]> Git Repo - linux.git/blob - kernel/exit.c
xfs: AIL doesn't need manual pushing
[linux.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73
74 #include <uapi/linux/wait.h>
75
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78
79 #include "exit.h"
80
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87
88 #ifdef CONFIG_SYSCTL
89 static struct ctl_table kern_exit_table[] = {
90         {
91                 .procname       = "oops_limit",
92                 .data           = &oops_limit,
93                 .maxlen         = sizeof(oops_limit),
94                 .mode           = 0644,
95                 .proc_handler   = proc_douintvec,
96         },
97 };
98
99 static __init int kernel_exit_sysctls_init(void)
100 {
101         register_sysctl_init("kernel", kern_exit_table);
102         return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106
107 static atomic_t oops_count = ATOMIC_INIT(0);
108
109 #ifdef CONFIG_SYSFS
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111                                char *page)
112 {
113         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117
118 static __init int kernel_exit_sysfs_init(void)
119 {
120         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121         return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125
126 static void __unhash_process(struct task_struct *p, bool group_dead)
127 {
128         nr_threads--;
129         detach_pid(p, PIDTYPE_PID);
130         if (group_dead) {
131                 detach_pid(p, PIDTYPE_TGID);
132                 detach_pid(p, PIDTYPE_PGID);
133                 detach_pid(p, PIDTYPE_SID);
134
135                 list_del_rcu(&p->tasks);
136                 list_del_init(&p->sibling);
137                 __this_cpu_dec(process_counts);
138         }
139         list_del_rcu(&p->thread_node);
140 }
141
142 /*
143  * This function expects the tasklist_lock write-locked.
144  */
145 static void __exit_signal(struct task_struct *tsk)
146 {
147         struct signal_struct *sig = tsk->signal;
148         bool group_dead = thread_group_leader(tsk);
149         struct sighand_struct *sighand;
150         struct tty_struct *tty;
151         u64 utime, stime;
152
153         sighand = rcu_dereference_check(tsk->sighand,
154                                         lockdep_tasklist_lock_is_held());
155         spin_lock(&sighand->siglock);
156
157 #ifdef CONFIG_POSIX_TIMERS
158         posix_cpu_timers_exit(tsk);
159         if (group_dead)
160                 posix_cpu_timers_exit_group(tsk);
161 #endif
162
163         if (group_dead) {
164                 tty = sig->tty;
165                 sig->tty = NULL;
166         } else {
167                 /*
168                  * If there is any task waiting for the group exit
169                  * then notify it:
170                  */
171                 if (sig->notify_count > 0 && !--sig->notify_count)
172                         wake_up_process(sig->group_exec_task);
173
174                 if (tsk == sig->curr_target)
175                         sig->curr_target = next_thread(tsk);
176         }
177
178         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179                               sizeof(unsigned long long));
180
181         /*
182          * Accumulate here the counters for all threads as they die. We could
183          * skip the group leader because it is the last user of signal_struct,
184          * but we want to avoid the race with thread_group_cputime() which can
185          * see the empty ->thread_head list.
