2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
64 #include <linux/local_lock.h>
66 #define ZSPAGE_MAGIC 0x58
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * a single (unsigned long) handle value.
89 * Note that object index <obj_idx> starts from 0.
91 * This is made more complicated by various memory models and PAE.
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
106 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
119 * The second least-significant bit in the object's header identifies if the
120 * value stored at the header is a deferred handle from the last reclaim
123 * As noted above, this is valid because we have room for two bits.
125 #define OBJ_DEFERRED_HANDLE_TAG 2
126 #define OBJ_TAG_BITS 2
127 #define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
129 #define OBJ_TAG_BITS 1
130 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
131 #endif /* CONFIG_ZPOOL */
133 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
134 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
137 #define FULLNESS_BITS 2
139 #define ISOLATED_BITS 3
140 #define MAGIC_VAL_BITS 8
142 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
143 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
144 #define ZS_MIN_ALLOC_SIZE \
145 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
146 /* each chunk includes extra space to keep handle */
147 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
150 * On systems with 4K page size, this gives 255 size classes! There is a
152 * - Large number of size classes is potentially wasteful as free page are
153 * spread across these classes
154 * - Small number of size classes causes large internal fragmentation
155 * - Probably its better to use specific size classes (empirically
156 * determined). NOTE: all those class sizes must be set as multiple of
157 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
159 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
162 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
163 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
164 ZS_SIZE_CLASS_DELTA) + 1)
166 enum fullness_group {
174 enum class_stat_type {
184 struct zs_size_stat {
185 unsigned long objs[NR_ZS_STAT_TYPE];
188 #ifdef CONFIG_ZSMALLOC_STAT
189 static struct dentry *zs_stat_root;
193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
195 * n = number of allocated objects
196 * N = total number of objects zspage can store
197 * f = fullness_threshold_frac
199 * Similarly, we assign zspage to:
200 * ZS_ALMOST_FULL when n > N / f
201 * ZS_EMPTY when n == 0
202 * ZS_FULL when n == N
204 * (see: fix_fullness_group())
206 static const int fullness_threshold_frac = 4;
207 static size_t huge_class_size;
210 struct list_head fullness_list[NR_ZS_FULLNESS];
212 * Size of objects stored in this class. Must be multiple
217 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218 int pages_per_zspage;
221 struct zs_size_stat stats;
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, zspage->freeobj gives head of this list.
228 * This must be power of 2 and less than or equal to ZS_ALIGN
234 * It's valid for non-allocated object
238 * Handle of allocated object.
240 unsigned long handle;
243 * Deferred handle of a reclaimed object.
245 unsigned long deferred_handle;
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
257 atomic_long_t pages_allocated;
259 struct zs_pool_stats stats;
261 /* Compact classes */
262 struct shrinker shrinker;
265 /* List tracking the zspages in LRU order by most recently added object */
266 struct list_head lru;
268 const struct zpool_ops *zpool_ops;
271 #ifdef CONFIG_ZSMALLOC_STAT
272 struct dentry *stat_dentry;
274 #ifdef CONFIG_COMPACTION
275 struct work_struct free_work;
282 unsigned int huge:HUGE_BITS;
283 unsigned int fullness:FULLNESS_BITS;
284 unsigned int class:CLASS_BITS + 1;
285 unsigned int isolated:ISOLATED_BITS;
286 unsigned int magic:MAGIC_VAL_BITS;
289 unsigned int freeobj;
290 struct page *first_page;
291 struct list_head list; /* fullness list */
294 /* links the zspage to the lru list in the pool */
295 struct list_head lru;
299 struct zs_pool *pool;
303 struct mapping_area {
305 char *vm_buf; /* copy buffer for objects that span pages */
306 char *vm_addr; /* address of kmap_atomic()'ed pages */
307 enum zs_mapmode vm_mm; /* mapping mode */
310 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
311 static void SetZsHugePage(struct zspage *zspage)
316 static bool ZsHugePage(struct zspage *zspage)
321 static void migrate_lock_init(struct zspage *zspage);
322 static void migrate_read_lock(struct zspage *zspage);
323 static void migrate_read_unlock(struct zspage *zspage);
325 #ifdef CONFIG_COMPACTION
326 static void migrate_write_lock(struct zspage *zspage);
327 static void migrate_write_lock_nested(struct zspage *zspage);
328 static void migrate_write_unlock(struct zspage *zspage);
329 static void kick_deferred_free(struct zs_pool *pool);
330 static void init_deferred_free(struct zs_pool *pool);
331 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
333 static void migrate_write_lock(struct zspage *zspage) {}
334 static void migrate_write_lock_nested(struct zspage *zspage) {}
335 static void migrate_write_unlock(struct zspage *zspage) {}
336 static void kick_deferred_free(struct zs_pool *pool) {}
337 static void init_deferred_free(struct zs_pool *pool) {}
338 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
341 static int create_cache(struct zs_pool *pool)
343 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
345 if (!pool->handle_cachep)
348 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
350 if (!pool->zspage_cachep) {
351 kmem_cache_destroy(pool->handle_cachep);
352 pool->handle_cachep = NULL;
359 static void destroy_cache(struct zs_pool *pool)
361 kmem_cache_destroy(pool->handle_cachep);
362 kmem_cache_destroy(pool->zspage_cachep);
365 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
367 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
368 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
371 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
373 kmem_cache_free(pool->handle_cachep, (void *)handle);
376 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
378 return kmem_cache_zalloc(pool->zspage_cachep,
379 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
382 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
384 kmem_cache_free(pool->zspage_cachep, zspage);
387 /* pool->lock(which owns the handle) synchronizes races */
388 static void record_obj(unsigned long handle, unsigned long obj)
390 *(unsigned long *)handle = obj;
397 static void *zs_zpool_create(const char *name, gfp_t gfp,
398 const struct zpool_ops *zpool_ops,
402 * Ignore global gfp flags: zs_malloc() may be invoked from
403 * different contexts and its caller must provide a valid
406 struct zs_pool *pool = zs_create_pool(name);
410 pool->zpool_ops = zpool_ops;
416 static void zs_zpool_destroy(void *pool)
418 zs_destroy_pool(pool);
421 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
422 unsigned long *handle)
424 *handle = zs_malloc(pool, size, gfp);
426 if (IS_ERR_VALUE(*handle))
427 return PTR_ERR((void *)*handle);
430 static void zs_zpool_free(void *pool, unsigned long handle)
432 zs_free(pool, handle);
435 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
437 static int zs_zpool_shrink(void *pool, unsigned int pages,
438 unsigned int *reclaimed)
440 unsigned int total = 0;
443 while (total < pages) {
444 ret = zs_reclaim_page(pool, 8);
456 static void *zs_zpool_map(void *pool, unsigned long handle,
457 enum zpool_mapmode mm)
459 enum zs_mapmode zs_mm;
474 return zs_map_object(pool, handle, zs_mm);
476 static void zs_zpool_unmap(void *pool, unsigned long handle)
478 zs_unmap_object(pool, handle);
481 static u64 zs_zpool_total_size(void *pool)
483 return zs_get_total_pages(pool) << PAGE_SHIFT;
486 static struct zpool_driver zs_zpool_driver = {
488 .owner = THIS_MODULE,
489 .create = zs_zpool_create,
490 .destroy = zs_zpool_destroy,
491 .malloc_support_movable = true,
492 .malloc = zs_zpool_malloc,
493 .free = zs_zpool_free,
494 .shrink = zs_zpool_shrink,
496 .unmap = zs_zpool_unmap,
497 .total_size = zs_zpool_total_size,
500 MODULE_ALIAS("zpool-zsmalloc");
501 #endif /* CONFIG_ZPOOL */
503 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
504 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
505 .lock = INIT_LOCAL_LOCK(lock),
508 static __maybe_unused int is_first_page(struct page *page)
510 return PagePrivate(page);
513 /* Protected by pool->lock */
514 static inline int get_zspage_inuse(struct zspage *zspage)
516 return zspage->inuse;
520 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
522 zspage->inuse += val;
525 static inline struct page *get_first_page(struct zspage *zspage)
527 struct page *first_page = zspage->first_page;
529 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
533 static inline unsigned int get_first_obj_offset(struct page *page)
535 return page->page_type;
538 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
540 page->page_type = offset;
543 static inline unsigned int get_freeobj(struct zspage *zspage)
545 return zspage->freeobj;
548 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
550 zspage->freeobj = obj;
553 static void get_zspage_mapping(struct zspage *zspage,
554 unsigned int *class_idx,
555 enum fullness_group *fullness)
557 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
559 *fullness = zspage->fullness;
560 *class_idx = zspage->class;
563 static struct size_class *zspage_class(struct zs_pool *pool,
564 struct zspage *zspage)
566 return pool->size_class[zspage->class];
569 static void set_zspage_mapping(struct zspage *zspage,
570 unsigned int class_idx,
571 enum fullness_group fullness)
573 zspage->class = class_idx;
574 zspage->fullness = fullness;
578 * zsmalloc divides the pool into various size classes where each
579 * class maintains a list of zspages where each zspage is divided
580 * into equal sized chunks. Each allocation falls into one of these
581 * classes depending on its size. This function returns index of the
582 * size class which has chunk size big enough to hold the given size.
