp->b_flags & XBF_ASYNC);
1274         xlog_state_done_syncing(iclog, aborted);
1275
1276         /*
1277          * drop the buffer lock now that we are done. Nothing references
1278          * the buffer after this, so an unmount waiting on this lock can now
1279          * tear it down safely. As such, it is unsafe to reference the buffer
1280          * (bp) after the unlock as we could race with it being freed.
1281          */
1282         xfs_buf_unlock(bp);
1283 }
1284
1285 /*
1286  * Return size of each in-core log record buffer.
1287  *
1288  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289  *
1290  * If the filesystem blocksize is too large, we may need to choose a
1291  * larger size since the directory code currently logs entire blocks.
1292  */
1293
1294 STATIC void
1295 xlog_get_iclog_buffer_size(
1296         struct xfs_mount        *mp,
1297         struct xlog             *log)
1298 {
1299         int size;
1300         int xhdrs;
1301
1302         if (mp->m_logbufs <= 0)
1303                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1304         else
1305                 log->l_iclog_bufs = mp->m_logbufs;
1306
1307         /*
1308          * Buffer size passed in from mount system call.
1309          */
1310         if (mp->m_logbsize > 0) {
1311                 size = log->l_iclog_size = mp->m_logbsize;
1312                 log->l_iclog_size_log = 0;
1313                 while (size != 1) {
1314                         log->l_iclog_size_log++;
1315                         size >>= 1;
1316                 }
1317
1318                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1319                         /* # headers = size / 32k
1320                          * one header holds cycles from 32k of data
1321                          */
1322
1323                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1324                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1325                                 xhdrs++;
1326                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1327                         log->l_iclog_heads = xhdrs;
1328                 } else {
1329                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1330                         log->l_iclog_hsize = BBSIZE;
1331                         log->l_iclog_heads = 1;
1332                 }
1333                 goto done;
1334         }
1335
1336         /* All machines use 32kB buffers by default. */
1337         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1338         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1339
1340         /* the default log size is 16k or 32k which is one header sector */
1341         log->l_iclog_hsize = BBSIZE;
1342         log->l_iclog_heads = 1;
1343
1344 done:
1345         /* are we being asked to make the sizes selected above visible? */
1346         if (mp->m_logbufs == 0)
1347                 mp->m_logbufs = log->l_iclog_bufs;
1348         if (mp->m_logbsize == 0)
1349                 mp->m_logbsize = log->l_iclog_size;
1350 }       /* xlog_get_iclog_buffer_size */
1351
1352
1353 void
1354 xfs_log_work_queue(
1355         struct xfs_mount        *mp)
1356 {
1357         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1358                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1359 }
1360
1361 /*
1362  * Every sync period we need to unpin all items in the AIL and push them to
1363  * disk. If there is nothing dirty, then we might need to cover the log to
1364  * indicate that the filesystem is idle.
1365  */
1366 static void
1367 xfs_log_worker(
1368         struct work_struct      *work)
1369 {
1370         struct xlog             *log = container_of(to_delayed_work(work),
1371                                                 struct xlog, l_work);
1372         struct xfs_mount        *mp = log->l_mp;
1373
1374         /* dgc: errors ignored - not fatal and nowhere to report them */
1375         if (xfs_log_need_covered(mp)) {
1376                 /*
1377                  * Dump a transaction into the log that contains no real change.
1378                  * This is needed to stamp the current tail LSN into the log
1379                  * during the covering operation.
1380                  *
1381                  * We cannot use an inode here for this - that will push dirty
1382                  * state back up into the VFS and then periodic inode flushing
1383                  * will prevent log covering from making progress. Hence we
1384                  * synchronously log the superblock instead to ensure the
1385                  * superblock is immediately unpinned and can be written back.
1386                  */
1387                 xfs_sync_sb(mp, true);
1388         } else
1389                 xfs_log_force(mp, 0);
1390
1391         /* start pushing all the metadata that is currently dirty */
1392         xfs_ail_push_all(mp->m_ail);
1393
1394         /* queue us up again */
1395         xfs_log_work_queue(mp);
1396 }
1397
1398 /*
1399  * This routine initializes some of the log structure for a given mount point.
1400  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1401  * some other stuff may be filled in too.
1402  */
1403 STATIC struct xlog *
1404 xlog_alloc_log(
1405         struct xfs_mount        *mp,
1406         struct xfs_buftarg      *log_target,
1407         xfs_daddr_t             blk_offset,
1408         int                     num_bblks)
1409 {
1410         struct xlog             *log;
1411         xlog_rec_header_t       *head;
1412         xlog_in_core_t          **iclogp;
1413         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1414         xfs_buf_t               *bp;
1415         int                     i;
1416         int                     error = -ENOMEM;
1417         uint                    log2_size = 0;
1418
1419         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1420         if (!log) {
1421                 xfs_warn(mp, "Log allocation failed: No memory!");
1422                 goto out;
1423         }
1424
1425         log->l_mp          = mp;
1426         log->l_targ        = log_target;
1427         log->l_logsize     = BBTOB(num_bblks);
1428         log->l_logBBstart  = blk_offset;
1429         log->l_logBBsize   = num_bblks;
1430         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1431         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1432         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1433
1434         log->l_prev_block  = -1;
1435         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1437         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1438         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1439
1440         xlog_grant_head_init(&log->l_reserve_head);
1441         xlog_grant_head_init(&log->l_write_head);
1442
1443         error = -EFSCORRUPTED;
1444         if (xfs_sb_version_hassector(&mp->m_sb)) {
1445                 log2_size = mp->m_sb.sb_logsectlog;
1446                 if (log2_size < BBSHIFT) {
1447                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1448                                 log2_size, BBSHIFT);
1449                         goto out_free_log;
1450                 }
1451
1452                 log2_size -= BBSHIFT;
1453                 if (log2_size > mp->m_sectbb_log) {
1454                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1455                                 log2_size, mp->m_sectbb_log);
1456                         goto out_free_log;
1457                 }
1458
1459                 /* for larger sector sizes, must have v2 or external log */
1460                 if (log2_size && log->l_logBBstart > 0 &&
1461                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1462                         xfs_warn(mp,
1463                 "log sector size (0x%x) invalid for configuration.",
1464                                 log2_size);
1465                         goto out_free_log;
1466                 }
1467         }
1468         log->l_sectBBsize = 1 << log2_size;
1469
1470         xlog_get_iclog_buffer_size(mp, log);
1471
1472         /*
1473          * Use a NULL block for the extra log buffer used during splits so that
1474          * it will trigger errors if we ever try to do IO on it without first
1475          * having set it up properly.
1476          */
1477         error = -ENOMEM;
1478         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1479                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1480         if (!bp)
1481                 goto out_free_log;
1482
1483         /*
1484          * The iclogbuf buffer locks are held over IO but we are not going to do
1485          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1486          * when appropriately.
1487          */
1488         ASSERT(xfs_buf_islocked(bp));
1489         xfs_buf_unlock(bp);
1490
1491         /* use high priority wq for log I/O completion */
1492         bp->b_ioend_wq = mp->m_log_workqueue;
1493         bp->b_iodone = xlog_iodone;
1494         log->l_xbuf = bp;
1495
1496         spin_lock_init(&log->l_icloglock);
1497         init_waitqueue_head(&log->l_flush_wait);
1498
1499         iclogp = &log->l_iclog;
1500         /*
1501          * The amount of memory to allocate for the iclog structure is
1502          * rather funky due to the way the structure is defined.  It is
1503          * done this way so that we can use different sizes for machines
1504          * with different amounts of memory.  See the definition of
1505          * xlog_in_core_t in xfs_log_priv.h for details.
1506          */
1507         ASSERT(log->l_iclog_size >= 4096);
1508         for (i=0; i < log->l_iclog_bufs; i++) {
1509                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1510                 if (!*iclogp)
1511                         goto out_free_iclog;
1512
1513                 iclog = *iclogp;
1514                 iclog->ic_prev = prev_iclog;
1515                 prev_iclog = iclog;
1516
1517                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1518                                           BTOBB(log->l_iclog_size),
1519                                           XBF_NO_IOACCT);
1520                 if (!bp)
1521                         goto out_free_iclog;
1522
1523                 ASSERT(xfs_buf_islocked(bp));
1524                 xfs_buf_unlock(bp);
1525
1526                 /* use high priority wq for log I/O completion */
1527                 bp->b_ioend_wq = mp->m_log_workqueue;
1528                 bp->b_iodone = xlog_iodone;
1529                 iclog->ic_bp = bp;
1530                 iclog->ic_data = bp->b_addr;
1531 #ifdef DEBUG
1532                 log->l_iclog_bak[i] = &iclog->ic_header;
1533 #endif
1534                 head = &iclog->ic_header;
1535                 memset(head, 0, sizeof(xlog_rec_header_t));
1536                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1537                 head->h_version = cpu_to_be32(
1538                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1539                 head->h_size = cpu_to_be32(log->l_iclog_size);
1540                 /* new fields */
1541                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1542                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1543
1544                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1545                 iclog->ic_state = XLOG_STATE_ACTIVE;
1546                 iclog->ic_log = log;
1547                 atomic_set(&iclog->ic_refcnt, 0);
1548                 spin_lock_init(&iclog->ic_callback_lock);
1549                 iclog->ic_callback_tail = &(iclog->ic_callback);
1550                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1551
1552                 init_waitqueue_head(&iclog->ic_force_wait);
1553                 init_waitqueue_head(&iclog->ic_write_wait);
1554
1555                 iclogp = &iclog->ic_next;
1556         }
1557         *iclogp = log->l_iclog;                 /* complete ring */
1558         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1559
1560         error = xlog_cil_init(log);
1561         if (error)
1562                 goto out_free_iclog;
1563         return log;
1564
1565 out_free_iclog:
1566         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1567                 prev_iclog = iclog->ic_next;
1568                 if (iclog->ic_bp)
1569                         xfs_buf_free(iclog->ic_bp);
1570                 kmem_free(iclog);
1571         }
1572         spinlock_destroy(&log->l_icloglock);
1573         xfs_buf_free(log->l_xbuf);
1574 out_free_log:
1575         kmem_free(log);
1576 out:
1577         return ERR_PTR(error);
1578 }       /* xlog_alloc_log */
1579
1580
1581 /*
1582  * Write out the commit record of a transaction associated with the given
1583  * ticket.  Return the lsn of the commit record.
1584  */
1585 STATIC int
1586 xlog_commit_record(
1587         struct xlog             *log,
1588         struct xlog_ticket      *ticket,
1589         struct xlog_in_core     **iclog,
1590         xfs_lsn_t               *commitlsnp)
1591 {
1592         struct xfs_mount *mp = log->l_mp;
1593         int     error;
1594         struct xfs_log_iovec reg = {
1595                 .i_addr = NULL,
1596                 .i_len = 0,
1597                 .i_type = XLOG_REG_TYPE_COMMIT,
1598         };
1599         struct xfs_log_vec vec = {
1600                 .lv_niovecs = 1,
1601                 .lv_iovecp = &reg,
1602         };
1603
1604         ASSERT_ALWAYS(iclog);
1605         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1606                                         XLOG_COMMIT_TRANS);
1607         if (error)
1608                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1609         return error;
1610 }
1611
1612 /*
1613  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614  * log space.  This code pushes on the lsn which would supposedly free up
1615  * the 25% which we want to leave free.  We may need to adopt a policy which
1616  * pushes on an lsn which is further along in the log once we reach the high
1617  * water mark.  In this manner, we would be creating a low water mark.
