]> Git Repo - linux.git/blob - fs/jbd2/journal.c
ext4: Do not iput inode under running transaction
[linux.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <[email protected]>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104                   unsigned int line, const char *fmt, ...)
105 {
106         struct va_format vaf;
107         va_list args;
108
109         if (level > jbd2_journal_enable_debug)
110                 return;
111         va_start(args, fmt);
112         vaf.fmt = fmt;
113         vaf.va = &args;
114         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115         va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123         if (!jbd2_journal_has_csum_v2or3_feature(j))
124                 return 1;
125
126         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131         __u32 csum;
132         __be32 old_csum;
133
134         old_csum = sb->s_checksum;
135         sb->s_checksum = 0;
136         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137         sb->s_checksum = old_csum;
138
139         return cpu_to_be32(csum);
140 }
141
142 /*
143  * Helper function used to manage commit timeouts
144  */
145
146 static void commit_timeout(struct timer_list *t)
147 {
148         journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150         wake_up_process(journal->j_task);
151 }
152
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168
169 static int kjournald2(void *arg)
170 {
171         journal_t *journal = arg;
172         transaction_t *transaction;
173
174         /*
175          * Set up an interval timer which can be used to trigger a commit wakeup
176          * after the commit interval expires
177          */
178         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180         set_freezable();
181
182         /* Record that the journal thread is running */
183         journal->j_task = current;
184         wake_up(&journal->j_wait_done_commit);
185
186         /*
187          * Make sure that no allocations from this kernel thread will ever
188          * recurse to the fs layer because we are responsible for the
189          * transaction commit and any fs involvement might get stuck waiting for
190          * the trasn. commit.
191          */
192         memalloc_nofs_save();
193
194         /*
195          * And now, wait forever for commit wakeup events.
196          */
197         write_lock(&journal->j_state_lock);
198
199 loop:
200         if (journal->j_flags & JBD2_UNMOUNT)
201                 goto end_loop;
202
203         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204                 journal->j_commit_sequence, journal->j_commit_request);
205
206         if (journal->j_commit_sequence != journal->j_commit_request) {
207                 jbd_debug(1, "OK, requests differ\n");
208                 write_unlock(&journal->j_state_lock);
209                 del_timer_sync(&journal->j_commit_timer);
210                 jbd2_journal_commit_transaction(journal);
211                 write_lock(&journal->j_state_lock);
212                 goto loop;
213         }
214
215         wake_up(&journal->j_wait_done_commit);
216         if (freezing(current)) {
217                 /*
218                  * The simpler the better. Flushing journal isn't a
219                  * good idea, because that depends on threads that may
220                  * be already stopped.
221                  */
222                 jbd_debug(1, "Now suspending kjournald2\n");
223                 write_unlock(&journal->j_state_lock);
224                 try_to_freeze();
225                 write_lock(&journal->j_state_lock);
226         } else {
227                 /*
228                  * We assume on resume that commits are already there,
229                  * so we don't sleep
230                  */
231                 DEFINE_WAIT(wait);
232                 int should_sleep = 1;
233
234                 prepare_to_wait(&journal->j_wait_commit, &wait,
235                                 TASK_INTERRUPTIBLE);
236                 if (journal->j_commit_sequence != journal->j_commit_request)
237                         should_sleep = 0;
238                 transaction = journal->j_running_transaction;
239                 if (transaction && time_after_eq(jiffies,
240                                                 transaction->t_expires))
241                         should_sleep = 0;
242                 if (journal->j_flags & JBD2_UNMOUNT)
243                         should_sleep = 0;
244                 if (should_sleep) {
245                         write_unlock(&journal->j_state_lock);
246                         schedule();
247                         write_lock(&journal->j_state_lock);
248                 }
249                 finish_wait(&journal->j_wait_commit, &wait);
250         }
251
252         jbd_debug(1, "kjournald2 wakes\n");
253
254         /*
255          * Were we woken up by a commit wakeup event?
256          */
257         transaction = journal->j_running_transaction;
258         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259                 journal->j_commit_request = transaction->t_tid;
260                 jbd_debug(1, "woke because of timeout\n");
261         }
262         goto loop;
263
264 end_loop:
265         del_timer_sync(&journal->j_commit_timer);
266         journal->j_task = NULL;
267         wake_up(&journal->j_wait_done_commit);
268         jbd_debug(1, "Journal thread exiting.\n");
269         write_unlock(&journal->j_state_lock);
270         return 0;
271 }
272
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275         struct task_struct *t;
276
277         t = kthread_run(kjournald2, journal, "jbd2/%s",
278                         journal->j_devname);
279         if (IS_ERR(t))
280                 return PTR_ERR(t);
281
282         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283         return 0;
284 }
285
286 static void journal_kill_thread(journal_t *journal)
287 {
288         write_lock(&journal->j_state_lock);
289         journal->j_flags |= JBD2_UNMOUNT;
290
291         while (journal->j_task) {
292                 write_unlock(&journal->j_state_lock);
293                 wake_up(&journal->j_wait_commit);
294                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295                 write_lock(&journal->j_state_lock);
296         }
297         write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336                                   struct journal_head  *jh_in,
337                                   struct buffer_head **bh_out,
338                                   sector_t blocknr)
339 {
340         int need_copy_out = 0;
341         int done_copy_out = 0;
342         int do_escape = 0;
343         char *mapped_data;
344         struct buffer_head *new_bh;
345         struct page *new_page;
346         unsigned int new_offset;
347         struct buffer_head *bh_in = jh2bh(jh_in);
348         journal_t *journal = transaction->t_journal;
349
350         /*
351          * The buffer really shouldn't be locked: only the current committing
352          * transaction is allowed to write it, so nobody else is allowed
353          * to do any IO.
354          *
355          * akpm: except if we're journalling data, and write() output is
356          * also part of a shared mapping, and another thread has
357          * decided to launch a writepage() against this buffer.
358          */
359         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363         /* keep subsequent assertions sane */
364         atomic_set(&new_bh->b_count, 1);
365
366         jbd_lock_bh_state(bh_in);
367 repeat:
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         if (jh_in->b_frozen_data) {
373                 done_copy_out = 1;
374                 new_page = virt_to_page(jh_in->b_frozen_data);
375                 new_offset = offset_in_page(jh_in->b_frozen_data);
376         } else {
377                 new_page = jh2bh(jh_in)->b_page;
378                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379         }
380
381         mapped_data = kmap_atomic(new_page);
382         /*
383          * Fire data frozen trigger if data already wasn't frozen.  Do this
384          * before checking for escaping, as the trigger may modify the magic
385          * offset.  If a copy-out happens afterwards, it will have the correct
386          * data in the buffer.
387          */
388         if (!done_copy_out)
389                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390                                            jh_in->b_triggers);
391
392         /*
393          * Check for escaping
394          */
395         if (*((__be32 *)(mapped_data + new_offset)) ==
396                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397                 need_copy_out = 1;
398                 do_escape = 1;
399         }
400         kunmap_atomic(mapped_data);
401
402         /*
403          * Do we need to do a data copy?
404          */
405         if (need_copy_out && !done_copy_out) {
406                 char *tmp;
407
408                 jbd_unlock_bh_state(bh_in);
409                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410                 if (!tmp) {
411                         brelse(new_bh);
412                         return -ENOMEM;
413                 }
414                 jbd_lock_bh_state(bh_in);
415                 if (jh_in->b_frozen_data) {
416                         jbd2_free(tmp, bh_in->b_size);
417                         goto repeat;
418                 }
419
420                 jh_in->b_frozen_data = tmp;
421                 mapped_data = kmap_atomic(new_page);
422                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423                 kunmap_atomic(mapped_data);
424
425                 new_page = virt_to_page(tmp);
426                 new_offset = offset_in_page(tmp);
427                 done_copy_out = 1;
428
429                 /*
430                  * This isn't strictly necessary, as we're using frozen
431                  * data for the escaping, but it keeps consistency with
432                  * b_frozen_data usage.
433                  */
434                 jh_in->b_frozen_triggers = jh_in->b_triggers;
435         }
436
437         /*
438          * Did we need to do an escaping?  Now we've done all the
439          * copying, we can finally do so.
440          */
441         if (do_escape) {
442                 mapped_data = kmap_atomic(new_page);
443                 *((unsigned int *)(mapped_data + new_offset)) = 0;
444                 kunmap_atomic(mapped_data);
445         }
446
447         set_bh_page(new_bh, new_page, new_offset);
448         new_bh->b_size = bh_in->b_size;
449         new_bh->b_bdev = journal->j_dev;
450         new_bh->b_blocknr = blocknr;
451         new_bh->b_private = bh_in;
452         set_buffer_mapped(new_bh);
453         set_buffer_dirty(new_bh);
454
455         *bh_out = new_bh;
456
457         /*
458          * The to-be-written buffer needs to get moved to the io queue,
459          * and the original buffer whose contents we are shadowing or
460          * copying is moved to the transaction's shadow queue.
461          */
462         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463         spin_lock(&journal->j_list_lock);
464         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465         spin_unlock(&journal->j_list_lock);
466         set_buffer_shadow(bh_in);
467         jbd_unlock_bh_state(bh_in);
468
469         return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483         /* Return if the txn has already requested to be committed */
484         if (journal->j_commit_request == target)
485                 return 0;
486
487         /*
488          * The only transaction we can possibly wait upon is the
489          * currently running transaction (if it exists).  Otherwise,
490          * the target tid must be an old one.
491          */
492         if (journal->j_running_transaction &&
493             journal->j_running_transaction->t_tid == target) {
494                 /*
495                  * We want a new commit: OK, mark the request and wakeup the
496                  * commit thread.  We do _not_ do the commit ourselves.