584 static int get_size_class_index(int size)
588 if (likely(size > ZS_MIN_ALLOC_SIZE))
589 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
590 ZS_SIZE_CLASS_DELTA);
592 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
595 /* type can be of enum type class_stat_type or fullness_group */
596 static inline void class_stat_inc(struct size_class *class,
597 int type, unsigned long cnt)
599 class->stats.objs[type] += cnt;
602 /* type can be of enum type class_stat_type or fullness_group */
603 static inline void class_stat_dec(struct size_class *class,
604 int type, unsigned long cnt)
606 class->stats.objs[type] -= cnt;
609 /* type can be of enum type class_stat_type or fullness_group */
610 static inline unsigned long zs_stat_get(struct size_class *class,
613 return class->stats.objs[type];
616 #ifdef CONFIG_ZSMALLOC_STAT
618 static void __init zs_stat_init(void)
620 if (!debugfs_initialized()) {
621 pr_warn("debugfs not available, stat dir not created\n");
625 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
628 static void __exit zs_stat_exit(void)
630 debugfs_remove_recursive(zs_stat_root);
633 static unsigned long zs_can_compact(struct size_class *class);
635 static int zs_stats_size_show(struct seq_file *s, void *v)
638 struct zs_pool *pool = s->private;
639 struct size_class *class;
641 unsigned long class_almost_full, class_almost_empty;
642 unsigned long obj_allocated, obj_used, pages_used, freeable;
643 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
644 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
645 unsigned long total_freeable = 0;
647 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
648 "class", "size", "almost_full", "almost_empty",
649 "obj_allocated", "obj_used", "pages_used",
650 "pages_per_zspage", "freeable");
652 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
653 class = pool->size_class[i];
655 if (class->index != i)
658 spin_lock(&pool->lock);
659 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
660 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
661 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
662 obj_used = zs_stat_get(class, OBJ_USED);
663 freeable = zs_can_compact(class);
664 spin_unlock(&pool->lock);
666 objs_per_zspage = class->objs_per_zspage;
667 pages_used = obj_allocated / objs_per_zspage *
668 class->pages_per_zspage;
670 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
671 " %10lu %10lu %16d %8lu\n",
672 i, class->size, class_almost_full, class_almost_empty,
673 obj_allocated, obj_used, pages_used,
674 class->pages_per_zspage, freeable);
676 total_class_almost_full += class_almost_full;
677 total_class_almost_empty += class_almost_empty;
678 total_objs += obj_allocated;
679 total_used_objs += obj_used;
680 total_pages += pages_used;
681 total_freeable += freeable;
685 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
686 "Total", "", total_class_almost_full,
687 total_class_almost_empty, total_objs,
688 total_used_objs, total_pages, "", total_freeable);
692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704 &zs_stats_size_fops);
707 static void zs_pool_stat_destroy(struct zs_pool *pool)
709 debugfs_remove_recursive(pool->stat_dentry);
712 #else /* CONFIG_ZSMALLOC_STAT */
713 static void __init zs_stat_init(void)
717 static void __exit zs_stat_exit(void)
721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
725 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
732 * For each size class, zspages are divided into different groups
733 * depending on how "full" they are. This was done so that we could
734 * easily find empty or nearly empty zspages when we try to shrink
735 * the pool (not yet implemented). This function returns fullness
736 * status of the given page.
738 static enum fullness_group get_fullness_group(struct size_class *class,
739 struct zspage *zspage)
741 int inuse, objs_per_zspage;
742 enum fullness_group fg;
744 inuse = get_zspage_inuse(zspage);
745 objs_per_zspage = class->objs_per_zspage;
749 else if (inuse == objs_per_zspage)
751 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
752 fg = ZS_ALMOST_EMPTY;
760 * Each size class maintains various freelists and zspages are assigned
761 * to one of these freelists based on the number of live objects they
762 * have. This functions inserts the given zspage into the freelist
763 * identified by <class, fullness_group>.
765 static void insert_zspage(struct size_class *class,
766 struct zspage *zspage,
767 enum fullness_group fullness)
771 class_stat_inc(class, fullness, 1);
772 head = list_first_entry_or_null(&class->fullness_list[fullness],
773 struct zspage, list);
775 * We want to see more ZS_FULL pages and less almost empty/full.
776 * Put pages with higher ->inuse first.
778 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
779 list_add(&zspage->list, &head->list);
781 list_add(&zspage->list, &class->fullness_list[fullness]);
785 * This function removes the given zspage from the freelist identified
786 * by <class, fullness_group>.
788 static void remove_zspage(struct size_class *class,
789 struct zspage *zspage,
790 enum fullness_group fullness)
792 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
794 list_del_init(&zspage->list);
795 class_stat_dec(class, fullness, 1);
799 * Each size class maintains zspages in different fullness groups depending
800 * on the number of live objects they contain. When allocating or freeing
801 * objects, the fullness status of the page can change, say, from ALMOST_FULL
802 * to ALMOST_EMPTY when freeing an object. This function checks if such
803 * a status change has occurred for the given page and accordingly moves the
804 * page from the freelist of the old fullness group to that of the new
807 static enum fullness_group fix_fullness_group(struct size_class *class,
808 struct zspage *zspage)
811 enum fullness_group currfg, newfg;
813 get_zspage_mapping(zspage, &class_idx, &currfg);
814 newfg = get_fullness_group(class, zspage);
818 remove_zspage(class, zspage, currfg);
819 insert_zspage(class, zspage, newfg);
820 set_zspage_mapping(zspage, class_idx, newfg);
826 * We have to decide on how many pages to link together
827 * to form a zspage for each size class. This is important
828 * to reduce wastage due to unusable space left at end of
829 * each zspage which is given as:
830 * wastage = Zp % class_size
831 * usage = Zp - wastage
832 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
834 * For example, for size class of 3/8 * PAGE_SIZE, we should
835 * link together 3 PAGE_SIZE sized pages to form a zspage
836 * since then we can perfectly fit in 8 such objects.
