2 * Copyright (C) 2014 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
24 #define IDM_CTRL_DIRECT_OFFSET 0x00
25 #define CFG_OFFSET 0x00
26 #define CFG_RESET_SHIFT 31
27 #define CFG_EN_SHIFT 30
28 #define CFG_SLAVE_ADDR_0_SHIFT 28
29 #define CFG_M_RETRY_CNT_SHIFT 16
30 #define CFG_M_RETRY_CNT_MASK 0x0f
32 #define TIM_CFG_OFFSET 0x04
33 #define TIM_CFG_MODE_400_SHIFT 31
34 #define TIM_RAND_SLAVE_STRETCH_SHIFT 24
35 #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
36 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
37 #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
39 #define S_CFG_SMBUS_ADDR_OFFSET 0x08
40 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
41 #define S_CFG_NIC_SMB_ADDR3_SHIFT 24
42 #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
43 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
44 #define S_CFG_NIC_SMB_ADDR2_SHIFT 16
45 #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
46 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
47 #define S_CFG_NIC_SMB_ADDR1_SHIFT 8
48 #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
49 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
50 #define S_CFG_NIC_SMB_ADDR0_SHIFT 0
51 #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
53 #define M_FIFO_CTRL_OFFSET 0x0c
54 #define M_FIFO_RX_FLUSH_SHIFT 31
55 #define M_FIFO_TX_FLUSH_SHIFT 30
56 #define M_FIFO_RX_CNT_SHIFT 16
57 #define M_FIFO_RX_CNT_MASK 0x7f
58 #define M_FIFO_RX_THLD_SHIFT 8
59 #define M_FIFO_RX_THLD_MASK 0x3f
61 #define S_FIFO_CTRL_OFFSET 0x10
62 #define S_FIFO_RX_FLUSH_SHIFT 31
63 #define S_FIFO_TX_FLUSH_SHIFT 30
64 #define S_FIFO_RX_CNT_SHIFT 16
65 #define S_FIFO_RX_CNT_MASK 0x7f
66 #define S_FIFO_RX_THLD_SHIFT 8
67 #define S_FIFO_RX_THLD_MASK 0x3f
69 #define M_CMD_OFFSET 0x30
70 #define M_CMD_START_BUSY_SHIFT 31
71 #define M_CMD_STATUS_SHIFT 25
72 #define M_CMD_STATUS_MASK 0x07
73 #define M_CMD_STATUS_SUCCESS 0x0
74 #define M_CMD_STATUS_LOST_ARB 0x1
75 #define M_CMD_STATUS_NACK_ADDR 0x2
76 #define M_CMD_STATUS_NACK_DATA 0x3
77 #define M_CMD_STATUS_TIMEOUT 0x4
78 #define M_CMD_STATUS_FIFO_UNDERRUN 0x5
79 #define M_CMD_STATUS_RX_FIFO_FULL 0x6
80 #define M_CMD_PROTOCOL_SHIFT 9
81 #define M_CMD_PROTOCOL_MASK 0xf
82 #define M_CMD_PROTOCOL_QUICK 0x0
83 #define M_CMD_PROTOCOL_BLK_WR 0x7
84 #define M_CMD_PROTOCOL_BLK_RD 0x8
85 #define M_CMD_PROTOCOL_PROCESS 0xa
86 #define M_CMD_PEC_SHIFT 8
87 #define M_CMD_RD_CNT_SHIFT 0
88 #define M_CMD_RD_CNT_MASK 0xff
90 #define S_CMD_OFFSET 0x34
91 #define S_CMD_START_BUSY_SHIFT 31
92 #define S_CMD_STATUS_SHIFT 23
93 #define S_CMD_STATUS_MASK 0x07
94 #define S_CMD_STATUS_SUCCESS 0x0
95 #define S_CMD_STATUS_TIMEOUT 0x5
96 #define S_CMD_STATUS_MASTER_ABORT 0x7
98 #define IE_OFFSET 0x38
99 #define IE_M_RX_FIFO_FULL_SHIFT 31
100 #define IE_M_RX_THLD_SHIFT 30
101 #define IE_M_START_BUSY_SHIFT 28
102 #define IE_M_TX_UNDERRUN_SHIFT 27
103 #define IE_S_RX_FIFO_FULL_SHIFT 26
104 #define IE_S_RX_THLD_SHIFT 25
105 #define IE_S_RX_EVENT_SHIFT 24
106 #define IE_S_START_BUSY_SHIFT 23
107 #define IE_S_TX_UNDERRUN_SHIFT 22
108 #define IE_S_RD_EVENT_SHIFT 21
110 #define IS_OFFSET 0x3c
111 #define IS_M_RX_FIFO_FULL_SHIFT 31
112 #define IS_M_RX_THLD_SHIFT 30
113 #define IS_M_START_BUSY_SHIFT 28
114 #define IS_M_TX_UNDERRUN_SHIFT 27
115 #define IS_S_RX_FIFO_FULL_SHIFT 26
116 #define IS_S_RX_THLD_SHIFT 25
117 #define IS_S_RX_EVENT_SHIFT 24
118 #define IS_S_START_BUSY_SHIFT 23
119 #define IS_S_TX_UNDERRUN_SHIFT 22
120 #define IS_S_RD_EVENT_SHIFT 21
122 #define M_TX_OFFSET 0x40
123 #define M_TX_WR_STATUS_SHIFT 31
124 #define M_TX_DATA_SHIFT 0
125 #define M_TX_DATA_MASK 0xff
127 #define M_RX_OFFSET 0x44
128 #define M_RX_STATUS_SHIFT 30
129 #define M_RX_STATUS_MASK 0x03
130 #define M_RX_PEC_ERR_SHIFT 29
131 #define M_RX_DATA_SHIFT 0