497                  */
498
499                 journal->j_commit_request = target;
500                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501                           journal->j_commit_request,
502                           journal->j_commit_sequence);
503                 journal->j_running_transaction->t_requested = jiffies;
504                 wake_up(&journal->j_wait_commit);
505                 return 1;
506         } else if (!tid_geq(journal->j_commit_request, target))
507                 /* This should never happen, but if it does, preserve
508                    the evidence before kjournald goes into a loop and
509                    increments j_commit_sequence beyond all recognition. */
510                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511                           journal->j_commit_request,
512                           journal->j_commit_sequence,
513                           target, journal->j_running_transaction ?
514                           journal->j_running_transaction->t_tid : 0);
515         return 0;
516 }
517
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520         int ret;
521
522         write_lock(&journal->j_state_lock);
523         ret = __jbd2_log_start_commit(journal, tid);
524         write_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537         transaction_t *transaction = NULL;
538         tid_t tid;
539         int need_to_start = 0, ret = 0;
540
541         read_lock(&journal->j_state_lock);
542         if (journal->j_running_transaction && !current->journal_info) {
543                 transaction = journal->j_running_transaction;
544                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545                         need_to_start = 1;
546         } else if (journal->j_committing_transaction)
547                 transaction = journal->j_committing_transaction;
548
549         if (!transaction) {
550                 /* Nothing to commit */
551                 read_unlock(&journal->j_state_lock);
552                 return 0;
553         }
554         tid = transaction->t_tid;
555         read_unlock(&journal->j_state_lock);
556         if (need_to_start)
557                 jbd2_log_start_commit(journal, tid);
558         ret = jbd2_log_wait_commit(journal, tid);
559         if (!ret)
560                 ret = 1;
561
562         return ret;
563 }
564
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575         int ret;
576
577         ret = __jbd2_journal_force_commit(journal);
578         return ret > 0;
579 }
580
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590         int ret;
591
592         J_ASSERT(!current->journal_info);
593         ret = __jbd2_journal_force_commit(journal);
594         if (ret > 0)
595                 ret = 0;
596         return ret;
597 }
598
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606         int ret = 0;
607
608         write_lock(&journal->j_state_lock);
609         if (journal->j_running_transaction) {
610                 tid_t tid = journal->j_running_transaction->t_tid;
611
612                 __jbd2_log_start_commit(journal, tid);
613                 /* There's a running transaction and we've just made sure
614                  * it's commit has been scheduled. */
615                 if (ptid)
616                         *ptid = tid;
617                 ret = 1;
618         } else if (journal->j_committing_transaction) {
619                 /*
620                  * If commit has been started, then we have to wait for
621                  * completion of that transaction.
622                  */
623                 if (ptid)
624                         *ptid = journal->j_committing_transaction->t_tid;
625                 ret = 1;
626         }
627         write_unlock(&journal->j_state_lock);
628         return ret;
629 }
630
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639         int ret = 0;
640         transaction_t *commit_trans;
641
642         if (!(journal->j_flags & JBD2_BARRIER))
643                 return 0;
644         read_lock(&journal->j_state_lock);
645         /* Transaction already committed? */
646         if (tid_geq(journal->j_commit_sequence, tid))
647                 goto out;
648         commit_trans = journal->j_committing_transaction;
649         if (!commit_trans || commit_trans->t_tid != tid) {
650                 ret = 1;
651                 goto out;
652         }
653         /*
654          * Transaction is being committed and we already proceeded to
655          * submitting a flush to fs partition?
656          */
657         if (journal->j_fs_dev != journal->j_dev) {
658                 if (!commit_trans->t_need_data_flush ||
659                     commit_trans->t_state >= T_COMMIT_DFLUSH)
660                         goto out;
661         } else {
662                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663                         goto out;
664         }
665         ret = 1;
666 out:
667         read_unlock(&journal->j_state_lock);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678         int err = 0;
679
680         read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682         /*
683          * Some callers make sure transaction is already committing and in that
684          * case we cannot block on open handles anymore. So don't warn in that
685          * case.
686          */
687         if (tid_gt(tid, journal->j_commit_sequence) &&
688             (!journal->j_committing_transaction ||
689              journal->j_committing_transaction->t_tid != tid)) {
690                 read_unlock(&journal->j_state_lock);
691                 jbd2_might_wait_for_commit(journal);
692                 read_lock(&journal->j_state_lock);
693         }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%u, tid=%u\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721         int ret = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid)
726                 ret = 0;
727         if (journal->j_committing_transaction &&
728             journal->j_committing_transaction->t_tid == tid)
729                 ret = 0;
730         read_unlock(&journal->j_state_lock);
731         return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744         int     need_to_wait = 1;
745
746         read_lock(&journal->j_state_lock);
747         if (journal->j_running_transaction &&
748             journal->j_running_transaction->t_tid == tid) {
749                 if (journal->j_commit_request != tid) {
750                         /* transaction not yet started, so request it */
751                         read_unlock(&journal->j_state_lock);
752                         jbd2_log_start_commit(journal, tid);
753                         goto wait_commit;
754                 }
755         } else if (!(journal->j_committing_transaction &&
756                      journal->j_committing_transaction->t_tid == tid))
757                 need_to_wait = 0;
758         read_unlock(&journal->j_state_lock);
759         if (!need_to_wait)
760                 return 0;
761 wait_commit:
762         return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767  * Log buffer allocation routines:
768  */
769
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772         unsigned long blocknr;
773
774         write_lock(&journal->j_state_lock);
775         J_ASSERT(journal->j_free > 1);
776
777         blocknr = journal->j_head;
778         journal->j_head++;
779         journal->j_free--;
780         if (journal->j_head == journal->j_last)
781                 journal->j_head = journal->j_first;
782         write_unlock(&journal->j_state_lock);
783         return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794                  unsigned long long *retp)
795 {
796         int err = 0;
797         unsigned long long ret;
798
799         if (journal->j_inode) {
800                 ret = bmap(journal->j_inode, blocknr);
801                 if (ret)
802                         *retp = ret;
803                 else {
804                         printk(KERN_ALERT "%s: journal block not found "
805                                         "at offset %lu on %s\n",
806                                __func__, blocknr, journal->j_devname);
807                         err = -EIO;
808                         __journal_abort_soft(journal, err);
809                 }
810         } else {
811                 *retp = blocknr; /* +journal->j_blk_offset */
812         }
813         return err;
814 }
815
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829         journal_t *journal = transaction->t_journal;
830         struct buffer_head *bh;
831         unsigned long long blocknr;
832         journal_header_t *header;
833         int err;
834
835         err = jbd2_journal_next_log_block(journal, &blocknr);
836
837         if (err)
838                 return NULL;
839
840         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841         if (!bh)
842                 return NULL;
843         lock_buffer(bh);
844         memset(bh->b_data, 0, journal->j_blocksize);
845         header = (journal_header_t *)bh->b_data;
846         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847         header->h_blocktype = cpu_to_be32(type);
848         header->h_sequence = cpu_to_be32(transaction->t_tid);
849         set_buffer_uptodate(bh);
850         unlock_buffer(bh);
851         BUFFER_TRACE(bh, "return this buffer");
852         return bh;
853 }
854
855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
856 {
857         struct jbd2_journal_block_tail *tail;
858         __u32 csum;
859
860         if (!jbd2_journal_has_csum_v2or3(j))
861                 return;
862
863         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864                         sizeof(struct jbd2_journal_block_tail));
865         tail->t_checksum = 0;
866         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867         tail->t_checksum = cpu_to_be32(csum);
868 }
869
870 /*
871  * Return tid of the oldest transaction in the journal and block in the journal
872  * where the transaction starts.
873  *
874  * If the journal is now empty, return which will be the next transaction ID
875  * we will write and where will that transaction start.
876  *
877  * The return value is 0 if journal tail cannot be pushed any further, 1 if
878  * it can.
879  */
880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881                               unsigned long *block)
882 {
883         transaction_t *transaction;
884         int ret;
885
886         read_lock(&journal->j_state_lock);
887         spin_lock(&journal->j_list_lock);
888         transaction = journal->j_checkpoint_transactions;
889         if (transaction) {
890                 *tid = transaction->t_tid;
891                 *block = transaction->t_log_start;
892         } else if ((transaction = journal->j_committing_transaction) != NULL) {
893                 *tid = transaction->t_tid;
894                 *block = transaction->t_log_start;
895         } else if ((transaction = journal->j_running_transaction) != NULL) {
896                 *tid = transaction->t_tid;
897                 *block = journal->j_head;
898         } else {
899                 *tid = journal->j_transaction_sequence;
900                 *block = journal->j_head;
901         }
902         ret = tid_gt(*tid, journal->j_tail_sequence);
903         spin_unlock(&journal->j_list_lock);
904         read_unlock(&journal->j_state_lock);
905
906         return ret;
907 }
908
909 /*
910  * Update information in journal structure and in on disk journal superblock
911  * about log tail. This function does not check whether information passed in
912  * really pushes log tail further. It's responsibility of the caller to make
913  * sure provided log tail information is valid (e.g. by holding
914  * j_checkpoint_mutex all the time between computing log tail and calling this
915  * function as is the case with jbd2_cleanup_journal_tail()).
916  *
917  * Requires j_checkpoint_mutex
918  */
919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
920 {
921         unsigned long freed;
922         int ret;
923
924         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
925
926         /*
927          * We cannot afford for write to remain in drive's caches since as
928          * soon as we update j_tail, next transaction can start reusing journal
929          * space and if we lose sb update during power failure we'd replay
930          * old transaction with possibly newly overwritten data.