838 static int get_pages_per_zspage(int class_size)
840 int i, max_usedpc = 0;
841 /* zspage order which gives maximum used size per KB */
842 int max_usedpc_order = 1;
844 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
848 zspage_size = i * PAGE_SIZE;
849 waste = zspage_size % class_size;
850 usedpc = (zspage_size - waste) * 100 / zspage_size;
852 if (usedpc > max_usedpc) {
854 max_usedpc_order = i;
858 return max_usedpc_order;
861 static struct zspage *get_zspage(struct page *page)
863 struct zspage *zspage = (struct zspage *)page_private(page);
865 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
869 static struct page *get_next_page(struct page *page)
871 struct zspage *zspage = get_zspage(page);
873 if (unlikely(ZsHugePage(zspage)))
876 return (struct page *)page->index;
880 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
881 * @obj: the encoded object value
882 * @page: page object resides in zspage
883 * @obj_idx: object index
885 static void obj_to_location(unsigned long obj, struct page **page,
886 unsigned int *obj_idx)
888 obj >>= OBJ_TAG_BITS;
889 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
890 *obj_idx = (obj & OBJ_INDEX_MASK);
893 static void obj_to_page(unsigned long obj, struct page **page)
895 obj >>= OBJ_TAG_BITS;
896 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
900 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
901 * @page: page object resides in zspage
902 * @obj_idx: object index
904 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
908 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
909 obj |= obj_idx & OBJ_INDEX_MASK;
910 obj <<= OBJ_TAG_BITS;
915 static unsigned long handle_to_obj(unsigned long handle)
917 return *(unsigned long *)handle;
920 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
923 unsigned long handle;
924 struct zspage *zspage = get_zspage(page);
926 if (unlikely(ZsHugePage(zspage))) {
927 VM_BUG_ON_PAGE(!is_first_page(page), page);
928 handle = page->index;
930 handle = *(unsigned long *)obj;
935 /* Clear all tags before returning the handle */
936 *phandle = handle & ~OBJ_TAG_MASK;
940 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
942 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
946 static bool obj_stores_deferred_handle(struct page *page, void *obj,
947 unsigned long *phandle)
949 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
953 static void reset_page(struct page *page)
955 __ClearPageMovable(page);
956 ClearPagePrivate(page);
957 set_page_private(page, 0);
958 page_mapcount_reset(page);
962 static int trylock_zspage(struct zspage *zspage)
964 struct page *cursor, *fail;
966 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967 get_next_page(cursor)) {
968 if (!trylock_page(cursor)) {
976 for (cursor = get_first_page(zspage); cursor != fail; cursor =
977 get_next_page(cursor))
984 static unsigned long find_deferred_handle_obj(struct size_class *class,
985 struct page *page, int *obj_idx);
988 * Free all the deferred handles whose objects are freed in zs_free.
990 static void free_handles(struct zs_pool *pool, struct size_class *class,
991 struct zspage *zspage)
994 struct page *page = get_first_page(zspage);
995 unsigned long handle;
998 handle = find_deferred_handle_obj(class, page, &obj_idx);
1000 page = get_next_page(page);
1007 cache_free_handle(pool, handle);
1012 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013 struct zspage *zspage) {}
1016 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017 struct zspage *zspage)
1019 struct page *page, *next;
1020 enum fullness_group fg;
1021 unsigned int class_idx;
1023 get_zspage_mapping(zspage, &class_idx, &fg);
1025 assert_spin_locked(&pool->lock);
1027 VM_BUG_ON(get_zspage_inuse(zspage));
1028 VM_BUG_ON(fg != ZS_EMPTY);
1030 /* Free all deferred handles from zs_free */
1031 free_handles(pool, class, zspage);
1033 next = page = get_first_page(zspage);
1035 VM_BUG_ON_PAGE(!PageLocked(page), page);
1036 next = get_next_page(page);
1039 dec_zone_page_state(page, NR_ZSPAGES);
1042 } while (page != NULL);
1044 cache_free_zspage(pool, zspage);
1046 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047 atomic_long_sub(class->pages_per_zspage,
1048 &pool->pages_allocated);
1051 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052 struct zspage *zspage)
1054 VM_BUG_ON(get_zspage_inuse(zspage));
1055 VM_BUG_ON(list_empty(&zspage->list));
1058 * Since zs_free couldn't be sleepable, this function cannot call
1059 * lock_page. The page locks trylock_zspage got will be released
1062 if (!trylock_zspage(zspage)) {
1063 kick_deferred_free(pool);
1067 remove_zspage(class, zspage, ZS_EMPTY);
1069 list_del(&zspage->lru);
1071 __free_zspage(pool, class, zspage);
1074 /* Initialize a newly allocated zspage */
1075 static void init_zspage(struct size_class *class, struct zspage *zspage)
1077 unsigned int freeobj = 1;
1078 unsigned long off = 0;
1079 struct page *page = get_first_page(zspage);
1082 struct page *next_page;
1083 struct link_free *link;
1086 set_first_obj_offset(page, off);
1088 vaddr = kmap_atomic(page);
1089 link = (struct link_free *)vaddr + off / sizeof(*link);
1091 while ((off += class->size) < PAGE_SIZE) {
1092 link->next = freeobj++ << OBJ_TAG_BITS;
1093 link += class->size / sizeof(*link);
1097 * We now come to the last (full or partial) object on this
1098 * page, which must point to the first object on the next
1101 next_page = get_next_page(page);
1103 link->next = freeobj++ << OBJ_TAG_BITS;
1106 * Reset OBJ_TAG_BITS bit to last link to tell
1107 * whether it's allocated object or not.
1109 link->next = -1UL << OBJ_TAG_BITS;
1111 kunmap_atomic(vaddr);
1117 INIT_LIST_HEAD(&zspage->lru);
1118 zspage->under_reclaim = false;
1121 set_freeobj(zspage, 0);
1124 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125 struct page *pages[])
1129 struct page *prev_page = NULL;
1130 int nr_pages = class->pages_per_zspage;
1133 * Allocate individual pages and link them together as:
1134 * 1. all pages are linked together using page->index
1135 * 2. each sub-page point to zspage using page->private
1137 * we set PG_private to identify the first page (i.e. no other sub-page
1138 * has this flag set).
