1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock (Spinlock)
50 * 3. kmem_cache->cpu_slab->lock (Local lock)
51 * 4. slab_lock(page) (Only on some arches or for debugging)
52 * 5. object_map_lock (Only for debugging)
56 * The role of the slab_mutex is to protect the list of all the slabs
57 * and to synchronize major metadata changes to slab cache structures.
58 * Also synchronizes memory hotplug callbacks.
62 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * The slab_lock is only used for debugging and on arches that do not
66 * have the ability to do a cmpxchg_double. It only protects:
67 * A. page->freelist -> List of object free in a page
68 * B. page->inuse -> Number of objects in use
69 * C. page->objects -> Number of objects in page
70 * D. page->frozen -> frozen state
74 * If a slab is frozen then it is exempt from list management. It is not
75 * on any list except per cpu partial list. The processor that froze the
76 * slab is the one who can perform list operations on the page. Other
77 * processors may put objects onto the freelist but the processor that
78 * froze the slab is the only one that can retrieve the objects from the
83 * The list_lock protects the partial and full list on each node and
84 * the partial slab counter. If taken then no new slabs may be added or
85 * removed from the lists nor make the number of partial slabs be modified.
86 * (Note that the total number of slabs is an atomic value that may be
87 * modified without taking the list lock).
89 * The list_lock is a centralized lock and thus we avoid taking it as
90 * much as possible. As long as SLUB does not have to handle partial
91 * slabs, operations can continue without any centralized lock. F.e.
92 * allocating a long series of objects that fill up slabs does not require
95 * cpu_slab->lock local lock
97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
98 * except the stat counters. This is a percpu structure manipulated only by
99 * the local cpu, so the lock protects against being preempted or interrupted
100 * by an irq. Fast path operations rely on lockless operations instead.
101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102 * prevent the lockless operations), so fastpath operations also need to take
103 * the lock and are no longer lockless.
107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108 * are fully lockless when satisfied from the percpu slab (and when
109 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
110 * They also don't disable preemption or migration or irqs. They rely on
111 * the transaction id (tid) field to detect being preempted or moved to
114 * irq, preemption, migration considerations
116 * Interrupts are disabled as part of list_lock or local_lock operations, or
117 * around the slab_lock operation, in order to make the slab allocator safe
118 * to use in the context of an irq.
120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123 * doesn't have to be revalidated in each section protected by the local lock.
125 * SLUB assigns one slab for allocation to each processor.
126 * Allocations only occur from these slabs called cpu slabs.
128 * Slabs with free elements are kept on a partial list and during regular
129 * operations no list for full slabs is used. If an object in a full slab is
130 * freed then the slab will show up again on the partial lists.
131 * We track full slabs for debugging purposes though because otherwise we
132 * cannot scan all objects.
134 * Slabs are freed when they become empty. Teardown and setup is
135 * minimal so we rely on the page allocators per cpu caches for
136 * fast frees and allocs.
138 * page->frozen The slab is frozen and exempt from list processing.
139 * This means that the slab is dedicated to a purpose
140 * such as satisfying allocations for a specific
141 * processor. Objects may be freed in the slab while
142 * it is frozen but slab_free will then skip the usual
143 * list operations. It is up to the processor holding
144 * the slab to integrate the slab into the slab lists
145 * when the slab is no longer needed.
147 * One use of this flag is to mark slabs that are
148 * used for allocations. Then such a slab becomes a cpu
149 * slab. The cpu slab may be equipped with an additional
150 * freelist that allows lockless access to
151 * free objects in addition to the regular freelist
152 * that requires the slab lock.
154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
155 * options set. This moves slab handling out of
156 * the fast path and disables lockless freelists.
160 * We could simply use migrate_disable()/enable() but as long as it's a
161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
163 #ifndef CONFIG_PREEMPT_RT
164 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
165 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
167 #define slub_get_cpu_ptr(var) \
172 #define slub_put_cpu_ptr(var) \
179 #ifdef CONFIG_SLUB_DEBUG
180 #ifdef CONFIG_SLUB_DEBUG_ON
181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
185 #endif /* CONFIG_SLUB_DEBUG */
187 static inline bool kmem_cache_debug(struct kmem_cache *s)
189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 void *fixup_red_left(struct kmem_cache *s, void *p)
194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
195 p += s->red_left_pad;
200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
202 #ifdef CONFIG_SLUB_CPU_PARTIAL
203 return !kmem_cache_debug(s);
210 * Issues still to be resolved:
212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
214 * - Variable sizing of the per node arrays
217 /* Enable to log cmpxchg failures */
218 #undef SLUB_DEBUG_CMPXCHG
221 * Minimum number of partial slabs. These will be left on the partial
222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
224 #define MIN_PARTIAL 5
227 * Maximum number of desirable partial slabs.
228 * The existence of more partial slabs makes kmem_cache_shrink
229 * sort the partial list by the number of objects in use.
231 #define MAX_PARTIAL 10
233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
234 SLAB_POISON | SLAB_STORE_USER)
237 * These debug flags cannot use CMPXCHG because there might be consistency
238 * issues when checking or reading debug information
240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
245 * Debugging flags that require metadata to be stored in the slab. These get
246 * disabled when slub_debug=O is used and a cache's min order increases with
249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 #define OO_MASK ((1 << OO_SHIFT) - 1)
253 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
255 /* Internal SLUB flags */
257 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
258 /* Use cmpxchg_double */
259 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
262 * Tracking user of a slab.
264 #define TRACK_ADDRS_COUNT 16
266 unsigned long addr; /* Called from address */
267 #ifdef CONFIG_STACKTRACE
268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
275 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 static int sysfs_slab_add(struct kmem_cache *);
279 static int sysfs_slab_alias(struct kmem_cache *, const char *);
281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287 static void debugfs_slab_add(struct kmem_cache *);
289 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 static inline void stat(const struct kmem_cache *s, enum stat_item si)
294 #ifdef CONFIG_SLUB_STATS
296 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 * avoid this_cpu_add()'s irq-disable overhead.
299 raw_cpu_inc(s->cpu_slab->stat[si]);
304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306 * differ during memory hotplug/hotremove operations.
307 * Protected by slab_mutex.
309 static nodemask_t slab_nodes;
311 /********************************************************************
312 * Core slab cache functions
313 *******************************************************************/
316 * Returns freelist pointer (ptr). With hardening, this is obfuscated
317 * with an XOR of the address where the pointer is held and a per-cache
320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 unsigned long ptr_addr)
323 #ifdef CONFIG_SLAB_FREELIST_HARDENED
325 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
326 * Normally, this doesn't cause any issues, as both set_freepointer()
327 * and get_freepointer() are called with a pointer with the same tag.
328 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 * example, when __free_slub() iterates over objects in a cache, it
330 * passes untagged pointers to check_object(). check_object() in turns
331 * calls get_freepointer() with an untagged pointer, which causes the
332 * freepointer to be restored incorrectly.
334 return (void *)((unsigned long)ptr ^ s->random ^
335 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
341 /* Returns the freelist pointer recorded at location ptr_addr. */
342 static inline void *freelist_dereference(const struct kmem_cache *s,
345 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 (unsigned long)ptr_addr);
349 static inline void *get_freepointer(struct kmem_cache *s, void *object)
351 object = kasan_reset_tag(object);
352 return freelist_dereference(s, object + s->offset);
355 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
357 prefetchw(object + s->offset);
360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
362 unsigned long freepointer_addr;
365 if (!debug_pagealloc_enabled_static())
366 return get_freepointer(s, object);
368 object = kasan_reset_tag(object);
369 freepointer_addr = (unsigned long)object + s->offset;
370 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
371 return freelist_ptr(s, p, freepointer_addr);
374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
376 unsigned long freeptr_addr = (unsigned long)object + s->offset;
378 #ifdef CONFIG_SLAB_FREELIST_HARDENED
379 BUG_ON(object == fp); /* naive detection of double free or corruption */
382 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
383 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
386 /* Loop over all objects in a slab */
387 #define for_each_object(__p, __s, __addr, __objects) \
388 for (__p = fixup_red_left(__s, __addr); \
389 __p < (__addr) + (__objects) * (__s)->size; \
392 static inline unsigned int order_objects(unsigned int order, unsigned int size)
394 return ((unsigned int)PAGE_SIZE << order) / size;
397 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
400 struct kmem_cache_order_objects x = {
401 (order << OO_SHIFT) + order_objects(order, size)
407 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
409 return x.x >> OO_SHIFT;
412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
414 return x.x & OO_MASK;
417 #ifdef CONFIG_SLUB_CPU_PARTIAL
418 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
420 unsigned int nr_pages;
422 s->cpu_partial = nr_objects;
425 * We take the number of objects but actually limit the number of
426 * pages on the per cpu partial list, in order to limit excessive
427 * growth of the list. For simplicity we assume that the pages will
430 nr_pages = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
431 s->cpu_partial_pages = nr_pages;
435 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
438 #endif /* CONFIG_SLUB_CPU_PARTIAL */
441 * Per slab locking using the pagelock
443 static __always_inline void __slab_lock(struct page *page)
445 VM_BUG_ON_PAGE(PageTail(page), page);
446 bit_spin_lock(PG_locked, &page->flags);
449 static __always_inline void __slab_unlock(struct page *page)
451 VM_BUG_ON_PAGE(PageTail(page), page);
452 __bit_spin_unlock(PG_locked, &page->flags);
455 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
457 if (IS_ENABLED(CONFIG_PREEMPT_RT))
458 local_irq_save(*flags);
462 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
465 if (IS_ENABLED(CONFIG_PREEMPT_RT))
466 local_irq_restore(*flags);
470 * Interrupts must be disabled (for the fallback code to work right), typically
471 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
472 * so we disable interrupts as part of slab_[un]lock().
474 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
475 void *freelist_old, unsigned long counters_old,
476 void *freelist_new, unsigned long counters_new,
479 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
480 lockdep_assert_irqs_disabled();
481 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
482 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
483 if (s->flags & __CMPXCHG_DOUBLE) {
484 if (cmpxchg_double(&page->freelist, &page->counters,
485 freelist_old, counters_old,
486 freelist_new, counters_new))
491 /* init to 0 to prevent spurious warnings */
492 unsigned long flags = 0;
494 slab_lock(page, &flags);
495 if (page->freelist == freelist_old &&
496 page->counters == counters_old) {
497 page->freelist = freelist_new;
498 page->counters = counters_new;
499 slab_unlock(page, &flags);
502 slab_unlock(page, &flags);
506 stat(s, CMPXCHG_DOUBLE_FAIL);
508 #ifdef SLUB_DEBUG_CMPXCHG
509 pr_info("%s %s: cmpxchg double redo ", n, s->name);
515 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
516 void *freelist_old, unsigned long counters_old,
517 void *freelist_new, unsigned long counters_new,
520 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
521 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
522 if (s->flags & __CMPXCHG_DOUBLE) {
523 if (cmpxchg_double(&page->freelist, &page->counters,
524 freelist_old, counters_old,
525 freelist_new, counters_new))
532 local_irq_save(flags);
534 if (page->freelist == freelist_old &&
535 page->counters == counters_old) {
536 page->freelist = freelist_new;
537 page->counters = counters_new;
539 local_irq_restore(flags);
543 local_irq_restore(flags);
547 stat(s, CMPXCHG_DOUBLE_FAIL);
549 #ifdef SLUB_DEBUG_CMPXCHG
550 pr_info("%s %s: cmpxchg double redo ", n, s->name);
556 #ifdef CONFIG_SLUB_DEBUG
557 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
558 static DEFINE_RAW_SPINLOCK(object_map_lock);
560 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
563 void *addr = page_address(page);
566 bitmap_zero(obj_map, page->objects);
568 for (p = page->freelist; p; p = get_freepointer(s, p))
569 set_bit(__obj_to_index(s, addr, p), obj_map);
572 #if IS_ENABLED(CONFIG_KUNIT)
573 static bool slab_add_kunit_errors(void)
575 struct kunit_resource *resource;
577 if (likely(!current->kunit_test))
580 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
584 (*(int *)resource->data)++;
585 kunit_put_resource(resource);
589 static inline bool slab_add_kunit_errors(void) { return false; }
593 * Determine a map of object in use on a page.
595 * Node listlock must be held to guarantee that the page does
596 * not vanish from under us.
598 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
599 __acquires(&object_map_lock)
601 VM_BUG_ON(!irqs_disabled());
603 raw_spin_lock(&object_map_lock);
605 __fill_map(object_map, s, page);
610 static void put_map(unsigned long *map) __releases(&object_map_lock)
612 VM_BUG_ON(map != object_map);
613 raw_spin_unlock(&object_map_lock);
616 static inline unsigned int size_from_object(struct kmem_cache *s)
618 if (s->flags & SLAB_RED_ZONE)
619 return s->size - s->red_left_pad;
624 static inline void *restore_red_left(struct kmem_cache *s, void *p)
626 if (s->flags & SLAB_RED_ZONE)
627 p -= s->red_left_pad;
635 #if defined(CONFIG_SLUB_DEBUG_ON)
636 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
638 static slab_flags_t slub_debug;
641 static char *slub_debug_string;
642 static int disable_higher_order_debug;
645 * slub is about to manipulate internal object metadata. This memory lies
646 * outside the range of the allocated object, so accessing it would normally
647 * be reported by kasan as a bounds error. metadata_access_enable() is used
648 * to tell kasan that these accesses are OK.
650 static inline void metadata_access_enable(void)
652 kasan_disable_current();
655 static inline void metadata_access_disable(void)
657 kasan_enable_current();
664 /* Verify that a pointer has an address that is valid within a slab page */
665 static inline int check_valid_pointer(struct kmem_cache *s,
666 struct page *page, void *object)
673 base = page_address(page);
674 object = kasan_reset_tag(object);
675 object = restore_red_left(s, object);
676 if (object < base || object >= base + page->objects * s->size ||
677 (object - base) % s->size) {
684 static void print_section(char *level, char *text, u8 *addr,
687 metadata_access_enable();
688 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
689 16, 1, kasan_reset_tag((void *)addr), length, 1);
690 metadata_access_disable();
694 * See comment in calculate_sizes().
696 static inline bool freeptr_outside_object(struct kmem_cache *s)
698 return s->offset >= s->inuse;
702 * Return offset of the end of info block which is inuse + free pointer if
703 * not overlapping with object.
705 static inline unsigned int get_info_end(struct kmem_cache *s)
707 if (freeptr_outside_object(s))
708 return s->inuse + sizeof(void *);
713 static struct track *get_track(struct kmem_cache *s, void *object,
714 enum track_item alloc)
718 p = object + get_info_end(s);
720 return kasan_reset_tag(p + alloc);
723 static void set_track(struct kmem_cache *s, void *object,
724 enum track_item alloc, unsigned long addr)
726 struct track *p = get_track(s, object, alloc);
729 #ifdef CONFIG_STACKTRACE
730 unsigned int nr_entries;
732 metadata_access_enable();
733 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
734 TRACK_ADDRS_COUNT, 3);
735 metadata_access_disable();
737 if (nr_entries < TRACK_ADDRS_COUNT)
738 p->addrs[nr_entries] = 0;
741 p->cpu = smp_processor_id();
742 p->pid = current->pid;
745 memset(p, 0, sizeof(struct track));
749 static void init_tracking(struct kmem_cache *s, void *object)
751 if (!(s->flags & SLAB_STORE_USER))
754 set_track(s, object, TRACK_FREE, 0UL);
755 set_track(s, object, TRACK_ALLOC, 0UL);
758 static void print_track(const char *s, struct track *t, unsigned long pr_time)
763 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
764 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
765 #ifdef CONFIG_STACKTRACE
768 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
770 pr_err("\t%pS\n", (void *)t->addrs[i]);
777 void print_tracking(struct kmem_cache *s, void *object)
779 unsigned long pr_time = jiffies;
780 if (!(s->flags & SLAB_STORE_USER))
783 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
787 static void print_page_info(struct page *page)
789 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
790 page, page->objects, page->inuse, page->freelist,
791 page->flags, &page->flags);
795 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
797 struct va_format vaf;
803 pr_err("=============================================================================\n");
804 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
805 pr_err("-----------------------------------------------------------------------------\n\n");
810 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
812 struct va_format vaf;
815 if (slab_add_kunit_errors())
821 pr_err("FIX %s: %pV\n", s->name, &vaf);
825 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
826 void **freelist, void *nextfree)
828 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
829 !check_valid_pointer(s, page, nextfree) && freelist) {
830 object_err(s, page, *freelist, "Freechain corrupt");
832 slab_fix(s, "Isolate corrupted freechain");
839 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
841 unsigned int off; /* Offset of last byte */
842 u8 *addr = page_address(page);
844 print_tracking(s, p);
846 print_page_info(page);
848 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
849 p, p - addr, get_freepointer(s, p));
851 if (s->flags & SLAB_RED_ZONE)
852 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
854 else if (p > addr + 16)
855 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
857 print_section(KERN_ERR, "Object ", p,
858 min_t(unsigned int, s->object_size, PAGE_SIZE));
859 if (s->flags & SLAB_RED_ZONE)
860 print_section(KERN_ERR, "Redzone ", p + s->object_size,
861 s->inuse - s->object_size);
863 off = get_info_end(s);
865 if (s->flags & SLAB_STORE_USER)
866 off += 2 * sizeof(struct track);
868 off += kasan_metadata_size(s);
870 if (off != size_from_object(s))
871 /* Beginning of the filler is the free pointer */
872 print_section(KERN_ERR, "Padding ", p + off,
873 size_from_object(s) - off);
878 void object_err(struct kmem_cache *s, struct page *page,
879 u8 *object, char *reason)
881 if (slab_add_kunit_errors())
884 slab_bug(s, "%s", reason);
885 print_trailer(s, page, object);
886 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
889 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
890 const char *fmt, ...)