931          */
932         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933                                               REQ_SYNC | REQ_FUA);
934         if (ret)
935                 goto out;
936
937         write_lock(&journal->j_state_lock);
938         freed = block - journal->j_tail;
939         if (block < journal->j_tail)
940                 freed += journal->j_last - journal->j_first;
941
942         trace_jbd2_update_log_tail(journal, tid, block, freed);
943         jbd_debug(1,
944                   "Cleaning journal tail from %u to %u (offset %lu), "
945                   "freeing %lu\n",
946                   journal->j_tail_sequence, tid, block, freed);
947
948         journal->j_free += freed;
949         journal->j_tail_sequence = tid;
950         journal->j_tail = block;
951         write_unlock(&journal->j_state_lock);
952
953 out:
954         return ret;
955 }
956
957 /*
958  * This is a variation of __jbd2_update_log_tail which checks for validity of
959  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960  * with other threads updating log tail.
961  */
962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
963 {
964         mutex_lock_io(&journal->j_checkpoint_mutex);
965         if (tid_gt(tid, journal->j_tail_sequence))
966                 __jbd2_update_log_tail(journal, tid, block);
967         mutex_unlock(&journal->j_checkpoint_mutex);
968 }
969
970 struct jbd2_stats_proc_session {
971         journal_t *journal;
972         struct transaction_stats_s *stats;
973         int start;
974         int max;
975 };
976
977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
978 {
979         return *pos ? NULL : SEQ_START_TOKEN;
980 }
981
982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
983 {
984         return NULL;
985 }
986
987 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
988 {
989         struct jbd2_stats_proc_session *s = seq->private;
990
991         if (v != SEQ_START_TOKEN)
992                 return 0;
993         seq_printf(seq, "%lu transactions (%lu requested), "
994                    "each up to %u blocks\n",
995                    s->stats->ts_tid, s->stats->ts_requested,
996                    s->journal->j_max_transaction_buffers);
997         if (s->stats->ts_tid == 0)
998                 return 0;
999         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1000             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1001         seq_printf(seq, "  %ums request delay\n",
1002             (s->stats->ts_requested == 0) ? 0 :
1003             jiffies_to_msecs(s->stats->run.rs_request_delay /
1004                              s->stats->ts_requested));
1005         seq_printf(seq, "  %ums running transaction\n",
1006             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1007         seq_printf(seq, "  %ums transaction was being locked\n",
1008             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1010             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1011         seq_printf(seq, "  %ums logging transaction\n",
1012             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1013         seq_printf(seq, "  %lluus average transaction commit time\n",
1014                    div_u64(s->journal->j_average_commit_time, 1000));
1015         seq_printf(seq, "  %lu handles per transaction\n",
1016             s->stats->run.rs_handle_count / s->stats->ts_tid);
1017         seq_printf(seq, "  %lu blocks per transaction\n",
1018             s->stats->run.rs_blocks / s->stats->ts_tid);
1019         seq_printf(seq, "  %lu logged blocks per transaction\n",
1020             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1021         return 0;
1022 }
1023
1024 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1025 {
1026 }
1027
1028 static const struct seq_operations jbd2_seq_info_ops = {
1029         .start  = jbd2_seq_info_start,
1030         .next   = jbd2_seq_info_next,
1031         .stop   = jbd2_seq_info_stop,
1032         .show   = jbd2_seq_info_show,
1033 };
1034
1035 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1036 {
1037         journal_t *journal = PDE_DATA(inode);
1038         struct jbd2_stats_proc_session *s;
1039         int rc, size;
1040
1041         s = kmalloc(sizeof(*s), GFP_KERNEL);
1042         if (s == NULL)
1043                 return -ENOMEM;
1044         size = sizeof(struct transaction_stats_s);
1045         s->stats = kmalloc(size, GFP_KERNEL);
1046         if (s->stats == NULL) {
1047                 kfree(s);
1048                 return -ENOMEM;
1049         }
1050         spin_lock(&journal->j_history_lock);
1051         memcpy(s->stats, &journal->j_stats, size);
1052         s->journal = journal;
1053         spin_unlock(&journal->j_history_lock);
1054
1055         rc = seq_open(file, &jbd2_seq_info_ops);
1056         if (rc == 0) {
1057                 struct seq_file *m = file->private_data;
1058                 m->private = s;
1059         } else {
1060                 kfree(s->stats);
1061                 kfree(s);
1062         }
1063         return rc;
1064
1065 }
1066
1067 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1068 {
1069         struct seq_file *seq = file->private_data;
1070         struct jbd2_stats_proc_session *s = seq->private;
1071         kfree(s->stats);
1072         kfree(s);
1073         return seq_release(inode, file);
1074 }
1075
1076 static const struct file_operations jbd2_seq_info_fops = {
1077         .owner          = THIS_MODULE,
1078         .open           = jbd2_seq_info_open,
1079         .read           = seq_read,
1080         .llseek         = seq_lseek,
1081         .release        = jbd2_seq_info_release,
1082 };
1083
1084 static struct proc_dir_entry *proc_jbd2_stats;
1085
1086 static void jbd2_stats_proc_init(journal_t *journal)
1087 {
1088         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1089         if (journal->j_proc_entry) {
1090                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1091                                  &jbd2_seq_info_fops, journal);
1092         }
1093 }
1094
1095 static void jbd2_stats_proc_exit(journal_t *journal)
1096 {
1097         remove_proc_entry("info", journal->j_proc_entry);
1098         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1099 }
1100
1101 /* Minimum size of descriptor tag */
1102 static int jbd2_min_tag_size(void)
1103 {
1104         /*
1105          * Tag with 32-bit block numbers does not use last four bytes of the
1106          * structure
1107          */
1108         return sizeof(journal_block_tag_t) - 4;
1109 }
1110
1111 /*
1112  * Management for journal control blocks: functions to create and
1113  * destroy journal_t structures, and to initialise and read existing
1114  * journal blocks from disk.  */
1115
1116 /* First: create and setup a journal_t object in memory.  We initialise
1117  * very few fields yet: that has to wait until we have created the
1118  * journal structures from from scratch, or loaded them from disk. */
1119
1120 static journal_t *journal_init_common(struct block_device *bdev,
1121                         struct block_device *fs_dev,
1122                         unsigned long long start, int len, int blocksize)
1123 {
1124         static struct lock_class_key jbd2_trans_commit_key;
1125         journal_t *journal;
1126         int err;
1127         struct buffer_head *bh;
1128         int n;
1129
1130         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1131         if (!journal)
1132                 return NULL;
1133
1134         init_waitqueue_head(&journal->j_wait_transaction_locked);
1135         init_waitqueue_head(&journal->j_wait_done_commit);
1136         init_waitqueue_head(&journal->j_wait_commit);
1137         init_waitqueue_head(&journal->j_wait_updates);
1138         init_waitqueue_head(&journal->j_wait_reserved);
1139         mutex_init(&journal->j_barrier);
1140         mutex_init(&journal->j_checkpoint_mutex);
1141         spin_lock_init(&journal->j_revoke_lock);
1142         spin_lock_init(&journal->j_list_lock);
1143         rwlock_init(&journal->j_state_lock);
1144
1145         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1146         journal->j_min_batch_time = 0;
1147         journal->j_max_batch_time = 15000; /* 15ms */
1148         atomic_set(&journal->j_reserved_credits, 0);
1149
1150         /* The journal is marked for error until we succeed with recovery! */
1151         journal->j_flags = JBD2_ABORT;
1152
1153         /* Set up a default-sized revoke table for the new mount. */
1154         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1155         if (err)
1156                 goto err_cleanup;
1157
1158         spin_lock_init(&journal->j_history_lock);
1159
1160         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1161                          &jbd2_trans_commit_key, 0);
1162
1163         /* journal descriptor can store up to n blocks -bzzz */
1164         journal->j_blocksize = blocksize;
1165         journal->j_dev = bdev;
1166         journal->j_fs_dev = fs_dev;
1167         journal->j_blk_offset = start;
1168         journal->j_maxlen = len;
1169         /* We need enough buffers to write out full descriptor block. */
1170         n = journal->j_blocksize / jbd2_min_tag_size();
1171         journal->j_wbufsize = n;
1172         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1173                                         GFP_KERNEL);
1174         if (!journal->j_wbuf)
1175                 goto err_cleanup;
1176
1177         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1178         if (!bh) {
1179                 pr_err("%s: Cannot get buffer for journal superblock\n",
1180                         __func__);
1181                 goto err_cleanup;
1182         }
1183         journal->j_sb_buffer = bh;
1184         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1185
1186         return journal;
1187
1188 err_cleanup:
1189         kfree(journal->j_wbuf);
1190         jbd2_journal_destroy_revoke(journal);
1191         kfree(journal);
1192         return NULL;
1193 }
1194
1195 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1196  *
1197  * Create a journal structure assigned some fixed set of disk blocks to
1198  * the journal.  We don't actually touch those disk blocks yet, but we
1199  * need to set up all of the mapping information to tell the journaling
1200  * system where the journal blocks are.
1201  *
1202  */
1203
1204 /**
1205  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1206  *  @bdev: Block device on which to create the journal
1207  *  @fs_dev: Device which hold journalled filesystem for this journal.
1208  *  @start: Block nr Start of journal.
1209  *  @len:  Length of the journal in blocks.
1210  *  @blocksize: blocksize of journalling device
1211  *
1212  *  Returns: a newly created journal_t *
1213  *
1214  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1215  *  range of blocks on an arbitrary block device.