1140 for (i = 0; i < nr_pages; i++) {
1142 set_page_private(page, (unsigned long)zspage);
1145 zspage->first_page = page;
1146 SetPagePrivate(page);
1147 if (unlikely(class->objs_per_zspage == 1 &&
1148 class->pages_per_zspage == 1))
1149 SetZsHugePage(zspage);
1151 prev_page->index = (unsigned long)page;
1158 * Allocate a zspage for the given size class
1160 static struct zspage *alloc_zspage(struct zs_pool *pool,
1161 struct size_class *class,
1165 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1171 zspage->magic = ZSPAGE_MAGIC;
1172 migrate_lock_init(zspage);
1174 for (i = 0; i < class->pages_per_zspage; i++) {
1177 page = alloc_page(gfp);
1180 dec_zone_page_state(pages[i], NR_ZSPAGES);
1181 __free_page(pages[i]);
1183 cache_free_zspage(pool, zspage);
1187 inc_zone_page_state(page, NR_ZSPAGES);
1191 create_page_chain(class, zspage, pages);
1192 init_zspage(class, zspage);
1193 zspage->pool = pool;
1198 static struct zspage *find_get_zspage(struct size_class *class)
1201 struct zspage *zspage;
1203 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204 zspage = list_first_entry_or_null(&class->fullness_list[i],
1205 struct zspage, list);
1213 static inline int __zs_cpu_up(struct mapping_area *area)
1216 * Make sure we don't leak memory if a cpu UP notification
1217 * and zs_init() race and both call zs_cpu_up() on the same cpu
1221 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1227 static inline void __zs_cpu_down(struct mapping_area *area)
1229 kfree(area->vm_buf);
1230 area->vm_buf = NULL;
1233 static void *__zs_map_object(struct mapping_area *area,
1234 struct page *pages[2], int off, int size)
1238 char *buf = area->vm_buf;
1240 /* disable page faults to match kmap_atomic() return conditions */
1241 pagefault_disable();
1243 /* no read fastpath */
1244 if (area->vm_mm == ZS_MM_WO)
1247 sizes[0] = PAGE_SIZE - off;
1248 sizes[1] = size - sizes[0];
1250 /* copy object to per-cpu buffer */
1251 addr = kmap_atomic(pages[0]);
1252 memcpy(buf, addr + off, sizes[0]);
1253 kunmap_atomic(addr);
1254 addr = kmap_atomic(pages[1]);
1255 memcpy(buf + sizes[0], addr, sizes[1]);
1256 kunmap_atomic(addr);
1258 return area->vm_buf;
1261 static void __zs_unmap_object(struct mapping_area *area,
1262 struct page *pages[2], int off, int size)
1268 /* no write fastpath */
1269 if (area->vm_mm == ZS_MM_RO)
1273 buf = buf + ZS_HANDLE_SIZE;
1274 size -= ZS_HANDLE_SIZE;
1275 off += ZS_HANDLE_SIZE;
1277 sizes[0] = PAGE_SIZE - off;
1278 sizes[1] = size - sizes[0];
1280 /* copy per-cpu buffer to object */
1281 addr = kmap_atomic(pages[0]);
1282 memcpy(addr + off, buf, sizes[0]);
1283 kunmap_atomic(addr);
1284 addr = kmap_atomic(pages[1]);
1285 memcpy(addr, buf + sizes[0], sizes[1]);
1286 kunmap_atomic(addr);
1289 /* enable page faults to match kunmap_atomic() return conditions */
1293 static int zs_cpu_prepare(unsigned int cpu)
1295 struct mapping_area *area;
1297 area = &per_cpu(zs_map_area, cpu);
1298 return __zs_cpu_up(area);
1301 static int zs_cpu_dead(unsigned int cpu)
1303 struct mapping_area *area;
1305 area = &per_cpu(zs_map_area, cpu);
1306 __zs_cpu_down(area);
1310 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311 int objs_per_zspage)
1313 if (prev->pages_per_zspage == pages_per_zspage &&
1314 prev->objs_per_zspage == objs_per_zspage)
1320 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1322 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1326 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327 * that hold objects of the provided size.
1328 * @pool: zsmalloc pool to use
1329 * @size: object size
1331 * Context: Any context.
1333 * Return: the index of the zsmalloc &size_class that hold objects of the
1336 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1338 struct size_class *class;
1340 class = pool->size_class[get_size_class_index(size)];
1342 return class->index;
1344 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1346 unsigned long zs_get_total_pages(struct zs_pool *pool)
1348 return atomic_long_read(&pool->pages_allocated);
1350 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1353 * zs_map_object - get address of allocated object from handle.
1354 * @pool: pool from which the object was allocated
1355 * @handle: handle returned from zs_malloc
1356 * @mm: mapping mode to use
1358 * Before using an object allocated from zs_malloc, it must be mapped using
1359 * this function. When done with the object, it must be unmapped using
1362 * Only one object can be mapped per cpu at a time. There is no protection
1363 * against nested mappings.
1365 * This function returns with preemption and page faults disabled.
1367 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1370 struct zspage *zspage;
1372 unsigned long obj, off;
1373 unsigned int obj_idx;
1375 struct size_class *class;
1376 struct mapping_area *area;
1377 struct page *pages[2];
1381 * Because we use per-cpu mapping areas shared among the
1382 * pools/users, we can't allow mapping in interrupt context
1383 * because it can corrupt another users mappings.
1385 BUG_ON(in_interrupt());
1387 /* It guarantees it can get zspage from handle safely */
1388 spin_lock(&pool->lock);
1389 obj = handle_to_obj(handle);
1390 obj_to_location(obj, &page, &obj_idx);
1391 zspage = get_zspage(page);
1395 * Move the zspage to front of pool's LRU.
1397 * Note that this is swap-specific, so by definition there are no ongoing
1398 * accesses to the memory while the page is swapped out that would make
1399 * it "hot". A new entry is hot, then ages to the tail until it gets either
1400 * written back or swaps back in.
1402 * Furthermore, map is also called during writeback. We must not put an
1403 * isolated page on the LRU mid-reclaim.
1405 * As a result, only update the LRU when the page is mapped for write
1406 * when it's first instantiated.
1408 * This is a deviation from the other backends, which perform this update
1409 * in the allocation function (zbud_alloc, z3fold_alloc).
1411 if (mm == ZS_MM_WO) {
1412 if (!list_empty(&zspage->lru))
1413 list_del(&zspage->lru);
1414 list_add(&zspage->lru, &pool->lru);
1419 * migration cannot move any zpages in this zspage. Here, pool->lock
1420 * is too heavy since callers would take some time until they calls
1421 * zs_unmap_object API so delegate the locking from class to zspage
1422 * which is smaller granularity.
1424 migrate_read_lock(zspage);
1425 spin_unlock(&pool->lock);
1427 class = zspage_class(pool, zspage);
1428 off = (class->size * obj_idx) & ~PAGE_MASK;
1430 local_lock(&zs_map_area.lock);
1431 area = this_cpu_ptr(&zs_map_area);
1433 if (off + class->size <= PAGE_SIZE) {
1434 /* this object is contained entirely within a page */
1435 area->vm_addr = kmap_atomic(page);
1436 ret = area->vm_addr + off;
1440 /* this object spans two pages */
1442 pages[1] = get_next_page(page);
1445 ret = __zs_map_object(area, pages, off, class->size);
1447 if (likely(!ZsHugePage(zspage)))
1448 ret += ZS_HANDLE_SIZE;
1452 EXPORT_SYMBOL_GPL(zs_map_object);
1454 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1456 struct zspage *zspage;
1458 unsigned long obj, off;
1459 unsigned int obj_idx;
1461 struct size_class *class;
1462 struct mapping_area *area;
1464 obj = handle_to_obj(handle);
1465 obj_to_location(obj, &page, &obj_idx);
1466 zspage = get_zspage(page);
1467 class = zspage_class(pool, zspage);
1468 off = (class->size * obj_idx) & ~PAGE_MASK;
1470 area = this_cpu_ptr(&zs_map_area);
1471 if (off + class->size <= PAGE_SIZE)
1472 kunmap_atomic(area->vm_addr);
1474 struct page *pages[2];
1477 pages[1] = get_next_page(page);
1480 __zs_unmap_object(area, pages, off, class->size);
1482 local_unlock(&zs_map_area.lock);
1484 migrate_read_unlock(zspage);
1486 EXPORT_SYMBOL_GPL(zs_unmap_object);
1489 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490 * zsmalloc &size_class.