895 if (slab_add_kunit_errors())
899 vsnprintf(buf, sizeof(buf), fmt, args);
901 slab_bug(s, "%s", buf);
902 print_page_info(page);
904 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
907 static void init_object(struct kmem_cache *s, void *object, u8 val)
909 u8 *p = kasan_reset_tag(object);
911 if (s->flags & SLAB_RED_ZONE)
912 memset(p - s->red_left_pad, val, s->red_left_pad);
914 if (s->flags & __OBJECT_POISON) {
915 memset(p, POISON_FREE, s->object_size - 1);
916 p[s->object_size - 1] = POISON_END;
919 if (s->flags & SLAB_RED_ZONE)
920 memset(p + s->object_size, val, s->inuse - s->object_size);
923 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
924 void *from, void *to)
926 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
927 memset(from, data, to - from);
930 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
931 u8 *object, char *what,
932 u8 *start, unsigned int value, unsigned int bytes)
936 u8 *addr = page_address(page);
938 metadata_access_enable();
939 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
940 metadata_access_disable();
945 while (end > fault && end[-1] == value)
948 if (slab_add_kunit_errors())
951 slab_bug(s, "%s overwritten", what);
952 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
953 fault, end - 1, fault - addr,
955 print_trailer(s, page, object);
956 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
959 restore_bytes(s, what, value, fault, end);
967 * Bytes of the object to be managed.
968 * If the freepointer may overlay the object then the free
969 * pointer is at the middle of the object.
971 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
974 * object + s->object_size
975 * Padding to reach word boundary. This is also used for Redzoning.
976 * Padding is extended by another word if Redzoning is enabled and
977 * object_size == inuse.
979 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
980 * 0xcc (RED_ACTIVE) for objects in use.
983 * Meta data starts here.
985 * A. Free pointer (if we cannot overwrite object on free)
986 * B. Tracking data for SLAB_STORE_USER
987 * C. Padding to reach required alignment boundary or at minimum
988 * one word if debugging is on to be able to detect writes
989 * before the word boundary.
991 * Padding is done using 0x5a (POISON_INUSE)
994 * Nothing is used beyond s->size.
996 * If slabcaches are merged then the object_size and inuse boundaries are mostly
997 * ignored. And therefore no slab options that rely on these boundaries
998 * may be used with merged slabcaches.
1001 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1003 unsigned long off = get_info_end(s); /* The end of info */
1005 if (s->flags & SLAB_STORE_USER)
1006 /* We also have user information there */
1007 off += 2 * sizeof(struct track);
1009 off += kasan_metadata_size(s);
1011 if (size_from_object(s) == off)
1014 return check_bytes_and_report(s, page, p, "Object padding",
1015 p + off, POISON_INUSE, size_from_object(s) - off);
1018 /* Check the pad bytes at the end of a slab page */
1019 static int slab_pad_check(struct kmem_cache *s, struct page *page)
1028 if (!(s->flags & SLAB_POISON))
1031 start = page_address(page);
1032 length = page_size(page);
1033 end = start + length;
1034 remainder = length % s->size;
1038 pad = end - remainder;
1039 metadata_access_enable();
1040 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1041 metadata_access_disable();
1044 while (end > fault && end[-1] == POISON_INUSE)
1047 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1048 fault, end - 1, fault - start);
1049 print_section(KERN_ERR, "Padding ", pad, remainder);
1051 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1055 static int check_object(struct kmem_cache *s, struct page *page,
1056 void *object, u8 val)
1059 u8 *endobject = object + s->object_size;
1061 if (s->flags & SLAB_RED_ZONE) {
1062 if (!check_bytes_and_report(s, page, object, "Left Redzone",
1063 object - s->red_left_pad, val, s->red_left_pad))
1066 if (!check_bytes_and_report(s, page, object, "Right Redzone",
1067 endobject, val, s->inuse - s->object_size))
1070 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 check_bytes_and_report(s, page, p, "Alignment padding",
1072 endobject, POISON_INUSE,
1073 s->inuse - s->object_size);
1077 if (s->flags & SLAB_POISON) {
1078 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 (!check_bytes_and_report(s, page, p, "Poison", p,
1080 POISON_FREE, s->object_size - 1) ||
1081 !check_bytes_and_report(s, page, p, "End Poison",
1082 p + s->object_size - 1, POISON_END, 1)))
1085 * check_pad_bytes cleans up on its own.
1087 check_pad_bytes(s, page, p);
1090 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1092 * Object and freepointer overlap. Cannot check
1093 * freepointer while object is allocated.
1097 /* Check free pointer validity */
1098 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1099 object_err(s, page, p, "Freepointer corrupt");
1101 * No choice but to zap it and thus lose the remainder
1102 * of the free objects in this slab. May cause
1103 * another error because the object count is now wrong.
1105 set_freepointer(s, p, NULL);
1111 static int check_slab(struct kmem_cache *s, struct page *page)
1115 if (!PageSlab(page)) {
1116 slab_err(s, page, "Not a valid slab page");
1120 maxobj = order_objects(compound_order(page), s->size);
1121 if (page->objects > maxobj) {
1122 slab_err(s, page, "objects %u > max %u",
1123 page->objects, maxobj);
1126 if (page->inuse > page->objects) {
1127 slab_err(s, page, "inuse %u > max %u",
1128 page->inuse, page->objects);
1131 /* Slab_pad_check fixes things up after itself */
1132 slab_pad_check(s, page);
1137 * Determine if a certain object on a page is on the freelist. Must hold the
1138 * slab lock to guarantee that the chains are in a consistent state.
1140 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1144 void *object = NULL;
1147 fp = page->freelist;
1148 while (fp && nr <= page->objects) {
1151 if (!check_valid_pointer(s, page, fp)) {
1153 object_err(s, page, object,
1154 "Freechain corrupt");
1155 set_freepointer(s, object, NULL);
1157 slab_err(s, page, "Freepointer corrupt");
1158 page->freelist = NULL;
1159 page->inuse = page->objects;
1160 slab_fix(s, "Freelist cleared");
1166 fp = get_freepointer(s, object);
1170 max_objects = order_objects(compound_order(page), s->size);
1171 if (max_objects > MAX_OBJS_PER_PAGE)
1172 max_objects = MAX_OBJS_PER_PAGE;
1174 if (page->objects != max_objects) {
1175 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1176 page->objects, max_objects);
1177 page->objects = max_objects;
1178 slab_fix(s, "Number of objects adjusted");
1180 if (page->inuse != page->objects - nr) {
1181 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1182 page->inuse, page->objects - nr);
1183 page->inuse = page->objects - nr;
1184 slab_fix(s, "Object count adjusted");
1186 return search == NULL;
1189 static void trace(struct kmem_cache *s, struct page *page, void *object,
1192 if (s->flags & SLAB_TRACE) {
1193 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1195 alloc ? "alloc" : "free",
1196 object, page->inuse,
1200 print_section(KERN_INFO, "Object ", (void *)object,
1208 * Tracking of fully allocated slabs for debugging purposes.
1210 static void add_full(struct kmem_cache *s,
1211 struct kmem_cache_node *n, struct page *page)
1213 if (!(s->flags & SLAB_STORE_USER))
1216 lockdep_assert_held(&n->list_lock);
1217 list_add(&page->slab_list, &n->full);
1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1222 if (!(s->flags & SLAB_STORE_USER))
1225 lockdep_assert_held(&n->list_lock);
1226 list_del(&page->slab_list);
1229 /* Tracking of the number of slabs for debugging purposes */
1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1232 struct kmem_cache_node *n = get_node(s, node);
1234 return atomic_long_read(&n->nr_slabs);
1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 return atomic_long_read(&n->nr_slabs);
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1244 struct kmem_cache_node *n = get_node(s, node);
1247 * May be called early in order to allocate a slab for the
1248 * kmem_cache_node structure. Solve the chicken-egg
1249 * dilemma by deferring the increment of the count during
1250 * bootstrap (see early_kmem_cache_node_alloc).
1253 atomic_long_inc(&n->nr_slabs);
1254 atomic_long_add(objects, &n->total_objects);
1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1259 struct kmem_cache_node *n = get_node(s, node);
1261 atomic_long_dec(&n->nr_slabs);
1262 atomic_long_sub(objects, &n->total_objects);
1265 /* Object debug checks for alloc/free paths */
1266 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1269 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1272 init_object(s, object, SLUB_RED_INACTIVE);
1273 init_tracking(s, object);
1277 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1279 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1282 metadata_access_enable();
1283 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1284 metadata_access_disable();
1287 static inline int alloc_consistency_checks(struct kmem_cache *s,
1288 struct page *page, void *object)
1290 if (!check_slab(s, page))
1293 if (!check_valid_pointer(s, page, object)) {
1294 object_err(s, page, object, "Freelist Pointer check fails");
1298 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1304 static noinline int alloc_debug_processing(struct kmem_cache *s,
1306 void *object, unsigned long addr)
1308 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1309 if (!alloc_consistency_checks(s, page, object))
1313 /* Success perform special debug activities for allocs */
1314 if (s->flags & SLAB_STORE_USER)
1315 set_track(s, object, TRACK_ALLOC, addr);
1316 trace(s, page, object, 1);
1317 init_object(s, object, SLUB_RED_ACTIVE);
1321 if (PageSlab(page)) {
1323 * If this is a slab page then lets do the best we can
1324 * to avoid issues in the future. Marking all objects
1325 * as used avoids touching the remaining objects.
1327 slab_fix(s, "Marking all objects used");
1328 page->inuse = page->objects;
1329 page->freelist = NULL;
1334 static inline int free_consistency_checks(struct kmem_cache *s,
1335 struct page *page, void *object, unsigned long addr)
1337 if (!check_valid_pointer(s, page, object)) {
1338 slab_err(s, page, "Invalid object pointer 0x%p", object);
1342 if (on_freelist(s, page, object)) {
1343 object_err(s, page, object, "Object already free");
1347 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1350 if (unlikely(s != page->slab_cache)) {
1351 if (!PageSlab(page)) {
1352 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1354 } else if (!page->slab_cache) {
1355 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1359 object_err(s, page, object,
1360 "page slab pointer corrupt.");
1366 /* Supports checking bulk free of a constructed freelist */
1367 static noinline int free_debug_processing(
1368 struct kmem_cache *s, struct page *page,
1369 void *head, void *tail, int bulk_cnt,
1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 void *object = head;
1375 unsigned long flags, flags2;
1378 spin_lock_irqsave(&n->list_lock, flags);
1379 slab_lock(page, &flags2);
1381 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1382 if (!check_slab(s, page))
1389 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1390 if (!free_consistency_checks(s, page, object, addr))
1394 if (s->flags & SLAB_STORE_USER)
1395 set_track(s, object, TRACK_FREE, addr);
1396 trace(s, page, object, 0);
1397 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1398 init_object(s, object, SLUB_RED_INACTIVE);
1400 /* Reached end of constructed freelist yet? */
1401 if (object != tail) {
1402 object = get_freepointer(s, object);
1408 if (cnt != bulk_cnt)
1409 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1412 slab_unlock(page, &flags2);
1413 spin_unlock_irqrestore(&n->list_lock, flags);
1415 slab_fix(s, "Object at 0x%p not freed", object);
1420 * Parse a block of slub_debug options. Blocks are delimited by ';'
1422 * @str: start of block
1423 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1424 * @slabs: return start of list of slabs, or NULL when there's no list
1425 * @init: assume this is initial parsing and not per-kmem-create parsing
1427 * returns the start of next block if there's any, or NULL
1430 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1432 bool higher_order_disable = false;
1434 /* Skip any completely empty blocks */
1435 while (*str && *str == ';')
1440 * No options but restriction on slabs. This means full
1441 * debugging for slabs matching a pattern.
1443 *flags = DEBUG_DEFAULT_FLAGS;
1448 /* Determine which debug features should be switched on */
1449 for (; *str && *str != ',' && *str != ';'; str++) {
1450 switch (tolower(*str)) {
1455 *flags |= SLAB_CONSISTENCY_CHECKS;
1458 *flags |= SLAB_RED_ZONE;
1461 *flags |= SLAB_POISON;
1464 *flags |= SLAB_STORE_USER;
1467 *flags |= SLAB_TRACE;
1470 *flags |= SLAB_FAILSLAB;
1474 * Avoid enabling debugging on caches if its minimum
1475 * order would increase as a result.
1477 higher_order_disable = true;
1481 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1490 /* Skip over the slab list */
1491 while (*str && *str != ';')
1494 /* Skip any completely empty blocks */
1495 while (*str && *str == ';')
1498 if (init && higher_order_disable)
1499 disable_higher_order_debug = 1;
1507 static int __init setup_slub_debug(char *str)
1510 slab_flags_t global_flags;
1513 bool global_slub_debug_changed = false;
1514 bool slab_list_specified = false;
1516 global_flags = DEBUG_DEFAULT_FLAGS;
1517 if (*str++ != '=' || !*str)
1519 * No options specified. Switch on full debugging.
1525 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1528 global_flags = flags;
1529 global_slub_debug_changed = true;
1531 slab_list_specified = true;
1536 * For backwards compatibility, a single list of flags with list of
1537 * slabs means debugging is only changed for those slabs, so the global
1538 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1539 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1540 * long as there is no option specifying flags without a slab list.
1542 if (slab_list_specified) {
1543 if (!global_slub_debug_changed)
1544 global_flags = slub_debug;
1545 slub_debug_string = saved_str;
1548 slub_debug = global_flags;
1549 if (slub_debug != 0 || slub_debug_string)
1550 static_branch_enable(&slub_debug_enabled);
1552 static_branch_disable(&slub_debug_enabled);
1553 if ((static_branch_unlikely(&init_on_alloc) ||
1554 static_branch_unlikely(&init_on_free)) &&
1555 (slub_debug & SLAB_POISON))
1556 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1560 __setup("slub_debug", setup_slub_debug);
1563 * kmem_cache_flags - apply debugging options to the cache
1564 * @object_size: the size of an object without meta data
1565 * @flags: flags to set
1566 * @name: name of the cache
1568 * Debug option(s) are applied to @flags. In addition to the debug
1569 * option(s), if a slab name (or multiple) is specified i.e.
1570 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1571 * then only the select slabs will receive the debug option(s).
1573 slab_flags_t kmem_cache_flags(unsigned int object_size,
1574 slab_flags_t flags, const char *name)
1579 slab_flags_t block_flags;
1580 slab_flags_t slub_debug_local = slub_debug;
1583 * If the slab cache is for debugging (e.g. kmemleak) then
1584 * don't store user (stack trace) information by default,
1585 * but let the user enable it via the command line below.