186          */
187         task_cputime(tsk, &utime, &stime);
188         write_seqlock(&sig->stats_lock);
189         sig->utime += utime;
190         sig->stime += stime;
191         sig->gtime += task_gtime(tsk);
192         sig->min_flt += tsk->min_flt;
193         sig->maj_flt += tsk->maj_flt;
194         sig->nvcsw += tsk->nvcsw;
195         sig->nivcsw += tsk->nivcsw;
196         sig->inblock += task_io_get_inblock(tsk);
197         sig->oublock += task_io_get_oublock(tsk);
198         task_io_accounting_add(&sig->ioac, &tsk->ioac);
199         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
200         sig->nr_threads--;
201         __unhash_process(tsk, group_dead);
202         write_sequnlock(&sig->stats_lock);
203
204         /*
205          * Do this under ->siglock, we can race with another thread
206          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
207          */
208         flush_sigqueue(&tsk->pending);
209         tsk->sighand = NULL;
210         spin_unlock(&sighand->siglock);
211
212         __cleanup_sighand(sighand);
213         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
214         if (group_dead) {
215                 flush_sigqueue(&sig->shared_pending);
216                 tty_kref_put(tty);
217         }
218 }
219
220 static void delayed_put_task_struct(struct rcu_head *rhp)
221 {
222         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
223
224         kprobe_flush_task(tsk);
225         rethook_flush_task(tsk);
226         perf_event_delayed_put(tsk);
227         trace_sched_process_free(tsk);
228         put_task_struct(tsk);
229 }
230
231 void put_task_struct_rcu_user(struct task_struct *task)
232 {
233         if (refcount_dec_and_test(&task->rcu_users))
234                 call_rcu(&task->rcu, delayed_put_task_struct);
235 }
236
237 void __weak release_thread(struct task_struct *dead_task)
238 {
239 }
240
241 void release_task(struct task_struct *p)
242 {
243         struct task_struct *leader;
244         struct pid *thread_pid;
245         int zap_leader;
246 repeat:
247         /* don't need to get the RCU readlock here - the process is dead and
248          * can't be modifying its own credentials. But shut RCU-lockdep up */
249         rcu_read_lock();
250         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251         rcu_read_unlock();
252
253         cgroup_release(p);
254
255         write_lock_irq(&tasklist_lock);
256         ptrace_release_task(p);
257         thread_pid = get_pid(p->thread_pid);
258         __exit_signal(p);
259
260         /*
261          * If we are the last non-leader member of the thread
262          * group, and the leader is zombie, then notify the
263          * group leader's parent process. (if it wants notification.)
264          */
265         zap_leader = 0;
266         leader = p->group_leader;
267         if (leader != p && thread_group_empty(leader)
268                         && leader->exit_state == EXIT_ZOMBIE) {
269                 /*
270                  * If we were the last child thread and the leader has
271                  * exited already, and the leader's parent ignores SIGCHLD,
272                  * then we are the one who should release the leader.
273                  */
274                 zap_leader = do_notify_parent(leader, leader->exit_signal);
275                 if (zap_leader)
276                         leader->exit_state = EXIT_DEAD;
277         }
278
279         write_unlock_irq(&tasklist_lock);
280         seccomp_filter_release(p);
281         proc_flush_pid(thread_pid);
282         put_pid(thread_pid);
283         release_thread(p);
284         put_task_struct_rcu_user(p);
285
286         p = leader;
287         if (unlikely(zap_leader))
288                 goto repeat;
289 }
290
291 int rcuwait_wake_up(struct rcuwait *w)
292 {
293         int ret = 0;
294         struct task_struct *task;
295
296         rcu_read_lock();
297
298         /*
299          * Order condition vs @task, such that everything prior to the load
300          * of @task is visible. This is the condition as to why the user called
301          * rcuwait_wake() in the first place. Pairs with set_current_state()
302          * barrier (A) in rcuwait_wait_event().
303          *
304          *    WAIT                WAKE
305          *    [S] tsk = current   [S] cond = true
306          *        MB (A)              MB (B)
307          *    [L] cond            [L] tsk
308          */
309         smp_mb(); /* (B) */
310
311         task = rcu_dereference(w->task);
312         if (task)
313                 ret = wake_up_process(task);
314         rcu_read_unlock();
315
316         return ret;
317 }
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
319
320 /*
321  * Determine if a process group is "orphaned", according to the POSIX
322  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
323  * by terminal-generated stop signals.  Newly orphaned process groups are
324  * to receive a SIGHUP and a SIGCONT.
325  *
326  * "I ask you, have you ever known what it is to be an orphan?"