1491 * @pool: zsmalloc pool to use
1493 * The function returns the size of the first huge class - any object of equal
1494 * or bigger size will be stored in zspage consisting of a single physical
1497 * Context: Any context.
1499 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1501 size_t zs_huge_class_size(struct zs_pool *pool)
1503 return huge_class_size;
1505 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1507 static unsigned long obj_malloc(struct zs_pool *pool,
1508 struct zspage *zspage, unsigned long handle)
1510 int i, nr_page, offset;
1512 struct link_free *link;
1513 struct size_class *class;
1515 struct page *m_page;
1516 unsigned long m_offset;
1519 class = pool->size_class[zspage->class];
1520 handle |= OBJ_ALLOCATED_TAG;
1521 obj = get_freeobj(zspage);
1523 offset = obj * class->size;
1524 nr_page = offset >> PAGE_SHIFT;
1525 m_offset = offset & ~PAGE_MASK;
1526 m_page = get_first_page(zspage);
1528 for (i = 0; i < nr_page; i++)
1529 m_page = get_next_page(m_page);
1531 vaddr = kmap_atomic(m_page);
1532 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534 if (likely(!ZsHugePage(zspage)))
1535 /* record handle in the header of allocated chunk */
1536 link->handle = handle;
1538 /* record handle to page->index */
1539 zspage->first_page->index = handle;
1541 kunmap_atomic(vaddr);
1542 mod_zspage_inuse(zspage, 1);
1544 obj = location_to_obj(m_page, obj);
1551 * zs_malloc - Allocate block of given size from pool.
1552 * @pool: pool to allocate from
1553 * @size: size of block to allocate
1554 * @gfp: gfp flags when allocating object
1556 * On success, handle to the allocated object is returned,
1557 * otherwise an ERR_PTR().
1558 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1560 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1562 unsigned long handle, obj;
1563 struct size_class *class;
1564 enum fullness_group newfg;
1565 struct zspage *zspage;
1567 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568 return (unsigned long)ERR_PTR(-EINVAL);
1570 handle = cache_alloc_handle(pool, gfp);
1572 return (unsigned long)ERR_PTR(-ENOMEM);
1574 /* extra space in chunk to keep the handle */
1575 size += ZS_HANDLE_SIZE;
1576 class = pool->size_class[get_size_class_index(size)];
1578 /* pool->lock effectively protects the zpage migration */
1579 spin_lock(&pool->lock);
1580 zspage = find_get_zspage(class);
1581 if (likely(zspage)) {
1582 obj = obj_malloc(pool, zspage, handle);
1583 /* Now move the zspage to another fullness group, if required */
1584 fix_fullness_group(class, zspage);
1585 record_obj(handle, obj);
1586 class_stat_inc(class, OBJ_USED, 1);
1587 spin_unlock(&pool->lock);
1592 spin_unlock(&pool->lock);
1594 zspage = alloc_zspage(pool, class, gfp);
1596 cache_free_handle(pool, handle);
1597 return (unsigned long)ERR_PTR(-ENOMEM);
1600 spin_lock(&pool->lock);
1601 obj = obj_malloc(pool, zspage, handle);
1602 newfg = get_fullness_group(class, zspage);
1603 insert_zspage(class, zspage, newfg);
1604 set_zspage_mapping(zspage, class->index, newfg);
1605 record_obj(handle, obj);
1606 atomic_long_add(class->pages_per_zspage,
1607 &pool->pages_allocated);
1608 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609 class_stat_inc(class, OBJ_USED, 1);
1611 /* We completely set up zspage so mark them as movable */
1612 SetZsPageMovable(pool, zspage);
1613 spin_unlock(&pool->lock);
1617 EXPORT_SYMBOL_GPL(zs_malloc);
1619 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1621 struct link_free *link;
1622 struct zspage *zspage;
1623 struct page *f_page;
1624 unsigned long f_offset;
1625 unsigned int f_objidx;
1628 obj_to_location(obj, &f_page, &f_objidx);
1629 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630 zspage = get_zspage(f_page);
1632 vaddr = kmap_atomic(f_page);
1633 link = (struct link_free *)(vaddr + f_offset);
1637 /* Stores the (deferred) handle in the object's header */
1638 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1639 *handle &= ~OBJ_ALLOCATED_TAG;
1641 if (likely(!ZsHugePage(zspage)))
1642 link->deferred_handle = *handle;
1644 f_page->index = *handle;
1647 /* Insert this object in containing zspage's freelist */
1648 if (likely(!ZsHugePage(zspage)))
1649 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1652 set_freeobj(zspage, f_objidx);
1655 kunmap_atomic(vaddr);
1656 mod_zspage_inuse(zspage, -1);
1659 void zs_free(struct zs_pool *pool, unsigned long handle)
1661 struct zspage *zspage;
1662 struct page *f_page;
1664 struct size_class *class;
1665 enum fullness_group fullness;
1667 if (IS_ERR_OR_NULL((void *)handle))
1671 * The pool->lock protects the race with zpage's migration
1672 * so it's safe to get the page from handle.
1674 spin_lock(&pool->lock);
1675 obj = handle_to_obj(handle);
1676 obj_to_page(obj, &f_page);
1677 zspage = get_zspage(f_page);
1678 class = zspage_class(pool, zspage);
1680 class_stat_dec(class, OBJ_USED, 1);
1683 if (zspage->under_reclaim) {
1685 * Reclaim needs the handles during writeback. It'll free
1686 * them along with the zspage when it's done with them.
1688 * Record current deferred handle in the object's header.
1690 obj_free(class->size, obj, &handle);
1691 spin_unlock(&pool->lock);
1695 obj_free(class->size, obj, NULL);
1697 fullness = fix_fullness_group(class, zspage);
1698 if (fullness == ZS_EMPTY)
1699 free_zspage(pool, class, zspage);
1701 spin_unlock(&pool->lock);
1702 cache_free_handle(pool, handle);
1704 EXPORT_SYMBOL_GPL(zs_free);
1706 static void zs_object_copy(struct size_class *class, unsigned long dst,
1709 struct page *s_page, *d_page;
1710 unsigned int s_objidx, d_objidx;
1711 unsigned long s_off, d_off;
1712 void *s_addr, *d_addr;
1713 int s_size, d_size, size;
1716 s_size = d_size = class->size;
1718 obj_to_location(src, &s_page, &s_objidx);
1719 obj_to_location(dst, &d_page, &d_objidx);
1721 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1724 if (s_off + class->size > PAGE_SIZE)
1725 s_size = PAGE_SIZE - s_off;
1727 if (d_off + class->size > PAGE_SIZE)
1728 d_size = PAGE_SIZE - d_off;
1730 s_addr = kmap_atomic(s_page);
1731 d_addr = kmap_atomic(d_page);
1734 size = min(s_size, d_size);
1735 memcpy(d_addr + d_off, s_addr + s_off, size);
1738 if (written == class->size)
1747 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748 * calls must occurs in reverse order of calls to kmap_atomic().
1749 * So, to call kunmap_atomic(s_addr) we should first call
1750 * kunmap_atomic(d_addr). For more details see
1751 * Documentation/mm/highmem.rst.