1216  *
1217  */
1218 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1219                         struct block_device *fs_dev,
1220                         unsigned long long start, int len, int blocksize)
1221 {
1222         journal_t *journal;
1223
1224         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1225         if (!journal)
1226                 return NULL;
1227
1228         bdevname(journal->j_dev, journal->j_devname);
1229         strreplace(journal->j_devname, '/', '!');
1230         jbd2_stats_proc_init(journal);
1231
1232         return journal;
1233 }
1234
1235 /**
1236  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1237  *  @inode: An inode to create the journal in
1238  *
1239  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1240  * the journal.  The inode must exist already, must support bmap() and
1241  * must have all data blocks preallocated.
1242  */
1243 journal_t *jbd2_journal_init_inode(struct inode *inode)
1244 {
1245         journal_t *journal;
1246         char *p;
1247         unsigned long long blocknr;
1248
1249         blocknr = bmap(inode, 0);
1250         if (!blocknr) {
1251                 pr_err("%s: Cannot locate journal superblock\n",
1252                         __func__);
1253                 return NULL;
1254         }
1255
1256         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1257                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1258                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1259
1260         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1261                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1262                         inode->i_sb->s_blocksize);
1263         if (!journal)
1264                 return NULL;
1265
1266         journal->j_inode = inode;
1267         bdevname(journal->j_dev, journal->j_devname);
1268         p = strreplace(journal->j_devname, '/', '!');
1269         sprintf(p, "-%lu", journal->j_inode->i_ino);
1270         jbd2_stats_proc_init(journal);
1271
1272         return journal;
1273 }
1274
1275 /*
1276  * If the journal init or create aborts, we need to mark the journal
1277  * superblock as being NULL to prevent the journal destroy from writing
1278  * back a bogus superblock.
1279  */
1280 static void journal_fail_superblock (journal_t *journal)
1281 {
1282         struct buffer_head *bh = journal->j_sb_buffer;
1283         brelse(bh);
1284         journal->j_sb_buffer = NULL;
1285 }
1286
1287 /*
1288  * Given a journal_t structure, initialise the various fields for
1289  * startup of a new journaling session.  We use this both when creating
1290  * a journal, and after recovering an old journal to reset it for
1291  * subsequent use.
1292  */
1293
1294 static int journal_reset(journal_t *journal)
1295 {
1296         journal_superblock_t *sb = journal->j_superblock;
1297         unsigned long long first, last;
1298
1299         first = be32_to_cpu(sb->s_first);
1300         last = be32_to_cpu(sb->s_maxlen);
1301         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1302                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1303                        first, last);
1304                 journal_fail_superblock(journal);
1305                 return -EINVAL;
1306         }
1307
1308         journal->j_first = first;
1309         journal->j_last = last;
1310
1311         journal->j_head = first;
1312         journal->j_tail = first;
1313         journal->j_free = last - first;
1314
1315         journal->j_tail_sequence = journal->j_transaction_sequence;
1316         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1317         journal->j_commit_request = journal->j_commit_sequence;
1318
1319         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1320
1321         /*
1322          * As a special case, if the on-disk copy is already marked as needing
1323          * no recovery (s_start == 0), then we can safely defer the superblock
1324          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1325          * attempting a write to a potential-readonly device.
1326          */
1327         if (sb->s_start == 0) {
1328                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1329                         "(start %ld, seq %u, errno %d)\n",
1330                         journal->j_tail, journal->j_tail_sequence,
1331                         journal->j_errno);
1332                 journal->j_flags |= JBD2_FLUSHED;
1333         } else {
1334                 /* Lock here to make assertions happy... */
1335                 mutex_lock_io(&journal->j_checkpoint_mutex);
1336                 /*
1337                  * Update log tail information. We use REQ_FUA since new
1338                  * transaction will start reusing journal space and so we
1339                  * must make sure information about current log tail is on
1340                  * disk before that.
1341                  */
1342                 jbd2_journal_update_sb_log_tail(journal,
1343                                                 journal->j_tail_sequence,
1344                                                 journal->j_tail,
1345                                                 REQ_SYNC | REQ_FUA);
1346                 mutex_unlock(&journal->j_checkpoint_mutex);
1347         }
1348         return jbd2_journal_start_thread(journal);
1349 }
1350
1351 /*
1352  * This function expects that the caller will have locked the journal
1353  * buffer head, and will return with it unlocked
1354  */
1355 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1356 {
1357         struct buffer_head *bh = journal->j_sb_buffer;
1358         journal_superblock_t *sb = journal->j_superblock;
1359         int ret;
1360
1361         /* Buffer got discarded which means block device got invalidated */
1362         if (!buffer_mapped(bh))
1363                 return -EIO;
1364
1365         trace_jbd2_write_superblock(journal, write_flags);
1366         if (!(journal->j_flags & JBD2_BARRIER))
1367                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1368         if (buffer_write_io_error(bh)) {
1369                 /*
1370                  * Oh, dear.  A previous attempt to write the journal
1371                  * superblock failed.  This could happen because the
1372                  * USB device was yanked out.  Or it could happen to
1373                  * be a transient write error and maybe the block will
1374                  * be remapped.  Nothing we can do but to retry the
1375                  * write and hope for the best.
1376                  */
1377                 printk(KERN_ERR "JBD2: previous I/O error detected "
1378                        "for journal superblock update for %s.\n",
1379                        journal->j_devname);
1380                 clear_buffer_write_io_error(bh);
1381                 set_buffer_uptodate(bh);
1382         }
1383         if (jbd2_journal_has_csum_v2or3(journal))
1384                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1385         get_bh(bh);
1386         bh->b_end_io = end_buffer_write_sync;
1387         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1388         wait_on_buffer(bh);
1389         if (buffer_write_io_error(bh)) {
1390                 clear_buffer_write_io_error(bh);
1391                 set_buffer_uptodate(bh);
1392                 ret = -EIO;
1393         }
1394         if (ret) {
1395                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1396                        "journal superblock for %s.\n", ret,
1397                        journal->j_devname);
1398                 jbd2_journal_abort(journal, ret);
1399         }
1400
1401         return ret;
1402 }
1403
1404 /**
1405  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1406  * @journal: The journal to update.
1407  * @tail_tid: TID of the new transaction at the tail of the log
1408  * @tail_block: The first block of the transaction at the tail of the log
1409  * @write_op: With which operation should we write the journal sb
1410  *
1411  * Update a journal's superblock information about log tail and write it to
1412  * disk, waiting for the IO to complete.
1413  */
1414 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1415                                      unsigned long tail_block, int write_op)
1416 {
1417         journal_superblock_t *sb = journal->j_superblock;
1418         int ret;
1419
1420         if (is_journal_aborted(journal))
1421                 return -EIO;
1422
1423         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425                   tail_block, tail_tid);
1426
1427         lock_buffer(journal->j_sb_buffer);
1428         sb->s_sequence = cpu_to_be32(tail_tid);
1429         sb->s_start    = cpu_to_be32(tail_block);
1430
1431         ret = jbd2_write_superblock(journal, write_op);
1432         if (ret)
1433                 goto out;
1434
1435         /* Log is no longer empty */
1436         write_lock(&journal->j_state_lock);
1437         WARN_ON(!sb->s_sequence);
1438         journal->j_flags &= ~JBD2_FLUSHED;
1439         write_unlock(&journal->j_state_lock);
1440
1441 out:
1442         return ret;
1443 }
1444
1445 /**
1446  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1447  * @journal: The journal to update.
1448  * @write_op: With which operation should we write the journal sb
1449  *
1450  * Update a journal's dynamic superblock fields to show that journal is empty.
1451  * Write updated superblock to disk waiting for IO to complete.
1452  */
1453 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1454 {
1455         journal_superblock_t *sb = journal->j_superblock;
1456
1457         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1458         lock_buffer(journal->j_sb_buffer);
1459         if (sb->s_start == 0) {         /* Is it already empty? */
1460                 unlock_buffer(journal->j_sb_buffer);
1461                 return;
1462         }
1463
1464         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1465                   journal->j_tail_sequence);
1466
1467         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1468         sb->s_start    = cpu_to_be32(0);
1469
1470         jbd2_write_superblock(journal, write_op);
1471
1472         /* Log is no longer empty */
1473         write_lock(&journal->j_state_lock);
1474         journal->j_flags |= JBD2_FLUSHED;
1475         write_unlock(&journal->j_state_lock);
1476 }
1477
1478
1479 /**
1480  * jbd2_journal_update_sb_errno() - Update error in the journal.
1481  * @journal: The journal to update.
1482  *
1483  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484  * to complete.
1485  */
1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488         journal_superblock_t *sb = journal->j_superblock;
1489         int errcode;
1490
1491         lock_buffer(journal->j_sb_buffer);
1492         errcode = journal->j_errno;
1493         if (errcode == -ESHUTDOWN)
1494                 errcode = 0;
1495         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1496         sb->s_errno    = cpu_to_be32(errcode);
1497
1498         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1499 }
1500 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1501
1502 /*
1503  * Read the superblock for a given journal, performing initial
1504  * validation of the format.