132 #define M_RX_DATA_MASK 0xff
134 #define S_TX_OFFSET 0x48
135 #define S_TX_WR_STATUS_SHIFT 31
136 #define S_TX_DATA_SHIFT 0
137 #define S_TX_DATA_MASK 0xff
139 #define S_RX_OFFSET 0x4c
140 #define S_RX_STATUS_SHIFT 30
141 #define S_RX_STATUS_MASK 0x03
142 #define S_RX_PEC_ERR_SHIFT 29
143 #define S_RX_DATA_SHIFT 0
144 #define S_RX_DATA_MASK 0xff
146 #define I2C_TIMEOUT_MSEC 50000
147 #define M_TX_RX_FIFO_SIZE 64
148 #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
150 #define M_RX_MAX_READ_LEN 255
151 #define M_RX_FIFO_THLD_VALUE 50
153 #define IE_M_ALL_INTERRUPT_SHIFT 27
154 #define IE_M_ALL_INTERRUPT_MASK 0x1e
156 #define SLAVE_READ_WRITE_BIT_MASK 0x1
157 #define SLAVE_READ_WRITE_BIT_SHIFT 0x1
158 #define SLAVE_MAX_SIZE_TRANSACTION 64
159 #define SLAVE_CLOCK_STRETCH_TIME 25
161 #define IE_S_ALL_INTERRUPT_SHIFT 21
162 #define IE_S_ALL_INTERRUPT_MASK 0x3f
164 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
165 * running for less time, max slave read per tasklet is set to 10 bytes.
167 #define MAX_SLAVE_RX_PER_INT 10
169 enum i2c_slave_read_status {
170 I2C_SLAVE_RX_FIFO_EMPTY = 0,
176 enum bus_speed_index {
181 enum bcm_iproc_i2c_type {
186 struct bcm_iproc_i2c_dev {
187 struct device *device;
188 enum bcm_iproc_i2c_type type;
192 void __iomem *idm_base;
196 /* lock for indirect access through IDM */
199 struct i2c_adapter adapter;
200 unsigned int bus_speed;
202 struct completion done;
207 struct i2c_client *slave;
209 /* bytes that have been transferred */
210 unsigned int tx_bytes;
211 /* bytes that have been read */
212 unsigned int rx_bytes;
213 unsigned int thld_bytes;
217 bool slave_read_complete;
220 struct tasklet_struct slave_rx_tasklet;
223 /* tasklet to process slave rx data */
224 static void slave_rx_tasklet_fn(unsigned long);
227 * Can be expanded in the future if more interrupt status bits are utilized
229 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
230 | BIT(IS_M_RX_THLD_SHIFT))
232 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
233 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
234 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
235 | BIT(IS_S_RX_THLD_SHIFT))
237 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
238 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
239 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
242 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
247 if (iproc_i2c->idm_base) {
248 spin_lock(&iproc_i2c->idm_lock);
249 writel(iproc_i2c->ape_addr_mask,
250 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
251 val = readl(iproc_i2c->base + offset);
252 spin_unlock(&iproc_i2c->idm_lock);
254 val = readl(iproc_i2c->base + offset);
260 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
263 if (iproc_i2c->idm_base) {
264 spin_lock(&iproc_i2c->idm_lock);
265 writel(iproc_i2c->ape_addr_mask,
266 iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
267 writel(val, iproc_i2c->base + offset);
268 spin_unlock(&iproc_i2c->idm_lock);
270 writel(val, iproc_i2c->base + offset);
274 static void bcm_iproc_i2c_slave_init(
275 struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
279 iproc_i2c->tx_underrun = 0;
281 /* put controller in reset */
282 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
283 val |= BIT(CFG_RESET_SHIFT);
284 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
286 /* wait 100 usec per spec */
289 /* bring controller out of reset */
290 val &= ~(BIT(CFG_RESET_SHIFT));
291 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
294 /* flush TX/RX FIFOs */
295 val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
296 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
298 /* Maximum slave stretch time */
299 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