327  */
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329                                         struct task_struct *ignored_task)
330 {
331         struct task_struct *p;
332
333         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334                 if ((p == ignored_task) ||
335                     (p->exit_state && thread_group_empty(p)) ||
336                     is_global_init(p->real_parent))
337                         continue;
338
339                 if (task_pgrp(p->real_parent) != pgrp &&
340                     task_session(p->real_parent) == task_session(p))
341                         return 0;
342         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
343
344         return 1;
345 }
346
347 int is_current_pgrp_orphaned(void)
348 {
349         int retval;
350
351         read_lock(&tasklist_lock);
352         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353         read_unlock(&tasklist_lock);
354
355         return retval;
356 }
357
358 static bool has_stopped_jobs(struct pid *pgrp)
359 {
360         struct task_struct *p;
361
362         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
364                         return true;
365         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367         return false;
368 }
369
370 /*
371  * Check to see if any process groups have become orphaned as
372  * a result of our exiting, and if they have any stopped jobs,
373  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
374  */
375 static void
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
377 {
378         struct pid *pgrp = task_pgrp(tsk);
379         struct task_struct *ignored_task = tsk;
380
381         if (!parent)
382                 /* exit: our father is in a different pgrp than
383                  * we are and we were the only connection outside.
384                  */
385                 parent = tsk->real_parent;
386         else
387                 /* reparent: our child is in a different pgrp than
388                  * we are, and it was the only connection outside.
389                  */
390                 ignored_task = NULL;
391
392         if (task_pgrp(parent) != pgrp &&
393             task_session(parent) == task_session(tsk) &&
394             will_become_orphaned_pgrp(pgrp, ignored_task) &&
395             has_stopped_jobs(pgrp)) {
396                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
398         }
399 }
400
401 static void coredump_task_exit(struct task_struct *tsk)
402 {
403         struct core_state *core_state;
404
405         /*
406          * Serialize with any possible pending coredump.
407          * We must hold siglock around checking core_state
408          * and setting PF_POSTCOREDUMP.  The core-inducing thread
409          * will increment ->nr_threads for each thread in the
410          * group without PF_POSTCOREDUMP set.
411          */
412         spin_lock_irq(&tsk->sighand->siglock);
413         tsk->flags |= PF_POSTCOREDUMP;
414         core_state = tsk->signal->core_state;
415         spin_unlock_irq(&tsk->sighand->siglock);
416         if (core_state) {
417                 struct core_thread self;
418
419                 self.task = current;
420                 if (self.task->flags & PF_SIGNALED)
421                         self.next = xchg(&core_state->dumper.next, &self);
422                 else
423                         self.task = NULL;
424                 /*
425                  * Implies mb(), the result of xchg() must be visible
426                  * to core_state->dumper.
427                  */
428                 if (atomic_dec_and_test(&core_state->nr_threads))
429                         complete(&core_state->startup);
430
431                 for (;;) {
432                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433                         if (!self.task) /* see coredump_finish() */
434                                 break;
435                         schedule();
436                 }
437                 __set_current_state(TASK_RUNNING);
438         }
439 }
440
441 #ifdef CONFIG_MEMCG
442 /*
443  * A task is exiting.   If it owned this mm, find a new owner for the mm.
444  */
445 void mm_update_next_owner(struct mm_struct *mm)
446 {
447         struct task_struct *c, *g, *p = current;
448
449 retry:
450         /*
451          * If the exiting or execing task is not the owner, it's
452          * someone else's problem.
453          */
454         if (mm->owner != p)
455                 return;
456         /*
457          * The current owner is exiting/execing and there are no other
458          * candidates.  Do not leave the mm pointing to a possibly
459          * freed task structure.
460          */
461         if (atomic_read(&mm->mm_users) <= 1) {
462                 WRITE_ONCE(mm->owner, NULL);
463                 return;
464         }
465
466         read_lock(&tasklist_lock);
467         /*
468          * Search in the children
469          */
470         list_for_each_entry(c, &p->children, sibling) {
471                 if (c->mm == mm)
472                         goto assign_new_owner;
473         }
474
475         /*
476          * Search in the siblings
477          */
478         list_for_each_entry(c, &p->real_parent->children, sibling) {
479                 if (c->mm == mm)
480                         goto assign_new_owner;
481         }
482
483         /*
484          * Search through everything else, we should not get here often.