1618  */
1619 STATIC void
1620 xlog_grant_push_ail(
1621         struct xlog     *log,
1622         int             need_bytes)
1623 {
1624         xfs_lsn_t       threshold_lsn = 0;
1625         xfs_lsn_t       last_sync_lsn;
1626         int             free_blocks;
1627         int             free_bytes;
1628         int             threshold_block;
1629         int             threshold_cycle;
1630         int             free_threshold;
1631
1632         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1633
1634         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1635         free_blocks = BTOBBT(free_bytes);
1636
1637         /*
1638          * Set the threshold for the minimum number of free blocks in the
1639          * log to the maximum of what the caller needs, one quarter of the
1640          * log, and 256 blocks.
1641          */
1642         free_threshold = BTOBB(need_bytes);
1643         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1644         free_threshold = MAX(free_threshold, 256);
1645         if (free_blocks >= free_threshold)
1646                 return;
1647
1648         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1649                                                 &threshold_block);
1650         threshold_block += free_threshold;
1651         if (threshold_block >= log->l_logBBsize) {
1652                 threshold_block -= log->l_logBBsize;
1653                 threshold_cycle += 1;
1654         }
1655         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1656                                         threshold_block);
1657         /*
1658          * Don't pass in an lsn greater than the lsn of the last
1659          * log record known to be on disk. Use a snapshot of the last sync lsn
1660          * so that it doesn't change between the compare and the set.
1661          */
1662         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1663         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1664                 threshold_lsn = last_sync_lsn;
1665
1666         /*
1667          * Get the transaction layer to kick the dirty buffers out to
1668          * disk asynchronously. No point in trying to do this if
1669          * the filesystem is shutting down.
1670          */
1671         if (!XLOG_FORCED_SHUTDOWN(log))
1672                 xfs_ail_push(log->l_ailp, threshold_lsn);
1673 }
1674
1675 /*
1676  * Stamp cycle number in every block
1677  */
1678 STATIC void
1679 xlog_pack_data(
1680         struct xlog             *log,
1681         struct xlog_in_core     *iclog,
1682         int                     roundoff)
1683 {
1684         int                     i, j, k;
1685         int                     size = iclog->ic_offset + roundoff;
1686         __be32                  cycle_lsn;
1687         char                    *dp;
1688
1689         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1690
1691         dp = iclog->ic_datap;
1692         for (i = 0; i < BTOBB(size); i++) {
1693                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1694                         break;
1695                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1696                 *(__be32 *)dp = cycle_lsn;
1697                 dp += BBSIZE;
1698         }
1699
1700         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1701                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1702
1703                 for ( ; i < BTOBB(size); i++) {
1704                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1705                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1706                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1707                         *(__be32 *)dp = cycle_lsn;
1708                         dp += BBSIZE;
1709                 }
1710
1711                 for (i = 1; i < log->l_iclog_heads; i++)
1712                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1713         }
1714 }
1715
1716 /*
1717  * Calculate the checksum for a log buffer.
1718  *
1719  * This is a little more complicated than it should be because the various
1720  * headers and the actual data are non-contiguous.
1721  */
1722 __le32
1723 xlog_cksum(
1724         struct xlog             *log,
1725         struct xlog_rec_header  *rhead,
1726         char                    *dp,
1727         int                     size)
1728 {
1729         uint32_t                crc;
1730
1731         /* first generate the crc for the record header ... */
1732         crc = xfs_start_cksum_update((char *)rhead,
1733                               sizeof(struct xlog_rec_header),
1734                               offsetof(struct xlog_rec_header, h_crc));
1735
1736         /* ... then for additional cycle data for v2 logs ... */
1737         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1738                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1739                 int             i;
1740                 int             xheads;
1741
1742                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1743                 if (size % XLOG_HEADER_CYCLE_SIZE)
1744                         xheads++;
1745
1746                 for (i = 1; i < xheads; i++) {
1747                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1748                                      sizeof(struct xlog_rec_ext_header));
1749                 }
1750         }
1751
1752         /* ... and finally for the payload */
1753         crc = crc32c(crc, dp, size);
1754
1755         return xfs_end_cksum(crc);
1756 }
1757
1758 /*
1759  * The bdstrat callback function for log bufs. This gives us a central
1760  * place to trap bufs in case we get hit by a log I/O error and need to
1761  * shutdown. Actually, in practice, even when we didn't get a log error,
1762  * we transition the iclogs to IOERROR state *after* flushing all existing
1763  * iclogs to disk. This is because we don't want anymore new transactions to be
1764  * started or completed afterwards.
1765  *
1766  * We lock the iclogbufs here so that we can serialise against IO completion
1767  * during unmount. We might be processing a shutdown triggered during unmount,
1768  * and that can occur asynchronously to the unmount thread, and hence we need to
1769  * ensure that completes before tearing down the iclogbufs. Hence we need to
1770  * hold the buffer lock across the log IO to acheive that.
1771  */
1772 STATIC int
1773 xlog_bdstrat(
1774         struct xfs_buf          *bp)
1775 {
1776         struct xlog_in_core     *iclog = bp->b_log_item;
1777
1778         xfs_buf_lock(bp);
1779         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1780                 xfs_buf_ioerror(bp, -EIO);
1781                 xfs_buf_stale(bp);
1782                 xfs_buf_ioend(bp);
1783                 /*
1784                  * It would seem logical to return EIO here, but we rely on
1785                  * the log state machine to propagate I/O errors instead of
1786                  * doing it here. Similarly, IO completion will unlock the
1787                  * buffer, so we don't do it here.
1788                  */
1789                 return 0;
1790         }
1791
1792         xfs_buf_submit(bp);
1793         return 0;
1794 }
1795
1796 /*
1797  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1798  * fashion.  Previously, we should have moved the current iclog
1799  * ptr in the log to point to the next available iclog.  This allows further
1800  * write to continue while this code syncs out an iclog ready to go.
1801  * Before an in-core log can be written out, the data section must be scanned
1802  * to save away the 1st word of each BBSIZE block into the header.  We replace
1803  * it with the current cycle count.  Each BBSIZE block is tagged with the
1804  * cycle count because there in an implicit assumption that drives will
1805  * guarantee that entire 512 byte blocks get written at once.  In other words,
1806  * we can't have part of a 512 byte block written and part not written.  By
1807  * tagging each block, we will know which blocks are valid when recovering
1808  * after an unclean shutdown.
1809  *
1810  * This routine is single threaded on the iclog.  No other thread can be in
1811  * this routine with the same iclog.  Changing contents of iclog can there-
1812  * fore be done without grabbing the state machine lock.  Updating the global
1813  * log will require grabbing the lock though.
1814  *
1815  * The entire log manager uses a logical block numbering scheme.  Only
1816  * log_sync (and then only bwrite()) know about the fact that the log may
1817  * not start with block zero on a given device.  The log block start offset
1818  * is added immediately before calling bwrite().
1819  */
1820
1821 STATIC int
1822 xlog_sync(
1823         struct xlog             *log,
1824         struct xlog_in_core     *iclog)
1825 {
1826         xfs_buf_t       *bp;
1827         int             i;
1828         uint            count;          /* byte count of bwrite */
1829         uint            count_init;     /* initial count before roundup */
1830         int             roundoff;       /* roundoff to BB or stripe */
1831         int             split = 0;      /* split write into two regions */
1832         int             error;
1833         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1834         int             size;
1835
1836         XFS_STATS_INC(log->l_mp, xs_log_writes);
1837         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1838
1839         /* Add for LR header */
1840         count_init = log->l_iclog_hsize + iclog->ic_offset;
1841
1842         /* Round out the log write size */
1843         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1844                 /* we have a v2 stripe unit to use */
1845                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1846         } else {
1847                 count = BBTOB(BTOBB(count_init));
1848         }
1849         roundoff = count - count_init;
1850         ASSERT(roundoff >= 0);
1851         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1852                 roundoff < log->l_mp->m_sb.sb_logsunit)
1853                 || 
1854                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1855                  roundoff < BBTOB(1)));
1856
1857         /* move grant heads by roundoff in sync */
1858         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861         /* put cycle number in every block */
1862         xlog_pack_data(log, iclog, roundoff); 
1863
1864         /* real byte length */
1865         size = iclog->ic_offset;
1866         if (v2)
1867                 size += roundoff;
1868         iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870         bp = iclog->ic_bp;
1871         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1872
1873         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1874
1875         /* Do we need to split this write into 2 parts? */
1876         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1877                 char            *dptr;
1878
1879                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1880                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1881                 iclog->ic_bwritecnt = 2;
1882
1883                 /*
1884                  * Bump the cycle numbers at the start of each block in the
1885                  * part of the iclog that ends up in the buffer that gets
1886                  * written to the start of the log.
1887                  *
1888                  * Watch out for the header magic number case, though.
1889                  */
1890                 dptr = (char *)&iclog->ic_header + count;
1891                 for (i = 0; i < split; i += BBSIZE) {
1892                         uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1893                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1894                                 cycle++;
1895                         *(__be32 *)dptr = cpu_to_be32(cycle);
1896
1897                         dptr += BBSIZE;
1898                 }
1899         } else {
1900                 iclog->ic_bwritecnt = 1;
1901         }
1902
1903         /* calculcate the checksum */
1904         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1905                                             iclog->ic_datap, size);
1906         /*
1907          * Intentionally corrupt the log record CRC based on the error injection
1908          * frequency, if defined. This facilitates testing log recovery in the
1909          * event of torn writes. Hence, set the IOABORT state to abort the log
1910          * write on I/O completion and shutdown the fs. The subsequent mount
1911          * detects the bad CRC and attempts to recover.
1912          */
1913         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1914                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1915                 iclog->ic_state |= XLOG_STATE_IOABORT;
1916                 xfs_warn(log->l_mp,
1917         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918                          be64_to_cpu(iclog->ic_header.h_lsn));
1919         }
1920
1921         bp->b_io_length = BTOBB(count);
1922         bp->b_log_item = iclog;
1923         bp->b_flags &= ~XBF_FLUSH;
1924         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1925
1926         /*
1927          * Flush the data device before flushing the log to make sure all meta
1928          * data written back from the AIL actually made it to disk before
1929          * stamping the new log tail LSN into the log buffer.  For an external
1930          * log we need to issue the flush explicitly, and unfortunately
1931          * synchronously here; for an internal log we can simply use the block
1932          * layer state machine for preflushes.
1933          */
1934         if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1935                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1936         else
1937                 bp->b_flags |= XBF_FLUSH;
1938
1939         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1940         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1941
1942         xlog_verify_iclog(log, iclog, count, true);
1943
1944         /* account for log which doesn't start at block #0 */
1945         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1946
1947         /*
1948          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1949          * is shutting down.
1950          */
1951         error = xlog_bdstrat(bp);
1952         if (error) {
1953                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1954                 return error;
1955         }
1956         if (split) {
1957                 bp = iclog->ic_log->l_xbuf;
1958                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1959                 xfs_buf_associate_memory(bp,
1960                                 (char *)&iclog->ic_header + count, split);
1961                 bp->b_log_item = iclog;
1962                 bp->b_flags &= ~XBF_FLUSH;
1963                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1964
1965                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1966                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1967
1968                 /* account for internal log which doesn't start at block #0 */
1969                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1970                 error = xlog_bdstrat(bp);
1971                 if (error) {
1972                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1973                         return error;
1974                 }
1975         }
1976         return 0;
1977 }       /* xlog_sync */
1978
1979 /*
1980  * Deallocate a log structure
1981  */
1982 STATIC void
1983 xlog_dealloc_log(
1984         struct xlog     *log)
1985 {
1986         xlog_in_core_t  *iclog, *next_iclog;
1987         int             i;
1988
1989         xlog_cil_destroy(log);
1990
1991         /*
1992          * Cycle all the iclogbuf locks to make sure all log IO completion
1993          * is done before we tear down these buffers.