300 val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
301 val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
302 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
304 /* Configure the slave address */
305 val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
306 val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
307 val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
308 val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
309 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
311 /* clear all pending slave interrupts */
312 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
314 /* Enable interrupt register to indicate a valid byte in receive fifo */
315 val = BIT(IE_S_RX_EVENT_SHIFT);
316 /* Enable interrupt register to indicate Slave Rx FIFO Full */
317 val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
318 /* Enable interrupt register to indicate a Master read transaction */
319 val |= BIT(IE_S_RD_EVENT_SHIFT);
320 /* Enable interrupt register for the Slave BUSY command */
321 val |= BIT(IE_S_START_BUSY_SHIFT);
322 iproc_i2c->slave_int_mask = val;
323 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
326 static void bcm_iproc_i2c_check_slave_status(
327 struct bcm_iproc_i2c_dev *iproc_i2c)
331 val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
332 /* status is valid only when START_BUSY is cleared after it was set */
333 if (val & BIT(S_CMD_START_BUSY_SHIFT))
336 val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
337 if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
338 dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
339 "slave random stretch time timeout\n" :
340 "Master aborted read transaction\n");
341 /* re-initialize i2c for recovery */
342 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
343 bcm_iproc_i2c_slave_init(iproc_i2c, true);
344 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
348 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
350 u8 rx_data, rx_status;
354 while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
355 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
356 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
357 rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
359 if (rx_status == I2C_SLAVE_RX_START) {
360 /* Start of SMBUS Master write */
361 i2c_slave_event(iproc_i2c->slave,
362 I2C_SLAVE_WRITE_REQUESTED, &rx_data);
363 iproc_i2c->rx_start_rcvd = true;
364 iproc_i2c->slave_read_complete = false;
365 } else if (rx_status == I2C_SLAVE_RX_DATA &&
366 iproc_i2c->rx_start_rcvd) {
367 /* Middle of SMBUS Master write */
368 i2c_slave_event(iproc_i2c->slave,
369 I2C_SLAVE_WRITE_RECEIVED, &rx_data);
370 } else if (rx_status == I2C_SLAVE_RX_END &&
371 iproc_i2c->rx_start_rcvd) {
372 /* End of SMBUS Master write */
373 if (iproc_i2c->slave_rx_only)
374 i2c_slave_event(iproc_i2c->slave,
375 I2C_SLAVE_WRITE_RECEIVED,
378 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
380 } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
381 iproc_i2c->rx_start_rcvd = false;
382 iproc_i2c->slave_read_complete = true;
390 static void slave_rx_tasklet_fn(unsigned long data)
392 struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
395 bcm_iproc_i2c_slave_read(iproc_i2c);
397 /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
398 int_clr = BIT(IS_S_RX_EVENT_SHIFT);
400 if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
402 * In case of single byte master-read request,
403 * IS_S_TX_UNDERRUN_SHIFT event is generated before
404 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
405 * from first IS_S_TX_UNDERRUN_SHIFT event.
407 * This means don't send any data from slave when
408 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
409 * eeprom or other backend slave driver read pointer twice.