1505  */
1506 static int journal_get_superblock(journal_t *journal)
1507 {
1508         struct buffer_head *bh;
1509         journal_superblock_t *sb;
1510         int err = -EIO;
1511
1512         bh = journal->j_sb_buffer;
1513
1514         J_ASSERT(bh != NULL);
1515         if (!buffer_uptodate(bh)) {
1516                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1517                 wait_on_buffer(bh);
1518                 if (!buffer_uptodate(bh)) {
1519                         printk(KERN_ERR
1520                                 "JBD2: IO error reading journal superblock\n");
1521                         goto out;
1522                 }
1523         }
1524
1525         if (buffer_verified(bh))
1526                 return 0;
1527
1528         sb = journal->j_superblock;
1529
1530         err = -EINVAL;
1531
1532         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1533             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1534                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1535                 goto out;
1536         }
1537
1538         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1539         case JBD2_SUPERBLOCK_V1:
1540                 journal->j_format_version = 1;
1541                 break;
1542         case JBD2_SUPERBLOCK_V2:
1543                 journal->j_format_version = 2;
1544                 break;
1545         default:
1546                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1547                 goto out;
1548         }
1549
1550         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1551                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1552         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1553                 printk(KERN_WARNING "JBD2: journal file too short\n");
1554                 goto out;
1555         }
1556
1557         if (be32_to_cpu(sb->s_first) == 0 ||
1558             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1559                 printk(KERN_WARNING
1560                         "JBD2: Invalid start block of journal: %u\n",
1561                         be32_to_cpu(sb->s_first));
1562                 goto out;
1563         }
1564
1565         if (jbd2_has_feature_csum2(journal) &&
1566             jbd2_has_feature_csum3(journal)) {
1567                 /* Can't have checksum v2 and v3 at the same time! */
1568                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1569                        "at the same time!\n");
1570                 goto out;
1571         }
1572
1573         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1574             jbd2_has_feature_checksum(journal)) {
1575                 /* Can't have checksum v1 and v2 on at the same time! */
1576                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1577                        "at the same time!\n");
1578                 goto out;
1579         }
1580
1581         if (!jbd2_verify_csum_type(journal, sb)) {
1582                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1583                 goto out;
1584         }
1585
1586         /* Load the checksum driver */
1587         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1588                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1589                 if (IS_ERR(journal->j_chksum_driver)) {
1590                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1591                         err = PTR_ERR(journal->j_chksum_driver);
1592                         journal->j_chksum_driver = NULL;
1593                         goto out;
1594                 }
1595         }
1596
1597         if (jbd2_journal_has_csum_v2or3(journal)) {
1598                 /* Check superblock checksum */
1599                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1600                         printk(KERN_ERR "JBD2: journal checksum error\n");
1601                         err = -EFSBADCRC;
1602                         goto out;
1603                 }
1604
1605                 /* Precompute checksum seed for all metadata */
1606                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1607                                                    sizeof(sb->s_uuid));
1608         }
1609
1610         set_buffer_verified(bh);
1611
1612         return 0;
1613
1614 out:
1615         journal_fail_superblock(journal);
1616         return err;
1617 }
1618
1619 /*
1620  * Load the on-disk journal superblock and read the key fields into the
1621  * journal_t.
1622  */
1623
1624 static int load_superblock(journal_t *journal)
1625 {
1626         int err;
1627         journal_superblock_t *sb;
1628
1629         err = journal_get_superblock(journal);
1630         if (err)
1631                 return err;
1632
1633         sb = journal->j_superblock;
1634
1635         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1636         journal->j_tail = be32_to_cpu(sb->s_start);
1637         journal->j_first = be32_to_cpu(sb->s_first);
1638         journal->j_last = be32_to_cpu(sb->s_maxlen);
1639         journal->j_errno = be32_to_cpu(sb->s_errno);
1640
1641         return 0;
1642 }
1643
1644
1645 /**
1646  * int jbd2_journal_load() - Read journal from disk.
1647  * @journal: Journal to act on.
1648  *
1649  * Given a journal_t structure which tells us which disk blocks contain
1650  * a journal, read the journal from disk to initialise the in-memory
1651  * structures.
1652  */
1653 int jbd2_journal_load(journal_t *journal)
1654 {
1655         int err;
1656         journal_superblock_t *sb;
1657
1658         err = load_superblock(journal);
1659         if (err)
1660                 return err;
1661
1662         sb = journal->j_superblock;
1663         /* If this is a V2 superblock, then we have to check the
1664          * features flags on it. */
1665
1666         if (journal->j_format_version >= 2) {
1667                 if ((sb->s_feature_ro_compat &
1668                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1669                     (sb->s_feature_incompat &
1670                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1671                         printk(KERN_WARNING
1672                                 "JBD2: Unrecognised features on journal\n");
1673                         return -EINVAL;
1674                 }
1675         }
1676
1677         /*
1678          * Create a slab for this blocksize
1679          */
1680         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1681         if (err)
1682                 return err;
1683
1684         /* Let the recovery code check whether it needs to recover any
1685          * data from the journal. */
1686         if (jbd2_journal_recover(journal))
1687                 goto recovery_error;
1688
1689         if (journal->j_failed_commit) {
1690                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1691                        "is corrupt.\n", journal->j_failed_commit,
1692                        journal->j_devname);
1693                 return -EFSCORRUPTED;
1694         }
1695
1696         /* OK, we've finished with the dynamic journal bits:
1697          * reinitialise the dynamic contents of the superblock in memory
1698          * and reset them on disk. */
1699         if (journal_reset(journal))
1700                 goto recovery_error;
1701
1702         journal->j_flags &= ~JBD2_ABORT;
1703         journal->j_flags |= JBD2_LOADED;
1704         return 0;
1705
1706 recovery_error:
1707         printk(KERN_WARNING "JBD2: recovery failed\n");
1708         return -EIO;
1709 }
1710
1711 /**
1712  * void jbd2_journal_destroy() - Release a journal_t structure.
1713  * @journal: Journal to act on.
1714  *
1715  * Release a journal_t structure once it is no longer in use by the
1716  * journaled object.
1717  * Return <0 if we couldn't clean up the journal.
1718  */
1719 int jbd2_journal_destroy(journal_t *journal)
1720 {
1721         int err = 0;
1722
1723         /* Wait for the commit thread to wake up and die. */
1724         journal_kill_thread(journal);
1725
1726         /* Force a final log commit */
1727         if (journal->j_running_transaction)
1728                 jbd2_journal_commit_transaction(journal);
1729
1730         /* Force any old transactions to disk */
1731
1732         /* Totally anal locking here... */
1733         spin_lock(&journal->j_list_lock);
1734         while (journal->j_checkpoint_transactions != NULL) {
1735                 spin_unlock(&journal->j_list_lock);
1736                 mutex_lock_io(&journal->j_checkpoint_mutex);
1737                 err = jbd2_log_do_checkpoint(journal);
1738                 mutex_unlock(&journal->j_checkpoint_mutex);
1739                 /*
1740                  * If checkpointing failed, just free the buffers to avoid
1741                  * looping forever
1742                  */
1743                 if (err) {
1744                         jbd2_journal_destroy_checkpoint(journal);
1745                         spin_lock(&journal->j_list_lock);
1746                         break;
1747                 }
1748                 spin_lock(&journal->j_list_lock);
1749         }
1750
1751         J_ASSERT(journal->j_running_transaction == NULL);
1752         J_ASSERT(journal->j_committing_transaction == NULL);
1753         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1754         spin_unlock(&journal->j_list_lock);
1755
1756         if (journal->j_sb_buffer) {
1757                 if (!is_journal_aborted(journal)) {
1758                         mutex_lock_io(&journal->j_checkpoint_mutex);
1759
1760                         write_lock(&journal->j_state_lock);
1761                         journal->j_tail_sequence =
1762                                 ++journal->j_transaction_sequence;
1763                         write_unlock(&journal->j_state_lock);
1764
1765                         jbd2_mark_journal_empty(journal,
1766                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1767                         mutex_unlock(&journal->j_checkpoint_mutex);
1768                 } else
1769                         err = -EIO;
1770                 brelse(journal->j_sb_buffer);
1771         }
1772
1773         if (journal->j_proc_entry)
1774                 jbd2_stats_proc_exit(journal);
1775         iput(journal->j_inode);
1776         if (journal->j_revoke)
1777                 jbd2_journal_destroy_revoke(journal);
1778         if (journal->j_chksum_driver)
1779                 crypto_free_shash(journal->j_chksum_driver);
1780         kfree(journal->j_wbuf);
1781         kfree(journal);
1782
1783         return err;
1784 }
1785
1786
1787 /**
1788  *int jbd2_journal_check_used_features () - Check if features specified are used.
1789  * @journal: Journal to check.
1790  * @compat: bitmask of compatible features
1791  * @ro: bitmask of features that force read-only mount
1792  * @incompat: bitmask of incompatible features
1793  *
1794  * Check whether the journal uses all of a given set of
1795  * features.  Return true (non-zero) if it does.
1796  **/
1797
1798 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1799                                  unsigned long ro, unsigned long incompat)
1800 {
1801         journal_superblock_t *sb;
1802
1803         if (!compat && !ro && !incompat)
1804                 return 1;
1805         /* Load journal superblock if it is not loaded yet. */
1806         if (journal->j_format_version == 0 &&
1807             journal_get_superblock(journal) != 0)
1808                 return 0;
1809         if (journal->j_format_version == 1)
1810                 return 0;
1811
1812         sb = journal->j_superblock;
1813
1814         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1815             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1816             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1817                 return 1;
1818
1819         return 0;
1820 }
1821
1822 /**
1823  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1824  * @journal: Journal to check.