1994          */
1995         iclog = log->l_iclog;
1996         for (i = 0; i < log->l_iclog_bufs; i++) {
1997                 xfs_buf_lock(iclog->ic_bp);
1998                 xfs_buf_unlock(iclog->ic_bp);
1999                 iclog = iclog->ic_next;
2000         }
2001
2002         /*
2003          * Always need to ensure that the extra buffer does not point to memory
2004          * owned by another log buffer before we free it. Also, cycle the lock
2005          * first to ensure we've completed IO on it.
2006          */
2007         xfs_buf_lock(log->l_xbuf);
2008         xfs_buf_unlock(log->l_xbuf);
2009         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
2010         xfs_buf_free(log->l_xbuf);
2011
2012         iclog = log->l_iclog;
2013         for (i = 0; i < log->l_iclog_bufs; i++) {
2014                 xfs_buf_free(iclog->ic_bp);
2015                 next_iclog = iclog->ic_next;
2016                 kmem_free(iclog);
2017                 iclog = next_iclog;
2018         }
2019         spinlock_destroy(&log->l_icloglock);
2020
2021         log->l_mp->m_log = NULL;
2022         kmem_free(log);
2023 }       /* xlog_dealloc_log */
2024
2025 /*
2026  * Update counters atomically now that memcpy is done.
2027  */
2028 /* ARGSUSED */
2029 static inline void
2030 xlog_state_finish_copy(
2031         struct xlog             *log,
2032         struct xlog_in_core     *iclog,
2033         int                     record_cnt,
2034         int                     copy_bytes)
2035 {
2036         spin_lock(&log->l_icloglock);
2037
2038         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2039         iclog->ic_offset += copy_bytes;
2040
2041         spin_unlock(&log->l_icloglock);
2042 }       /* xlog_state_finish_copy */
2043
2044
2045
2046
2047 /*
2048  * print out info relating to regions written which consume
2049  * the reservation
2050  */
2051 void
2052 xlog_print_tic_res(
2053         struct xfs_mount        *mp,
2054         struct xlog_ticket      *ticket)
2055 {
2056         uint i;
2057         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2058
2059         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2062             REG_TYPE_STR(BFORMAT, "bformat"),
2063             REG_TYPE_STR(BCHUNK, "bchunk"),
2064             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2065             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2066             REG_TYPE_STR(IFORMAT, "iformat"),
2067             REG_TYPE_STR(ICORE, "icore"),
2068             REG_TYPE_STR(IEXT, "iext"),
2069             REG_TYPE_STR(IBROOT, "ibroot"),
2070             REG_TYPE_STR(ILOCAL, "ilocal"),
2071             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2072             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2073             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2074             REG_TYPE_STR(QFORMAT, "qformat"),
2075             REG_TYPE_STR(DQUOT, "dquot"),
2076             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2077             REG_TYPE_STR(LRHEADER, "LR header"),
2078             REG_TYPE_STR(UNMOUNT, "unmount"),
2079             REG_TYPE_STR(COMMIT, "commit"),
2080             REG_TYPE_STR(TRANSHDR, "trans header"),
2081             REG_TYPE_STR(ICREATE, "inode create")
2082         };
2083 #undef REG_TYPE_STR
2084
2085         xfs_warn(mp, "ticket reservation summary:");
2086         xfs_warn(mp, "  unit res    = %d bytes",
2087                  ticket->t_unit_res);
2088         xfs_warn(mp, "  current res = %d bytes",
2089                  ticket->t_curr_res);
2090         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2091                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2092         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2093                  ticket->t_res_num_ophdrs, ophdr_spc);
2094         xfs_warn(mp, "  ophdr + reg = %u bytes",
2095                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2096         xfs_warn(mp, "  num regions = %u",
2097                  ticket->t_res_num);
2098
2099         for (i = 0; i < ticket->t_res_num; i++) {
2100                 uint r_type = ticket->t_res_arr[i].r_type;
2101                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2102                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2103                             "bad-rtype" : res_type_str[r_type]),
2104                             ticket->t_res_arr[i].r_len);
2105         }
2106 }
2107
2108 /*
2109  * Print a summary of the transaction.
2110  */
2111 void
2112 xlog_print_trans(
2113         struct xfs_trans                *tp)
2114 {
2115         struct xfs_mount                *mp = tp->t_mountp;
2116         struct xfs_log_item_desc        *lidp;
2117
2118         /* dump core transaction and ticket info */
2119         xfs_warn(mp, "transaction summary:");
2120         xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2121         xfs_warn(mp, "  log count = %d", tp->t_log_count);
2122         xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2123
2124         xlog_print_tic_res(mp, tp->t_ticket);
2125
2126         /* dump each log item */
2127         list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2128                 struct xfs_log_item     *lip = lidp->lid_item;
2129                 struct xfs_log_vec      *lv = lip->li_lv;
2130                 struct xfs_log_iovec    *vec;
2131                 int                     i;
2132
2133                 xfs_warn(mp, "log item: ");
2134                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2135                 xfs_warn(mp, "  flags   = 0x%x", lip->li_flags);
2136                 if (!lv)
2137                         continue;
2138                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2139                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2140                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2141                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2142
2143                 /* dump each iovec for the log item */
2144                 vec = lv->lv_iovecp;
2145                 for (i = 0; i < lv->lv_niovecs; i++) {
2146                         int dumplen = min(vec->i_len, 32);
2147
2148                         xfs_warn(mp, "  iovec[%d]", i);
2149                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2150                         xfs_warn(mp, "    len   = %d", vec->i_len);
2151                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2152                         xfs_hex_dump(vec->i_addr, dumplen);
2153
2154                         vec++;
2155                 }
2156         }
2157 }
2158
2159 /*
2160  * Calculate the potential space needed by the log vector.  Each region gets
2161  * its own xlog_op_header_t and may need to be double word aligned.
2162  */
2163 static int
2164 xlog_write_calc_vec_length(
2165         struct xlog_ticket      *ticket,
2166         struct xfs_log_vec      *log_vector)
2167 {
2168         struct xfs_log_vec      *lv;
2169         int                     headers = 0;
2170         int                     len = 0;
2171         int                     i;
2172
2173         /* acct for start rec of xact */
2174         if (ticket->t_flags & XLOG_TIC_INITED)
2175                 headers++;
2176
2177         for (lv = log_vector; lv; lv = lv->lv_next) {
2178                 /* we don't write ordered log vectors */
2179                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2180                         continue;
2181
2182                 headers += lv->lv_niovecs;
2183
2184                 for (i = 0; i < lv->lv_niovecs; i++) {
2185                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2186
2187                         len += vecp->i_len;
2188                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2189                 }
2190         }
2191
2192         ticket->t_res_num_ophdrs += headers;
2193         len += headers * sizeof(struct xlog_op_header);
2194
2195         return len;
2196 }
2197
2198 /*
2199  * If first write for transaction, insert start record  We can't be trying to
2200  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2201  */
2202 static int
2203 xlog_write_start_rec(
2204         struct xlog_op_header   *ophdr,
2205         struct xlog_ticket      *ticket)
2206 {
2207         if (!(ticket->t_flags & XLOG_TIC_INITED))
2208                 return 0;
2209
2210         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2211         ophdr->oh_clientid = ticket->t_clientid;
2212         ophdr->oh_len = 0;
2213         ophdr->oh_flags = XLOG_START_TRANS;
2214         ophdr->oh_res2 = 0;
2215
2216         ticket->t_flags &= ~XLOG_TIC_INITED;
2217
2218         return sizeof(struct xlog_op_header);
2219 }
2220
2221 static xlog_op_header_t *
2222 xlog_write_setup_ophdr(
2223         struct xlog             *log,
2224         struct xlog_op_header   *ophdr,
2225         struct xlog_ticket      *ticket,
2226         uint                    flags)
2227 {
2228         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2229         ophdr->oh_clientid = ticket->t_clientid;
2230         ophdr->oh_res2 = 0;
2231
2232         /* are we copying a commit or unmount record? */
2233         ophdr->oh_flags = flags;
2234
2235         /*
2236          * We've seen logs corrupted with bad transaction client ids.  This
2237          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2238          * and shut down the filesystem.
2239          */
2240         switch (ophdr->oh_clientid)  {
2241         case XFS_TRANSACTION:
2242         case XFS_VOLUME:
2243         case XFS_LOG:
2244                 break;
2245         default:
2246                 xfs_warn(log->l_mp,
2247                         "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2248                         ophdr->oh_clientid, ticket);
2249                 return NULL;
2250         }
2251
2252         return ophdr;
2253 }
2254
2255 /*
2256  * Set up the parameters of the region copy into the log. This has
2257  * to handle region write split across multiple log buffers - this
2258  * state is kept external to this function so that this code can
2259  * be written in an obvious, self documenting manner.
2260  */
2261 static int
2262 xlog_write_setup_copy(
2263         struct xlog_ticket      *ticket,
2264         struct xlog_op_header   *ophdr,
2265         int                     space_available,
2266         int                     space_required,
2267         int                     *copy_off,
2268         int                     *copy_len,
2269         int                     *last_was_partial_copy,
2270         int                     *bytes_consumed)
2271 {
2272         int                     still_to_copy;
2273
2274         still_to_copy = space_required - *bytes_consumed;
2275         *copy_off = *bytes_consumed;
2276
2277         if (still_to_copy <= space_available) {
2278                 /* write of region completes here */
2279                 *copy_len = still_to_copy;
2280                 ophdr->oh_len = cpu_to_be32(*copy_len);
2281                 if (*last_was_partial_copy)
2282                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2283                 *last_was_partial_copy = 0;
2284                 *bytes_consumed = 0;
2285                 return 0;
2286         }
2287
2288         /* partial write of region, needs extra log op header reservation */
2289         *copy_len = space_available;
2290         ophdr->oh_len = cpu_to_be32(*copy_len);
2291         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2292         if (*last_was_partial_copy)
2293                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2294         *bytes_consumed += *copy_len;
2295         (*last_was_partial_copy)++;
2296
2297         /* account for new log op header */
2298         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2299         ticket->t_res_num_ophdrs++;
2300
2301         return sizeof(struct xlog_op_header);
2302 }
2303
2304 static int
2305 xlog_write_copy_finish(
2306         struct xlog             *log,
2307         struct xlog_in_core     *iclog,
2308         uint                    flags,
2309         int                     *record_cnt,
2310         int                     *data_cnt,
2311         int                     *partial_copy,
2312         int                     *partial_copy_len,
2313         int                     log_offset,
2314         struct xlog_in_core     **commit_iclog)
2315 {
2316         if (*partial_copy) {
2317                 /*
2318                  * This iclog has already been marked WANT_SYNC by
2319                  * xlog_state_get_iclog_space.
2320                  */
2321                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2322                 *record_cnt = 0;
2323                 *data_cnt = 0;
2324                 return xlog_state_release_iclog(log, iclog);
2325         }
2326
2327         *partial_copy = 0;
2328         *partial_copy_len = 0;
2329
2330         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2331                 /* no more space in this iclog - push it. */
2332                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2333                 *record_cnt = 0;
2334                 *data_cnt = 0;
2335
2336                 spin_lock(&log->l_icloglock);
2337                 xlog_state_want_sync(log, iclog);
2338                 spin_unlock(&log->l_icloglock);
2339
2340                 if (!commit_iclog)
2341                         return xlog_state_release_iclog(log, iclog);
2342                 ASSERT(flags & XLOG_COMMIT_TRANS);
2343                 *commit_iclog = iclog;
2344         }
2345
2346         return 0;
2347 }
2348
2349 /*
2350  * Write some region out to in-core log
2351  *
2352  * This will be called when writing externally provided regions or when
2353  * writing out a commit record for a given transaction.