1753 if (s_off >= PAGE_SIZE) {
1754 kunmap_atomic(d_addr);
1755 kunmap_atomic(s_addr);
1756 s_page = get_next_page(s_page);
1757 s_addr = kmap_atomic(s_page);
1758 d_addr = kmap_atomic(d_page);
1759 s_size = class->size - written;
1763 if (d_off >= PAGE_SIZE) {
1764 kunmap_atomic(d_addr);
1765 d_page = get_next_page(d_page);
1766 d_addr = kmap_atomic(d_page);
1767 d_size = class->size - written;
1772 kunmap_atomic(d_addr);
1773 kunmap_atomic(s_addr);
1777 * Find object with a certain tag in zspage from index object and
1780 static unsigned long find_tagged_obj(struct size_class *class,
1781 struct page *page, int *obj_idx, int tag)
1783 unsigned int offset;
1784 int index = *obj_idx;
1785 unsigned long handle = 0;
1786 void *addr = kmap_atomic(page);
1788 offset = get_first_obj_offset(page);
1789 offset += class->size * index;
1791 while (offset < PAGE_SIZE) {
1792 if (obj_tagged(page, addr + offset, &handle, tag))
1795 offset += class->size;
1799 kunmap_atomic(addr);
1807 * Find alloced object in zspage from index object and
1810 static unsigned long find_alloced_obj(struct size_class *class,
1811 struct page *page, int *obj_idx)
1813 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1818 * Find object storing a deferred handle in header in zspage from index object
1819 * and return handle.
1821 static unsigned long find_deferred_handle_obj(struct size_class *class,
1822 struct page *page, int *obj_idx)
1824 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1828 struct zs_compact_control {
1829 /* Source spage for migration which could be a subpage of zspage */
1830 struct page *s_page;
1831 /* Destination page for migration which should be a first page
1833 struct page *d_page;
1834 /* Starting object index within @s_page which used for live object
1835 * in the subpage. */
1839 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840 struct zs_compact_control *cc)
1842 unsigned long used_obj, free_obj;
1843 unsigned long handle;
1844 struct page *s_page = cc->s_page;
1845 struct page *d_page = cc->d_page;
1846 int obj_idx = cc->obj_idx;
1850 handle = find_alloced_obj(class, s_page, &obj_idx);
1852 s_page = get_next_page(s_page);
1859 /* Stop if there is no more space */
1860 if (zspage_full(class, get_zspage(d_page))) {
1865 used_obj = handle_to_obj(handle);
1866 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867 zs_object_copy(class, free_obj, used_obj);
1869 record_obj(handle, free_obj);
1870 obj_free(class->size, used_obj, NULL);
1873 /* Remember last position in this iteration */
1874 cc->s_page = s_page;
1875 cc->obj_idx = obj_idx;
1880 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1883 struct zspage *zspage;
1884 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1887 fg[0] = ZS_ALMOST_FULL;
1888 fg[1] = ZS_ALMOST_EMPTY;
1891 for (i = 0; i < 2; i++) {
1892 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893 struct zspage, list);
1895 remove_zspage(class, zspage, fg[i]);
1904 * putback_zspage - add @zspage into right class's fullness list
1905 * @class: destination class
1906 * @zspage: target page
1908 * Return @zspage's fullness_group
1910 static enum fullness_group putback_zspage(struct size_class *class,
1911 struct zspage *zspage)
1913 enum fullness_group fullness;
1915 fullness = get_fullness_group(class, zspage);
1916 insert_zspage(class, zspage, fullness);
1917 set_zspage_mapping(zspage, class->index, fullness);
1922 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1924 * To prevent zspage destroy during migration, zspage freeing should
1925 * hold locks of all pages in the zspage.
1927 static void lock_zspage(struct zspage *zspage)
1929 struct page *curr_page, *page;
1932 * Pages we haven't locked yet can be migrated off the list while we're
1933 * trying to lock them, so we need to be careful and only attempt to
1934 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935 * may no longer belong to the zspage. This means that we may wait for
1936 * the wrong page to unlock, so we must take a reference to the page
1937 * prior to waiting for it to unlock outside migrate_read_lock().
1940 migrate_read_lock(zspage);
1941 page = get_first_page(zspage);
1942 if (trylock_page(page))
1945 migrate_read_unlock(zspage);
1946 wait_on_page_locked(page);
1951 while ((page = get_next_page(curr_page))) {
1952 if (trylock_page(page)) {
1956 migrate_read_unlock(zspage);
1957 wait_on_page_locked(page);
1959 migrate_read_lock(zspage);
1962 migrate_read_unlock(zspage);
1964 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1968 * Unlocks all the pages of the zspage.
1970 * pool->lock must be held before this function is called
1971 * to prevent the underlying pages from migrating.
1973 static void unlock_zspage(struct zspage *zspage)
1975 struct page *page = get_first_page(zspage);
1979 } while ((page = get_next_page(page)) != NULL);
1981 #endif /* CONFIG_ZPOOL */
1983 static void migrate_lock_init(struct zspage *zspage)
1985 rwlock_init(&zspage->lock);
1988 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1990 read_lock(&zspage->lock);
1993 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1995 read_unlock(&zspage->lock);
1998 #ifdef CONFIG_COMPACTION
1999 static void migrate_write_lock(struct zspage *zspage)
2001 write_lock(&zspage->lock);
2004 static void migrate_write_lock_nested(struct zspage *zspage)
2006 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2009 static void migrate_write_unlock(struct zspage *zspage)
2011 write_unlock(&zspage->lock);
2014 /* Number of isolated subpage for *page migration* in this zspage */
2015 static void inc_zspage_isolation(struct zspage *zspage)
2020 static void dec_zspage_isolation(struct zspage *zspage)
2022 VM_BUG_ON(zspage->isolated == 0);
2026 static const struct movable_operations zsmalloc_mops;
2028 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029 struct page *newpage, struct page *oldpage)
2032 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2035 page = get_first_page(zspage);
2037 if (page == oldpage)
2038 pages[idx] = newpage;
2042 } while ((page = get_next_page(page)) != NULL);
2044 create_page_chain(class, zspage, pages);
2045 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046 if (unlikely(ZsHugePage(zspage)))
2047 newpage->index = oldpage->index;
2048 __SetPageMovable(newpage, &zsmalloc_mops);
2051 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2053 struct zspage *zspage;
2056 * Page is locked so zspage couldn't be destroyed. For detail, look at
2057 * lock_zspage in free_zspage.
2059 VM_BUG_ON_PAGE(PageIsolated(page), page);
2061 zspage = get_zspage(page);
2062 migrate_write_lock(zspage);
2063 inc_zspage_isolation(zspage);
2064 migrate_write_unlock(zspage);
2069 static int zs_page_migrate(struct page *newpage, struct page *page,
2070 enum migrate_mode mode)
2072 struct zs_pool *pool;
2073 struct size_class *class;
2074 struct zspage *zspage;
2076 void *s_addr, *d_addr, *addr;
2077 unsigned int offset;
2078 unsigned long handle;
2079 unsigned long old_obj, new_obj;
2080 unsigned int obj_idx;
2083 * We cannot support the _NO_COPY case here, because copy needs to
2084 * happen under the zs lock, which does not work with
2085 * MIGRATE_SYNC_NO_COPY workflow.
2087 if (mode == MIGRATE_SYNC_NO_COPY)
2090 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2092 /* The page is locked, so this pointer must remain valid */
2093 zspage = get_zspage(page);
2094 pool = zspage->pool;
2097 * The pool's lock protects the race between zpage migration
2100 spin_lock(&pool->lock);
2101 class = zspage_class(pool, zspage);
2103 /* the migrate_write_lock protects zpage access via zs_map_object */
2104 migrate_write_lock(zspage);
2106 offset = get_first_obj_offset(page);
2107 s_addr = kmap_atomic(page);
2110 * Here, any user cannot access all objects in the zspage so let's move.