411 iproc_i2c->tx_underrun = 0;
412 iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
414 /* clear IS_S_RD_EVENT_SHIFT interrupt */
415 int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
418 /* clear slave interrupt */
419 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
420 /* enable slave interrupts */
421 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
424 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
431 * Slave events in case of master-write, master-write-read and,
434 * Master-write : only IS_S_RX_EVENT_SHIFT event
435 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
437 * Master-read : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
438 * events or only IS_S_RD_EVENT_SHIFT
440 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
441 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
442 * full. This can happen if Master issues write requests of more than
445 if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
446 status & BIT(IS_S_RD_EVENT_SHIFT) ||
447 status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
448 /* disable slave interrupts */
449 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
450 val &= ~iproc_i2c->slave_int_mask;
451 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
453 if (status & BIT(IS_S_RD_EVENT_SHIFT))
454 /* Master-write-read request */
455 iproc_i2c->slave_rx_only = false;
457 /* Master-write request only */
458 iproc_i2c->slave_rx_only = true;
460 /* schedule tasklet to read data later */
461 tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
464 * clear only IS_S_RX_EVENT_SHIFT and
465 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
467 val = BIT(IS_S_RX_EVENT_SHIFT);
468 if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
469 val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
470 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
473 if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
474 iproc_i2c->tx_underrun++;
475 if (iproc_i2c->tx_underrun == 1)
476 /* Start of SMBUS for Master Read */
477 i2c_slave_event(iproc_i2c->slave,
478 I2C_SLAVE_READ_REQUESTED,
481 /* Master read other than start */
482 i2c_slave_event(iproc_i2c->slave,
483 I2C_SLAVE_READ_PROCESSED,
486 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
488 val = BIT(S_CMD_START_BUSY_SHIFT);
489 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
491 /* clear interrupt */
492 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
493 BIT(IS_S_TX_UNDERRUN_SHIFT));
496 /* Stop received from master in case of master read transaction */
497 if (status & BIT(IS_S_START_BUSY_SHIFT)) {
499 * Disable interrupt for TX FIFO becomes empty and
500 * less than PKT_LENGTH bytes were output on the SMBUS
502 iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
503 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
504 iproc_i2c->slave_int_mask);
506 /* End of SMBUS for Master Read */
507 val = BIT(S_TX_WR_STATUS_SHIFT);
508 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
510 val = BIT(S_CMD_START_BUSY_SHIFT);
511 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
514 val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
515 val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
516 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
518 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
520 /* clear interrupt */
521 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
522 BIT(IS_S_START_BUSY_SHIFT));
525 /* check slave transmit status only if slave is transmitting */
526 if (!iproc_i2c->slave_rx_only)
527 bcm_iproc_i2c_check_slave_status(iproc_i2c);
532 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
534 struct i2c_msg *msg = iproc_i2c->msg;
537 /* Read valid data from RX FIFO */
538 while (iproc_i2c->rx_bytes < msg->len) {
539 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
542 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
545 msg->buf[iproc_i2c->rx_bytes] =
546 (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
547 iproc_i2c->rx_bytes++;
551 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
553 struct i2c_msg *msg = iproc_i2c->msg;
554 unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
558 /* can only fill up to the FIFO size */
559 tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
560 for (i = 0; i < tx_bytes; i++) {
561 /* start from where we left over */
562 unsigned int idx = iproc_i2c->tx_bytes + i;
566 /* mark the last byte */
567 if (idx == msg->len - 1) {
568 val |= BIT(M_TX_WR_STATUS_SHIFT);
570 if (iproc_i2c->irq) {
574 * Since this is the last byte, we should now
575 * disable TX FIFO underrun interrupt
577 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
578 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
579 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
584 /* load data into TX FIFO */
585 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
588 /* update number of transferred bytes */
589 iproc_i2c->tx_bytes += tx_bytes;
592 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
594 struct i2c_msg *msg = iproc_i2c->msg;
597 bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
598 bytes_left = msg->len - iproc_i2c->rx_bytes;
599 if (bytes_left == 0) {
600 if (iproc_i2c->irq) {
601 /* finished reading all data, disable rx thld event */
602 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
603 val &= ~BIT(IS_M_RX_THLD_SHIFT);
604 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
606 } else if (bytes_left < iproc_i2c->thld_bytes) {
607 /* set bytes left as threshold */
608 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
609 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
610 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
611 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
612 iproc_i2c->thld_bytes = bytes_left;
615 * bytes_left >= iproc_i2c->thld_bytes,
616 * hence no need to change the THRESHOLD SET.