2354  *
2355  * General algorithm:
2356  *      1. Find total length of this write.  This may include adding to the
2357  *              lengths passed in.
2358  *      2. Check whether we violate the tickets reservation.
2359  *      3. While writing to this iclog
2360  *          A. Reserve as much space in this iclog as can get
2361  *          B. If this is first write, save away start lsn
2362  *          C. While writing this region:
2363  *              1. If first write of transaction, write start record
2364  *              2. Write log operation header (header per region)
2365  *              3. Find out if we can fit entire region into this iclog
2366  *              4. Potentially, verify destination memcpy ptr
2367  *              5. Memcpy (partial) region
2368  *              6. If partial copy, release iclog; otherwise, continue
2369  *                      copying more regions into current iclog
2370  *      4. Mark want sync bit (in simulation mode)
2371  *      5. Release iclog for potential flush to on-disk log.
2372  *
2373  * ERRORS:
2374  * 1.   Panic if reservation is overrun.  This should never happen since
2375  *      reservation amounts are generated internal to the filesystem.
2376  * NOTES:
2377  * 1. Tickets are single threaded data structures.
2378  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2379  *      syncing routine.  When a single log_write region needs to span
2380  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2381  *      on all log operation writes which don't contain the end of the
2382  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2383  *      operation which contains the end of the continued log_write region.
2384  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2385  *      we don't really know exactly how much space will be used.  As a result,
2386  *      we don't update ic_offset until the end when we know exactly how many
2387  *      bytes have been written out.
2388  */
2389 int
2390 xlog_write(
2391         struct xlog             *log,
2392         struct xfs_log_vec      *log_vector,
2393         struct xlog_ticket      *ticket,
2394         xfs_lsn_t               *start_lsn,
2395         struct xlog_in_core     **commit_iclog,
2396         uint                    flags)
2397 {
2398         struct xlog_in_core     *iclog = NULL;
2399         struct xfs_log_iovec    *vecp;
2400         struct xfs_log_vec      *lv;
2401         int                     len;
2402         int                     index;
2403         int                     partial_copy = 0;
2404         int                     partial_copy_len = 0;
2405         int                     contwr = 0;
2406         int                     record_cnt = 0;
2407         int                     data_cnt = 0;
2408         int                     error;
2409
2410         *start_lsn = 0;
2411
2412         len = xlog_write_calc_vec_length(ticket, log_vector);
2413
2414         /*
2415          * Region headers and bytes are already accounted for.
2416          * We only need to take into account start records and
2417          * split regions in this function.
2418          */
2419         if (ticket->t_flags & XLOG_TIC_INITED)
2420                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2421
2422         /*
2423          * Commit record headers need to be accounted for. These
2424          * come in as separate writes so are easy to detect.
2425          */
2426         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2427                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2428
2429         if (ticket->t_curr_res < 0) {
2430                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2431                      "ctx ticket reservation ran out. Need to up reservation");
2432                 xlog_print_tic_res(log->l_mp, ticket);
2433                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2434         }
2435
2436         index = 0;
2437         lv = log_vector;
2438         vecp = lv->lv_iovecp;
2439         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2440                 void            *ptr;
2441                 int             log_offset;
2442
2443                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2444                                                    &contwr, &log_offset);
2445                 if (error)
2446                         return error;
2447
2448                 ASSERT(log_offset <= iclog->ic_size - 1);
2449                 ptr = iclog->ic_datap + log_offset;
2450
2451                 /* start_lsn is the first lsn written to. That's all we need. */
2452                 if (!*start_lsn)
2453                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2454
2455                 /*
2456                  * This loop writes out as many regions as can fit in the amount
2457                  * of space which was allocated by xlog_state_get_iclog_space().
2458                  */
2459                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2460                         struct xfs_log_iovec    *reg;
2461                         struct xlog_op_header   *ophdr;
2462                         int                     start_rec_copy;
2463                         int                     copy_len;
2464                         int                     copy_off;
2465                         bool                    ordered = false;
2466
2467                         /* ordered log vectors have no regions to write */
2468                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2469                                 ASSERT(lv->lv_niovecs == 0);
2470                                 ordered = true;
2471                                 goto next_lv;
2472                         }
2473
2474                         reg = &vecp[index];
2475                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2476                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2477
2478                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2479                         if (start_rec_copy) {
2480                                 record_cnt++;
2481                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2482                                                    start_rec_copy);
2483                         }
2484
2485                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2486                         if (!ophdr)
2487                                 return -EIO;
2488
2489                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2490                                            sizeof(struct xlog_op_header));
2491
2492                         len += xlog_write_setup_copy(ticket, ophdr,
2493                                                      iclog->ic_size-log_offset,
2494                                                      reg->i_len,
2495                                                      &copy_off, &copy_len,
2496                                                      &partial_copy,
2497                                                      &partial_copy_len);
2498                         xlog_verify_dest_ptr(log, ptr);
2499
2500                         /*
2501                          * Copy region.
2502                          *
2503                          * Unmount records just log an opheader, so can have
2504                          * empty payloads with no data region to copy. Hence we
2505                          * only copy the payload if the vector says it has data
2506                          * to copy.
2507                          */
2508                         ASSERT(copy_len >= 0);
2509                         if (copy_len > 0) {
2510                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2511                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2512                                                    copy_len);
2513                         }
2514                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2515                         record_cnt++;
2516                         data_cnt += contwr ? copy_len : 0;
2517
2518                         error = xlog_write_copy_finish(log, iclog, flags,
2519                                                        &record_cnt, &data_cnt,
2520                                                        &partial_copy,
2521                                                        &partial_copy_len,
2522                                                        log_offset,
2523                                                        commit_iclog);
2524                         if (error)
2525                                 return error;
2526
2527                         /*
2528                          * if we had a partial copy, we need to get more iclog
2529                          * space but we don't want to increment the region
2530                          * index because there is still more is this region to
2531                          * write.
2532                          *
2533                          * If we completed writing this region, and we flushed
2534                          * the iclog (indicated by resetting of the record
2535                          * count), then we also need to get more log space. If
2536                          * this was the last record, though, we are done and
2537                          * can just return.
2538                          */
2539                         if (partial_copy)
2540                                 break;
2541
2542                         if (++index == lv->lv_niovecs) {
2543 next_lv:
2544                                 lv = lv->lv_next;
2545                                 index = 0;
2546                                 if (lv)
2547                                         vecp = lv->lv_iovecp;
2548                         }
2549                         if (record_cnt == 0 && !ordered) {
2550                                 if (!lv)
2551                                         return 0;
2552                                 break;
2553                         }
2554                 }
2555         }
2556
2557         ASSERT(len == 0);
2558
2559         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2560         if (!commit_iclog)
2561                 return xlog_state_release_iclog(log, iclog);
2562
2563         ASSERT(flags & XLOG_COMMIT_TRANS);
2564         *commit_iclog = iclog;
2565         return 0;
2566 }
2567
2568
2569 /*****************************************************************************
2570  *
2571  *              State Machine functions
2572  *
2573  *****************************************************************************
2574  */
2575
2576 /* Clean iclogs starting from the head.  This ordering must be
2577  * maintained, so an iclog doesn't become ACTIVE beyond one that
2578  * is SYNCING.  This is also required to maintain the notion that we use
2579  * a ordered wait queue to hold off would be writers to the log when every
2580  * iclog is trying to sync to disk.
2581  *
2582  * State Change: DIRTY -> ACTIVE
2583  */
2584 STATIC void
2585 xlog_state_clean_log(
2586         struct xlog *log)
2587 {
2588         xlog_in_core_t  *iclog;
2589         int changed = 0;
2590
2591         iclog = log->l_iclog;
2592         do {
2593                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2594                         iclog->ic_state = XLOG_STATE_ACTIVE;
2595                         iclog->ic_offset       = 0;
2596                         ASSERT(iclog->ic_callback == NULL);
2597                         /*
2598                          * If the number of ops in this iclog indicate it just
2599                          * contains the dummy transaction, we can
2600                          * change state into IDLE (the second time around).
2601                          * Otherwise we should change the state into
2602                          * NEED a dummy.
2603                          * We don't need to cover the dummy.
2604                          */
2605                         if (!changed &&
2606                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2607                                         XLOG_COVER_OPS)) {
2608                                 changed = 1;
2609                         } else {
2610                                 /*
2611                                  * We have two dirty iclogs so start over
2612                                  * This could also be num of ops indicates
2613                                  * this is not the dummy going out.
2614                                  */
2615                                 changed = 2;
2616                         }
2617                         iclog->ic_header.h_num_logops = 0;
2618                         memset(iclog->ic_header.h_cycle_data, 0,
2619                               sizeof(iclog->ic_header.h_cycle_data));
2620                         iclog->ic_header.h_lsn = 0;
2621                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2622                         /* do nothing */;
2623                 else
2624                         break;  /* stop cleaning */
2625                 iclog = iclog->ic_next;
2626         } while (iclog != log->l_iclog);
2627
2628         /* log is locked when we are called */
2629         /*
2630          * Change state for the dummy log recording.
2631          * We usually go to NEED. But we go to NEED2 if the changed indicates
2632          * we are done writing the dummy record.
2633          * If we are done with the second dummy recored (DONE2), then
2634          * we go to IDLE.
2635          */
2636         if (changed) {
2637                 switch (log->l_covered_state) {
2638                 case XLOG_STATE_COVER_IDLE:
2639                 case XLOG_STATE_COVER_NEED:
2640                 case XLOG_STATE_COVER_NEED2:
2641                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2642                         break;
2643
2644                 case XLOG_STATE_COVER_DONE:
2645                         if (changed == 1)
2646                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2647                         else
2648                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2649                         break;
2650
2651                 case XLOG_STATE_COVER_DONE2:
2652                         if (changed == 1)
2653                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2654                         else
2655                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2656                         break;
2657
2658                 default:
2659                         ASSERT(0);
2660                 }
2661         }
2662 }       /* xlog_state_clean_log */
2663
2664 STATIC xfs_lsn_t
2665 xlog_get_lowest_lsn(
2666         struct xlog     *log)
2667 {
2668         xlog_in_core_t  *lsn_log;
2669         xfs_lsn_t       lowest_lsn, lsn;
2670
2671         lsn_log = log->l_iclog;
2672         lowest_lsn = 0;
2673         do {
2674             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2675                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2676                 if ((lsn && !lowest_lsn) ||
2677                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2678                         lowest_lsn = lsn;
2679                 }
2680             }
2681             lsn_log = lsn_log->ic_next;
2682         } while (lsn_log != log->l_iclog);
2683         return lowest_lsn;
2684 }
2685
2686
2687 STATIC void
2688 xlog_state_do_callback(
2689         struct xlog             *log,
2690         int                     aborted,
2691         struct xlog_in_core     *ciclog)
2692 {
2693         xlog_in_core_t     *iclog;
2694         xlog_in_core_t     *first_iclog;        /* used to know when we've
2695                                                  * processed all iclogs once */
2696         xfs_log_callback_t *cb, *cb_next;
2697         int                flushcnt = 0;
2698         xfs_lsn_t          lowest_lsn;
2699         int                ioerrors;    /* counter: iclogs with errors */
2700         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2701         int                funcdidcallbacks; /* flag: function did callbacks */
2702         int                repeats;     /* for issuing console warnings if
2703                                          * looping too many times */
2704         int                wake = 0;
2705
2706         spin_lock(&log->l_icloglock);
2707         first_iclog = iclog = log->l_iclog;
2708         ioerrors = 0;
2709         funcdidcallbacks = 0;
2710         repeats = 0;
2711
2712         do {
2713                 /*
2714                  * Scan all iclogs starting with the one pointed to by the
2715                  * log.  Reset this starting point each time the log is
2716                  * unlocked (during callbacks).