2112 d_addr = kmap_atomic(newpage);
2113 memcpy(d_addr, s_addr, PAGE_SIZE);
2114 kunmap_atomic(d_addr);
2116 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2117 addr += class->size) {
2118 if (obj_allocated(page, addr, &handle)) {
2120 old_obj = handle_to_obj(handle);
2121 obj_to_location(old_obj, &dummy, &obj_idx);
2122 new_obj = (unsigned long)location_to_obj(newpage,
2124 record_obj(handle, new_obj);
2127 kunmap_atomic(s_addr);
2129 replace_sub_page(class, zspage, newpage, page);
2131 * Since we complete the data copy and set up new zspage structure,
2132 * it's okay to release the pool's lock.
2134 spin_unlock(&pool->lock);
2135 dec_zspage_isolation(zspage);
2136 migrate_write_unlock(zspage);
2139 if (page_zone(newpage) != page_zone(page)) {
2140 dec_zone_page_state(page, NR_ZSPAGES);
2141 inc_zone_page_state(newpage, NR_ZSPAGES);
2147 return MIGRATEPAGE_SUCCESS;
2150 static void zs_page_putback(struct page *page)
2152 struct zspage *zspage;
2154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2156 zspage = get_zspage(page);
2157 migrate_write_lock(zspage);
2158 dec_zspage_isolation(zspage);
2159 migrate_write_unlock(zspage);
2162 static const struct movable_operations zsmalloc_mops = {
2163 .isolate_page = zs_page_isolate,
2164 .migrate_page = zs_page_migrate,
2165 .putback_page = zs_page_putback,
2169 * Caller should hold page_lock of all pages in the zspage
2170 * In here, we cannot use zspage meta data.
2172 static void async_free_zspage(struct work_struct *work)
2175 struct size_class *class;
2176 unsigned int class_idx;
2177 enum fullness_group fullness;
2178 struct zspage *zspage, *tmp;
2179 LIST_HEAD(free_pages);
2180 struct zs_pool *pool = container_of(work, struct zs_pool,
2183 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2184 class = pool->size_class[i];
2185 if (class->index != i)
2188 spin_lock(&pool->lock);
2189 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2190 spin_unlock(&pool->lock);
2193 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2194 list_del(&zspage->list);
2195 lock_zspage(zspage);
2197 get_zspage_mapping(zspage, &class_idx, &fullness);
2198 VM_BUG_ON(fullness != ZS_EMPTY);
2199 class = pool->size_class[class_idx];
2200 spin_lock(&pool->lock);
2202 list_del(&zspage->lru);
2204 __free_zspage(pool, class, zspage);
2205 spin_unlock(&pool->lock);
2209 static void kick_deferred_free(struct zs_pool *pool)
2211 schedule_work(&pool->free_work);
2214 static void zs_flush_migration(struct zs_pool *pool)
2216 flush_work(&pool->free_work);
2219 static void init_deferred_free(struct zs_pool *pool)
2221 INIT_WORK(&pool->free_work, async_free_zspage);
2224 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2226 struct page *page = get_first_page(zspage);
2229 WARN_ON(!trylock_page(page));
2230 __SetPageMovable(page, &zsmalloc_mops);
2232 } while ((page = get_next_page(page)) != NULL);
2235 static inline void zs_flush_migration(struct zs_pool *pool) { }
2240 * Based on the number of unused allocated objects calculate
2241 * and return the number of pages that we can free.
2243 static unsigned long zs_can_compact(struct size_class *class)
2245 unsigned long obj_wasted;
2246 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2247 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2249 if (obj_allocated <= obj_used)
2252 obj_wasted = obj_allocated - obj_used;
2253 obj_wasted /= class->objs_per_zspage;
2255 return obj_wasted * class->pages_per_zspage;
2258 static unsigned long __zs_compact(struct zs_pool *pool,
2259 struct size_class *class)
2261 struct zs_compact_control cc;
2262 struct zspage *src_zspage;
2263 struct zspage *dst_zspage = NULL;
2264 unsigned long pages_freed = 0;
2267 * protect the race between zpage migration and zs_free
2268 * as well as zpage allocation/free
2270 spin_lock(&pool->lock);
2271 while ((src_zspage = isolate_zspage(class, true))) {
2272 /* protect someone accessing the zspage(i.e., zs_map_object) */
2273 migrate_write_lock(src_zspage);
2275 if (!zs_can_compact(class))
2279 cc.s_page = get_first_page(src_zspage);
2281 while ((dst_zspage = isolate_zspage(class, false))) {
2282 migrate_write_lock_nested(dst_zspage);
2284 cc.d_page = get_first_page(dst_zspage);
2286 * If there is no more space in dst_page, resched
2287 * and see if anyone had allocated another zspage.
2289 if (!migrate_zspage(pool, class, &cc))
2292 putback_zspage(class, dst_zspage);
2293 migrate_write_unlock(dst_zspage);
2295 if (spin_is_contended(&pool->lock))
2299 /* Stop if we couldn't find slot */
2300 if (dst_zspage == NULL)
2303 putback_zspage(class, dst_zspage);
2304 migrate_write_unlock(dst_zspage);
2306 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2307 migrate_write_unlock(src_zspage);
2308 free_zspage(pool, class, src_zspage);
2309 pages_freed += class->pages_per_zspage;
2311 migrate_write_unlock(src_zspage);
2312 spin_unlock(&pool->lock);
2314 spin_lock(&pool->lock);
2318 putback_zspage(class, src_zspage);
2319 migrate_write_unlock(src_zspage);
2322 spin_unlock(&pool->lock);
2327 unsigned long zs_compact(struct zs_pool *pool)
2330 struct size_class *class;
2331 unsigned long pages_freed = 0;
2333 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2334 class = pool->size_class[i];
2335 if (class->index != i)
2337 pages_freed += __zs_compact(pool, class);
2339 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343 EXPORT_SYMBOL_GPL(zs_compact);
2345 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2347 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2349 EXPORT_SYMBOL_GPL(zs_pool_stats);
2351 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2352 struct shrink_control *sc)
2354 unsigned long pages_freed;
2355 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359 * Compact classes and calculate compaction delta.
2360 * Can run concurrently with a manually triggered
2361 * (by user) compaction.
2363 pages_freed = zs_compact(pool);
2365 return pages_freed ? pages_freed : SHRINK_STOP;
2368 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2369 struct shrink_control *sc)
2372 struct size_class *class;
2373 unsigned long pages_to_free = 0;
2374 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2377 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2378 class = pool->size_class[i];
2379 if (class->index != i)
2382 pages_to_free += zs_can_compact(class);
2385 return pages_to_free;
2388 static void zs_unregister_shrinker(struct zs_pool *pool)
2390 unregister_shrinker(&pool->shrinker);
2393 static int zs_register_shrinker(struct zs_pool *pool)
2395 pool->shrinker.scan_objects = zs_shrinker_scan;
2396 pool->shrinker.count_objects = zs_shrinker_count;
2397 pool->shrinker.batch = 0;
2398 pool->shrinker.seeks = DEFAULT_SEEKS;
2400 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2405 * zs_create_pool - Creates an allocation pool to work from.
2406 * @name: pool name to be created
2408 * This function must be called before anything when using
2409 * the zsmalloc allocator.