1587 if (flags & SLAB_NOLEAKTRACE)
1588 slub_debug_local &= ~SLAB_STORE_USER;
1591 next_block = slub_debug_string;
1592 /* Go through all blocks of debug options, see if any matches our slab's name */
1593 while (next_block) {
1594 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1597 /* Found a block that has a slab list, search it */
1602 end = strchrnul(iter, ',');
1603 if (next_block && next_block < end)
1604 end = next_block - 1;
1606 glob = strnchr(iter, end - iter, '*');
1608 cmplen = glob - iter;
1610 cmplen = max_t(size_t, len, (end - iter));
1612 if (!strncmp(name, iter, cmplen)) {
1613 flags |= block_flags;
1617 if (!*end || *end == ';')
1623 return flags | slub_debug_local;
1625 #else /* !CONFIG_SLUB_DEBUG */
1626 static inline void setup_object_debug(struct kmem_cache *s,
1627 struct page *page, void *object) {}
1629 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1631 static inline int alloc_debug_processing(struct kmem_cache *s,
1632 struct page *page, void *object, unsigned long addr) { return 0; }
1634 static inline int free_debug_processing(
1635 struct kmem_cache *s, struct page *page,
1636 void *head, void *tail, int bulk_cnt,
1637 unsigned long addr) { return 0; }
1639 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1641 static inline int check_object(struct kmem_cache *s, struct page *page,
1642 void *object, u8 val) { return 1; }
1643 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1644 struct page *page) {}
1645 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 struct page *page) {}
1647 slab_flags_t kmem_cache_flags(unsigned int object_size,
1648 slab_flags_t flags, const char *name)
1652 #define slub_debug 0
1654 #define disable_higher_order_debug 0
1656 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1660 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1662 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1665 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1666 void **freelist, void *nextfree)
1670 #endif /* CONFIG_SLUB_DEBUG */
1673 * Hooks for other subsystems that check memory allocations. In a typical
1674 * production configuration these hooks all should produce no code at all.
1676 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1678 ptr = kasan_kmalloc_large(ptr, size, flags);
1679 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1680 kmemleak_alloc(ptr, size, 1, flags);
1684 static __always_inline void kfree_hook(void *x)
1687 kasan_kfree_large(x);
1690 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1693 kmemleak_free_recursive(x, s->flags);
1695 debug_check_no_locks_freed(x, s->object_size);
1697 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1698 debug_check_no_obj_freed(x, s->object_size);
1700 /* Use KCSAN to help debug racy use-after-free. */
1701 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1702 __kcsan_check_access(x, s->object_size,
1703 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1706 * As memory initialization might be integrated into KASAN,
1707 * kasan_slab_free and initialization memset's must be
1708 * kept together to avoid discrepancies in behavior.
1710 * The initialization memset's clear the object and the metadata,
1711 * but don't touch the SLAB redzone.
1716 if (!kasan_has_integrated_init())
1717 memset(kasan_reset_tag(x), 0, s->object_size);
1718 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1719 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1720 s->size - s->inuse - rsize);
1722 /* KASAN might put x into memory quarantine, delaying its reuse. */
1723 return kasan_slab_free(s, x, init);
1726 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1727 void **head, void **tail,
1733 void *old_tail = *tail ? *tail : *head;
1735 if (is_kfence_address(next)) {
1736 slab_free_hook(s, next, false);
1740 /* Head and tail of the reconstructed freelist */
1746 next = get_freepointer(s, object);
1748 /* If object's reuse doesn't have to be delayed */
1749 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1750 /* Move object to the new freelist */
1751 set_freepointer(s, object, *head);
1757 * Adjust the reconstructed freelist depth
1758 * accordingly if object's reuse is delayed.
1762 } while (object != old_tail);
1767 return *head != NULL;
1770 static void *setup_object(struct kmem_cache *s, struct page *page,
1773 setup_object_debug(s, page, object);
1774 object = kasan_init_slab_obj(s, object);
1775 if (unlikely(s->ctor)) {
1776 kasan_unpoison_object_data(s, object);
1778 kasan_poison_object_data(s, object);
1784 * Slab allocation and freeing
1786 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1787 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1790 unsigned int order = oo_order(oo);
1792 if (node == NUMA_NO_NODE)
1793 page = alloc_pages(flags, order);
1795 page = __alloc_pages_node(node, flags, order);
1800 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1801 /* Pre-initialize the random sequence cache */
1802 static int init_cache_random_seq(struct kmem_cache *s)
1804 unsigned int count = oo_objects(s->oo);
1807 /* Bailout if already initialised */
1811 err = cache_random_seq_create(s, count, GFP_KERNEL);
1813 pr_err("SLUB: Unable to initialize free list for %s\n",
1818 /* Transform to an offset on the set of pages */
1819 if (s->random_seq) {
1822 for (i = 0; i < count; i++)
1823 s->random_seq[i] *= s->size;
1828 /* Initialize each random sequence freelist per cache */
1829 static void __init init_freelist_randomization(void)
1831 struct kmem_cache *s;
1833 mutex_lock(&slab_mutex);
1835 list_for_each_entry(s, &slab_caches, list)
1836 init_cache_random_seq(s);
1838 mutex_unlock(&slab_mutex);
1841 /* Get the next entry on the pre-computed freelist randomized */
1842 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1843 unsigned long *pos, void *start,
1844 unsigned long page_limit,
1845 unsigned long freelist_count)
1850 * If the target page allocation failed, the number of objects on the
1851 * page might be smaller than the usual size defined by the cache.
1854 idx = s->random_seq[*pos];
1856 if (*pos >= freelist_count)
1858 } while (unlikely(idx >= page_limit));
1860 return (char *)start + idx;
1863 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1864 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1869 unsigned long idx, pos, page_limit, freelist_count;
1871 if (page->objects < 2 || !s->random_seq)
1874 freelist_count = oo_objects(s->oo);
1875 pos = get_random_int() % freelist_count;
1877 page_limit = page->objects * s->size;
1878 start = fixup_red_left(s, page_address(page));
1880 /* First entry is used as the base of the freelist */
1881 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1883 cur = setup_object(s, page, cur);
1884 page->freelist = cur;
1886 for (idx = 1; idx < page->objects; idx++) {
1887 next = next_freelist_entry(s, page, &pos, start, page_limit,
1889 next = setup_object(s, page, next);
1890 set_freepointer(s, cur, next);
1893 set_freepointer(s, cur, NULL);
1898 static inline int init_cache_random_seq(struct kmem_cache *s)
1902 static inline void init_freelist_randomization(void) { }
1903 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1907 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1909 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1912 struct kmem_cache_order_objects oo = s->oo;
1914 void *start, *p, *next;
1918 flags &= gfp_allowed_mask;
1920 flags |= s->allocflags;
1923 * Let the initial higher-order allocation fail under memory pressure
1924 * so we fall-back to the minimum order allocation.
1926 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1927 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1928 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1930 page = alloc_slab_page(s, alloc_gfp, node, oo);
1931 if (unlikely(!page)) {
1935 * Allocation may have failed due to fragmentation.
1936 * Try a lower order alloc if possible
1938 page = alloc_slab_page(s, alloc_gfp, node, oo);
1939 if (unlikely(!page))
1941 stat(s, ORDER_FALLBACK);
1944 page->objects = oo_objects(oo);
1946 account_slab_page(page, oo_order(oo), s, flags);
1948 page->slab_cache = s;
1949 __SetPageSlab(page);
1950 if (page_is_pfmemalloc(page))
1951 SetPageSlabPfmemalloc(page);
1953 kasan_poison_slab(page);
1955 start = page_address(page);
1957 setup_page_debug(s, page, start);
1959 shuffle = shuffle_freelist(s, page);
1962 start = fixup_red_left(s, start);
1963 start = setup_object(s, page, start);
1964 page->freelist = start;
1965 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1967 next = setup_object(s, page, next);
1968 set_freepointer(s, p, next);
1971 set_freepointer(s, p, NULL);
1974 page->inuse = page->objects;
1981 inc_slabs_node(s, page_to_nid(page), page->objects);
1986 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1988 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1989 flags = kmalloc_fix_flags(flags);
1991 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1993 return allocate_slab(s,
1994 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1997 static void __free_slab(struct kmem_cache *s, struct page *page)
1999 int order = compound_order(page);
2000 int pages = 1 << order;
2002 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2005 slab_pad_check(s, page);
2006 for_each_object(p, s, page_address(page),
2008 check_object(s, page, p, SLUB_RED_INACTIVE);
2011 __ClearPageSlabPfmemalloc(page);
2012 __ClearPageSlab(page);
2013 /* In union with page->mapping where page allocator expects NULL */
2014 page->slab_cache = NULL;
2015 if (current->reclaim_state)
2016 current->reclaim_state->reclaimed_slab += pages;
2017 unaccount_slab_page(page, order, s);
2018 __free_pages(page, order);
2021 static void rcu_free_slab(struct rcu_head *h)
2023 struct page *page = container_of(h, struct page, rcu_head);
2025 __free_slab(page->slab_cache, page);
2028 static void free_slab(struct kmem_cache *s, struct page *page)
2030 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2031 call_rcu(&page->rcu_head, rcu_free_slab);
2033 __free_slab(s, page);
2036 static void discard_slab(struct kmem_cache *s, struct page *page)
2038 dec_slabs_node(s, page_to_nid(page), page->objects);
2043 * Management of partially allocated slabs.
2046 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2049 if (tail == DEACTIVATE_TO_TAIL)
2050 list_add_tail(&page->slab_list, &n->partial);
2052 list_add(&page->slab_list, &n->partial);
2055 static inline void add_partial(struct kmem_cache_node *n,
2056 struct page *page, int tail)
2058 lockdep_assert_held(&n->list_lock);
2059 __add_partial(n, page, tail);
2062 static inline void remove_partial(struct kmem_cache_node *n,
2065 lockdep_assert_held(&n->list_lock);
2066 list_del(&page->slab_list);
2071 * Remove slab from the partial list, freeze it and
2072 * return the pointer to the freelist.
2074 * Returns a list of objects or NULL if it fails.
2076 static inline void *acquire_slab(struct kmem_cache *s,
2077 struct kmem_cache_node *n, struct page *page,
2081 unsigned long counters;
2084 lockdep_assert_held(&n->list_lock);
2087 * Zap the freelist and set the frozen bit.
2088 * The old freelist is the list of objects for the
2089 * per cpu allocation list.
2091 freelist = page->freelist;
2092 counters = page->counters;
2093 new.counters = counters;
2095 new.inuse = page->objects;
2096 new.freelist = NULL;
2098 new.freelist = freelist;
2101 VM_BUG_ON(new.frozen);
2104 if (!__cmpxchg_double_slab(s, page,
2106 new.freelist, new.counters,
2110 remove_partial(n, page);
2115 #ifdef CONFIG_SLUB_CPU_PARTIAL
2116 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2118 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2121 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2124 * Try to allocate a partial slab from a specific node.
2126 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2127 struct page **ret_page, gfp_t gfpflags)
2129 struct page *page, *page2;
2130 void *object = NULL;
2131 unsigned long flags;
2132 unsigned int partial_pages = 0;
2135 * Racy check. If we mistakenly see no partial slabs then we
2136 * just allocate an empty slab. If we mistakenly try to get a
2137 * partial slab and there is none available then get_partial()
2140 if (!n || !n->nr_partial)
2143 spin_lock_irqsave(&n->list_lock, flags);
2144 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2147 if (!pfmemalloc_match(page, gfpflags))
2150 t = acquire_slab(s, n, page, object == NULL);
2156 stat(s, ALLOC_FROM_PARTIAL);
2159 put_cpu_partial(s, page, 0);
2160 stat(s, CPU_PARTIAL_NODE);
2163 #ifdef CONFIG_SLUB_CPU_PARTIAL
2164 if (!kmem_cache_has_cpu_partial(s)
2165 || partial_pages > s->cpu_partial_pages / 2)
2172 spin_unlock_irqrestore(&n->list_lock, flags);
2177 * Get a page from somewhere. Search in increasing NUMA distances.
2179 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2180 struct page **ret_page)
2183 struct zonelist *zonelist;
2186 enum zone_type highest_zoneidx = gfp_zone(flags);
2188 unsigned int cpuset_mems_cookie;
2191 * The defrag ratio allows a configuration of the tradeoffs between
2192 * inter node defragmentation and node local allocations. A lower
2193 * defrag_ratio increases the tendency to do local allocations
2194 * instead of attempting to obtain partial slabs from other nodes.
2196 * If the defrag_ratio is set to 0 then kmalloc() always
2197 * returns node local objects. If the ratio is higher then kmalloc()
2198 * may return off node objects because partial slabs are obtained
2199 * from other nodes and filled up.
2201 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2202 * (which makes defrag_ratio = 1000) then every (well almost)
2203 * allocation will first attempt to defrag slab caches on other nodes.
2204 * This means scanning over all nodes to look for partial slabs which
2205 * may be expensive if we do it every time we are trying to find a slab
2206 * with available objects.
2208 if (!s->remote_node_defrag_ratio ||
2209 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2213 cpuset_mems_cookie = read_mems_allowed_begin();
2214 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2215 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2216 struct kmem_cache_node *n;
2218 n = get_node(s, zone_to_nid(zone));
2220 if (n && cpuset_zone_allowed(zone, flags) &&
2221 n->nr_partial > s->min_partial) {
2222 object = get_partial_node(s, n, ret_page, flags);
2225 * Don't check read_mems_allowed_retry()
2226 * here - if mems_allowed was updated in
2227 * parallel, that was a harmless race
2228 * between allocation and the cpuset
2235 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2236 #endif /* CONFIG_NUMA */
2241 * Get a partial page, lock it and return it.
2243 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2244 struct page **ret_page)
2247 int searchnode = node;
2249 if (node == NUMA_NO_NODE)
2250 searchnode = numa_mem_id();
2252 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2253 if (object || node != NUMA_NO_NODE)
2256 return get_any_partial(s, flags, ret_page);
2259 #ifdef CONFIG_PREEMPTION
2261 * Calculate the next globally unique transaction for disambiguation
2262 * during cmpxchg. The transactions start with the cpu number and are then
2263 * incremented by CONFIG_NR_CPUS.
2265 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2268 * No preemption supported therefore also no need to check for
2274 static inline unsigned long next_tid(unsigned long tid)
2276 return tid + TID_STEP;
2279 #ifdef SLUB_DEBUG_CMPXCHG
2280 static inline unsigned int tid_to_cpu(unsigned long tid)
2282 return tid % TID_STEP;
2285 static inline unsigned long tid_to_event(unsigned long tid)
2287 return tid / TID_STEP;
2291 static inline unsigned int init_tid(int cpu)
2296 static inline void note_cmpxchg_failure(const char *n,
2297 const struct kmem_cache *s, unsigned long tid)
2299 #ifdef SLUB_DEBUG_CMPXCHG
2300 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2302 pr_info("%s %s: cmpxchg redo ", n, s->name);
2304 #ifdef CONFIG_PREEMPTION
2305 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2306 pr_warn("due to cpu change %d -> %d\n",
2307 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2310 if (tid_to_event(tid) != tid_to_event(actual_tid))
2311 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2312 tid_to_event(tid), tid_to_event(actual_tid));
2314 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2315 actual_tid, tid, next_tid(tid));
2317 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2320 static void init_kmem_cache_cpus(struct kmem_cache *s)
2323 struct kmem_cache_cpu *c;
2325 for_each_possible_cpu(cpu) {
2326 c = per_cpu_ptr(s->cpu_slab, cpu);
2327 local_lock_init(&c->lock);
2328 c->tid = init_tid(cpu);
2333 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2334 * unfreezes the slabs and puts it on the proper list.
2335 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2338 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2341 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2343 int lock = 0, free_delta = 0;
2344 enum slab_modes l = M_NONE, m = M_NONE;
2345 void *nextfree, *freelist_iter, *freelist_tail;
2346 int tail = DEACTIVATE_TO_HEAD;
2347 unsigned long flags = 0;
2351 if (page->freelist) {
2352 stat(s, DEACTIVATE_REMOTE_FREES);
2353 tail = DEACTIVATE_TO_TAIL;
2357 * Stage one: Count the objects on cpu's freelist as free_delta and
2358 * remember the last object in freelist_tail for later splicing.
2360 freelist_tail = NULL;
2361 freelist_iter = freelist;
2362 while (freelist_iter) {
2363 nextfree = get_freepointer(s, freelist_iter);
2366 * If 'nextfree' is invalid, it is possible that the object at
2367 * 'freelist_iter' is already corrupted. So isolate all objects
2368 * starting at 'freelist_iter' by skipping them.