2717                  *
2718                  * Keep looping through iclogs until one full pass is made
2719                  * without running any callbacks.
2720                  */
2721                 first_iclog = log->l_iclog;
2722                 iclog = log->l_iclog;
2723                 loopdidcallbacks = 0;
2724                 repeats++;
2725
2726                 do {
2727
2728                         /* skip all iclogs in the ACTIVE & DIRTY states */
2729                         if (iclog->ic_state &
2730                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2731                                 iclog = iclog->ic_next;
2732                                 continue;
2733                         }
2734
2735                         /*
2736                          * Between marking a filesystem SHUTDOWN and stopping
2737                          * the log, we do flush all iclogs to disk (if there
2738                          * wasn't a log I/O error). So, we do want things to
2739                          * go smoothly in case of just a SHUTDOWN  w/o a
2740                          * LOG_IO_ERROR.
2741                          */
2742                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2743                                 /*
2744                                  * Can only perform callbacks in order.  Since
2745                                  * this iclog is not in the DONE_SYNC/
2746                                  * DO_CALLBACK state, we skip the rest and
2747                                  * just try to clean up.  If we set our iclog
2748                                  * to DO_CALLBACK, we will not process it when
2749                                  * we retry since a previous iclog is in the
2750                                  * CALLBACK and the state cannot change since
2751                                  * we are holding the l_icloglock.
2752                                  */
2753                                 if (!(iclog->ic_state &
2754                                         (XLOG_STATE_DONE_SYNC |
2755                                                  XLOG_STATE_DO_CALLBACK))) {
2756                                         if (ciclog && (ciclog->ic_state ==
2757                                                         XLOG_STATE_DONE_SYNC)) {
2758                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2759                                         }
2760                                         break;
2761                                 }
2762                                 /*
2763                                  * We now have an iclog that is in either the
2764                                  * DO_CALLBACK or DONE_SYNC states. The other
2765                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2766                                  * caught by the above if and are going to
2767                                  * clean (i.e. we aren't doing their callbacks)
2768                                  * see the above if.
2769                                  */
2770
2771                                 /*
2772                                  * We will do one more check here to see if we
2773                                  * have chased our tail around.
2774                                  */
2775
2776                                 lowest_lsn = xlog_get_lowest_lsn(log);
2777                                 if (lowest_lsn &&
2778                                     XFS_LSN_CMP(lowest_lsn,
2779                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2780                                         iclog = iclog->ic_next;
2781                                         continue; /* Leave this iclog for
2782                                                    * another thread */
2783                                 }
2784
2785                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2786
2787
2788                                 /*
2789                                  * Completion of a iclog IO does not imply that
2790                                  * a transaction has completed, as transactions
2791                                  * can be large enough to span many iclogs. We
2792                                  * cannot change the tail of the log half way
2793                                  * through a transaction as this may be the only
2794                                  * transaction in the log and moving th etail to
2795                                  * point to the middle of it will prevent
2796                                  * recovery from finding the start of the
2797                                  * transaction. Hence we should only update the
2798                                  * last_sync_lsn if this iclog contains
2799                                  * transaction completion callbacks on it.
2800                                  *
2801                                  * We have to do this before we drop the
2802                                  * icloglock to ensure we are the only one that
2803                                  * can update it.
2804                                  */
2805                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2806                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2807                                 if (iclog->ic_callback)
2808                                         atomic64_set(&log->l_last_sync_lsn,
2809                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2810
2811                         } else
2812                                 ioerrors++;
2813
2814                         spin_unlock(&log->l_icloglock);
2815
2816                         /*
2817                          * Keep processing entries in the callback list until
2818                          * we come around and it is empty.  We need to
2819                          * atomically see that the list is empty and change the
2820                          * state to DIRTY so that we don't miss any more
2821                          * callbacks being added.
2822                          */
2823                         spin_lock(&iclog->ic_callback_lock);
2824                         cb = iclog->ic_callback;
2825                         while (cb) {
2826                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2827                                 iclog->ic_callback = NULL;
2828                                 spin_unlock(&iclog->ic_callback_lock);
2829
2830                                 /* perform callbacks in the order given */
2831                                 for (; cb; cb = cb_next) {
2832                                         cb_next = cb->cb_next;
2833                                         cb->cb_func(cb->cb_arg, aborted);
2834                                 }
2835                                 spin_lock(&iclog->ic_callback_lock);
2836                                 cb = iclog->ic_callback;
2837                         }
2838
2839                         loopdidcallbacks++;
2840                         funcdidcallbacks++;
2841
2842                         spin_lock(&log->l_icloglock);
2843                         ASSERT(iclog->ic_callback == NULL);
2844                         spin_unlock(&iclog->ic_callback_lock);
2845                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2846                                 iclog->ic_state = XLOG_STATE_DIRTY;
2847
2848                         /*
2849                          * Transition from DIRTY to ACTIVE if applicable.
2850                          * NOP if STATE_IOERROR.
2851                          */
2852                         xlog_state_clean_log(log);
2853
2854                         /* wake up threads waiting in xfs_log_force() */
2855                         wake_up_all(&iclog->ic_force_wait);
2856
2857                         iclog = iclog->ic_next;
2858                 } while (first_iclog != iclog);
2859
2860                 if (repeats > 5000) {
2861                         flushcnt += repeats;
2862                         repeats = 0;
2863                         xfs_warn(log->l_mp,
2864                                 "%s: possible infinite loop (%d iterations)",
2865                                 __func__, flushcnt);
2866                 }
2867         } while (!ioerrors && loopdidcallbacks);
2868
2869 #ifdef DEBUG
2870         /*
2871          * Make one last gasp attempt to see if iclogs are being left in limbo.
2872          * If the above loop finds an iclog earlier than the current iclog and
2873          * in one of the syncing states, the current iclog is put into
2874          * DO_CALLBACK and the callbacks are deferred to the completion of the
2875          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2876          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2877          * states.
2878          *
2879          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2880          * for ic_state == SYNCING.
2881          */
2882         if (funcdidcallbacks) {
2883                 first_iclog = iclog = log->l_iclog;
2884                 do {
2885                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2886                         /*
2887                          * Terminate the loop if iclogs are found in states
2888                          * which will cause other threads to clean up iclogs.
2889                          *
2890                          * SYNCING - i/o completion will go through logs
2891                          * DONE_SYNC - interrupt thread should be waiting for
2892                          *              l_icloglock
2893                          * IOERROR - give up hope all ye who enter here
2894                          */
2895                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2896                             iclog->ic_state & XLOG_STATE_SYNCING ||
2897                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2898                             iclog->ic_state == XLOG_STATE_IOERROR )
2899                                 break;
2900                         iclog = iclog->ic_next;
2901                 } while (first_iclog != iclog);
2902         }
2903 #endif
2904
2905         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2906                 wake = 1;
2907         spin_unlock(&log->l_icloglock);
2908
2909         if (wake)
2910                 wake_up_all(&log->l_flush_wait);
2911 }
2912
2913
2914 /*
2915  * Finish transitioning this iclog to the dirty state.
2916  *
2917  * Make sure that we completely execute this routine only when this is
2918  * the last call to the iclog.  There is a good chance that iclog flushes,
2919  * when we reach the end of the physical log, get turned into 2 separate
2920  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2921  * routine.  By using the reference count bwritecnt, we guarantee that only
2922  * the second completion goes through.
2923  *
2924  * Callbacks could take time, so they are done outside the scope of the
2925  * global state machine log lock.
2926  */
2927 STATIC void
2928 xlog_state_done_syncing(
2929         xlog_in_core_t  *iclog,
2930         int             aborted)
2931 {
2932         struct xlog        *log = iclog->ic_log;
2933
2934         spin_lock(&log->l_icloglock);
2935
2936         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2937                iclog->ic_state == XLOG_STATE_IOERROR);
2938         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2939         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2940
2941
2942         /*
2943          * If we got an error, either on the first buffer, or in the case of
2944          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2945          * and none should ever be attempted to be written to disk
2946          * again.
2947          */
2948         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2949                 if (--iclog->ic_bwritecnt == 1) {
2950                         spin_unlock(&log->l_icloglock);
2951                         return;
2952                 }
2953                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2954         }
2955
2956         /*
2957          * Someone could be sleeping prior to writing out the next
2958          * iclog buffer, we wake them all, one will get to do the
2959          * I/O, the others get to wait for the result.
2960          */
2961         wake_up_all(&iclog->ic_write_wait);
2962         spin_unlock(&log->l_icloglock);
2963         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2964 }       /* xlog_state_done_syncing */
2965
2966
2967 /*
2968  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2969  * sleep.  We wait on the flush queue on the head iclog as that should be
2970  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2971  * we will wait here and all new writes will sleep until a sync completes.
2972  *
2973  * The in-core logs are used in a circular fashion. They are not used
2974  * out-of-order even when an iclog past the head is free.
2975  *
2976  * return:
2977  *      * log_offset where xlog_write() can start writing into the in-core
2978  *              log's data space.
2979  *      * in-core log pointer to which xlog_write() should write.
2980  *      * boolean indicating this is a continued write to an in-core log.
2981  *              If this is the last write, then the in-core log's offset field
2982  *              needs to be incremented, depending on the amount of data which
2983  *              is copied.
2984  */
2985 STATIC int
2986 xlog_state_get_iclog_space(
2987         struct xlog             *log,
2988         int                     len,
2989         struct xlog_in_core     **iclogp,
2990         struct xlog_ticket      *ticket,
2991         int                     *continued_write,
2992         int                     *logoffsetp)
2993 {
2994         int               log_offset;
2995         xlog_rec_header_t *head;
2996         xlog_in_core_t    *iclog;
2997         int               error;
2998
2999 restart:
3000         spin_lock(&log->l_icloglock);
3001         if (XLOG_FORCED_SHUTDOWN(log)) {
3002                 spin_unlock(&log->l_icloglock);
3003                 return -EIO;
3004         }
3005
3006         iclog = log->l_iclog;
3007         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3008                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3009
3010                 /* Wait for log writes to have flushed */
3011                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3012                 goto restart;
3013         }
3014
3015         head = &iclog->ic_header;
3016
3017         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
3018         log_offset = iclog->ic_offset;
3019
3020         /* On the 1st write to an iclog, figure out lsn.  This works
3021          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3022          * committing to.  If the offset is set, that's how many blocks
3023          * must be written.
3024          */
3025         if (log_offset == 0) {
3026                 ticket->t_curr_res -= log->l_iclog_hsize;
3027                 xlog_tic_add_region(ticket,
3028                                     log->l_iclog_hsize,
3029                                     XLOG_REG_TYPE_LRHEADER);
3030                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3031                 head->h_lsn = cpu_to_be64(
3032                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3033                 ASSERT(log->l_curr_block >= 0);
3034         }
3035
3036         /* If there is enough room to write everything, then do it.  Otherwise,
3037          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3038          * bit is on, so this will get flushed out.  Don't update ic_offset
3039          * until you know exactly how many bytes get copied.  Therefore, wait
3040          * until later to update ic_offset.