1825  * @compat: bitmask of compatible features
1826  * @ro: bitmask of features that force read-only mount
1827  * @incompat: bitmask of incompatible features
1828  *
1829  * Check whether the journaling code supports the use of
1830  * all of a given set of features on this journal.  Return true
1831  * (non-zero) if it can. */
1832
1833 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1834                                       unsigned long ro, unsigned long incompat)
1835 {
1836         if (!compat && !ro && !incompat)
1837                 return 1;
1838
1839         /* We can support any known requested features iff the
1840          * superblock is in version 2.  Otherwise we fail to support any
1841          * extended sb features. */
1842
1843         if (journal->j_format_version != 2)
1844                 return 0;
1845
1846         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1847             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1848             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1849                 return 1;
1850
1851         return 0;
1852 }
1853
1854 /**
1855  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1856  * @journal: Journal to act on.
1857  * @compat: bitmask of compatible features
1858  * @ro: bitmask of features that force read-only mount
1859  * @incompat: bitmask of incompatible features
1860  *
1861  * Mark a given journal feature as present on the
1862  * superblock.  Returns true if the requested features could be set.
1863  *
1864  */
1865
1866 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1867                           unsigned long ro, unsigned long incompat)
1868 {
1869 #define INCOMPAT_FEATURE_ON(f) \
1870                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1871 #define COMPAT_FEATURE_ON(f) \
1872                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1873         journal_superblock_t *sb;
1874
1875         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1876                 return 1;
1877
1878         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1879                 return 0;
1880
1881         /* If enabling v2 checksums, turn on v3 instead */
1882         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1883                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1884                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1885         }
1886
1887         /* Asking for checksumming v3 and v1?  Only give them v3. */
1888         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1889             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1890                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1891
1892         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1893                   compat, ro, incompat);
1894
1895         sb = journal->j_superblock;
1896
1897         /* Load the checksum driver if necessary */
1898         if ((journal->j_chksum_driver == NULL) &&
1899             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1900                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1901                 if (IS_ERR(journal->j_chksum_driver)) {
1902                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1903                         journal->j_chksum_driver = NULL;
1904                         return 0;
1905                 }
1906                 /* Precompute checksum seed for all metadata */
1907                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1908                                                    sizeof(sb->s_uuid));
1909         }
1910
1911         lock_buffer(journal->j_sb_buffer);
1912
1913         /* If enabling v3 checksums, update superblock */
1914         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1915                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1916                 sb->s_feature_compat &=
1917                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1918         }
1919
1920         /* If enabling v1 checksums, downgrade superblock */
1921         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1922                 sb->s_feature_incompat &=
1923                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1924                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1925
1926         sb->s_feature_compat    |= cpu_to_be32(compat);
1927         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1928         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1929         unlock_buffer(journal->j_sb_buffer);
1930
1931         return 1;
1932 #undef COMPAT_FEATURE_ON
1933 #undef INCOMPAT_FEATURE_ON
1934 }
1935
1936 /*
1937  * jbd2_journal_clear_features () - Clear a given journal feature in the
1938  *                                  superblock
1939  * @journal: Journal to act on.
1940  * @compat: bitmask of compatible features
1941  * @ro: bitmask of features that force read-only mount
1942  * @incompat: bitmask of incompatible features
1943  *
1944  * Clear a given journal feature as present on the
1945  * superblock.
1946  */
1947 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1948                                 unsigned long ro, unsigned long incompat)
1949 {
1950         journal_superblock_t *sb;
1951
1952         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1953                   compat, ro, incompat);
1954
1955         sb = journal->j_superblock;
1956
1957         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1958         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1959         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1960 }
1961 EXPORT_SYMBOL(jbd2_journal_clear_features);
1962
1963 /**
1964  * int jbd2_journal_flush () - Flush journal
1965  * @journal: Journal to act on.
1966  *
1967  * Flush all data for a given journal to disk and empty the journal.
1968  * Filesystems can use this when remounting readonly to ensure that
1969  * recovery does not need to happen on remount.
1970  */
1971
1972 int jbd2_journal_flush(journal_t *journal)
1973 {
1974         int err = 0;
1975         transaction_t *transaction = NULL;
1976
1977         write_lock(&journal->j_state_lock);
1978
1979         /* Force everything buffered to the log... */
1980         if (journal->j_running_transaction) {
1981                 transaction = journal->j_running_transaction;
1982                 __jbd2_log_start_commit(journal, transaction->t_tid);
1983         } else if (journal->j_committing_transaction)
1984                 transaction = journal->j_committing_transaction;
1985
1986         /* Wait for the log commit to complete... */
1987         if (transaction) {
1988                 tid_t tid = transaction->t_tid;
1989
1990                 write_unlock(&journal->j_state_lock);
1991                 jbd2_log_wait_commit(journal, tid);
1992         } else {
1993                 write_unlock(&journal->j_state_lock);
1994         }
1995
1996         /* ...and flush everything in the log out to disk. */
1997         spin_lock(&journal->j_list_lock);
1998         while (!err && journal->j_checkpoint_transactions != NULL) {
1999                 spin_unlock(&journal->j_list_lock);
2000                 mutex_lock_io(&journal->j_checkpoint_mutex);
2001                 err = jbd2_log_do_checkpoint(journal);
2002                 mutex_unlock(&journal->j_checkpoint_mutex);
2003                 spin_lock(&journal->j_list_lock);
2004         }
2005         spin_unlock(&journal->j_list_lock);
2006
2007         if (is_journal_aborted(journal))
2008                 return -EIO;
2009
2010         mutex_lock_io(&journal->j_checkpoint_mutex);
2011         if (!err) {
2012                 err = jbd2_cleanup_journal_tail(journal);
2013                 if (err < 0) {
2014                         mutex_unlock(&journal->j_checkpoint_mutex);
2015                         goto out;
2016                 }
2017                 err = 0;
2018         }
2019
2020         /* Finally, mark the journal as really needing no recovery.
2021          * This sets s_start==0 in the underlying superblock, which is
2022          * the magic code for a fully-recovered superblock.  Any future
2023          * commits of data to the journal will restore the current
2024          * s_start value. */
2025         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2026         mutex_unlock(&journal->j_checkpoint_mutex);
2027         write_lock(&journal->j_state_lock);
2028         J_ASSERT(!journal->j_running_transaction);
2029         J_ASSERT(!journal->j_committing_transaction);
2030         J_ASSERT(!journal->j_checkpoint_transactions);
2031         J_ASSERT(journal->j_head == journal->j_tail);
2032         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2033         write_unlock(&journal->j_state_lock);
2034 out:
2035         return err;
2036 }
2037
2038 /**
2039  * int jbd2_journal_wipe() - Wipe journal contents
2040  * @journal: Journal to act on.
2041  * @write: flag (see below)
2042  *
2043  * Wipe out all of the contents of a journal, safely.  This will produce
2044  * a warning if the journal contains any valid recovery information.
2045  * Must be called between journal_init_*() and jbd2_journal_load().
2046  *
2047  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2048  * we merely suppress recovery.
2049  */
2050
2051 int jbd2_journal_wipe(journal_t *journal, int write)
2052 {
2053         int err = 0;
2054
2055         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2056
2057         err = load_superblock(journal);
2058         if (err)
2059                 return err;
2060
2061         if (!journal->j_tail)
2062                 goto no_recovery;
2063
2064         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2065                 write ? "Clearing" : "Ignoring");
2066
2067         err = jbd2_journal_skip_recovery(journal);
2068         if (write) {
2069                 /* Lock to make assertions happy... */
2070                 mutex_lock_io(&journal->j_checkpoint_mutex);
2071                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2072                 mutex_unlock(&journal->j_checkpoint_mutex);
2073         }
2074
2075  no_recovery:
2076         return err;
2077 }
2078
2079 /*
2080  * Journal abort has very specific semantics, which we describe
2081  * for journal abort.
2082  *
2083  * Two internal functions, which provide abort to the jbd layer
2084  * itself are here.
2085  */
2086
2087 /*
2088  * Quick version for internal journal use (doesn't lock the journal).
2089  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2090  * and don't attempt to make any other journal updates.
2091  */
2092 void __jbd2_journal_abort_hard(journal_t *journal)
2093 {
2094         transaction_t *transaction;
2095
2096         if (journal->j_flags & JBD2_ABORT)
2097                 return;
2098
2099         printk(KERN_ERR "Aborting journal on device %s.\n",
2100                journal->j_devname);
2101
2102         write_lock(&journal->j_state_lock);
2103         journal->j_flags |= JBD2_ABORT;
2104         transaction = journal->j_running_transaction;
2105         if (transaction)
2106                 __jbd2_log_start_commit(journal, transaction->t_tid);
2107         write_unlock(&journal->j_state_lock);
2108 }
2109
2110 /* Soft abort: record the abort error status in the journal superblock,
2111  * but don't do any other IO. */
2112 static void __journal_abort_soft (journal_t *journal, int errno)
2113 {
2114         int old_errno;
2115
2116         write_lock(&journal->j_state_lock);
2117         old_errno = journal->j_errno;
2118         if (!journal->j_errno || errno == -ESHUTDOWN)
2119                 journal->j_errno = errno;
2120
2121         if (journal->j_flags & JBD2_ABORT) {
2122                 write_unlock(&journal->j_state_lock);
2123                 if (!old_errno && old_errno != -ESHUTDOWN &&
2124                     errno == -ESHUTDOWN)
2125                         jbd2_journal_update_sb_errno(journal);
2126                 return;
2127         }
2128         write_unlock(&journal->j_state_lock);
2129
2130         __jbd2_journal_abort_hard(journal);
2131
2132         if (errno) {
2133                 jbd2_journal_update_sb_errno(journal);
2134                 write_lock(&journal->j_state_lock);
2135                 journal->j_flags |= JBD2_REC_ERR;
2136                 write_unlock(&journal->j_state_lock);
2137         }
2138 }
2139
2140 /**
2141  * void jbd2_journal_abort () - Shutdown the journal immediately.