2370 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2373 freelist_tail = freelist_iter;
2376 freelist_iter = nextfree;
2380 * Stage two: Unfreeze the page while splicing the per-cpu
2381 * freelist to the head of page's freelist.
2383 * Ensure that the page is unfrozen while the list presence
2384 * reflects the actual number of objects during unfreeze.
2386 * We setup the list membership and then perform a cmpxchg
2387 * with the count. If there is a mismatch then the page
2388 * is not unfrozen but the page is on the wrong list.
2390 * Then we restart the process which may have to remove
2391 * the page from the list that we just put it on again
2392 * because the number of objects in the slab may have
2397 old.freelist = READ_ONCE(page->freelist);
2398 old.counters = READ_ONCE(page->counters);
2399 VM_BUG_ON(!old.frozen);
2401 /* Determine target state of the slab */
2402 new.counters = old.counters;
2403 if (freelist_tail) {
2404 new.inuse -= free_delta;
2405 set_freepointer(s, freelist_tail, old.freelist);
2406 new.freelist = freelist;
2408 new.freelist = old.freelist;
2412 if (!new.inuse && n->nr_partial >= s->min_partial)
2414 else if (new.freelist) {
2419 * Taking the spinlock removes the possibility
2420 * that acquire_slab() will see a slab page that
2423 spin_lock_irqsave(&n->list_lock, flags);
2427 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2430 * This also ensures that the scanning of full
2431 * slabs from diagnostic functions will not see
2434 spin_lock_irqsave(&n->list_lock, flags);
2440 remove_partial(n, page);
2441 else if (l == M_FULL)
2442 remove_full(s, n, page);
2445 add_partial(n, page, tail);
2446 else if (m == M_FULL)
2447 add_full(s, n, page);
2451 if (!cmpxchg_double_slab(s, page,
2452 old.freelist, old.counters,
2453 new.freelist, new.counters,
2458 spin_unlock_irqrestore(&n->list_lock, flags);
2462 else if (m == M_FULL)
2463 stat(s, DEACTIVATE_FULL);
2464 else if (m == M_FREE) {
2465 stat(s, DEACTIVATE_EMPTY);
2466 discard_slab(s, page);
2471 #ifdef CONFIG_SLUB_CPU_PARTIAL
2472 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2474 struct kmem_cache_node *n = NULL, *n2 = NULL;
2475 struct page *page, *discard_page = NULL;
2476 unsigned long flags = 0;
2478 while (partial_page) {
2482 page = partial_page;
2483 partial_page = page->next;
2485 n2 = get_node(s, page_to_nid(page));
2488 spin_unlock_irqrestore(&n->list_lock, flags);
2491 spin_lock_irqsave(&n->list_lock, flags);
2496 old.freelist = page->freelist;
2497 old.counters = page->counters;
2498 VM_BUG_ON(!old.frozen);
2500 new.counters = old.counters;
2501 new.freelist = old.freelist;
2505 } while (!__cmpxchg_double_slab(s, page,
2506 old.freelist, old.counters,
2507 new.freelist, new.counters,
2508 "unfreezing slab"));
2510 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2511 page->next = discard_page;
2512 discard_page = page;
2514 add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 stat(s, FREE_ADD_PARTIAL);
2520 spin_unlock_irqrestore(&n->list_lock, flags);
2522 while (discard_page) {
2523 page = discard_page;
2524 discard_page = discard_page->next;
2526 stat(s, DEACTIVATE_EMPTY);
2527 discard_slab(s, page);
2533 * Unfreeze all the cpu partial slabs.
2535 static void unfreeze_partials(struct kmem_cache *s)
2537 struct page *partial_page;
2538 unsigned long flags;
2540 local_lock_irqsave(&s->cpu_slab->lock, flags);
2541 partial_page = this_cpu_read(s->cpu_slab->partial);
2542 this_cpu_write(s->cpu_slab->partial, NULL);
2543 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2546 __unfreeze_partials(s, partial_page);
2549 static void unfreeze_partials_cpu(struct kmem_cache *s,
2550 struct kmem_cache_cpu *c)
2552 struct page *partial_page;
2554 partial_page = slub_percpu_partial(c);
2558 __unfreeze_partials(s, partial_page);
2562 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2563 * partial page slot if available.
2565 * If we did not find a slot then simply move all the partials to the
2566 * per node partial list.
2568 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2570 struct page *oldpage;
2571 struct page *page_to_unfreeze = NULL;
2572 unsigned long flags;
2575 local_lock_irqsave(&s->cpu_slab->lock, flags);
2577 oldpage = this_cpu_read(s->cpu_slab->partial);
2580 if (drain && oldpage->pages >= s->cpu_partial_pages) {
2582 * Partial array is full. Move the existing set to the
2583 * per node partial list. Postpone the actual unfreezing
2584 * outside of the critical section.
2586 page_to_unfreeze = oldpage;
2589 pages = oldpage->pages;
2595 page->pages = pages;
2596 page->next = oldpage;
2598 this_cpu_write(s->cpu_slab->partial, page);
2600 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2602 if (page_to_unfreeze) {
2603 __unfreeze_partials(s, page_to_unfreeze);
2604 stat(s, CPU_PARTIAL_DRAIN);
2608 #else /* CONFIG_SLUB_CPU_PARTIAL */
2610 static inline void unfreeze_partials(struct kmem_cache *s) { }
2611 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2612 struct kmem_cache_cpu *c) { }
2614 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2616 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2618 unsigned long flags;
2622 local_lock_irqsave(&s->cpu_slab->lock, flags);
2625 freelist = c->freelist;
2629 c->tid = next_tid(c->tid);
2631 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2634 deactivate_slab(s, page, freelist);
2635 stat(s, CPUSLAB_FLUSH);
2639 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2641 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2642 void *freelist = c->freelist;
2643 struct page *page = c->page;
2647 c->tid = next_tid(c->tid);
2650 deactivate_slab(s, page, freelist);
2651 stat(s, CPUSLAB_FLUSH);
2654 unfreeze_partials_cpu(s, c);
2657 struct slub_flush_work {
2658 struct work_struct work;
2659 struct kmem_cache *s;
2666 * Called from CPU work handler with migration disabled.
2668 static void flush_cpu_slab(struct work_struct *w)
2670 struct kmem_cache *s;
2671 struct kmem_cache_cpu *c;
2672 struct slub_flush_work *sfw;
2674 sfw = container_of(w, struct slub_flush_work, work);
2677 c = this_cpu_ptr(s->cpu_slab);
2682 unfreeze_partials(s);
2685 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2687 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2689 return c->page || slub_percpu_partial(c);
2692 static DEFINE_MUTEX(flush_lock);
2693 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2695 static void flush_all_cpus_locked(struct kmem_cache *s)
2697 struct slub_flush_work *sfw;
2700 lockdep_assert_cpus_held();
2701 mutex_lock(&flush_lock);
2703 for_each_online_cpu(cpu) {
2704 sfw = &per_cpu(slub_flush, cpu);
2705 if (!has_cpu_slab(cpu, s)) {
2709 INIT_WORK(&sfw->work, flush_cpu_slab);
2712 schedule_work_on(cpu, &sfw->work);
2715 for_each_online_cpu(cpu) {
2716 sfw = &per_cpu(slub_flush, cpu);
2719 flush_work(&sfw->work);
2722 mutex_unlock(&flush_lock);
2725 static void flush_all(struct kmem_cache *s)
2728 flush_all_cpus_locked(s);
2733 * Use the cpu notifier to insure that the cpu slabs are flushed when
2736 static int slub_cpu_dead(unsigned int cpu)
2738 struct kmem_cache *s;
2740 mutex_lock(&slab_mutex);
2741 list_for_each_entry(s, &slab_caches, list)
2742 __flush_cpu_slab(s, cpu);
2743 mutex_unlock(&slab_mutex);
2748 * Check if the objects in a per cpu structure fit numa
2749 * locality expectations.
2751 static inline int node_match(struct page *page, int node)
2754 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2760 #ifdef CONFIG_SLUB_DEBUG
2761 static int count_free(struct page *page)
2763 return page->objects - page->inuse;
2766 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2768 return atomic_long_read(&n->total_objects);
2770 #endif /* CONFIG_SLUB_DEBUG */
2772 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2773 static unsigned long count_partial(struct kmem_cache_node *n,
2774 int (*get_count)(struct page *))
2776 unsigned long flags;
2777 unsigned long x = 0;
2780 spin_lock_irqsave(&n->list_lock, flags);
2781 list_for_each_entry(page, &n->partial, slab_list)
2782 x += get_count(page);
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2786 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2788 static noinline void
2789 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2791 #ifdef CONFIG_SLUB_DEBUG
2792 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2793 DEFAULT_RATELIMIT_BURST);
2795 struct kmem_cache_node *n;
2797 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2800 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2801 nid, gfpflags, &gfpflags);
2802 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2803 s->name, s->object_size, s->size, oo_order(s->oo),
2806 if (oo_order(s->min) > get_order(s->object_size))
2807 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2810 for_each_kmem_cache_node(s, node, n) {
2811 unsigned long nr_slabs;
2812 unsigned long nr_objs;
2813 unsigned long nr_free;
2815 nr_free = count_partial(n, count_free);
2816 nr_slabs = node_nr_slabs(n);
2817 nr_objs = node_nr_objs(n);
2819 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2820 node, nr_slabs, nr_objs, nr_free);
2825 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2827 if (unlikely(PageSlabPfmemalloc(page)))
2828 return gfp_pfmemalloc_allowed(gfpflags);
2834 * A variant of pfmemalloc_match() that tests page flags without asserting
2835 * PageSlab. Intended for opportunistic checks before taking a lock and
2836 * rechecking that nobody else freed the page under us.
2838 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2840 if (unlikely(__PageSlabPfmemalloc(page)))
2841 return gfp_pfmemalloc_allowed(gfpflags);
2847 * Check the page->freelist of a page and either transfer the freelist to the
2848 * per cpu freelist or deactivate the page.
2850 * The page is still frozen if the return value is not NULL.
2852 * If this function returns NULL then the page has been unfrozen.
2854 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2857 unsigned long counters;
2860 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2863 freelist = page->freelist;
2864 counters = page->counters;
2866 new.counters = counters;
2867 VM_BUG_ON(!new.frozen);
2869 new.inuse = page->objects;
2870 new.frozen = freelist != NULL;
2872 } while (!__cmpxchg_double_slab(s, page,
2881 * Slow path. The lockless freelist is empty or we need to perform
2884 * Processing is still very fast if new objects have been freed to the
2885 * regular freelist. In that case we simply take over the regular freelist
2886 * as the lockless freelist and zap the regular freelist.
2888 * If that is not working then we fall back to the partial lists. We take the
2889 * first element of the freelist as the object to allocate now and move the
2890 * rest of the freelist to the lockless freelist.
2892 * And if we were unable to get a new slab from the partial slab lists then
2893 * we need to allocate a new slab. This is the slowest path since it involves
2894 * a call to the page allocator and the setup of a new slab.
2896 * Version of __slab_alloc to use when we know that preemption is
2897 * already disabled (which is the case for bulk allocation).
2899 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2900 unsigned long addr, struct kmem_cache_cpu *c)
2904 unsigned long flags;
2906 stat(s, ALLOC_SLOWPATH);
2910 page = READ_ONCE(c->page);
2913 * if the node is not online or has no normal memory, just
2914 * ignore the node constraint
2916 if (unlikely(node != NUMA_NO_NODE &&
2917 !node_isset(node, slab_nodes)))
2918 node = NUMA_NO_NODE;
2923 if (unlikely(!node_match(page, node))) {
2925 * same as above but node_match() being false already
2926 * implies node != NUMA_NO_NODE
2928 if (!node_isset(node, slab_nodes)) {
2929 node = NUMA_NO_NODE;
2932 stat(s, ALLOC_NODE_MISMATCH);
2933 goto deactivate_slab;
2938 * By rights, we should be searching for a slab page that was
2939 * PFMEMALLOC but right now, we are losing the pfmemalloc
2940 * information when the page leaves the per-cpu allocator
2942 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2943 goto deactivate_slab;
2945 /* must check again c->page in case we got preempted and it changed */
2946 local_lock_irqsave(&s->cpu_slab->lock, flags);
2947 if (unlikely(page != c->page)) {
2948 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2951 freelist = c->freelist;
2955 freelist = get_freelist(s, page);
2959 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2960 stat(s, DEACTIVATE_BYPASS);
2964 stat(s, ALLOC_REFILL);
2968 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2971 * freelist is pointing to the list of objects to be used.
2972 * page is pointing to the page from which the objects are obtained.
2973 * That page must be frozen for per cpu allocations to work.
2975 VM_BUG_ON(!c->page->frozen);
2976 c->freelist = get_freepointer(s, freelist);
2977 c->tid = next_tid(c->tid);
2978 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2983 local_lock_irqsave(&s->cpu_slab->lock, flags);
2984 if (page != c->page) {
2985 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2988 freelist = c->freelist;
2991 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2992 deactivate_slab(s, page, freelist);
2996 if (slub_percpu_partial(c)) {
2997 local_lock_irqsave(&s->cpu_slab->lock, flags);
2998 if (unlikely(c->page)) {
2999 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3002 if (unlikely(!slub_percpu_partial(c))) {
3003 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3004 /* we were preempted and partial list got empty */
3008 page = c->page = slub_percpu_partial(c);
3009 slub_set_percpu_partial(c, page);
3010 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3011 stat(s, CPU_PARTIAL_ALLOC);
3017 freelist = get_partial(s, gfpflags, node, &page);
3019 goto check_new_page;
3021 slub_put_cpu_ptr(s->cpu_slab);
3022 page = new_slab(s, gfpflags, node);
3023 c = slub_get_cpu_ptr(s->cpu_slab);
3025 if (unlikely(!page)) {
3026 slab_out_of_memory(s, gfpflags, node);
3031 * No other reference to the page yet so we can
3032 * muck around with it freely without cmpxchg
3034 freelist = page->freelist;
3035 page->freelist = NULL;
3037 stat(s, ALLOC_SLAB);
3041 if (kmem_cache_debug(s)) {
3042 if (!alloc_debug_processing(s, page, freelist, addr)) {
3043 /* Slab failed checks. Next slab needed */
3047 * For debug case, we don't load freelist so that all
3048 * allocations go through alloc_debug_processing()
3054 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3056 * For !pfmemalloc_match() case we don't load freelist so that
3057 * we don't make further mismatched allocations easier.
3063 local_lock_irqsave(&s->cpu_slab->lock, flags);
3064 if (unlikely(c->page)) {
3065 void *flush_freelist = c->freelist;
3066 struct page *flush_page = c->page;
3070 c->tid = next_tid(c->tid);
3072 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3074 deactivate_slab(s, flush_page, flush_freelist);
3076 stat(s, CPUSLAB_FLUSH);
3078 goto retry_load_page;
3086 deactivate_slab(s, page, get_freepointer(s, freelist));
3091 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3092 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3095 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 unsigned long addr, struct kmem_cache_cpu *c)
3100 #ifdef CONFIG_PREEMPT_COUNT
3102 * We may have been preempted and rescheduled on a different
3103 * cpu before disabling preemption. Need to reload cpu area
3106 c = slub_get_cpu_ptr(s->cpu_slab);
3109 p = ___slab_alloc(s, gfpflags, node, addr, c);
3110 #ifdef CONFIG_PREEMPT_COUNT
3111 slub_put_cpu_ptr(s->cpu_slab);
3117 * If the object has been wiped upon free, make sure it's fully initialized by
3118 * zeroing out freelist pointer.
3120 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3123 if (unlikely(slab_want_init_on_free(s)) && obj)
3124 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3130 * have the fastpath folded into their functions. So no function call
3131 * overhead for requests that can be satisfied on the fastpath.
3133 * The fastpath works by first checking if the lockless freelist can be used.
3134 * If not then __slab_alloc is called for slow processing.
3136 * Otherwise we can simply pick the next object from the lockless free list.
3138 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3139 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3142 struct kmem_cache_cpu *c;
3145 struct obj_cgroup *objcg = NULL;
3148 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3152 object = kfence_alloc(s, orig_size, gfpflags);
3153 if (unlikely(object))
3158 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3159 * enabled. We may switch back and forth between cpus while
3160 * reading from one cpu area. That does not matter as long
3161 * as we end up on the original cpu again when doing the cmpxchg.