3041          *
3042          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3043          * can fit into remaining data section.
3044          */
3045         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3046                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3047
3048                 /*
3049                  * If I'm the only one writing to this iclog, sync it to disk.
3050                  * We need to do an atomic compare and decrement here to avoid
3051                  * racing with concurrent atomic_dec_and_lock() calls in
3052                  * xlog_state_release_iclog() when there is more than one
3053                  * reference to the iclog.
3054                  */
3055                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3056                         /* we are the only one */
3057                         spin_unlock(&log->l_icloglock);
3058                         error = xlog_state_release_iclog(log, iclog);
3059                         if (error)
3060                                 return error;
3061                 } else {
3062                         spin_unlock(&log->l_icloglock);
3063                 }
3064                 goto restart;
3065         }
3066
3067         /* Do we have enough room to write the full amount in the remainder
3068          * of this iclog?  Or must we continue a write on the next iclog and
3069          * mark this iclog as completely taken?  In the case where we switch
3070          * iclogs (to mark it taken), this particular iclog will release/sync
3071          * to disk in xlog_write().
3072          */
3073         if (len <= iclog->ic_size - iclog->ic_offset) {
3074                 *continued_write = 0;
3075                 iclog->ic_offset += len;
3076         } else {
3077                 *continued_write = 1;
3078                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3079         }
3080         *iclogp = iclog;
3081
3082         ASSERT(iclog->ic_offset <= iclog->ic_size);
3083         spin_unlock(&log->l_icloglock);
3084
3085         *logoffsetp = log_offset;
3086         return 0;
3087 }       /* xlog_state_get_iclog_space */
3088
3089 /* The first cnt-1 times through here we don't need to
3090  * move the grant write head because the permanent
3091  * reservation has reserved cnt times the unit amount.
3092  * Release part of current permanent unit reservation and
3093  * reset current reservation to be one units worth.  Also
3094  * move grant reservation head forward.
3095  */
3096 STATIC void
3097 xlog_regrant_reserve_log_space(
3098         struct xlog             *log,
3099         struct xlog_ticket      *ticket)
3100 {
3101         trace_xfs_log_regrant_reserve_enter(log, ticket);
3102
3103         if (ticket->t_cnt > 0)
3104                 ticket->t_cnt--;
3105
3106         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3107                                         ticket->t_curr_res);
3108         xlog_grant_sub_space(log, &log->l_write_head.grant,
3109                                         ticket->t_curr_res);
3110         ticket->t_curr_res = ticket->t_unit_res;
3111         xlog_tic_reset_res(ticket);
3112
3113         trace_xfs_log_regrant_reserve_sub(log, ticket);
3114
3115         /* just return if we still have some of the pre-reserved space */
3116         if (ticket->t_cnt > 0)
3117                 return;
3118
3119         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3120                                         ticket->t_unit_res);
3121
3122         trace_xfs_log_regrant_reserve_exit(log, ticket);
3123
3124         ticket->t_curr_res = ticket->t_unit_res;
3125         xlog_tic_reset_res(ticket);
3126 }       /* xlog_regrant_reserve_log_space */
3127
3128
3129 /*
3130  * Give back the space left from a reservation.
3131  *
3132  * All the information we need to make a correct determination of space left
3133  * is present.  For non-permanent reservations, things are quite easy.  The
3134  * count should have been decremented to zero.  We only need to deal with the
3135  * space remaining in the current reservation part of the ticket.  If the
3136  * ticket contains a permanent reservation, there may be left over space which
3137  * needs to be released.  A count of N means that N-1 refills of the current
3138  * reservation can be done before we need to ask for more space.  The first
3139  * one goes to fill up the first current reservation.  Once we run out of
3140  * space, the count will stay at zero and the only space remaining will be
3141  * in the current reservation field.
3142  */
3143 STATIC void
3144 xlog_ungrant_log_space(
3145         struct xlog             *log,
3146         struct xlog_ticket      *ticket)
3147 {
3148         int     bytes;
3149
3150         if (ticket->t_cnt > 0)
3151                 ticket->t_cnt--;
3152
3153         trace_xfs_log_ungrant_enter(log, ticket);
3154         trace_xfs_log_ungrant_sub(log, ticket);
3155
3156         /*
3157          * If this is a permanent reservation ticket, we may be able to free
3158          * up more space based on the remaining count.
3159          */
3160         bytes = ticket->t_curr_res;
3161         if (ticket->t_cnt > 0) {
3162                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3163                 bytes += ticket->t_unit_res*ticket->t_cnt;
3164         }
3165
3166         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3167         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3168
3169         trace_xfs_log_ungrant_exit(log, ticket);
3170
3171         xfs_log_space_wake(log->l_mp);
3172 }
3173
3174 /*
3175  * Flush iclog to disk if this is the last reference to the given iclog and
3176  * the WANT_SYNC bit is set.
3177  *
3178  * When this function is entered, the iclog is not necessarily in the
3179  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3180  *
3181  *
3182  */
3183 STATIC int
3184 xlog_state_release_iclog(
3185         struct xlog             *log,
3186         struct xlog_in_core     *iclog)
3187 {
3188         int             sync = 0;       /* do we sync? */
3189
3190         if (iclog->ic_state & XLOG_STATE_IOERROR)
3191                 return -EIO;
3192
3193         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3194         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3195                 return 0;
3196
3197         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3198                 spin_unlock(&log->l_icloglock);
3199                 return -EIO;
3200         }
3201         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3202                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3203
3204         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3205                 /* update tail before writing to iclog */
3206                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3207                 sync++;
3208                 iclog->ic_state = XLOG_STATE_SYNCING;
3209                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3210                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3211                 /* cycle incremented when incrementing curr_block */
3212         }
3213         spin_unlock(&log->l_icloglock);
3214
3215         /*
3216          * We let the log lock go, so it's possible that we hit a log I/O
3217          * error or some other SHUTDOWN condition that marks the iclog
3218          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3219          * this iclog has consistent data, so we ignore IOERROR
3220          * flags after this point.
3221          */
3222         if (sync)
3223                 return xlog_sync(log, iclog);
3224         return 0;
3225 }       /* xlog_state_release_iclog */
3226
3227
3228 /*
3229  * This routine will mark the current iclog in the ring as WANT_SYNC
3230  * and move the current iclog pointer to the next iclog in the ring.
3231  * When this routine is called from xlog_state_get_iclog_space(), the
3232  * exact size of the iclog has not yet been determined.  All we know is
3233  * that every data block.  We have run out of space in this log record.
3234  */
3235 STATIC void
3236 xlog_state_switch_iclogs(
3237         struct xlog             *log,
3238         struct xlog_in_core     *iclog,
3239         int                     eventual_size)
3240 {
3241         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3242         if (!eventual_size)
3243                 eventual_size = iclog->ic_offset;
3244         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3245         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3246         log->l_prev_block = log->l_curr_block;
3247         log->l_prev_cycle = log->l_curr_cycle;
3248
3249         /* roll log?: ic_offset changed later */
3250         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3251
3252         /* Round up to next log-sunit */
3253         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3254             log->l_mp->m_sb.sb_logsunit > 1) {
3255                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3256                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3257         }
3258
3259         if (log->l_curr_block >= log->l_logBBsize) {
3260                 /*
3261                  * Rewind the current block before the cycle is bumped to make
3262                  * sure that the combined LSN never transiently moves forward
3263                  * when the log wraps to the next cycle. This is to support the
3264                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3265                  * other cases should acquire l_icloglock.
3266                  */
3267                 log->l_curr_block -= log->l_logBBsize;
3268                 ASSERT(log->l_curr_block >= 0);
3269                 smp_wmb();
3270                 log->l_curr_cycle++;
3271                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3272                         log->l_curr_cycle++;
3273         }
3274         ASSERT(iclog == log->l_iclog);
3275         log->l_iclog = iclog->ic_next;
3276 }       /* xlog_state_switch_iclogs */
3277
3278 /*
3279  * Write out all data in the in-core log as of this exact moment in time.
3280  *
3281  * Data may be written to the in-core log during this call.  However,
3282  * we don't guarantee this data will be written out.  A change from past
3283  * implementation means this routine will *not* write out zero length LRs.
3284  *
3285  * Basically, we try and perform an intelligent scan of the in-core logs.
3286  * If we determine there is no flushable data, we just return.  There is no
3287  * flushable data if:
3288  *
3289  *      1. the current iclog is active and has no data; the previous iclog
3290  *              is in the active or dirty state.
3291  *      2. the current iclog is drity, and the previous iclog is in the
3292  *              active or dirty state.
3293  *
3294  * We may sleep if:
3295  *
3296  *      1. the current iclog is not in the active nor dirty state.
3297  *      2. the current iclog dirty, and the previous iclog is not in the
3298  *              active nor dirty state.
3299  *      3. the current iclog is active, and there is another thread writing
3300  *              to this particular iclog.
3301  *      4. a) the current iclog is active and has no other writers
3302  *         b) when we return from flushing out this iclog, it is still
3303  *              not in the active nor dirty state.
3304  */
3305 int
3306 xfs_log_force(
3307         struct xfs_mount        *mp,
3308         uint                    flags)
3309 {
3310         struct xlog             *log = mp->m_log;
3311         struct xlog_in_core     *iclog;
3312         xfs_lsn_t               lsn;
3313
3314         XFS_STATS_INC(mp, xs_log_force);
3315         trace_xfs_log_force(mp, 0, _RET_IP_);
3316
3317         xlog_cil_force(log);
3318
3319         spin_lock(&log->l_icloglock);
3320         iclog = log->l_iclog;
3321         if (iclog->ic_state & XLOG_STATE_IOERROR)
3322                 goto out_error;
3323
3324         if (iclog->ic_state == XLOG_STATE_DIRTY ||
3325             (iclog->ic_state == XLOG_STATE_ACTIVE &&
3326              atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3327                 /*
3328                  * If the head is dirty or (active and empty), then we need to
3329                  * look at the previous iclog.
3330                  *
3331                  * If the previous iclog is active or dirty we are done.  There
3332                  * is nothing to sync out. Otherwise, we attach ourselves to the
3333                  * previous iclog and go to sleep.
3334                  */
3335                 iclog = iclog->ic_prev;
3336                 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3337                     iclog->ic_state == XLOG_STATE_DIRTY)
3338                         goto out_unlock;
3339         } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3340                 if (atomic_read(&iclog->ic_refcnt) == 0) {
3341                         /*
3342                          * We are the only one with access to this iclog.
3343                          *
3344                          * Flush it out now.  There should be a roundoff of zero
3345                          * to show that someone has already taken care of the
3346                          * roundoff from the previous sync.
3347                          */
3348                         atomic_inc(&iclog->ic_refcnt);
3349                         lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3350                         xlog_state_switch_iclogs(log, iclog, 0);
3351                         spin_unlock(&log->l_icloglock);
3352
3353                         if (xlog_state_release_iclog(log, iclog))
3354                                 return -EIO;
3355
3356                         spin_lock(&log->l_icloglock);
3357                         if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3358                             iclog->ic_state == XLOG_STATE_DIRTY)
3359                                 goto out_unlock;
3360                 } else {
3361                         /*
3362                          * Someone else is writing to this iclog.
3363                          *
3364                          * Use its call to flush out the data.  However, the
3365                          * other thread may not force out this LR, so we mark
3366                          * it WANT_SYNC.
3367                          */
3368                         xlog_state_switch_iclogs(log, iclog, 0);
3369                 }
3370         } else {
3371                 /*
3372                  * If the head iclog is not active nor dirty, we just attach
3373                  * ourselves to the head and go to sleep if necessary.