2142  * @journal: the journal to shutdown.
2143  * @errno:   an error number to record in the journal indicating
2144  *           the reason for the shutdown.
2145  *
2146  * Perform a complete, immediate shutdown of the ENTIRE
2147  * journal (not of a single transaction).  This operation cannot be
2148  * undone without closing and reopening the journal.
2149  *
2150  * The jbd2_journal_abort function is intended to support higher level error
2151  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2152  * mode.
2153  *
2154  * Journal abort has very specific semantics.  Any existing dirty,
2155  * unjournaled buffers in the main filesystem will still be written to
2156  * disk by bdflush, but the journaling mechanism will be suspended
2157  * immediately and no further transaction commits will be honoured.
2158  *
2159  * Any dirty, journaled buffers will be written back to disk without
2160  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2161  * filesystem, but we _do_ attempt to leave as much data as possible
2162  * behind for fsck to use for cleanup.
2163  *
2164  * Any attempt to get a new transaction handle on a journal which is in
2165  * ABORT state will just result in an -EROFS error return.  A
2166  * jbd2_journal_stop on an existing handle will return -EIO if we have
2167  * entered abort state during the update.
2168  *
2169  * Recursive transactions are not disturbed by journal abort until the
2170  * final jbd2_journal_stop, which will receive the -EIO error.
2171  *
2172  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2173  * which will be recorded (if possible) in the journal superblock.  This
2174  * allows a client to record failure conditions in the middle of a
2175  * transaction without having to complete the transaction to record the
2176  * failure to disk.  ext3_error, for example, now uses this
2177  * functionality.
2178  *
2179  * Errors which originate from within the journaling layer will NOT
2180  * supply an errno; a null errno implies that absolutely no further
2181  * writes are done to the journal (unless there are any already in
2182  * progress).
2183  *
2184  */
2185
2186 void jbd2_journal_abort(journal_t *journal, int errno)
2187 {
2188         __journal_abort_soft(journal, errno);
2189 }
2190
2191 /**
2192  * int jbd2_journal_errno () - returns the journal's error state.
2193  * @journal: journal to examine.
2194  *
2195  * This is the errno number set with jbd2_journal_abort(), the last
2196  * time the journal was mounted - if the journal was stopped
2197  * without calling abort this will be 0.
2198  *
2199  * If the journal has been aborted on this mount time -EROFS will
2200  * be returned.
2201  */
2202 int jbd2_journal_errno(journal_t *journal)
2203 {
2204         int err;
2205
2206         read_lock(&journal->j_state_lock);
2207         if (journal->j_flags & JBD2_ABORT)
2208                 err = -EROFS;
2209         else
2210                 err = journal->j_errno;
2211         read_unlock(&journal->j_state_lock);
2212         return err;
2213 }
2214
2215 /**
2216  * int jbd2_journal_clear_err () - clears the journal's error state
2217  * @journal: journal to act on.
2218  *
2219  * An error must be cleared or acked to take a FS out of readonly
2220  * mode.
2221  */
2222 int jbd2_journal_clear_err(journal_t *journal)
2223 {
2224         int err = 0;
2225
2226         write_lock(&journal->j_state_lock);
2227         if (journal->j_flags & JBD2_ABORT)
2228                 err = -EROFS;
2229         else
2230                 journal->j_errno = 0;
2231         write_unlock(&journal->j_state_lock);
2232         return err;
2233 }
2234
2235 /**
2236  * void jbd2_journal_ack_err() - Ack journal err.
2237  * @journal: journal to act on.
2238  *
2239  * An error must be cleared or acked to take a FS out of readonly
2240  * mode.
2241  */
2242 void jbd2_journal_ack_err(journal_t *journal)
2243 {
2244         write_lock(&journal->j_state_lock);
2245         if (journal->j_errno)
2246                 journal->j_flags |= JBD2_ACK_ERR;
2247         write_unlock(&journal->j_state_lock);
2248 }
2249
2250 int jbd2_journal_blocks_per_page(struct inode *inode)
2251 {
2252         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2253 }
2254
2255 /*
2256  * helper functions to deal with 32 or 64bit block numbers.
2257  */
2258 size_t journal_tag_bytes(journal_t *journal)
2259 {
2260         size_t sz;
2261
2262         if (jbd2_has_feature_csum3(journal))
2263                 return sizeof(journal_block_tag3_t);
2264
2265         sz = sizeof(journal_block_tag_t);
2266
2267         if (jbd2_has_feature_csum2(journal))
2268                 sz += sizeof(__u16);
2269
2270         if (jbd2_has_feature_64bit(journal))
2271                 return sz;
2272         else
2273                 return sz - sizeof(__u32);
2274 }
2275
2276 /*
2277  * JBD memory management
2278  *
2279  * These functions are used to allocate block-sized chunks of memory
2280  * used for making copies of buffer_head data.  Very often it will be
2281  * page-sized chunks of data, but sometimes it will be in
2282  * sub-page-size chunks.  (For example, 16k pages on Power systems
2283  * with a 4k block file system.)  For blocks smaller than a page, we
2284  * use a SLAB allocator.  There are slab caches for each block size,
2285  * which are allocated at mount time, if necessary, and we only free
2286  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2287  * this reason we don't need to a mutex to protect access to
2288  * jbd2_slab[] allocating or releasing memory; only in
2289  * jbd2_journal_create_slab().
2290  */
2291 #define JBD2_MAX_SLABS 8
2292 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2293
2294 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2295         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2296         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2297 };
2298
2299
2300 static void jbd2_journal_destroy_slabs(void)
2301 {
2302         int i;
2303
2304         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2305                 kmem_cache_destroy(jbd2_slab[i]);
2306                 jbd2_slab[i] = NULL;
2307         }
2308 }
2309
2310 static int jbd2_journal_create_slab(size_t size)
2311 {
2312         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2313         int i = order_base_2(size) - 10;
2314         size_t slab_size;
2315
2316         if (size == PAGE_SIZE)
2317                 return 0;
2318
2319         if (i >= JBD2_MAX_SLABS)
2320                 return -EINVAL;
2321
2322         if (unlikely(i < 0))
2323                 i = 0;
2324         mutex_lock(&jbd2_slab_create_mutex);
2325         if (jbd2_slab[i]) {
2326                 mutex_unlock(&jbd2_slab_create_mutex);
2327                 return 0;       /* Already created */
2328         }
2329
2330         slab_size = 1 << (i+10);
2331         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2332                                          slab_size, 0, NULL);
2333         mutex_unlock(&jbd2_slab_create_mutex);
2334         if (!jbd2_slab[i]) {
2335                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2336                 return -ENOMEM;
2337         }
2338         return 0;
2339 }
2340
2341 static struct kmem_cache *get_slab(size_t size)
2342 {
2343         int i = order_base_2(size) - 10;
2344
2345         BUG_ON(i >= JBD2_MAX_SLABS);
2346         if (unlikely(i < 0))
2347                 i = 0;
2348         BUG_ON(jbd2_slab[i] == NULL);
2349         return jbd2_slab[i];
2350 }
2351
2352 void *jbd2_alloc(size_t size, gfp_t flags)
2353 {
2354         void *ptr;
2355
2356         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2357
2358         if (size < PAGE_SIZE)
2359                 ptr = kmem_cache_alloc(get_slab(size), flags);
2360         else
2361                 ptr = (void *)__get_free_pages(flags, get_order(size));
2362
2363         /* Check alignment; SLUB has gotten this wrong in the past,
2364          * and this can lead to user data corruption! */
2365         BUG_ON(((unsigned long) ptr) & (size-1));
2366
2367         return ptr;
2368 }
2369
2370 void jbd2_free(void *ptr, size_t size)
2371 {
2372         if (size < PAGE_SIZE)
2373                 kmem_cache_free(get_slab(size), ptr);
2374         else
2375                 free_pages((unsigned long)ptr, get_order(size));
2376 };
2377
2378 /*
2379  * Journal_head storage management
2380  */
2381 static struct kmem_cache *jbd2_journal_head_cache;
2382 #ifdef CONFIG_JBD2_DEBUG
2383 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2384 #endif
2385
2386 static int __init jbd2_journal_init_journal_head_cache(void)
2387 {
2388         J_ASSERT(!jbd2_journal_head_cache);
2389         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2390                                 sizeof(struct journal_head),
2391                                 0,              /* offset */
2392                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2393                                 NULL);          /* ctor */
2394         if (!jbd2_journal_head_cache) {
2395                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2396                 return -ENOMEM;
2397         }
2398         return 0;
2399 }
2400
2401 static void jbd2_journal_destroy_journal_head_cache(void)
2402 {
2403         kmem_cache_destroy(jbd2_journal_head_cache);
2404         jbd2_journal_head_cache = NULL;
2405 }
2406
2407 /*
2408  * journal_head splicing and dicing
2409  */
2410 static struct journal_head *journal_alloc_journal_head(void)
2411 {
2412         struct journal_head *ret;
2413
2414 #ifdef CONFIG_JBD2_DEBUG
2415         atomic_inc(&nr_journal_heads);
2416 #endif
2417         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2418         if (!ret) {
2419                 jbd_debug(1, "out of memory for journal_head\n");
2420                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2421                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2422                                 GFP_NOFS | __GFP_NOFAIL);
2423         }
2424         return ret;
2425 }
2426
2427 static void journal_free_journal_head(struct journal_head *jh)
2428 {
2429 #ifdef CONFIG_JBD2_DEBUG
2430         atomic_dec(&nr_journal_heads);
2431         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2432 #endif
2433         kmem_cache_free(jbd2_journal_head_cache, jh);
2434 }
2435
2436 /*
2437  * A journal_head is attached to a buffer_head whenever JBD has an
2438  * interest in the buffer.