3163 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3164 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3165 * the tid. If we are preempted and switched to another cpu between the
3166 * two reads, it's OK as the two are still associated with the same cpu
3167 * and cmpxchg later will validate the cpu.
3169 c = raw_cpu_ptr(s->cpu_slab);
3170 tid = READ_ONCE(c->tid);
3173 * Irqless object alloc/free algorithm used here depends on sequence
3174 * of fetching cpu_slab's data. tid should be fetched before anything
3175 * on c to guarantee that object and page associated with previous tid
3176 * won't be used with current tid. If we fetch tid first, object and
3177 * page could be one associated with next tid and our alloc/free
3178 * request will be failed. In this case, we will retry. So, no problem.
3183 * The transaction ids are globally unique per cpu and per operation on
3184 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3185 * occurs on the right processor and that there was no operation on the
3186 * linked list in between.
3189 object = c->freelist;
3192 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3193 * slowpath has taken the local_lock_irqsave(), it is not protected
3194 * against a fast path operation in an irq handler. So we need to take
3195 * the slow path which uses local_lock. It is still relatively fast if
3196 * there is a suitable cpu freelist.
3198 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3199 unlikely(!object || !page || !node_match(page, node))) {
3200 object = __slab_alloc(s, gfpflags, node, addr, c);
3202 void *next_object = get_freepointer_safe(s, object);
3205 * The cmpxchg will only match if there was no additional
3206 * operation and if we are on the right processor.
3208 * The cmpxchg does the following atomically (without lock
3210 * 1. Relocate first pointer to the current per cpu area.
3211 * 2. Verify that tid and freelist have not been changed
3212 * 3. If they were not changed replace tid and freelist
3214 * Since this is without lock semantics the protection is only
3215 * against code executing on this cpu *not* from access by
3218 if (unlikely(!this_cpu_cmpxchg_double(
3219 s->cpu_slab->freelist, s->cpu_slab->tid,
3221 next_object, next_tid(tid)))) {
3223 note_cmpxchg_failure("slab_alloc", s, tid);
3226 prefetch_freepointer(s, next_object);
3227 stat(s, ALLOC_FASTPATH);
3230 maybe_wipe_obj_freeptr(s, object);
3231 init = slab_want_init_on_alloc(gfpflags, s);
3234 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3239 static __always_inline void *slab_alloc(struct kmem_cache *s,
3240 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3242 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3245 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3247 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3249 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3254 EXPORT_SYMBOL(kmem_cache_alloc);
3256 #ifdef CONFIG_TRACING
3257 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3259 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3260 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3261 ret = kasan_kmalloc(s, ret, size, gfpflags);
3264 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3268 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3270 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3272 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3273 s->object_size, s->size, gfpflags, node);
3277 EXPORT_SYMBOL(kmem_cache_alloc_node);
3279 #ifdef CONFIG_TRACING
3280 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3282 int node, size_t size)
3284 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3286 trace_kmalloc_node(_RET_IP_, ret,
3287 size, s->size, gfpflags, node);
3289 ret = kasan_kmalloc(s, ret, size, gfpflags);
3292 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3294 #endif /* CONFIG_NUMA */
3297 * Slow path handling. This may still be called frequently since objects
3298 * have a longer lifetime than the cpu slabs in most processing loads.
3300 * So we still attempt to reduce cache line usage. Just take the slab
3301 * lock and free the item. If there is no additional partial page
3302 * handling required then we can return immediately.
3304 static void __slab_free(struct kmem_cache *s, struct page *page,
3305 void *head, void *tail, int cnt,
3312 unsigned long counters;
3313 struct kmem_cache_node *n = NULL;
3314 unsigned long flags;
3316 stat(s, FREE_SLOWPATH);
3318 if (kfence_free(head))
3321 if (kmem_cache_debug(s) &&
3322 !free_debug_processing(s, page, head, tail, cnt, addr))
3327 spin_unlock_irqrestore(&n->list_lock, flags);
3330 prior = page->freelist;
3331 counters = page->counters;
3332 set_freepointer(s, tail, prior);
3333 new.counters = counters;
3334 was_frozen = new.frozen;
3336 if ((!new.inuse || !prior) && !was_frozen) {
3338 if (kmem_cache_has_cpu_partial(s) && !prior) {
3341 * Slab was on no list before and will be
3343 * We can defer the list move and instead
3348 } else { /* Needs to be taken off a list */
3350 n = get_node(s, page_to_nid(page));
3352 * Speculatively acquire the list_lock.
3353 * If the cmpxchg does not succeed then we may
3354 * drop the list_lock without any processing.
3356 * Otherwise the list_lock will synchronize with
3357 * other processors updating the list of slabs.
3359 spin_lock_irqsave(&n->list_lock, flags);
3364 } while (!cmpxchg_double_slab(s, page,
3371 if (likely(was_frozen)) {
3373 * The list lock was not taken therefore no list
3374 * activity can be necessary.
3376 stat(s, FREE_FROZEN);
3377 } else if (new.frozen) {
3379 * If we just froze the page then put it onto the
3380 * per cpu partial list.
3382 put_cpu_partial(s, page, 1);
3383 stat(s, CPU_PARTIAL_FREE);
3389 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3393 * Objects left in the slab. If it was not on the partial list before
3396 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3397 remove_full(s, n, page);
3398 add_partial(n, page, DEACTIVATE_TO_TAIL);
3399 stat(s, FREE_ADD_PARTIAL);
3401 spin_unlock_irqrestore(&n->list_lock, flags);
3407 * Slab on the partial list.
3409 remove_partial(n, page);
3410 stat(s, FREE_REMOVE_PARTIAL);
3412 /* Slab must be on the full list */
3413 remove_full(s, n, page);
3416 spin_unlock_irqrestore(&n->list_lock, flags);
3418 discard_slab(s, page);
3422 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3423 * can perform fastpath freeing without additional function calls.
3425 * The fastpath is only possible if we are freeing to the current cpu slab
3426 * of this processor. This typically the case if we have just allocated
3429 * If fastpath is not possible then fall back to __slab_free where we deal
3430 * with all sorts of special processing.
3432 * Bulk free of a freelist with several objects (all pointing to the
3433 * same page) possible by specifying head and tail ptr, plus objects
3434 * count (cnt). Bulk free indicated by tail pointer being set.
3436 static __always_inline void do_slab_free(struct kmem_cache *s,
3437 struct page *page, void *head, void *tail,
3438 int cnt, unsigned long addr)
3440 void *tail_obj = tail ? : head;
3441 struct kmem_cache_cpu *c;
3444 /* memcg_slab_free_hook() is already called for bulk free. */
3446 memcg_slab_free_hook(s, &head, 1);
3449 * Determine the currently cpus per cpu slab.
3450 * The cpu may change afterward. However that does not matter since
3451 * data is retrieved via this pointer. If we are on the same cpu
3452 * during the cmpxchg then the free will succeed.
3454 c = raw_cpu_ptr(s->cpu_slab);
3455 tid = READ_ONCE(c->tid);
3457 /* Same with comment on barrier() in slab_alloc_node() */
3460 if (likely(page == c->page)) {
3461 #ifndef CONFIG_PREEMPT_RT
3462 void **freelist = READ_ONCE(c->freelist);
3464 set_freepointer(s, tail_obj, freelist);
3466 if (unlikely(!this_cpu_cmpxchg_double(
3467 s->cpu_slab->freelist, s->cpu_slab->tid,
3469 head, next_tid(tid)))) {
3471 note_cmpxchg_failure("slab_free", s, tid);
3474 #else /* CONFIG_PREEMPT_RT */
3476 * We cannot use the lockless fastpath on PREEMPT_RT because if
3477 * a slowpath has taken the local_lock_irqsave(), it is not
3478 * protected against a fast path operation in an irq handler. So
3479 * we need to take the local_lock. We shouldn't simply defer to
3480 * __slab_free() as that wouldn't use the cpu freelist at all.
3484 local_lock(&s->cpu_slab->lock);
3485 c = this_cpu_ptr(s->cpu_slab);
3486 if (unlikely(page != c->page)) {
3487 local_unlock(&s->cpu_slab->lock);
3491 freelist = c->freelist;
3493 set_freepointer(s, tail_obj, freelist);
3495 c->tid = next_tid(tid);
3497 local_unlock(&s->cpu_slab->lock);
3499 stat(s, FREE_FASTPATH);
3501 __slab_free(s, page, head, tail_obj, cnt, addr);
3505 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3506 void *head, void *tail, int cnt,
3510 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3511 * to remove objects, whose reuse must be delayed.
3513 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3514 do_slab_free(s, page, head, tail, cnt, addr);
3517 #ifdef CONFIG_KASAN_GENERIC
3518 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3520 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3524 void kmem_cache_free(struct kmem_cache *s, void *x)
3526 s = cache_from_obj(s, x);
3529 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3530 trace_kmem_cache_free(_RET_IP_, x, s->name);
3532 EXPORT_SYMBOL(kmem_cache_free);
3534 struct detached_freelist {
3539 struct kmem_cache *s;
3542 static inline void free_nonslab_page(struct page *page, void *object)
3544 unsigned int order = compound_order(page);
3546 if (WARN_ON_ONCE(!PageCompound(page)))
3547 pr_warn_once("object pointer: 0x%p\n", object);
3550 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3551 __free_pages(page, order);
3555 * This function progressively scans the array with free objects (with
3556 * a limited look ahead) and extract objects belonging to the same
3557 * page. It builds a detached freelist directly within the given
3558 * page/objects. This can happen without any need for
3559 * synchronization, because the objects are owned by running process.
3560 * The freelist is build up as a single linked list in the objects.
3561 * The idea is, that this detached freelist can then be bulk
3562 * transferred to the real freelist(s), but only requiring a single
3563 * synchronization primitive. Look ahead in the array is limited due
3564 * to performance reasons.
3567 int build_detached_freelist(struct kmem_cache *s, size_t size,
3568 void **p, struct detached_freelist *df)
3570 size_t first_skipped_index = 0;
3575 /* Always re-init detached_freelist */
3580 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3581 } while (!object && size);
3586 page = virt_to_head_page(object);
3588 /* Handle kalloc'ed objects */
3589 if (unlikely(!PageSlab(page))) {
3590 free_nonslab_page(page, object);
3591 p[size] = NULL; /* mark object processed */
3594 /* Derive kmem_cache from object */
3595 df->s = page->slab_cache;
3597 df->s = cache_from_obj(s, object); /* Support for memcg */
3600 if (is_kfence_address(object)) {
3601 slab_free_hook(df->s, object, false);
3602 __kfence_free(object);
3603 p[size] = NULL; /* mark object processed */
3607 /* Start new detached freelist */
3609 set_freepointer(df->s, object, NULL);
3611 df->freelist = object;
3612 p[size] = NULL; /* mark object processed */
3618 continue; /* Skip processed objects */
3620 /* df->page is always set at this point */
3621 if (df->page == virt_to_head_page(object)) {
3622 /* Opportunity build freelist */
3623 set_freepointer(df->s, object, df->freelist);
3624 df->freelist = object;
3626 p[size] = NULL; /* mark object processed */
3631 /* Limit look ahead search */
3635 if (!first_skipped_index)
3636 first_skipped_index = size + 1;
3639 return first_skipped_index;
3642 /* Note that interrupts must be enabled when calling this function. */
3643 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3648 memcg_slab_free_hook(s, p, size);
3650 struct detached_freelist df;
3652 size = build_detached_freelist(s, size, p, &df);
3656 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3657 } while (likely(size));
3659 EXPORT_SYMBOL(kmem_cache_free_bulk);
3661 /* Note that interrupts must be enabled when calling this function. */
3662 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3665 struct kmem_cache_cpu *c;
3667 struct obj_cgroup *objcg = NULL;
3669 /* memcg and kmem_cache debug support */
3670 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3674 * Drain objects in the per cpu slab, while disabling local
3675 * IRQs, which protects against PREEMPT and interrupts
3676 * handlers invoking normal fastpath.
3678 c = slub_get_cpu_ptr(s->cpu_slab);
3679 local_lock_irq(&s->cpu_slab->lock);
3681 for (i = 0; i < size; i++) {
3682 void *object = kfence_alloc(s, s->object_size, flags);
3684 if (unlikely(object)) {
3689 object = c->freelist;
3690 if (unlikely(!object)) {
3692 * We may have removed an object from c->freelist using
3693 * the fastpath in the previous iteration; in that case,
3694 * c->tid has not been bumped yet.
3695 * Since ___slab_alloc() may reenable interrupts while
3696 * allocating memory, we should bump c->tid now.
3698 c->tid = next_tid(c->tid);
3700 local_unlock_irq(&s->cpu_slab->lock);
3703 * Invoking slow path likely have side-effect
3704 * of re-populating per CPU c->freelist
3706 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3708 if (unlikely(!p[i]))
3711 c = this_cpu_ptr(s->cpu_slab);
3712 maybe_wipe_obj_freeptr(s, p[i]);
3714 local_lock_irq(&s->cpu_slab->lock);
3716 continue; /* goto for-loop */
3718 c->freelist = get_freepointer(s, object);
3720 maybe_wipe_obj_freeptr(s, p[i]);
3722 c->tid = next_tid(c->tid);
3723 local_unlock_irq(&s->cpu_slab->lock);
3724 slub_put_cpu_ptr(s->cpu_slab);
3727 * memcg and kmem_cache debug support and memory initialization.
3728 * Done outside of the IRQ disabled fastpath loop.
3730 slab_post_alloc_hook(s, objcg, flags, size, p,
3731 slab_want_init_on_alloc(flags, s));
3734 slub_put_cpu_ptr(s->cpu_slab);
3735 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3736 __kmem_cache_free_bulk(s, i, p);
3739 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3743 * Object placement in a slab is made very easy because we always start at
3744 * offset 0. If we tune the size of the object to the alignment then we can
3745 * get the required alignment by putting one properly sized object after
3748 * Notice that the allocation order determines the sizes of the per cpu
3749 * caches. Each processor has always one slab available for allocations.
3750 * Increasing the allocation order reduces the number of times that slabs
3751 * must be moved on and off the partial lists and is therefore a factor in
3756 * Minimum / Maximum order of slab pages. This influences locking overhead
3757 * and slab fragmentation. A higher order reduces the number of partial slabs
3758 * and increases the number of allocations possible without having to
3759 * take the list_lock.
3761 static unsigned int slub_min_order;
3762 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3763 static unsigned int slub_min_objects;
3766 * Calculate the order of allocation given an slab object size.
3768 * The order of allocation has significant impact on performance and other
3769 * system components. Generally order 0 allocations should be preferred since
3770 * order 0 does not cause fragmentation in the page allocator. Larger objects
3771 * be problematic to put into order 0 slabs because there may be too much
3772 * unused space left. We go to a higher order if more than 1/16th of the slab
3775 * In order to reach satisfactory performance we must ensure that a minimum
3776 * number of objects is in one slab. Otherwise we may generate too much
3777 * activity on the partial lists which requires taking the list_lock. This is
3778 * less a concern for large slabs though which are rarely used.
3780 * slub_max_order specifies the order where we begin to stop considering the
3781 * number of objects in a slab as critical. If we reach slub_max_order then
3782 * we try to keep the page order as low as possible. So we accept more waste
3783 * of space in favor of a small page order.
3785 * Higher order allocations also allow the placement of more objects in a
3786 * slab and thereby reduce object handling overhead. If the user has
3787 * requested a higher minimum order then we start with that one instead of
3788 * the smallest order which will fit the object.
3790 static inline unsigned int slab_order(unsigned int size,
3791 unsigned int min_objects, unsigned int max_order,
3792 unsigned int fract_leftover)
3794 unsigned int min_order = slub_min_order;
3797 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3798 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3800 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3801 order <= max_order; order++) {
3803 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3806 rem = slab_size % size;
3808 if (rem <= slab_size / fract_leftover)
3815 static inline int calculate_order(unsigned int size)
3818 unsigned int min_objects;
3819 unsigned int max_objects;
3820 unsigned int nr_cpus;
3823 * Attempt to find best configuration for a slab. This
3824 * works by first attempting to generate a layout with
3825 * the best configuration and backing off gradually.
3827 * First we increase the acceptable waste in a slab. Then
3828 * we reduce the minimum objects required in a slab.