3374                  */
3375                 ;
3376         }
3377
3378         if (!(flags & XFS_LOG_SYNC))
3379                 goto out_unlock;
3380
3381         if (iclog->ic_state & XLOG_STATE_IOERROR)
3382                 goto out_error;
3383         XFS_STATS_INC(mp, xs_log_force_sleep);
3384         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3385         if (iclog->ic_state & XLOG_STATE_IOERROR)
3386                 return -EIO;
3387         return 0;
3388
3389 out_unlock:
3390         spin_unlock(&log->l_icloglock);
3391         return 0;
3392 out_error:
3393         spin_unlock(&log->l_icloglock);
3394         return -EIO;
3395 }
3396
3397 static int
3398 __xfs_log_force_lsn(
3399         struct xfs_mount        *mp,
3400         xfs_lsn_t               lsn,
3401         uint                    flags,
3402         int                     *log_flushed,
3403         bool                    already_slept)
3404 {
3405         struct xlog             *log = mp->m_log;
3406         struct xlog_in_core     *iclog;
3407
3408         spin_lock(&log->l_icloglock);
3409         iclog = log->l_iclog;
3410         if (iclog->ic_state & XLOG_STATE_IOERROR)
3411                 goto out_error;
3412
3413         while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3414                 iclog = iclog->ic_next;
3415                 if (iclog == log->l_iclog)
3416                         goto out_unlock;
3417         }
3418
3419         if (iclog->ic_state == XLOG_STATE_DIRTY)
3420                 goto out_unlock;
3421
3422         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3423                 /*
3424                  * We sleep here if we haven't already slept (e.g. this is the
3425                  * first time we've looked at the correct iclog buf) and the
3426                  * buffer before us is going to be sync'ed.  The reason for this
3427                  * is that if we are doing sync transactions here, by waiting
3428                  * for the previous I/O to complete, we can allow a few more
3429                  * transactions into this iclog before we close it down.
3430                  *
3431                  * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3432                  * refcnt so we can release the log (which drops the ref count).
3433                  * The state switch keeps new transaction commits from using
3434                  * this buffer.  When the current commits finish writing into
3435                  * the buffer, the refcount will drop to zero and the buffer
3436                  * will go out then.
3437                  */
3438                 if (!already_slept &&
3439                     (iclog->ic_prev->ic_state &
3440                      (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3441                         ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3442
3443                         XFS_STATS_INC(mp, xs_log_force_sleep);
3444
3445                         xlog_wait(&iclog->ic_prev->ic_write_wait,
3446                                         &log->l_icloglock);
3447                         return -EAGAIN;
3448                 }
3449                 atomic_inc(&iclog->ic_refcnt);
3450                 xlog_state_switch_iclogs(log, iclog, 0);
3451                 spin_unlock(&log->l_icloglock);
3452                 if (xlog_state_release_iclog(log, iclog))
3453                         return -EIO;
3454                 if (log_flushed)
3455                         *log_flushed = 1;
3456                 spin_lock(&log->l_icloglock);
3457         }
3458
3459         if (!(flags & XFS_LOG_SYNC) ||
3460             (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3461                 goto out_unlock;
3462
3463         if (iclog->ic_state & XLOG_STATE_IOERROR)
3464                 goto out_error;
3465
3466         XFS_STATS_INC(mp, xs_log_force_sleep);
3467         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3468         if (iclog->ic_state & XLOG_STATE_IOERROR)
3469                 return -EIO;
3470         return 0;
3471
3472 out_unlock:
3473         spin_unlock(&log->l_icloglock);
3474         return 0;
3475 out_error:
3476         spin_unlock(&log->l_icloglock);
3477         return -EIO;
3478 }
3479
3480 /*
3481  * Force the in-core log to disk for a specific LSN.
3482  *
3483  * Find in-core log with lsn.
3484  *      If it is in the DIRTY state, just return.
3485  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3486  *              state and go to sleep or return.
3487  *      If it is in any other state, go to sleep or return.
3488  *
3489  * Synchronous forces are implemented with a wait queue.  All callers trying
3490  * to force a given lsn to disk must wait on the queue attached to the
3491  * specific in-core log.  When given in-core log finally completes its write
3492  * to disk, that thread will wake up all threads waiting on the queue.
3493  */
3494 int
3495 xfs_log_force_lsn(
3496         struct xfs_mount        *mp,
3497         xfs_lsn_t               lsn,
3498         uint                    flags,
3499         int                     *log_flushed)
3500 {
3501         int                     ret;
3502         ASSERT(lsn != 0);
3503
3504         XFS_STATS_INC(mp, xs_log_force);
3505         trace_xfs_log_force(mp, lsn, _RET_IP_);
3506
3507         lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3508         if (lsn == NULLCOMMITLSN)
3509                 return 0;
3510
3511         ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3512         if (ret == -EAGAIN)
3513                 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3514         return ret;
3515 }
3516
3517 /*
3518  * Called when we want to mark the current iclog as being ready to sync to
3519  * disk.
3520  */
3521 STATIC void
3522 xlog_state_want_sync(
3523         struct xlog             *log,
3524         struct xlog_in_core     *iclog)
3525 {
3526         assert_spin_locked(&log->l_icloglock);
3527
3528         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3529                 xlog_state_switch_iclogs(log, iclog, 0);
3530         } else {
3531                 ASSERT(iclog->ic_state &
3532                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3533         }
3534 }
3535
3536
3537 /*****************************************************************************
3538  *
3539  *              TICKET functions
3540  *
3541  *****************************************************************************
3542  */
3543
3544 /*
3545  * Free a used ticket when its refcount falls to zero.
3546  */
3547 void
3548 xfs_log_ticket_put(
3549         xlog_ticket_t   *ticket)
3550 {
3551         ASSERT(atomic_read(&ticket->t_ref) > 0);
3552         if (atomic_dec_and_test(&ticket->t_ref))
3553                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3554 }
3555
3556 xlog_ticket_t *
3557 xfs_log_ticket_get(
3558         xlog_ticket_t   *ticket)
3559 {
3560         ASSERT(atomic_read(&ticket->t_ref) > 0);
3561         atomic_inc(&ticket->t_ref);
3562         return ticket;
3563 }
3564
3565 /*
3566  * Figure out the total log space unit (in bytes) that would be
3567  * required for a log ticket.
3568  */
3569 int
3570 xfs_log_calc_unit_res(
3571         struct xfs_mount        *mp,
3572         int                     unit_bytes)
3573 {
3574         struct xlog             *log = mp->m_log;
3575         int                     iclog_space;
3576         uint                    num_headers;
3577
3578         /*
3579          * Permanent reservations have up to 'cnt'-1 active log operations
3580          * in the log.  A unit in this case is the amount of space for one
3581          * of these log operations.  Normal reservations have a cnt of 1
3582          * and their unit amount is the total amount of space required.
3583          *
3584          * The following lines of code account for non-transaction data
3585          * which occupy space in the on-disk log.
3586          *
3587          * Normal form of a transaction is:
3588          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3589          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3590          *
3591          * We need to account for all the leadup data and trailer data
3592          * around the transaction data.
3593          * And then we need to account for the worst case in terms of using
3594          * more space.
3595          * The worst case will happen if:
3596          * - the placement of the transaction happens to be such that the
3597          *   roundoff is at its maximum
3598          * - the transaction data is synced before the commit record is synced
3599          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3600          *   Therefore the commit record is in its own Log Record.
3601          *   This can happen as the commit record is called with its
3602          *   own region to xlog_write().
3603          *   This then means that in the worst case, roundoff can happen for
3604          *   the commit-rec as well.
3605          *   The commit-rec is smaller than padding in this scenario and so it is
3606          *   not added separately.
3607          */
3608
3609         /* for trans header */
3610         unit_bytes += sizeof(xlog_op_header_t);
3611         unit_bytes += sizeof(xfs_trans_header_t);
3612
3613         /* for start-rec */
3614         unit_bytes += sizeof(xlog_op_header_t);
3615
3616         /*
3617          * for LR headers - the space for data in an iclog is the size minus
3618          * the space used for the headers. If we use the iclog size, then we
3619          * undercalculate the number of headers required.
3620          *
3621          * Furthermore - the addition of op headers for split-recs might
3622          * increase the space required enough to require more log and op
3623          * headers, so take that into account too.
3624          *
3625          * IMPORTANT: This reservation makes the assumption that if this
3626          * transaction is the first in an iclog and hence has the LR headers
3627          * accounted to it, then the remaining space in the iclog is
3628          * exclusively for this transaction.  i.e. if the transaction is larger
3629          * than the iclog, it will be the only thing in that iclog.
3630          * Fundamentally, this means we must pass the entire log vector to
3631          * xlog_write to guarantee this.
3632          */
3633         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3634         num_headers = howmany(unit_bytes, iclog_space);
3635
3636         /* for split-recs - ophdrs added when data split over LRs */
3637         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3638
3639         /* add extra header reservations if we overrun */
3640         while (!num_headers ||
3641                howmany(unit_bytes, iclog_space) > num_headers) {
3642                 unit_bytes += sizeof(xlog_op_header_t);
3643                 num_headers++;
3644         }
3645         unit_bytes += log->l_iclog_hsize * num_headers;
3646
3647         /* for commit-rec LR header - note: padding will subsume the ophdr */
3648         unit_bytes += log->l_iclog_hsize;
3649
3650         /* for roundoff padding for transaction data and one for commit record */
3651         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3652                 /* log su roundoff */
3653                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3654         } else {
3655                 /* BB roundoff */
3656                 unit_bytes += 2 * BBSIZE;
3657         }
3658
3659         return unit_bytes;
3660 }
3661
3662 /*
3663  * Allocate and initialise a new log ticket.
3664  */
3665 struct xlog_ticket *
3666 xlog_ticket_alloc(
3667         struct xlog             *log,
3668         int                     unit_bytes,
3669         int                     cnt,
3670         char                    client,
3671         bool                    permanent,
3672         xfs_km_flags_t          alloc_flags)
3673 {
3674         struct xlog_ticket      *tic;
3675         int                     unit_res;
3676
3677         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3678         if (!tic)
3679                 return NULL;
3680
3681         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3682
3683         atomic_set(&tic->t_ref, 1);
3684         tic->t_task             = current;
3685         INIT_LIST_HEAD(&tic->t_queue);
3686         tic->t_unit_res         = unit_res;
3687         tic->t_curr_res         = unit_res;
3688         tic->t_cnt              = cnt;
3689         tic->t_ocnt             = cnt;
3690         tic->t_tid              = prandom_u32();
3691         tic->t_clientid         = client;
3692         tic->t_flags            = XLOG_TIC_INITED;
3693         if (permanent)
3694                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3695
3696         xlog_tic_reset_res(tic);
3697
3698         return tic;
3699 }
3700
3701
3702 /******************************************************************************
3703  *
3704  *              Log debug routines
3705  *
3706  ******************************************************************************
3707  */
3708 #if defined(DEBUG)
3709 /*
3710  * Make sure that the destination ptr is within the valid data region of
3711  * one of the iclogs.  This uses backup pointers stored in a different
3712  * part of the log in case we trash the log structure.
3713  */
3714 STATIC void
3715 xlog_verify_dest_ptr(
3716         struct xlog     *log,
3717         void            *ptr)
3718 {
3719         int i;
3720         int good_ptr = 0;
3721
3722         for (i = 0; i < log->l_iclog_bufs; i++) {
3723                 if (ptr >= log->l_iclog_bak[i] &&
3724                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3725                         good_ptr++;
3726         }
3727
3728         if (!good_ptr)
3729                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3730 }
3731
3732 /*
3733  * Check to make sure the grant write head didn't just over lap the tail.  If
3734  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3735  * the cycles differ by exactly one and check the byte count.