2439  *
2440  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2441  * is set.  This bit is tested in core kernel code where we need to take
2442  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2443  * there.
2444  *
2445  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2446  *
2447  * When a buffer has its BH_JBD bit set it is immune from being released by
2448  * core kernel code, mainly via ->b_count.
2449  *
2450  * A journal_head is detached from its buffer_head when the journal_head's
2451  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2452  * transaction (b_cp_transaction) hold their references to b_jcount.
2453  *
2454  * Various places in the kernel want to attach a journal_head to a buffer_head
2455  * _before_ attaching the journal_head to a transaction.  To protect the
2456  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2457  * journal_head's b_jcount refcount by one.  The caller must call
2458  * jbd2_journal_put_journal_head() to undo this.
2459  *
2460  * So the typical usage would be:
2461  *
2462  *      (Attach a journal_head if needed.  Increments b_jcount)
2463  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2464  *      ...
2465  *      (Get another reference for transaction)
2466  *      jbd2_journal_grab_journal_head(bh);
2467  *      jh->b_transaction = xxx;
2468  *      (Put original reference)
2469  *      jbd2_journal_put_journal_head(jh);
2470  */
2471
2472 /*
2473  * Give a buffer_head a journal_head.
2474  *
2475  * May sleep.
2476  */
2477 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2478 {
2479         struct journal_head *jh;
2480         struct journal_head *new_jh = NULL;
2481
2482 repeat:
2483         if (!buffer_jbd(bh))
2484                 new_jh = journal_alloc_journal_head();
2485
2486         jbd_lock_bh_journal_head(bh);
2487         if (buffer_jbd(bh)) {
2488                 jh = bh2jh(bh);
2489         } else {
2490                 J_ASSERT_BH(bh,
2491                         (atomic_read(&bh->b_count) > 0) ||
2492                         (bh->b_page && bh->b_page->mapping));
2493
2494                 if (!new_jh) {
2495                         jbd_unlock_bh_journal_head(bh);
2496                         goto repeat;
2497                 }
2498
2499                 jh = new_jh;
2500                 new_jh = NULL;          /* We consumed it */
2501                 set_buffer_jbd(bh);
2502                 bh->b_private = jh;
2503                 jh->b_bh = bh;
2504                 get_bh(bh);
2505                 BUFFER_TRACE(bh, "added journal_head");
2506         }
2507         jh->b_jcount++;
2508         jbd_unlock_bh_journal_head(bh);
2509         if (new_jh)
2510                 journal_free_journal_head(new_jh);
2511         return bh->b_private;
2512 }
2513
2514 /*
2515  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2516  * having a journal_head, return NULL
2517  */
2518 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2519 {
2520         struct journal_head *jh = NULL;
2521
2522         jbd_lock_bh_journal_head(bh);
2523         if (buffer_jbd(bh)) {
2524                 jh = bh2jh(bh);
2525                 jh->b_jcount++;
2526         }
2527         jbd_unlock_bh_journal_head(bh);
2528         return jh;
2529 }
2530
2531 static void __journal_remove_journal_head(struct buffer_head *bh)
2532 {
2533         struct journal_head *jh = bh2jh(bh);
2534
2535         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2536         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2537         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2538         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2539         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2540         J_ASSERT_BH(bh, buffer_jbd(bh));
2541         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2542         BUFFER_TRACE(bh, "remove journal_head");
2543         if (jh->b_frozen_data) {
2544                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2545                 jbd2_free(jh->b_frozen_data, bh->b_size);
2546         }
2547         if (jh->b_committed_data) {
2548                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2549                 jbd2_free(jh->b_committed_data, bh->b_size);
2550         }
2551         bh->b_private = NULL;
2552         jh->b_bh = NULL;        /* debug, really */
2553         clear_buffer_jbd(bh);
2554         journal_free_journal_head(jh);
2555 }
2556
2557 /*
2558  * Drop a reference on the passed journal_head.  If it fell to zero then
2559  * release the journal_head from the buffer_head.
2560  */
2561 void jbd2_journal_put_journal_head(struct journal_head *jh)
2562 {
2563         struct buffer_head *bh = jh2bh(jh);
2564
2565         jbd_lock_bh_journal_head(bh);
2566         J_ASSERT_JH(jh, jh->b_jcount > 0);
2567         --jh->b_jcount;
2568         if (!jh->b_jcount) {
2569                 __journal_remove_journal_head(bh);
2570                 jbd_unlock_bh_journal_head(bh);
2571                 __brelse(bh);
2572         } else
2573                 jbd_unlock_bh_journal_head(bh);
2574 }
2575
2576 /*
2577  * Initialize jbd inode head
2578  */
2579 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2580 {
2581         jinode->i_transaction = NULL;
2582         jinode->i_next_transaction = NULL;
2583         jinode->i_vfs_inode = inode;
2584         jinode->i_flags = 0;
2585         jinode->i_dirty_start = 0;
2586         jinode->i_dirty_end = 0;
2587         INIT_LIST_HEAD(&jinode->i_list);
2588 }
2589
2590 /*
2591  * Function to be called before we start removing inode from memory (i.e.,
2592  * clear_inode() is a fine place to be called from). It removes inode from
2593  * transaction's lists.
2594  */
2595 void jbd2_journal_release_jbd_inode(journal_t *journal,
2596                                     struct jbd2_inode *jinode)
2597 {
2598         if (!journal)
2599                 return;
2600 restart:
2601         spin_lock(&journal->j_list_lock);
2602         /* Is commit writing out inode - we have to wait */
2603         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2604                 wait_queue_head_t *wq;
2605                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2606                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2607                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2608                 spin_unlock(&journal->j_list_lock);
2609                 schedule();
2610                 finish_wait(wq, &wait.wq_entry);
2611                 goto restart;
2612         }
2613
2614         if (jinode->i_transaction) {
2615                 list_del(&jinode->i_list);
2616                 jinode->i_transaction = NULL;
2617         }
2618         spin_unlock(&journal->j_list_lock);
2619 }
2620
2621
2622 #ifdef CONFIG_PROC_FS
2623
2624 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2625
2626 static void __init jbd2_create_jbd_stats_proc_entry(void)
2627 {
2628         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2629 }
2630
2631 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2632 {
2633         if (proc_jbd2_stats)
2634                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2635 }
2636
2637 #else
2638
2639 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2640 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2641
2642 #endif
2643
2644 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2645
2646 static int __init jbd2_journal_init_inode_cache(void)
2647 {
2648         J_ASSERT(!jbd2_inode_cache);
2649         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2650         if (!jbd2_inode_cache) {
2651                 pr_emerg("JBD2: failed to create inode cache\n");
2652                 return -ENOMEM;
2653         }
2654         return 0;
2655 }
2656
2657 static int __init jbd2_journal_init_handle_cache(void)
2658 {
2659         J_ASSERT(!jbd2_handle_cache);
2660         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2661         if (!jbd2_handle_cache) {
2662                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2663                 return -ENOMEM;
2664         }
2665         return 0;
2666 }
2667
2668 static void jbd2_journal_destroy_inode_cache(void)
2669 {
2670         kmem_cache_destroy(jbd2_inode_cache);
2671         jbd2_inode_cache = NULL;
2672 }
2673
2674 static void jbd2_journal_destroy_handle_cache(void)
2675 {
2676         kmem_cache_destroy(jbd2_handle_cache);
2677         jbd2_handle_cache = NULL;
2678 }
2679
2680 /*
2681  * Module startup and shutdown
2682  */
2683
2684 static int __init journal_init_caches(void)
2685 {
2686         int ret;
2687
2688         ret = jbd2_journal_init_revoke_record_cache();
2689         if (ret == 0)
2690                 ret = jbd2_journal_init_revoke_table_cache();
2691         if (ret == 0)
2692                 ret = jbd2_journal_init_journal_head_cache();
2693         if (ret == 0)
2694                 ret = jbd2_journal_init_handle_cache();
2695         if (ret == 0)
2696                 ret = jbd2_journal_init_inode_cache();
2697         if (ret == 0)
2698                 ret = jbd2_journal_init_transaction_cache();
2699         return ret;
2700 }
2701
2702 static void jbd2_journal_destroy_caches(void)
2703 {
2704         jbd2_journal_destroy_revoke_record_cache();
2705         jbd2_journal_destroy_revoke_table_cache();
2706         jbd2_journal_destroy_journal_head_cache();
2707         jbd2_journal_destroy_handle_cache();
2708         jbd2_journal_destroy_inode_cache();
2709         jbd2_journal_destroy_transaction_cache();
2710         jbd2_journal_destroy_slabs();
2711 }
2712
2713 static int __init journal_init(void)
2714 {
2715         int ret;
2716
2717         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2718
2719         ret = journal_init_caches();
2720         if (ret == 0) {
2721                 jbd2_create_jbd_stats_proc_entry();
2722         } else {
2723                 jbd2_journal_destroy_caches();
2724         }
2725         return ret;
2726 }
2727
2728 static void __exit journal_exit(void)
2729 {
2730 #ifdef CONFIG_JBD2_DEBUG
2731         int n = atomic_read(&nr_journal_heads);
2732         if (n)
2733                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2734 #endif
2735         jbd2_remove_jbd_stats_proc_entry();
2736         jbd2_journal_destroy_caches();
2737 }
2738
2739 MODULE_LICENSE("GPL");
2740 module_init(journal_init);
2741 module_exit(journal_exit);
2742
This page took 0.184255 seconds and 4 git commands to generate.