3830 min_objects = slub_min_objects;
3833 * Some architectures will only update present cpus when
3834 * onlining them, so don't trust the number if it's just 1. But
3835 * we also don't want to use nr_cpu_ids always, as on some other
3836 * architectures, there can be many possible cpus, but never
3837 * onlined. Here we compromise between trying to avoid too high
3838 * order on systems that appear larger than they are, and too
3839 * low order on systems that appear smaller than they are.
3841 nr_cpus = num_present_cpus();
3843 nr_cpus = nr_cpu_ids;
3844 min_objects = 4 * (fls(nr_cpus) + 1);
3846 max_objects = order_objects(slub_max_order, size);
3847 min_objects = min(min_objects, max_objects);
3849 while (min_objects > 1) {
3850 unsigned int fraction;
3853 while (fraction >= 4) {
3854 order = slab_order(size, min_objects,
3855 slub_max_order, fraction);
3856 if (order <= slub_max_order)
3864 * We were unable to place multiple objects in a slab. Now
3865 * lets see if we can place a single object there.
3867 order = slab_order(size, 1, slub_max_order, 1);
3868 if (order <= slub_max_order)
3872 * Doh this slab cannot be placed using slub_max_order.
3874 order = slab_order(size, 1, MAX_ORDER, 1);
3875 if (order < MAX_ORDER)
3881 init_kmem_cache_node(struct kmem_cache_node *n)
3884 spin_lock_init(&n->list_lock);
3885 INIT_LIST_HEAD(&n->partial);
3886 #ifdef CONFIG_SLUB_DEBUG
3887 atomic_long_set(&n->nr_slabs, 0);
3888 atomic_long_set(&n->total_objects, 0);
3889 INIT_LIST_HEAD(&n->full);
3893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3895 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3896 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3899 * Must align to double word boundary for the double cmpxchg
3900 * instructions to work; see __pcpu_double_call_return_bool().
3902 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3903 2 * sizeof(void *));
3908 init_kmem_cache_cpus(s);
3913 static struct kmem_cache *kmem_cache_node;
3916 * No kmalloc_node yet so do it by hand. We know that this is the first
3917 * slab on the node for this slabcache. There are no concurrent accesses
3920 * Note that this function only works on the kmem_cache_node
3921 * when allocating for the kmem_cache_node. This is used for bootstrapping
3922 * memory on a fresh node that has no slab structures yet.
3924 static void early_kmem_cache_node_alloc(int node)
3927 struct kmem_cache_node *n;
3929 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3931 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3934 if (page_to_nid(page) != node) {
3935 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3936 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3941 #ifdef CONFIG_SLUB_DEBUG
3942 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3943 init_tracking(kmem_cache_node, n);
3945 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3946 page->freelist = get_freepointer(kmem_cache_node, n);
3949 kmem_cache_node->node[node] = n;
3950 init_kmem_cache_node(n);
3951 inc_slabs_node(kmem_cache_node, node, page->objects);
3954 * No locks need to be taken here as it has just been
3955 * initialized and there is no concurrent access.
3957 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3960 static void free_kmem_cache_nodes(struct kmem_cache *s)
3963 struct kmem_cache_node *n;
3965 for_each_kmem_cache_node(s, node, n) {
3966 s->node[node] = NULL;
3967 kmem_cache_free(kmem_cache_node, n);
3971 void __kmem_cache_release(struct kmem_cache *s)
3973 cache_random_seq_destroy(s);
3974 free_percpu(s->cpu_slab);
3975 free_kmem_cache_nodes(s);
3978 static int init_kmem_cache_nodes(struct kmem_cache *s)
3982 for_each_node_mask(node, slab_nodes) {
3983 struct kmem_cache_node *n;
3985 if (slab_state == DOWN) {
3986 early_kmem_cache_node_alloc(node);
3989 n = kmem_cache_alloc_node(kmem_cache_node,
3993 free_kmem_cache_nodes(s);
3997 init_kmem_cache_node(n);
4003 static void set_min_partial(struct kmem_cache *s, unsigned long min)
4005 if (min < MIN_PARTIAL)
4007 else if (min > MAX_PARTIAL)
4009 s->min_partial = min;
4012 static void set_cpu_partial(struct kmem_cache *s)
4014 #ifdef CONFIG_SLUB_CPU_PARTIAL
4015 unsigned int nr_objects;
4018 * cpu_partial determined the maximum number of objects kept in the
4019 * per cpu partial lists of a processor.
4021 * Per cpu partial lists mainly contain slabs that just have one
4022 * object freed. If they are used for allocation then they can be
4023 * filled up again with minimal effort. The slab will never hit the
4024 * per node partial lists and therefore no locking will be required.
4026 * For backwards compatibility reasons, this is determined as number
4027 * of objects, even though we now limit maximum number of pages, see
4028 * slub_set_cpu_partial()
4030 if (!kmem_cache_has_cpu_partial(s))
4032 else if (s->size >= PAGE_SIZE)
4034 else if (s->size >= 1024)
4036 else if (s->size >= 256)
4041 slub_set_cpu_partial(s, nr_objects);
4046 * calculate_sizes() determines the order and the distribution of data within
4049 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4051 slab_flags_t flags = s->flags;
4052 unsigned int size = s->object_size;
4056 * Round up object size to the next word boundary. We can only
4057 * place the free pointer at word boundaries and this determines
4058 * the possible location of the free pointer.
4060 size = ALIGN(size, sizeof(void *));
4062 #ifdef CONFIG_SLUB_DEBUG
4064 * Determine if we can poison the object itself. If the user of
4065 * the slab may touch the object after free or before allocation
4066 * then we should never poison the object itself.
4068 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4070 s->flags |= __OBJECT_POISON;
4072 s->flags &= ~__OBJECT_POISON;
4076 * If we are Redzoning then check if there is some space between the
4077 * end of the object and the free pointer. If not then add an
4078 * additional word to have some bytes to store Redzone information.
4080 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4081 size += sizeof(void *);
4085 * With that we have determined the number of bytes in actual use
4086 * by the object and redzoning.
4090 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4091 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4094 * Relocate free pointer after the object if it is not
4095 * permitted to overwrite the first word of the object on
4098 * This is the case if we do RCU, have a constructor or
4099 * destructor, are poisoning the objects, or are
4100 * redzoning an object smaller than sizeof(void *).
4102 * The assumption that s->offset >= s->inuse means free
4103 * pointer is outside of the object is used in the
4104 * freeptr_outside_object() function. If that is no
4105 * longer true, the function needs to be modified.
4108 size += sizeof(void *);
4111 * Store freelist pointer near middle of object to keep
4112 * it away from the edges of the object to avoid small
4113 * sized over/underflows from neighboring allocations.
4115 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4118 #ifdef CONFIG_SLUB_DEBUG
4119 if (flags & SLAB_STORE_USER)
4121 * Need to store information about allocs and frees after
4124 size += 2 * sizeof(struct track);
4127 kasan_cache_create(s, &size, &s->flags);
4128 #ifdef CONFIG_SLUB_DEBUG
4129 if (flags & SLAB_RED_ZONE) {
4131 * Add some empty padding so that we can catch
4132 * overwrites from earlier objects rather than let
4133 * tracking information or the free pointer be
4134 * corrupted if a user writes before the start
4137 size += sizeof(void *);
4139 s->red_left_pad = sizeof(void *);
4140 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4141 size += s->red_left_pad;
4146 * SLUB stores one object immediately after another beginning from
4147 * offset 0. In order to align the objects we have to simply size
4148 * each object to conform to the alignment.
4150 size = ALIGN(size, s->align);
4152 s->reciprocal_size = reciprocal_value(size);
4153 if (forced_order >= 0)
4154 order = forced_order;
4156 order = calculate_order(size);
4163 s->allocflags |= __GFP_COMP;
4165 if (s->flags & SLAB_CACHE_DMA)
4166 s->allocflags |= GFP_DMA;
4168 if (s->flags & SLAB_CACHE_DMA32)
4169 s->allocflags |= GFP_DMA32;
4171 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4172 s->allocflags |= __GFP_RECLAIMABLE;
4175 * Determine the number of objects per slab
4177 s->oo = oo_make(order, size);
4178 s->min = oo_make(get_order(size), size);
4179 if (oo_objects(s->oo) > oo_objects(s->max))
4182 return !!oo_objects(s->oo);
4185 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4187 s->flags = kmem_cache_flags(s->size, flags, s->name);
4188 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4189 s->random = get_random_long();
4192 if (!calculate_sizes(s, -1))
4194 if (disable_higher_order_debug) {
4196 * Disable debugging flags that store metadata if the min slab
4199 if (get_order(s->size) > get_order(s->object_size)) {
4200 s->flags &= ~DEBUG_METADATA_FLAGS;
4202 if (!calculate_sizes(s, -1))
4207 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4208 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4209 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4210 /* Enable fast mode */
4211 s->flags |= __CMPXCHG_DOUBLE;
4215 * The larger the object size is, the more pages we want on the partial
4216 * list to avoid pounding the page allocator excessively.
4218 set_min_partial(s, ilog2(s->size) / 2);
4223 s->remote_node_defrag_ratio = 1000;
4226 /* Initialize the pre-computed randomized freelist if slab is up */
4227 if (slab_state >= UP) {
4228 if (init_cache_random_seq(s))
4232 if (!init_kmem_cache_nodes(s))
4235 if (alloc_kmem_cache_cpus(s))
4239 __kmem_cache_release(s);
4243 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4246 #ifdef CONFIG_SLUB_DEBUG
4247 void *addr = page_address(page);
4248 unsigned long flags;
4252 slab_err(s, page, text, s->name);
4253 slab_lock(page, &flags);
4255 map = get_map(s, page);
4256 for_each_object(p, s, addr, page->objects) {
4258 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4259 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4260 print_tracking(s, p);
4264 slab_unlock(page, &flags);
4269 * Attempt to free all partial slabs on a node.
4270 * This is called from __kmem_cache_shutdown(). We must take list_lock
4271 * because sysfs file might still access partial list after the shutdowning.
4273 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4276 struct page *page, *h;
4278 BUG_ON(irqs_disabled());
4279 spin_lock_irq(&n->list_lock);
4280 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4282 remove_partial(n, page);
4283 list_add(&page->slab_list, &discard);
4285 list_slab_objects(s, page,
4286 "Objects remaining in %s on __kmem_cache_shutdown()");
4289 spin_unlock_irq(&n->list_lock);
4291 list_for_each_entry_safe(page, h, &discard, slab_list)
4292 discard_slab(s, page);
4295 bool __kmem_cache_empty(struct kmem_cache *s)
4298 struct kmem_cache_node *n;
4300 for_each_kmem_cache_node(s, node, n)
4301 if (n->nr_partial || slabs_node(s, node))
4307 * Release all resources used by a slab cache.
4309 int __kmem_cache_shutdown(struct kmem_cache *s)
4312 struct kmem_cache_node *n;
4314 flush_all_cpus_locked(s);
4315 /* Attempt to free all objects */
4316 for_each_kmem_cache_node(s, node, n) {
4318 if (n->nr_partial || slabs_node(s, node))
4324 #ifdef CONFIG_PRINTK
4325 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4328 int __maybe_unused i;
4332 struct kmem_cache *s = page->slab_cache;
4333 struct track __maybe_unused *trackp;
4335 kpp->kp_ptr = object;
4336 kpp->kp_page = page;
4337 kpp->kp_slab_cache = s;
4338 base = page_address(page);
4339 objp0 = kasan_reset_tag(object);
4340 #ifdef CONFIG_SLUB_DEBUG
4341 objp = restore_red_left(s, objp0);
4345 objnr = obj_to_index(s, page, objp);
4346 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4347 objp = base + s->size * objnr;
4348 kpp->kp_objp = objp;
4349 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4350 !(s->flags & SLAB_STORE_USER))
4352 #ifdef CONFIG_SLUB_DEBUG
4353 objp = fixup_red_left(s, objp);
4354 trackp = get_track(s, objp, TRACK_ALLOC);
4355 kpp->kp_ret = (void *)trackp->addr;
4356 #ifdef CONFIG_STACKTRACE
4357 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4358 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4359 if (!kpp->kp_stack[i])
4363 trackp = get_track(s, objp, TRACK_FREE);
4364 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4365 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4366 if (!kpp->kp_free_stack[i])
4374 /********************************************************************
4376 *******************************************************************/
4378 static int __init setup_slub_min_order(char *str)
4380 get_option(&str, (int *)&slub_min_order);
4385 __setup("slub_min_order=", setup_slub_min_order);
4387 static int __init setup_slub_max_order(char *str)
4389 get_option(&str, (int *)&slub_max_order);
4390 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4395 __setup("slub_max_order=", setup_slub_max_order);
4397 static int __init setup_slub_min_objects(char *str)
4399 get_option(&str, (int *)&slub_min_objects);
4404 __setup("slub_min_objects=", setup_slub_min_objects);
4406 void *__kmalloc(size_t size, gfp_t flags)
4408 struct kmem_cache *s;
4411 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4412 return kmalloc_large(size, flags);
4414 s = kmalloc_slab(size, flags);
4416 if (unlikely(ZERO_OR_NULL_PTR(s)))
4419 ret = slab_alloc(s, flags, _RET_IP_, size);
4421 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4423 ret = kasan_kmalloc(s, ret, size, flags);
4427 EXPORT_SYMBOL(__kmalloc);
4430 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4434 unsigned int order = get_order(size);
4436 flags |= __GFP_COMP;
4437 page = alloc_pages_node(node, flags, order);
4439 ptr = page_address(page);
4440 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4441 PAGE_SIZE << order);
4444 return kmalloc_large_node_hook(ptr, size, flags);
4447 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4449 struct kmem_cache *s;
4452 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4453 ret = kmalloc_large_node(size, flags, node);
4455 trace_kmalloc_node(_RET_IP_, ret,
4456 size, PAGE_SIZE << get_order(size),
4462 s = kmalloc_slab(size, flags);
4464 if (unlikely(ZERO_OR_NULL_PTR(s)))
4467 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4469 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4471 ret = kasan_kmalloc(s, ret, size, flags);
4475 EXPORT_SYMBOL(__kmalloc_node);
4476 #endif /* CONFIG_NUMA */
4478 #ifdef CONFIG_HARDENED_USERCOPY
4480 * Rejects incorrectly sized objects and objects that are to be copied
4481 * to/from userspace but do not fall entirely within the containing slab
4482 * cache's usercopy region.
4484 * Returns NULL if check passes, otherwise const char * to name of cache
4485 * to indicate an error.
4487 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4490 struct kmem_cache *s;
4491 unsigned int offset;
4493 bool is_kfence = is_kfence_address(ptr);
4495 ptr = kasan_reset_tag(ptr);
4497 /* Find object and usable object size. */
4498 s = page->slab_cache;
4500 /* Reject impossible pointers. */
4501 if (ptr < page_address(page))
4502 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4505 /* Find offset within object. */
4507 offset = ptr - kfence_object_start(ptr);
4509 offset = (ptr - page_address(page)) % s->size;
4511 /* Adjust for redzone and reject if within the redzone. */
4512 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4513 if (offset < s->red_left_pad)
4514 usercopy_abort("SLUB object in left red zone",
4515 s->name, to_user, offset, n);
4516 offset -= s->red_left_pad;
4519 /* Allow address range falling entirely within usercopy region. */
4520 if (offset >= s->useroffset &&
4521 offset - s->useroffset <= s->usersize &&
4522 n <= s->useroffset - offset + s->usersize)
4526 * If the copy is still within the allocated object, produce
4527 * a warning instead of rejecting the copy. This is intended
4528 * to be a temporary method to find any missing usercopy
4531 object_size = slab_ksize(s);
4532 if (usercopy_fallback &&
4533 offset <= object_size && n <= object_size - offset) {
4534 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4538 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4540 #endif /* CONFIG_HARDENED_USERCOPY */
4542 size_t __ksize(const void *object)
4546 if (unlikely(object == ZERO_SIZE_PTR))
4549 page = virt_to_head_page(object);
4551 if (unlikely(!PageSlab(page))) {
4552 WARN_ON(!PageCompound(page));
4553 return page_size(page);
4556 return slab_ksize(page->slab_cache);
4558 EXPORT_SYMBOL(__ksize);
4560 void kfree(const void *x)
4563 void *object = (void *)x;
4565 trace_kfree(_RET_IP_, x);
4567 if (unlikely(ZERO_OR_NULL_PTR(x)))
4570 page = virt_to_head_page(x);
4571 if (unlikely(!PageSlab(page))) {
4572 free_nonslab_page(page, object);
4575 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4577 EXPORT_SYMBOL(kfree);
4579 #define SHRINK_PROMOTE_MAX 32
4582 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4583 * up most to the head of the partial lists. New allocations will then
4584 * fill those up and thus they can be removed from the partial lists.