3736  *
3737  * This check is run unlocked, so can give false positives. Rather than assert
3738  * on failures, use a warn-once flag and a panic tag to allow the admin to
3739  * determine if they want to panic the machine when such an error occurs. For
3740  * debug kernels this will have the same effect as using an assert but, unlinke
3741  * an assert, it can be turned off at runtime.
3742  */
3743 STATIC void
3744 xlog_verify_grant_tail(
3745         struct xlog     *log)
3746 {
3747         int             tail_cycle, tail_blocks;
3748         int             cycle, space;
3749
3750         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3751         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3752         if (tail_cycle != cycle) {
3753                 if (cycle - 1 != tail_cycle &&
3754                     !(log->l_flags & XLOG_TAIL_WARN)) {
3755                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3756                                 "%s: cycle - 1 != tail_cycle", __func__);
3757                         log->l_flags |= XLOG_TAIL_WARN;
3758                 }
3759
3760                 if (space > BBTOB(tail_blocks) &&
3761                     !(log->l_flags & XLOG_TAIL_WARN)) {
3762                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3763                                 "%s: space > BBTOB(tail_blocks)", __func__);
3764                         log->l_flags |= XLOG_TAIL_WARN;
3765                 }
3766         }
3767 }
3768
3769 /* check if it will fit */
3770 STATIC void
3771 xlog_verify_tail_lsn(
3772         struct xlog             *log,
3773         struct xlog_in_core     *iclog,
3774         xfs_lsn_t               tail_lsn)
3775 {
3776     int blocks;
3777
3778     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3779         blocks =
3780             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3781         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3782                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3783     } else {
3784         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3785
3786         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3787                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3788
3789         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3790         if (blocks < BTOBB(iclog->ic_offset) + 1)
3791                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3792     }
3793 }       /* xlog_verify_tail_lsn */
3794
3795 /*
3796  * Perform a number of checks on the iclog before writing to disk.
3797  *
3798  * 1. Make sure the iclogs are still circular
3799  * 2. Make sure we have a good magic number
3800  * 3. Make sure we don't have magic numbers in the data
3801  * 4. Check fields of each log operation header for:
3802  *      A. Valid client identifier
3803  *      B. tid ptr value falls in valid ptr space (user space code)
3804  *      C. Length in log record header is correct according to the
3805  *              individual operation headers within record.
3806  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3807  *      log, check the preceding blocks of the physical log to make sure all
3808  *      the cycle numbers agree with the current cycle number.
3809  */
3810 STATIC void
3811 xlog_verify_iclog(
3812         struct xlog             *log,
3813         struct xlog_in_core     *iclog,
3814         int                     count,
3815         bool                    syncing)
3816 {
3817         xlog_op_header_t        *ophead;
3818         xlog_in_core_t          *icptr;
3819         xlog_in_core_2_t        *xhdr;
3820         void                    *base_ptr, *ptr, *p;
3821         ptrdiff_t               field_offset;
3822         uint8_t                 clientid;
3823         int                     len, i, j, k, op_len;
3824         int                     idx;
3825
3826         /* check validity of iclog pointers */
3827         spin_lock(&log->l_icloglock);
3828         icptr = log->l_iclog;
3829         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3830                 ASSERT(icptr);
3831
3832         if (icptr != log->l_iclog)
3833                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3834         spin_unlock(&log->l_icloglock);
3835
3836         /* check log magic numbers */
3837         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3838                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3839
3840         base_ptr = ptr = &iclog->ic_header;
3841         p = &iclog->ic_header;
3842         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3843                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3844                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3845                                 __func__);
3846         }
3847
3848         /* check fields */
3849         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3850         base_ptr = ptr = iclog->ic_datap;
3851         ophead = ptr;
3852         xhdr = iclog->ic_data;
3853         for (i = 0; i < len; i++) {
3854                 ophead = ptr;
3855
3856                 /* clientid is only 1 byte */
3857                 p = &ophead->oh_clientid;
3858                 field_offset = p - base_ptr;
3859                 if (!syncing || (field_offset & 0x1ff)) {
3860                         clientid = ophead->oh_clientid;
3861                 } else {
3862                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3863                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3864                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3865                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3866                                 clientid = xlog_get_client_id(
3867                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3868                         } else {
3869                                 clientid = xlog_get_client_id(
3870                                         iclog->ic_header.h_cycle_data[idx]);
3871                         }
3872                 }
3873                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3874                         xfs_warn(log->l_mp,
3875                                 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3876                                 __func__, clientid, ophead,
3877                                 (unsigned long)field_offset);
3878
3879                 /* check length */
3880                 p = &ophead->oh_len;
3881                 field_offset = p - base_ptr;
3882                 if (!syncing || (field_offset & 0x1ff)) {
3883                         op_len = be32_to_cpu(ophead->oh_len);
3884                 } else {
3885                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3886                                     (uintptr_t)iclog->ic_datap);
3887                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3888                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3889                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3890                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3891                         } else {
3892                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3893                         }
3894                 }
3895                 ptr += sizeof(xlog_op_header_t) + op_len;
3896         }
3897 }       /* xlog_verify_iclog */
3898 #endif
3899
3900 /*
3901  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3902  */
3903 STATIC int
3904 xlog_state_ioerror(
3905         struct xlog     *log)
3906 {
3907         xlog_in_core_t  *iclog, *ic;
3908
3909         iclog = log->l_iclog;
3910         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3911                 /*
3912                  * Mark all the incore logs IOERROR.
3913                  * From now on, no log flushes will result.
3914                  */
3915                 ic = iclog;
3916                 do {
3917                         ic->ic_state = XLOG_STATE_IOERROR;
3918                         ic = ic->ic_next;
3919                 } while (ic != iclog);
3920                 return 0;
3921         }
3922         /*
3923          * Return non-zero, if state transition has already happened.
3924          */
3925         return 1;
3926 }
3927
3928 /*
3929  * This is called from xfs_force_shutdown, when we're forcibly
3930  * shutting down the filesystem, typically because of an IO error.
3931  * Our main objectives here are to make sure that:
3932  *      a. if !logerror, flush the logs to disk. Anything modified
3933  *         after this is ignored.
3934  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3935  *         parties to find out, 'atomically'.
3936  *      c. those who're sleeping on log reservations, pinned objects and
3937  *          other resources get woken up, and be told the bad news.
3938  *      d. nothing new gets queued up after (b) and (c) are done.
3939  *
3940  * Note: for the !logerror case we need to flush the regions held in memory out
3941  * to disk first. This needs to be done before the log is marked as shutdown,
3942  * otherwise the iclog writes will fail.
3943  */
3944 int
3945 xfs_log_force_umount(
3946         struct xfs_mount        *mp,
3947         int                     logerror)
3948 {
3949         struct xlog     *log;
3950         int             retval;
3951
3952         log = mp->m_log;
3953
3954         /*
3955          * If this happens during log recovery, don't worry about
3956          * locking; the log isn't open for business yet.
3957          */
3958         if (!log ||
3959             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3960                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3961                 if (mp->m_sb_bp)
3962                         mp->m_sb_bp->b_flags |= XBF_DONE;
3963                 return 0;
3964         }
3965
3966         /*
3967          * Somebody could've already done the hard work for us.
3968          * No need to get locks for this.
3969          */
3970         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3971                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3972                 return 1;
3973         }
3974
3975         /*
3976          * Flush all the completed transactions to disk before marking the log
3977          * being shut down. We need to do it in this order to ensure that
3978          * completed operations are safely on disk before we shut down, and that
3979          * we don't have to issue any buffer IO after the shutdown flags are set
3980          * to guarantee this.
3981          */
3982         if (!logerror)
3983                 xfs_log_force(mp, XFS_LOG_SYNC);
3984
3985         /*
3986          * mark the filesystem and the as in a shutdown state and wake
3987          * everybody up to tell them the bad news.
3988          */
3989         spin_lock(&log->l_icloglock);
3990         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3991         if (mp->m_sb_bp)
3992                 mp->m_sb_bp->b_flags |= XBF_DONE;
3993
3994         /*
3995          * Mark the log and the iclogs with IO error flags to prevent any
3996          * further log IO from being issued or completed.
3997          */
3998         log->l_flags |= XLOG_IO_ERROR;
3999         retval = xlog_state_ioerror(log);
4000         spin_unlock(&log->l_icloglock);
4001
4002         /*
4003          * We don't want anybody waiting for log reservations after this. That
4004          * means we have to wake up everybody queued up on reserveq as well as
4005          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4006          * we don't enqueue anything once the SHUTDOWN flag is set, and this
4007          * action is protected by the grant locks.
4008          */
4009         xlog_grant_head_wake_all(&log->l_reserve_head);
4010         xlog_grant_head_wake_all(&log->l_write_head);
4011
4012         /*
4013          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4014          * as if the log writes were completed. The abort handling in the log
4015          * item committed callback functions will do this again under lock to
4016          * avoid races.
4017          */
4018         wake_up_all(&log->l_cilp->xc_commit_wait);
4019         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4020
4021 #ifdef XFSERRORDEBUG
4022         {
4023                 xlog_in_core_t  *iclog;
4024
4025                 spin_lock(&log->l_icloglock);
4026                 iclog = log->l_iclog;
4027                 do {
4028                         ASSERT(iclog->ic_callback == 0);
4029                         iclog = iclog->ic_next;
4030                 } while (iclog != log->l_iclog);
4031                 spin_unlock(&log->l_icloglock);
4032         }
4033 #endif
4034         /* return non-zero if log IOERROR transition had already happened */
4035         return retval;
4036 }
4037
4038 STATIC int
4039 xlog_iclogs_empty(
4040         struct xlog     *log)
4041 {
4042         xlog_in_core_t  *iclog;
4043
4044         iclog = log->l_iclog;
4045         do {
4046                 /* endianness does not matter here, zero is zero in
4047                  * any language.
4048                  */
4049                 if (iclog->ic_header.h_num_logops)
4050                         return 0;
4051                 iclog = iclog->ic_next;
4052         } while (iclog != log->l_iclog);
4053         return 1;
4054 }
4055
4056 /*
4057  * Verify that an LSN stamped into a piece of metadata is valid. This is
4058  * intended for use in read verifiers on v5 superblocks.
4059  */
4060 bool
4061 xfs_log_check_lsn(
4062         struct xfs_mount        *mp,
4063         xfs_lsn_t               lsn)
4064 {
4065         struct xlog             *log = mp->m_log;
4066         bool                    valid;
4067
4068         /*
4069          * norecovery mode skips mount-time log processing and unconditionally
4070          * resets the in-core LSN. We can't validate in this mode, but
4071          * modifications are not allowed anyways so just return true.
4072          */
4073         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4074                 return true;
4075
4076         /*
4077          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4078          * handled by recovery and thus safe to ignore here.
4079          */
4080         if (lsn == NULLCOMMITLSN)
4081                 return true;
4082
4083         valid = xlog_valid_lsn(mp->m_log, lsn);
4084
4085         /* warn the user about what's gone wrong before verifier failure */
4086         if (!valid) {
4087                 spin_lock(&log->l_icloglock);
4088                 xfs_warn(mp,
4089 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4090 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4091                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4092                          log->l_curr_cycle, log->l_curr_block);
4093                 spin_unlock(&log->l_icloglock);
4094         }
4095
4096         return valid;
4097 }
This page took 0.270346 seconds and 4 git commands to generate.