617 * It will remain as iproc_i2c->thld_bytes itself
621 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
624 /* TX FIFO is empty and we have more data to send */
625 if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
626 bcm_iproc_i2c_send(iproc_i2c);
628 /* RX FIFO threshold is reached and data needs to be read out */
629 if (status & BIT(IS_M_RX_THLD_SHIFT))
630 bcm_iproc_i2c_read(iproc_i2c);
632 /* transfer is done */
633 if (status & BIT(IS_M_START_BUSY_SHIFT)) {
634 iproc_i2c->xfer_is_done = 1;
636 complete(&iproc_i2c->done);
640 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
642 struct bcm_iproc_i2c_dev *iproc_i2c = data;
647 status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
648 /* process only slave interrupt which are enabled */
649 slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
653 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
664 /* process all master based events */
665 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
666 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
671 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
675 /* put controller in reset */
676 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
677 val |= BIT(CFG_RESET_SHIFT);
678 val &= ~(BIT(CFG_EN_SHIFT));
679 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
681 /* wait 100 usec per spec */
684 /* bring controller out of reset */
685 val &= ~(BIT(CFG_RESET_SHIFT));
686 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
688 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
689 val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
690 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
691 /* disable all interrupts */
692 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
693 val &= ~(IE_M_ALL_INTERRUPT_MASK <<
694 IE_M_ALL_INTERRUPT_SHIFT);
695 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
697 /* clear all pending interrupts */
698 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
703 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
708 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
710 val |= BIT(CFG_EN_SHIFT);
712 val &= ~BIT(CFG_EN_SHIFT);
713 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
716 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
721 val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
722 val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
725 case M_CMD_STATUS_SUCCESS:
728 case M_CMD_STATUS_LOST_ARB:
729 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
732 case M_CMD_STATUS_NACK_ADDR:
733 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
736 case M_CMD_STATUS_NACK_DATA:
737 dev_dbg(iproc_i2c->device, "NAK data\n");
740 case M_CMD_STATUS_TIMEOUT:
741 dev_dbg(iproc_i2c->device, "bus timeout\n");
744 case M_CMD_STATUS_FIFO_UNDERRUN:
745 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
748 case M_CMD_STATUS_RX_FIFO_FULL:
749 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
753 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
755 /* re-initialize i2c for recovery */
756 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
757 bcm_iproc_i2c_init(iproc_i2c);
758 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
764 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
768 unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
772 iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
774 if (iproc_i2c->irq) {
775 time_left = wait_for_completion_timeout(&iproc_i2c->done,
777 /* disable all interrupts */
778 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
779 /* read it back to flush the write */
780 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
781 /* make sure the interrupt handler isn't running */
782 synchronize_irq(iproc_i2c->irq);
784 } else { /* polling mode */
785 unsigned long timeout = jiffies + time_left;
788 status = iproc_i2c_rd_reg(iproc_i2c,
789 IS_OFFSET) & ISR_MASK;
790 bcm_iproc_i2c_process_m_event(iproc_i2c, status);
791 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
793 if (time_after(jiffies, timeout)) {
800 } while (!iproc_i2c->xfer_is_done);
803 if (!time_left && !iproc_i2c->xfer_is_done) {
804 dev_err(iproc_i2c->device, "transaction timed out\n");
806 /* flush both TX/RX FIFOs */
807 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
808 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
812 ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
814 /* flush both TX/RX FIFOs */
815 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
816 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
824 * If 'process_call' is true, then this is a multi-msg transfer that requires
825 * a repeated start between the messages.
826 * More specifically, it must be a write (reg) followed by a read (data).
827 * The i2c quirks are set to enforce this rule.