4586 * The slabs with the least items are placed last. This results in them
4587 * being allocated from last increasing the chance that the last objects
4588 * are freed in them.
4590 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4594 struct kmem_cache_node *n;
4597 struct list_head discard;
4598 struct list_head promote[SHRINK_PROMOTE_MAX];
4599 unsigned long flags;
4602 for_each_kmem_cache_node(s, node, n) {
4603 INIT_LIST_HEAD(&discard);
4604 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4605 INIT_LIST_HEAD(promote + i);
4607 spin_lock_irqsave(&n->list_lock, flags);
4610 * Build lists of slabs to discard or promote.
4612 * Note that concurrent frees may occur while we hold the
4613 * list_lock. page->inuse here is the upper limit.
4615 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4616 int free = page->objects - page->inuse;
4618 /* Do not reread page->inuse */
4621 /* We do not keep full slabs on the list */
4624 if (free == page->objects) {
4625 list_move(&page->slab_list, &discard);
4627 } else if (free <= SHRINK_PROMOTE_MAX)
4628 list_move(&page->slab_list, promote + free - 1);
4632 * Promote the slabs filled up most to the head of the
4635 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4636 list_splice(promote + i, &n->partial);
4638 spin_unlock_irqrestore(&n->list_lock, flags);
4640 /* Release empty slabs */
4641 list_for_each_entry_safe(page, t, &discard, slab_list)
4642 discard_slab(s, page);
4644 if (slabs_node(s, node))
4651 int __kmem_cache_shrink(struct kmem_cache *s)
4654 return __kmem_cache_do_shrink(s);
4657 static int slab_mem_going_offline_callback(void *arg)
4659 struct kmem_cache *s;
4661 mutex_lock(&slab_mutex);
4662 list_for_each_entry(s, &slab_caches, list) {
4663 flush_all_cpus_locked(s);
4664 __kmem_cache_do_shrink(s);
4666 mutex_unlock(&slab_mutex);
4671 static void slab_mem_offline_callback(void *arg)
4673 struct memory_notify *marg = arg;
4676 offline_node = marg->status_change_nid_normal;
4679 * If the node still has available memory. we need kmem_cache_node
4682 if (offline_node < 0)
4685 mutex_lock(&slab_mutex);
4686 node_clear(offline_node, slab_nodes);
4688 * We no longer free kmem_cache_node structures here, as it would be
4689 * racy with all get_node() users, and infeasible to protect them with
4692 mutex_unlock(&slab_mutex);
4695 static int slab_mem_going_online_callback(void *arg)
4697 struct kmem_cache_node *n;
4698 struct kmem_cache *s;
4699 struct memory_notify *marg = arg;
4700 int nid = marg->status_change_nid_normal;
4704 * If the node's memory is already available, then kmem_cache_node is
4705 * already created. Nothing to do.
4711 * We are bringing a node online. No memory is available yet. We must
4712 * allocate a kmem_cache_node structure in order to bring the node
4715 mutex_lock(&slab_mutex);
4716 list_for_each_entry(s, &slab_caches, list) {
4718 * The structure may already exist if the node was previously
4719 * onlined and offlined.
4721 if (get_node(s, nid))
4724 * XXX: kmem_cache_alloc_node will fallback to other nodes
4725 * since memory is not yet available from the node that
4728 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4733 init_kmem_cache_node(n);
4737 * Any cache created after this point will also have kmem_cache_node
4738 * initialized for the new node.
4740 node_set(nid, slab_nodes);
4742 mutex_unlock(&slab_mutex);
4746 static int slab_memory_callback(struct notifier_block *self,
4747 unsigned long action, void *arg)
4752 case MEM_GOING_ONLINE:
4753 ret = slab_mem_going_online_callback(arg);
4755 case MEM_GOING_OFFLINE:
4756 ret = slab_mem_going_offline_callback(arg);
4759 case MEM_CANCEL_ONLINE:
4760 slab_mem_offline_callback(arg);
4763 case MEM_CANCEL_OFFLINE:
4767 ret = notifier_from_errno(ret);
4773 static struct notifier_block slab_memory_callback_nb = {
4774 .notifier_call = slab_memory_callback,
4775 .priority = SLAB_CALLBACK_PRI,
4778 /********************************************************************
4779 * Basic setup of slabs
4780 *******************************************************************/
4783 * Used for early kmem_cache structures that were allocated using
4784 * the page allocator. Allocate them properly then fix up the pointers
4785 * that may be pointing to the wrong kmem_cache structure.
4788 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4791 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4792 struct kmem_cache_node *n;
4794 memcpy(s, static_cache, kmem_cache->object_size);
4797 * This runs very early, and only the boot processor is supposed to be
4798 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4801 __flush_cpu_slab(s, smp_processor_id());
4802 for_each_kmem_cache_node(s, node, n) {
4805 list_for_each_entry(p, &n->partial, slab_list)
4808 #ifdef CONFIG_SLUB_DEBUG
4809 list_for_each_entry(p, &n->full, slab_list)
4813 list_add(&s->list, &slab_caches);
4817 void __init kmem_cache_init(void)
4819 static __initdata struct kmem_cache boot_kmem_cache,
4820 boot_kmem_cache_node;
4823 if (debug_guardpage_minorder())
4826 /* Print slub debugging pointers without hashing */
4827 if (__slub_debug_enabled())
4828 no_hash_pointers_enable(NULL);
4830 kmem_cache_node = &boot_kmem_cache_node;
4831 kmem_cache = &boot_kmem_cache;
4834 * Initialize the nodemask for which we will allocate per node
4835 * structures. Here we don't need taking slab_mutex yet.
4837 for_each_node_state(node, N_NORMAL_MEMORY)
4838 node_set(node, slab_nodes);
4840 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4841 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4843 register_hotmemory_notifier(&slab_memory_callback_nb);
4845 /* Able to allocate the per node structures */
4846 slab_state = PARTIAL;
4848 create_boot_cache(kmem_cache, "kmem_cache",
4849 offsetof(struct kmem_cache, node) +
4850 nr_node_ids * sizeof(struct kmem_cache_node *),
4851 SLAB_HWCACHE_ALIGN, 0, 0);
4853 kmem_cache = bootstrap(&boot_kmem_cache);
4854 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4856 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4857 setup_kmalloc_cache_index_table();
4858 create_kmalloc_caches(0);
4860 /* Setup random freelists for each cache */
4861 init_freelist_randomization();
4863 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4866 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4868 slub_min_order, slub_max_order, slub_min_objects,
4869 nr_cpu_ids, nr_node_ids);
4872 void __init kmem_cache_init_late(void)
4877 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4878 slab_flags_t flags, void (*ctor)(void *))
4880 struct kmem_cache *s;
4882 s = find_mergeable(size, align, flags, name, ctor);
4887 * Adjust the object sizes so that we clear
4888 * the complete object on kzalloc.
4890 s->object_size = max(s->object_size, size);
4891 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4893 if (sysfs_slab_alias(s, name)) {
4902 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4906 err = kmem_cache_open(s, flags);
4910 /* Mutex is not taken during early boot */
4911 if (slab_state <= UP)
4914 err = sysfs_slab_add(s);
4916 __kmem_cache_release(s);
4920 if (s->flags & SLAB_STORE_USER)
4921 debugfs_slab_add(s);
4926 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4928 struct kmem_cache *s;
4931 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4932 return kmalloc_large(size, gfpflags);
4934 s = kmalloc_slab(size, gfpflags);
4936 if (unlikely(ZERO_OR_NULL_PTR(s)))
4939 ret = slab_alloc(s, gfpflags, caller, size);
4941 /* Honor the call site pointer we received. */
4942 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4946 EXPORT_SYMBOL(__kmalloc_track_caller);
4949 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4950 int node, unsigned long caller)
4952 struct kmem_cache *s;
4955 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4956 ret = kmalloc_large_node(size, gfpflags, node);
4958 trace_kmalloc_node(caller, ret,
4959 size, PAGE_SIZE << get_order(size),
4965 s = kmalloc_slab(size, gfpflags);
4967 if (unlikely(ZERO_OR_NULL_PTR(s)))
4970 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4972 /* Honor the call site pointer we received. */
4973 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4977 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4981 static int count_inuse(struct page *page)
4986 static int count_total(struct page *page)
4988 return page->objects;
4992 #ifdef CONFIG_SLUB_DEBUG
4993 static void validate_slab(struct kmem_cache *s, struct page *page,
4994 unsigned long *obj_map)
4997 void *addr = page_address(page);
4998 unsigned long flags;
5000 slab_lock(page, &flags);
5002 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
5005 /* Now we know that a valid freelist exists */
5006 __fill_map(obj_map, s, page);
5007 for_each_object(p, s, addr, page->objects) {
5008 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5009 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5011 if (!check_object(s, page, p, val))
5015 slab_unlock(page, &flags);
5018 static int validate_slab_node(struct kmem_cache *s,
5019 struct kmem_cache_node *n, unsigned long *obj_map)
5021 unsigned long count = 0;
5023 unsigned long flags;
5025 spin_lock_irqsave(&n->list_lock, flags);
5027 list_for_each_entry(page, &n->partial, slab_list) {
5028 validate_slab(s, page, obj_map);
5031 if (count != n->nr_partial) {
5032 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5033 s->name, count, n->nr_partial);
5034 slab_add_kunit_errors();
5037 if (!(s->flags & SLAB_STORE_USER))
5040 list_for_each_entry(page, &n->full, slab_list) {
5041 validate_slab(s, page, obj_map);
5044 if (count != atomic_long_read(&n->nr_slabs)) {
5045 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5046 s->name, count, atomic_long_read(&n->nr_slabs));
5047 slab_add_kunit_errors();
5051 spin_unlock_irqrestore(&n->list_lock, flags);
5055 long validate_slab_cache(struct kmem_cache *s)
5058 unsigned long count = 0;
5059 struct kmem_cache_node *n;
5060 unsigned long *obj_map;
5062 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5067 for_each_kmem_cache_node(s, node, n)
5068 count += validate_slab_node(s, n, obj_map);
5070 bitmap_free(obj_map);
5074 EXPORT_SYMBOL(validate_slab_cache);
5076 #ifdef CONFIG_DEBUG_FS
5078 * Generate lists of code addresses where slabcache objects are allocated
5083 unsigned long count;
5090 DECLARE_BITMAP(cpus, NR_CPUS);
5096 unsigned long count;
5097 struct location *loc;
5100 static struct dentry *slab_debugfs_root;
5102 static void free_loc_track(struct loc_track *t)
5105 free_pages((unsigned long)t->loc,
5106 get_order(sizeof(struct location) * t->max));
5109 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5114 order = get_order(sizeof(struct location) * max);
5116 l = (void *)__get_free_pages(flags, order);
5121 memcpy(l, t->loc, sizeof(struct location) * t->count);
5129 static int add_location(struct loc_track *t, struct kmem_cache *s,
5130 const struct track *track)
5132 long start, end, pos;
5134 unsigned long caddr;
5135 unsigned long age = jiffies - track->when;
5141 pos = start + (end - start + 1) / 2;
5144 * There is nothing at "end". If we end up there
5145 * we need to add something to before end.
5150 caddr = t->loc[pos].addr;
5151 if (track->addr == caddr) {
5157 if (age < l->min_time)
5159 if (age > l->max_time)
5162 if (track->pid < l->min_pid)
5163 l->min_pid = track->pid;
5164 if (track->pid > l->max_pid)
5165 l->max_pid = track->pid;
5167 cpumask_set_cpu(track->cpu,
5168 to_cpumask(l->cpus));
5170 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5174 if (track->addr < caddr)
5181 * Not found. Insert new tracking element.
5183 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5189 (t->count - pos) * sizeof(struct location));
5192 l->addr = track->addr;
5196 l->min_pid = track->pid;
5197 l->max_pid = track->pid;
5198 cpumask_clear(to_cpumask(l->cpus));
5199 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5200 nodes_clear(l->nodes);
5201 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5205 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5206 struct page *page, enum track_item alloc,
5207 unsigned long *obj_map)
5209 void *addr = page_address(page);
5212 __fill_map(obj_map, s, page);
5214 for_each_object(p, s, addr, page->objects)
5215 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5216 add_location(t, s, get_track(s, p, alloc));
5218 #endif /* CONFIG_DEBUG_FS */
5219 #endif /* CONFIG_SLUB_DEBUG */
5222 enum slab_stat_type {
5223 SL_ALL, /* All slabs */
5224 SL_PARTIAL, /* Only partially allocated slabs */
5225 SL_CPU, /* Only slabs used for cpu caches */
5226 SL_OBJECTS, /* Determine allocated objects not slabs */
5227 SL_TOTAL /* Determine object capacity not slabs */
5230 #define SO_ALL (1 << SL_ALL)
5231 #define SO_PARTIAL (1 << SL_PARTIAL)
5232 #define SO_CPU (1 << SL_CPU)
5233 #define SO_OBJECTS (1 << SL_OBJECTS)
5234 #define SO_TOTAL (1 << SL_TOTAL)
5236 static ssize_t show_slab_objects(struct kmem_cache *s,
5237 char *buf, unsigned long flags)
5239 unsigned long total = 0;
5242 unsigned long *nodes;
5245 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5249 if (flags & SO_CPU) {
5252 for_each_possible_cpu(cpu) {
5253 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5258 page = READ_ONCE(c->page);
5262 node = page_to_nid(page);
5263 if (flags & SO_TOTAL)
5265 else if (flags & SO_OBJECTS)
5273 page = slub_percpu_partial_read_once(c);
5275 node = page_to_nid(page);
5276 if (flags & SO_TOTAL)
5278 else if (flags & SO_OBJECTS)
5289 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5290 * already held which will conflict with an existing lock order:
5292 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5294 * We don't really need mem_hotplug_lock (to hold off
5295 * slab_mem_going_offline_callback) here because slab's memory hot
5296 * unplug code doesn't destroy the kmem_cache->node[] data.