2411 * On success, a pointer to the newly created pool is returned,
2414 struct zs_pool *zs_create_pool(const char *name)
2417 struct zs_pool *pool;
2418 struct size_class *prev_class = NULL;
2420 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424 init_deferred_free(pool);
2425 spin_lock_init(&pool->lock);
2427 pool->name = kstrdup(name, GFP_KERNEL);
2431 if (create_cache(pool))
2435 * Iterate reversely, because, size of size_class that we want to use
2436 * for merging should be larger or equal to current size.
2438 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2440 int pages_per_zspage;
2441 int objs_per_zspage;
2442 struct size_class *class;
2445 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2446 if (size > ZS_MAX_ALLOC_SIZE)
2447 size = ZS_MAX_ALLOC_SIZE;
2448 pages_per_zspage = get_pages_per_zspage(size);
2449 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2452 * We iterate from biggest down to smallest classes,
2453 * so huge_class_size holds the size of the first huge
2454 * class. Any object bigger than or equal to that will
2455 * endup in the huge class.
2457 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2459 huge_class_size = size;
2461 * The object uses ZS_HANDLE_SIZE bytes to store the
2462 * handle. We need to subtract it, because zs_malloc()
2463 * unconditionally adds handle size before it performs
2464 * size class search - so object may be smaller than
2465 * huge class size, yet it still can end up in the huge
2466 * class because it grows by ZS_HANDLE_SIZE extra bytes
2467 * right before class lookup.
2469 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473 * size_class is used for normal zsmalloc operation such
2474 * as alloc/free for that size. Although it is natural that we
2475 * have one size_class for each size, there is a chance that we
2476 * can get more memory utilization if we use one size_class for
2477 * many different sizes whose size_class have same
2478 * characteristics. So, we makes size_class point to
2479 * previous size_class if possible.
2482 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2483 pool->size_class[i] = prev_class;
2488 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2494 class->pages_per_zspage = pages_per_zspage;
2495 class->objs_per_zspage = objs_per_zspage;
2496 pool->size_class[i] = class;
2497 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2499 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2504 /* debug only, don't abort if it fails */
2505 zs_pool_stat_create(pool, name);
2508 * Not critical since shrinker is only used to trigger internal
2509 * defragmentation of the pool which is pretty optional thing. If
2510 * registration fails we still can use the pool normally and user can
2511 * trigger compaction manually. Thus, ignore return code.
2513 zs_register_shrinker(pool);
2516 INIT_LIST_HEAD(&pool->lru);
2522 zs_destroy_pool(pool);
2525 EXPORT_SYMBOL_GPL(zs_create_pool);
2527 void zs_destroy_pool(struct zs_pool *pool)
2531 zs_unregister_shrinker(pool);
2532 zs_flush_migration(pool);
2533 zs_pool_stat_destroy(pool);
2535 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2537 struct size_class *class = pool->size_class[i];
2542 if (class->index != i)
2545 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2546 if (!list_empty(&class->fullness_list[fg])) {
2547 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2554 destroy_cache(pool);
2558 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2561 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2562 struct zspage *zspage)
2564 unsigned int obj_idx = 0;
2565 unsigned long handle, off = 0; /* off is within-page offset */
2566 struct page *page = get_first_page(zspage);
2567 struct link_free *prev_free = NULL;
2568 void *prev_page_vaddr = NULL;
2570 /* in case no free object found */
2571 set_freeobj(zspage, (unsigned int)(-1UL));
2574 void *vaddr = kmap_atomic(page);
2575 struct page *next_page;
2577 while (off < PAGE_SIZE) {
2578 void *obj_addr = vaddr + off;
2580 /* skip allocated object */
2581 if (obj_allocated(page, obj_addr, &handle)) {
2587 /* free deferred handle from reclaim attempt */
2588 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2589 cache_free_handle(pool, handle);
2592 prev_free->next = obj_idx << OBJ_TAG_BITS;
2593 else /* first free object found */
2594 set_freeobj(zspage, obj_idx);
2596 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2597 /* if last free object in a previous page, need to unmap */
2598 if (prev_page_vaddr) {
2599 kunmap_atomic(prev_page_vaddr);
2600 prev_page_vaddr = NULL;
2608 * Handle the last (full or partial) object on this page.
2610 next_page = get_next_page(page);
2612 if (!prev_free || prev_page_vaddr) {
2614 * There is no free object in this page, so we can safely
2617 kunmap_atomic(vaddr);
2619 /* update prev_page_vaddr since prev_free is on this page */
2620 prev_page_vaddr = vaddr;
2622 } else { /* this is the last page */
2625 * Reset OBJ_TAG_BITS bit to last link to tell
2626 * whether it's allocated object or not.
2628 prev_free->next = -1UL << OBJ_TAG_BITS;
2631 /* unmap previous page (if not done yet) */
2632 if (prev_page_vaddr) {
2633 kunmap_atomic(prev_page_vaddr);
2634 prev_page_vaddr = NULL;
2637 kunmap_atomic(vaddr);
2645 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2647 int i, obj_idx, ret = 0;
2648 unsigned long handle;
2649 struct zspage *zspage;
2651 enum fullness_group fullness;
2653 /* Lock LRU and fullness list */
2654 spin_lock(&pool->lock);
2655 if (list_empty(&pool->lru)) {
2656 spin_unlock(&pool->lock);
2660 for (i = 0; i < retries; i++) {
2661 struct size_class *class;
2663 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2664 list_del(&zspage->lru);
2666 /* zs_free may free objects, but not the zspage and handles */
2667 zspage->under_reclaim = true;
2669 class = zspage_class(pool, zspage);
2670 fullness = get_fullness_group(class, zspage);
2672 /* Lock out object allocations and object compaction */
2673 remove_zspage(class, zspage, fullness);
2675 spin_unlock(&pool->lock);
2678 /* Lock backing pages into place */
2679 lock_zspage(zspage);
2682 page = get_first_page(zspage);
2684 handle = find_alloced_obj(class, page, &obj_idx);
2686 page = get_next_page(page);
2694 * This will write the object and call zs_free.
2696 * zs_free will free the object, but the
2697 * under_reclaim flag prevents it from freeing
2698 * the zspage altogether. This is necessary so
2699 * that we can continue working with the
2700 * zspage potentially after the last object
2703 ret = pool->zpool_ops->evict(pool->zpool, handle);
2711 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2712 spin_lock(&pool->lock);
2713 zspage->under_reclaim = false;
2715 if (!get_zspage_inuse(zspage)) {
2717 * Fullness went stale as zs_free() won't touch it
2718 * while the page is removed from the pool. Fix it
2719 * up for the check in __free_zspage().
2721 zspage->fullness = ZS_EMPTY;
2723 __free_zspage(pool, class, zspage);
2724 spin_unlock(&pool->lock);
2729 * Eviction fails on one of the handles, so we need to restore zspage.
2730 * We need to rebuild its freelist (and free stored deferred handles),
2731 * put it back to the correct size class, and add it to the LRU list.
2733 restore_freelist(pool, class, zspage);
2734 putback_zspage(class, zspage);
2735 list_add(&zspage->lru, &pool->lru);
2736 unlock_zspage(zspage);
2739 spin_unlock(&pool->lock);
2742 #endif /* CONFIG_ZPOOL */
2744 static int __init zs_init(void)
2748 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2749 zs_cpu_prepare, zs_cpu_dead);
2754 zpool_register_driver(&zs_zpool_driver);
2765 static void __exit zs_exit(void)
2768 zpool_unregister_driver(&zs_zpool_driver);
2770 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2775 module_init(zs_init);
2776 module_exit(zs_exit);
2778 MODULE_LICENSE("Dual BSD/GPL");