829 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
830 struct i2c_msg *msgs, bool process_call)
834 u32 val, tmp, val_intr_en;
835 unsigned int tx_bytes;
836 struct i2c_msg *msg = &msgs[0];
838 /* check if bus is busy */
839 if (!!(iproc_i2c_rd_reg(iproc_i2c,
840 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
841 dev_warn(iproc_i2c->device, "bus is busy\n");
845 iproc_i2c->msg = msg;
847 /* format and load slave address into the TX FIFO */
848 addr = i2c_8bit_addr_from_msg(msg);
849 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
852 * For a write transaction, load data into the TX FIFO. Only allow
853 * loading up to TX FIFO size - 1 bytes of data since the first byte
854 * has been used up by the slave address
856 tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
857 if (!(msg->flags & I2C_M_RD)) {
858 for (i = 0; i < tx_bytes; i++) {
861 /* mark the last byte */
862 if (!process_call && (i == msg->len - 1))
863 val |= BIT(M_TX_WR_STATUS_SHIFT);
865 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
867 iproc_i2c->tx_bytes = tx_bytes;
870 /* Process the read message if this is process call */
873 iproc_i2c->msg = msg; /* point to second msg */
876 * The last byte to be sent out should be a slave
877 * address with read operation
879 addr = i2c_8bit_addr_from_msg(msg);
880 /* mark it the last byte out */
881 val = addr | BIT(M_TX_WR_STATUS_SHIFT);
882 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
885 /* mark as incomplete before starting the transaction */
887 reinit_completion(&iproc_i2c->done);
889 iproc_i2c->xfer_is_done = 0;
892 * Enable the "start busy" interrupt, which will be triggered after the
893 * transaction is done, i.e., the internal start_busy bit, transitions
896 val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
899 * If TX data size is larger than the TX FIFO, need to enable TX
900 * underrun interrupt, which will be triggerred when the TX FIFO is
901 * empty. When that happens we can then pump more data into the FIFO
903 if (!process_call && !(msg->flags & I2C_M_RD) &&
904 msg->len > iproc_i2c->tx_bytes)
905 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
908 * Now we can activate the transfer. For a read operation, specify the
909 * number of bytes to read
911 val = BIT(M_CMD_START_BUSY_SHIFT);
914 /* SMBUS QUICK Command (Read/Write) */
915 val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
916 } else if (msg->flags & I2C_M_RD) {
919 iproc_i2c->rx_bytes = 0;
920 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
921 iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
923 iproc_i2c->thld_bytes = msg->len;
925 /* set threshold value */
926 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
927 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
928 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
929 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
931 /* enable the RX threshold interrupt */
932 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
934 protocol = process_call ?
935 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
937 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
938 (msg->len << M_CMD_RD_CNT_SHIFT);
940 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
944 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
946 return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
949 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
950 struct i2c_msg msgs[], int num)
952 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
953 bool process_call = false;
957 /* Repeated start, use process call */
959 if (msgs[1].flags & I2C_M_NOSTART) {
960 dev_err(iproc_i2c->device, "Invalid repeated start\n");
965 ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
967 dev_dbg(iproc_i2c->device, "xfer failed\n");
974 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
978 val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
980 if (adap->algo->reg_slave)
981 val |= I2C_FUNC_SLAVE;
986 static struct i2c_algorithm bcm_iproc_algo = {
987 .master_xfer = bcm_iproc_i2c_xfer,
988 .functionality = bcm_iproc_i2c_functionality,
989 .reg_slave = bcm_iproc_i2c_reg_slave,
990 .unreg_slave = bcm_iproc_i2c_unreg_slave,
993 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
994 .flags = I2C_AQ_COMB_WRITE_THEN_READ,
995 .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
996 .max_read_len = M_RX_MAX_READ_LEN,
999 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
1001 unsigned int bus_speed;
1003 int ret = of_property_read_u32(iproc_i2c->device->of_node,
1004 "clock-frequency", &bus_speed);
1006 dev_info(iproc_i2c->device,
1007 "unable to interpret clock-frequency DT property\n");
1008 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1011 if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1012 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1014 dev_err(iproc_i2c->device,
1015 "valid speeds are 100khz and 400khz\n");
1017 } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1018 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1020 bus_speed = I2C_MAX_FAST_MODE_FREQ;
1023 iproc_i2c->bus_speed = bus_speed;
1024 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1025 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1026 val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1027 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1029 dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1034 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1037 struct bcm_iproc_i2c_dev *iproc_i2c;
1038 struct i2c_adapter *adap;
1039 struct resource *res;
1041 iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1046 platform_set_drvdata(pdev, iproc_i2c);