5299 #ifdef CONFIG_SLUB_DEBUG
5300 if (flags & SO_ALL) {
5301 struct kmem_cache_node *n;
5303 for_each_kmem_cache_node(s, node, n) {
5305 if (flags & SO_TOTAL)
5306 x = atomic_long_read(&n->total_objects);
5307 else if (flags & SO_OBJECTS)
5308 x = atomic_long_read(&n->total_objects) -
5309 count_partial(n, count_free);
5311 x = atomic_long_read(&n->nr_slabs);
5318 if (flags & SO_PARTIAL) {
5319 struct kmem_cache_node *n;
5321 for_each_kmem_cache_node(s, node, n) {
5322 if (flags & SO_TOTAL)
5323 x = count_partial(n, count_total);
5324 else if (flags & SO_OBJECTS)
5325 x = count_partial(n, count_inuse);
5333 len += sysfs_emit_at(buf, len, "%lu", total);
5335 for (node = 0; node < nr_node_ids; node++) {
5337 len += sysfs_emit_at(buf, len, " N%d=%lu",
5341 len += sysfs_emit_at(buf, len, "\n");
5347 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5348 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5350 struct slab_attribute {
5351 struct attribute attr;
5352 ssize_t (*show)(struct kmem_cache *s, char *buf);
5353 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5356 #define SLAB_ATTR_RO(_name) \
5357 static struct slab_attribute _name##_attr = \
5358 __ATTR(_name, 0400, _name##_show, NULL)
5360 #define SLAB_ATTR(_name) \
5361 static struct slab_attribute _name##_attr = \
5362 __ATTR(_name, 0600, _name##_show, _name##_store)
5364 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5366 return sysfs_emit(buf, "%u\n", s->size);
5368 SLAB_ATTR_RO(slab_size);
5370 static ssize_t align_show(struct kmem_cache *s, char *buf)
5372 return sysfs_emit(buf, "%u\n", s->align);
5374 SLAB_ATTR_RO(align);
5376 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5378 return sysfs_emit(buf, "%u\n", s->object_size);
5380 SLAB_ATTR_RO(object_size);
5382 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5384 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5386 SLAB_ATTR_RO(objs_per_slab);
5388 static ssize_t order_show(struct kmem_cache *s, char *buf)
5390 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5392 SLAB_ATTR_RO(order);
5394 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5396 return sysfs_emit(buf, "%lu\n", s->min_partial);
5399 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5405 err = kstrtoul(buf, 10, &min);
5409 set_min_partial(s, min);
5412 SLAB_ATTR(min_partial);
5414 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5416 unsigned int nr_partial = 0;
5417 #ifdef CONFIG_SLUB_CPU_PARTIAL
5418 nr_partial = s->cpu_partial;
5421 return sysfs_emit(buf, "%u\n", nr_partial);
5424 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5427 unsigned int objects;
5430 err = kstrtouint(buf, 10, &objects);
5433 if (objects && !kmem_cache_has_cpu_partial(s))
5436 slub_set_cpu_partial(s, objects);
5440 SLAB_ATTR(cpu_partial);
5442 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5446 return sysfs_emit(buf, "%pS\n", s->ctor);
5450 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5452 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5454 SLAB_ATTR_RO(aliases);
5456 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5458 return show_slab_objects(s, buf, SO_PARTIAL);
5460 SLAB_ATTR_RO(partial);
5462 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5464 return show_slab_objects(s, buf, SO_CPU);
5466 SLAB_ATTR_RO(cpu_slabs);
5468 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5470 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5472 SLAB_ATTR_RO(objects);
5474 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5476 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5478 SLAB_ATTR_RO(objects_partial);
5480 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5487 for_each_online_cpu(cpu) {
5490 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5493 pages += page->pages;
5496 /* Approximate half-full pages , see slub_set_cpu_partial() */
5497 objects = (pages * oo_objects(s->oo)) / 2;
5498 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5501 for_each_online_cpu(cpu) {
5504 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5506 pages = READ_ONCE(page->pages);
5507 objects = (pages * oo_objects(s->oo)) / 2;
5508 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5509 cpu, objects, pages);
5513 len += sysfs_emit_at(buf, len, "\n");
5517 SLAB_ATTR_RO(slabs_cpu_partial);
5519 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5521 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5523 SLAB_ATTR_RO(reclaim_account);
5525 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5527 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5529 SLAB_ATTR_RO(hwcache_align);
5531 #ifdef CONFIG_ZONE_DMA
5532 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5534 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5536 SLAB_ATTR_RO(cache_dma);
5539 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5541 return sysfs_emit(buf, "%u\n", s->usersize);
5543 SLAB_ATTR_RO(usersize);
5545 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5547 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5549 SLAB_ATTR_RO(destroy_by_rcu);
5551 #ifdef CONFIG_SLUB_DEBUG
5552 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5554 return show_slab_objects(s, buf, SO_ALL);
5556 SLAB_ATTR_RO(slabs);
5558 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5560 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5562 SLAB_ATTR_RO(total_objects);
5564 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5566 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5568 SLAB_ATTR_RO(sanity_checks);
5570 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5572 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5574 SLAB_ATTR_RO(trace);
5576 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5578 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5581 SLAB_ATTR_RO(red_zone);
5583 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5585 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5588 SLAB_ATTR_RO(poison);
5590 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5592 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5595 SLAB_ATTR_RO(store_user);
5597 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5602 static ssize_t validate_store(struct kmem_cache *s,
5603 const char *buf, size_t length)
5607 if (buf[0] == '1') {
5608 ret = validate_slab_cache(s);
5614 SLAB_ATTR(validate);
5616 #endif /* CONFIG_SLUB_DEBUG */
5618 #ifdef CONFIG_FAILSLAB
5619 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5621 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5623 SLAB_ATTR_RO(failslab);
5626 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5631 static ssize_t shrink_store(struct kmem_cache *s,
5632 const char *buf, size_t length)
5635 kmem_cache_shrink(s);
5643 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5645 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5648 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5649 const char *buf, size_t length)
5654 err = kstrtouint(buf, 10, &ratio);
5660 s->remote_node_defrag_ratio = ratio * 10;
5664 SLAB_ATTR(remote_node_defrag_ratio);
5667 #ifdef CONFIG_SLUB_STATS
5668 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5670 unsigned long sum = 0;
5673 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5678 for_each_online_cpu(cpu) {
5679 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5685 len += sysfs_emit_at(buf, len, "%lu", sum);
5688 for_each_online_cpu(cpu) {
5690 len += sysfs_emit_at(buf, len, " C%d=%u",
5695 len += sysfs_emit_at(buf, len, "\n");
5700 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5704 for_each_online_cpu(cpu)
5705 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5708 #define STAT_ATTR(si, text) \
5709 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5711 return show_stat(s, buf, si); \
5713 static ssize_t text##_store(struct kmem_cache *s, \
5714 const char *buf, size_t length) \
5716 if (buf[0] != '0') \
5718 clear_stat(s, si); \
5723 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5724 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5725 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5726 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5727 STAT_ATTR(FREE_FROZEN, free_frozen);
5728 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5729 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5730 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5731 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5732 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5733 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5734 STAT_ATTR(FREE_SLAB, free_slab);
5735 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5736 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5737 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5738 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5739 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5740 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5741 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5742 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5743 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5744 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5745 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5746 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5747 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5748 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5749 #endif /* CONFIG_SLUB_STATS */
5751 static struct attribute *slab_attrs[] = {
5752 &slab_size_attr.attr,
5753 &object_size_attr.attr,
5754 &objs_per_slab_attr.attr,
5756 &min_partial_attr.attr,
5757 &cpu_partial_attr.attr,
5759 &objects_partial_attr.attr,
5761 &cpu_slabs_attr.attr,
5765 &hwcache_align_attr.attr,
5766 &reclaim_account_attr.attr,
5767 &destroy_by_rcu_attr.attr,
5769 &slabs_cpu_partial_attr.attr,
5770 #ifdef CONFIG_SLUB_DEBUG
5771 &total_objects_attr.attr,
5773 &sanity_checks_attr.attr,
5775 &red_zone_attr.attr,
5777 &store_user_attr.attr,
5778 &validate_attr.attr,
5780 #ifdef CONFIG_ZONE_DMA
5781 &cache_dma_attr.attr,
5784 &remote_node_defrag_ratio_attr.attr,
5786 #ifdef CONFIG_SLUB_STATS
5787 &alloc_fastpath_attr.attr,
5788 &alloc_slowpath_attr.attr,
5789 &free_fastpath_attr.attr,
5790 &free_slowpath_attr.attr,
5791 &free_frozen_attr.attr,
5792 &free_add_partial_attr.attr,
5793 &free_remove_partial_attr.attr,
5794 &alloc_from_partial_attr.attr,
5795 &alloc_slab_attr.attr,
5796 &alloc_refill_attr.attr,
5797 &alloc_node_mismatch_attr.attr,
5798 &free_slab_attr.attr,
5799 &cpuslab_flush_attr.attr,
5800 &deactivate_full_attr.attr,
5801 &deactivate_empty_attr.attr,
5802 &deactivate_to_head_attr.attr,
5803 &deactivate_to_tail_attr.attr,
5804 &deactivate_remote_frees_attr.attr,
5805 &deactivate_bypass_attr.attr,
5806 &order_fallback_attr.attr,
5807 &cmpxchg_double_fail_attr.attr,
5808 &cmpxchg_double_cpu_fail_attr.attr,
5809 &cpu_partial_alloc_attr.attr,
5810 &cpu_partial_free_attr.attr,
5811 &cpu_partial_node_attr.attr,
5812 &cpu_partial_drain_attr.attr,
5814 #ifdef CONFIG_FAILSLAB
5815 &failslab_attr.attr,
5817 &usersize_attr.attr,
5822 static const struct attribute_group slab_attr_group = {
5823 .attrs = slab_attrs,
5826 static ssize_t slab_attr_show(struct kobject *kobj,
5827 struct attribute *attr,
5830 struct slab_attribute *attribute;
5831 struct kmem_cache *s;
5834 attribute = to_slab_attr(attr);
5837 if (!attribute->show)
5840 err = attribute->show(s, buf);
5845 static ssize_t slab_attr_store(struct kobject *kobj,
5846 struct attribute *attr,
5847 const char *buf, size_t len)
5849 struct slab_attribute *attribute;
5850 struct kmem_cache *s;
5853 attribute = to_slab_attr(attr);
5856 if (!attribute->store)
5859 err = attribute->store(s, buf, len);
5863 static void kmem_cache_release(struct kobject *k)
5865 slab_kmem_cache_release(to_slab(k));
5868 static const struct sysfs_ops slab_sysfs_ops = {
5869 .show = slab_attr_show,
5870 .store = slab_attr_store,
5873 static struct kobj_type slab_ktype = {
5874 .sysfs_ops = &slab_sysfs_ops,
5875 .release = kmem_cache_release,
5878 static struct kset *slab_kset;
5880 static inline struct kset *cache_kset(struct kmem_cache *s)
5885 #define ID_STR_LENGTH 64
5887 /* Create a unique string id for a slab cache:
5889 * Format :[flags-]size
5891 static char *create_unique_id(struct kmem_cache *s)
5893 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5900 * First flags affecting slabcache operations. We will only
5901 * get here for aliasable slabs so we do not need to support
5902 * too many flags. The flags here must cover all flags that
5903 * are matched during merging to guarantee that the id is
5906 if (s->flags & SLAB_CACHE_DMA)
5908 if (s->flags & SLAB_CACHE_DMA32)
5910 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5912 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5914 if (s->flags & SLAB_ACCOUNT)
5918 p += sprintf(p, "%07u", s->size);
5920 BUG_ON(p > name + ID_STR_LENGTH - 1);
5924 static int sysfs_slab_add(struct kmem_cache *s)
5928 struct kset *kset = cache_kset(s);
5929 int unmergeable = slab_unmergeable(s);
5932 kobject_init(&s->kobj, &slab_ktype);
5936 if (!unmergeable && disable_higher_order_debug &&
5937 (slub_debug & DEBUG_METADATA_FLAGS))
5942 * Slabcache can never be merged so we can use the name proper.
5943 * This is typically the case for debug situations. In that
5944 * case we can catch duplicate names easily.
5946 sysfs_remove_link(&slab_kset->kobj, s->name);
5950 * Create a unique name for the slab as a target
5953 name = create_unique_id(s);
5956 s->kobj.kset = kset;
5957 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5961 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5966 /* Setup first alias */
5967 sysfs_slab_alias(s, s->name);
5974 kobject_del(&s->kobj);
5978 void sysfs_slab_unlink(struct kmem_cache *s)
5980 if (slab_state >= FULL)
5981 kobject_del(&s->kobj);
5984 void sysfs_slab_release(struct kmem_cache *s)
5986 if (slab_state >= FULL)
5987 kobject_put(&s->kobj);
5991 * Need to buffer aliases during bootup until sysfs becomes
5992 * available lest we lose that information.
5994 struct saved_alias {
5995 struct kmem_cache *s;
5997 struct saved_alias *next;
6000 static struct saved_alias *alias_list;
6002 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6004 struct saved_alias *al;
6006 if (slab_state == FULL) {
6008 * If we have a leftover link then remove it.
6010 sysfs_remove_link(&slab_kset->kobj, name);
6011 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6014 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6020 al->next = alias_list;
6025 static int __init slab_sysfs_init(void)
6027 struct kmem_cache *s;
6030 mutex_lock(&slab_mutex);
6032 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6034 mutex_unlock(&slab_mutex);
6035 pr_err("Cannot register slab subsystem.\n");
6041 list_for_each_entry(s, &slab_caches, list) {
6042 err = sysfs_slab_add(s);
6044 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6048 while (alias_list) {
6049 struct saved_alias *al = alias_list;
6051 alias_list = alias_list->next;
6052 err = sysfs_slab_alias(al->s, al->name);
6054 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6059 mutex_unlock(&slab_mutex);
6063 __initcall(slab_sysfs_init);
6064 #endif /* CONFIG_SYSFS */
6066 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6067 static int slab_debugfs_show(struct seq_file *seq, void *v)
6071 unsigned int idx = *(unsigned int *)v;
6072 struct loc_track *t = seq->private;
6074 if (idx < t->count) {
6077 seq_printf(seq, "%7ld ", l->count);
6080 seq_printf(seq, "%pS", (void *)l->addr);
6082 seq_puts(seq, "<not-available>");
6084 if (l->sum_time != l->min_time) {
6085 seq_printf(seq, " age=%ld/%llu/%ld",
6086 l->min_time, div_u64(l->sum_time, l->count),
6089 seq_printf(seq, " age=%ld", l->min_time);
6091 if (l->min_pid != l->max_pid)
6092 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6094 seq_printf(seq, " pid=%ld",
6097 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6098 seq_printf(seq, " cpus=%*pbl",
6099 cpumask_pr_args(to_cpumask(l->cpus)));
6101 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6102 seq_printf(seq, " nodes=%*pbl",
6103 nodemask_pr_args(&l->nodes));
6105 seq_puts(seq, "\n");
6108 if (!idx && !t->count)
6109 seq_puts(seq, "No data\n");
6114 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6118 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6120 struct loc_track *t = seq->private;
6124 if (*ppos <= t->count)
6130 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6135 static const struct seq_operations slab_debugfs_sops = {
6136 .start = slab_debugfs_start,
6137 .next = slab_debugfs_next,
6138 .stop = slab_debugfs_stop,
6139 .show = slab_debugfs_show,
6142 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6145 struct kmem_cache_node *n;
6146 enum track_item alloc;
6148 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6149 sizeof(struct loc_track));
6150 struct kmem_cache *s = file_inode(filep)->i_private;
6151 unsigned long *obj_map;
6156 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6158 seq_release_private(inode, filep);
6162 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6163 alloc = TRACK_ALLOC;
6167 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6168 bitmap_free(obj_map);
6169 seq_release_private(inode, filep);
6173 for_each_kmem_cache_node(s, node, n) {
6174 unsigned long flags;
6177 if (!atomic_long_read(&n->nr_slabs))
6180 spin_lock_irqsave(&n->list_lock, flags);
6181 list_for_each_entry(page, &n->partial, slab_list)
6182 process_slab(t, s, page, alloc, obj_map);
6183 list_for_each_entry(page, &n->full, slab_list)
6184 process_slab(t, s, page, alloc, obj_map);
6185 spin_unlock_irqrestore(&n->list_lock, flags);
6188 bitmap_free(obj_map);
6192 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6194 struct seq_file *seq = file->private_data;
6195 struct loc_track *t = seq->private;
6198 return seq_release_private(inode, file);
6201 static const struct file_operations slab_debugfs_fops = {
6202 .open = slab_debug_trace_open,
6204 .llseek = seq_lseek,
6205 .release = slab_debug_trace_release,
6208 static void debugfs_slab_add(struct kmem_cache *s)
6210 struct dentry *slab_cache_dir;
6212 if (unlikely(!slab_debugfs_root))
6215 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6217 debugfs_create_file("alloc_traces", 0400,
6218 slab_cache_dir, s, &slab_debugfs_fops);
6220 debugfs_create_file("free_traces", 0400,
6221 slab_cache_dir, s, &slab_debugfs_fops);
6224 void debugfs_slab_release(struct kmem_cache *s)
6226 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6229 static int __init slab_debugfs_init(void)
6231 struct kmem_cache *s;
6233 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6235 list_for_each_entry(s, &slab_caches, list)
6236 if (s->flags & SLAB_STORE_USER)
6237 debugfs_slab_add(s);
6242 __initcall(slab_debugfs_init);
6245 * The /proc/slabinfo ABI
6247 #ifdef CONFIG_SLUB_DEBUG
6248 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6250 unsigned long nr_slabs = 0;
6251 unsigned long nr_objs = 0;
6252 unsigned long nr_free = 0;
6254 struct kmem_cache_node *n;
6256 for_each_kmem_cache_node(s, node, n) {
6257 nr_slabs += node_nr_slabs(n);
6258 nr_objs += node_nr_objs(n);
6259 nr_free += count_partial(n, count_free);
6262 sinfo->active_objs = nr_objs - nr_free;
6263 sinfo->num_objs = nr_objs;
6264 sinfo->active_slabs = nr_slabs;
6265 sinfo->num_slabs = nr_slabs;
6266 sinfo->objects_per_slab = oo_objects(s->oo);
6267 sinfo->cache_order = oo_order(s->oo);
6270 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6274 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6275 size_t count, loff_t *ppos)
6279 #endif /* CONFIG_SLUB_DEBUG */