1047 iproc_i2c->device = &pdev->dev;
1049 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1050 init_completion(&iproc_i2c->done);
1052 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1053 iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
1054 if (IS_ERR(iproc_i2c->base))
1055 return PTR_ERR(iproc_i2c->base);
1057 if (iproc_i2c->type == IPROC_I2C_NIC) {
1058 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1059 iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
1061 if (IS_ERR(iproc_i2c->idm_base))
1062 return PTR_ERR(iproc_i2c->idm_base);
1064 ret = of_property_read_u32(iproc_i2c->device->of_node,
1065 "brcm,ape-hsls-addr-mask",
1066 &iproc_i2c->ape_addr_mask);
1068 dev_err(iproc_i2c->device,
1069 "'brcm,ape-hsls-addr-mask' missing\n");
1073 spin_lock_init(&iproc_i2c->idm_lock);
1075 /* no slave support */
1076 bcm_iproc_algo.reg_slave = NULL;
1077 bcm_iproc_algo.unreg_slave = NULL;
1080 ret = bcm_iproc_i2c_init(iproc_i2c);
1084 ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1088 irq = platform_get_irq(pdev, 0);
1090 ret = devm_request_irq(iproc_i2c->device, irq,
1091 bcm_iproc_i2c_isr, 0, pdev->name,
1094 dev_err(iproc_i2c->device,
1095 "unable to request irq %i\n", irq);
1099 iproc_i2c->irq = irq;
1101 dev_warn(iproc_i2c->device,
1102 "no irq resource, falling back to poll mode\n");
1105 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1107 adap = &iproc_i2c->adapter;
1108 i2c_set_adapdata(adap, iproc_i2c);
1109 snprintf(adap->name, sizeof(adap->name),
1110 "Broadcom iProc (%s)",
1111 of_node_full_name(iproc_i2c->device->of_node));
1112 adap->algo = &bcm_iproc_algo;
1113 adap->quirks = &bcm_iproc_i2c_quirks;
1114 adap->dev.parent = &pdev->dev;
1115 adap->dev.of_node = pdev->dev.of_node;
1117 return i2c_add_adapter(adap);
1120 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
1122 struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1124 if (iproc_i2c->irq) {
1126 * Make sure there's no pending interrupt when we remove the
1129 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1130 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1131 synchronize_irq(iproc_i2c->irq);
1134 i2c_del_adapter(&iproc_i2c->adapter);
1135 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1140 #ifdef CONFIG_PM_SLEEP
1142 static int bcm_iproc_i2c_suspend(struct device *dev)
1144 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1146 if (iproc_i2c->irq) {
1148 * Make sure there's no pending interrupt when we go into
1151 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1152 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1153 synchronize_irq(iproc_i2c->irq);
1156 /* now disable the controller */
1157 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1162 static int bcm_iproc_i2c_resume(struct device *dev)
1164 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1169 * Power domain could have been shut off completely in system deep
1170 * sleep, so re-initialize the block here
1172 ret = bcm_iproc_i2c_init(iproc_i2c);
1176 /* configure to the desired bus speed */
1177 val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1178 val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1179 val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1180 iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1182 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1187 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1188 .suspend_late = &bcm_iproc_i2c_suspend,
1189 .resume_early = &bcm_iproc_i2c_resume
1192 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
1194 #define BCM_IPROC_I2C_PM_OPS NULL
1195 #endif /* CONFIG_PM_SLEEP */
1198 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1200 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1202 if (iproc_i2c->slave)
1205 if (slave->flags & I2C_CLIENT_TEN)
1206 return -EAFNOSUPPORT;
1208 iproc_i2c->slave = slave;
1210 tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1211 (unsigned long)iproc_i2c);
1213 bcm_iproc_i2c_slave_init(iproc_i2c, false);
1217 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1220 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1222 if (!iproc_i2c->slave)
1225 disable_irq(iproc_i2c->irq);
1227 /* disable all slave interrupts */
1228 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1229 tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1230 IE_S_ALL_INTERRUPT_SHIFT);
1231 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1233 tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1235 /* Erase the slave address programmed */
1236 tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1237 tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1238 iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1240 /* flush TX/RX FIFOs */
1241 tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1242 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1244 /* clear all pending slave interrupts */
1245 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1247 iproc_i2c->slave = NULL;
1249 enable_irq(iproc_i2c->irq);
1254 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1256 .compatible = "brcm,iproc-i2c",
1257 .data = (int *)IPROC_I2C,
1259 .compatible = "brcm,iproc-nic-i2c",
1260 .data = (int *)IPROC_I2C_NIC,
1264 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1266 static struct platform_driver bcm_iproc_i2c_driver = {
1268 .name = "bcm-iproc-i2c",
1269 .of_match_table = bcm_iproc_i2c_of_match,
1270 .pm = BCM_IPROC_I2C_PM_OPS,
1272 .probe = bcm_iproc_i2c_probe,
1273 .remove = bcm_iproc_i2c_remove,
1275 module_platform_driver(bcm_iproc_i2c_driver);
1278 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1279 MODULE_LICENSE("GPL v2");