485          */
486         for_each_process(g) {
487                 if (g->flags & PF_KTHREAD)
488                         continue;
489                 for_each_thread(g, c) {
490                         if (c->mm == mm)
491                                 goto assign_new_owner;
492                         if (c->mm)
493                                 break;
494                 }
495         }
496         read_unlock(&tasklist_lock);
497         /*
498          * We found no owner yet mm_users > 1: this implies that we are
499          * most likely racing with swapoff (try_to_unuse()) or /proc or
500          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
501          */
502         WRITE_ONCE(mm->owner, NULL);
503         return;
504
505 assign_new_owner:
506         BUG_ON(c == p);
507         get_task_struct(c);
508         /*
509          * The task_lock protects c->mm from changing.
510          * We always want mm->owner->mm == mm
511          */
512         task_lock(c);
513         /*
514          * Delay read_unlock() till we have the task_lock()
515          * to ensure that c does not slip away underneath us
516          */
517         read_unlock(&tasklist_lock);
518         if (c->mm != mm) {
519                 task_unlock(c);
520                 put_task_struct(c);
521                 goto retry;
522         }
523         WRITE_ONCE(mm->owner, c);
524         lru_gen_migrate_mm(mm);
525         task_unlock(c);
526         put_task_struct(c);
527 }
528 #endif /* CONFIG_MEMCG */
529
530 /*
531  * Turn us into a lazy TLB process if we
532  * aren't already..
533  */
534 static void exit_mm(void)
535 {
536         struct mm_struct *mm = current->mm;
537
538         exit_mm_release(current, mm);
539         if (!mm)
540                 return;
541         mmap_read_lock(mm);
542         mmgrab_lazy_tlb(mm);
543         BUG_ON(mm != current->active_mm);
544         /* more a memory barrier than a real lock */
545         task_lock(current);
546         /*
547          * When a thread stops operating on an address space, the loop
548          * in membarrier_private_expedited() may not observe that
549          * tsk->mm, and the loop in membarrier_global_expedited() may
550          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
551          * rq->membarrier_state, so those would not issue an IPI.
552          * Membarrier requires a memory barrier after accessing
553          * user-space memory, before clearing tsk->mm or the
554          * rq->membarrier_state.
555          */
556         smp_mb__after_spinlock();
557         local_irq_disable();
558         current->mm = NULL;
559         membarrier_update_current_mm(NULL);
560         enter_lazy_tlb(mm, current);
561         local_irq_enable();
562         task_unlock(current);
563         mmap_read_unlock(mm);
564         mm_update_next_owner(mm);
565         mmput(mm);
566         if (test_thread_flag(TIF_MEMDIE))
567                 exit_oom_victim();
568 }
569
570 static struct task_struct *find_alive_thread(struct task_struct *p)
571 {
572         struct task_struct *t;
573
574         for_each_thread(p, t) {
575                 if (!(t->flags & PF_EXITING))
576                         return t;
577         }
578         return NULL;
579 }
580
581 static struct task_struct *find_child_reaper(struct task_struct *father,
582                                                 struct list_head *dead)
583         __releases(&tasklist_lock)
584         __acquires(&tasklist_lock)
585 {
586         struct pid_namespace *pid_ns = task_active_pid_ns(father);
587         struct task_struct *reaper = pid_ns->child_reaper;
588         struct task_struct *p, *n;
589
590         if (likely(reaper != father))
591                 return reaper;
592
593         reaper = find_alive_thread(father);
594         if (reaper) {
595                 pid_ns->child_reaper = reaper;
596                 return reaper;
597         }
598
599         write_unlock_irq(&tasklist_lock);
600
601         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
602                 list_del_init(&p->ptrace_entry);
603                 release_task(p);
604         }
605
606         zap_pid_ns_processes(pid_ns);
607         write_lock_irq(&tasklist_lock);
608
609         return father;
610 }
611
612 /*
613  * When we die, we re-parent all our children, and try to:
614  * 1. give them to another thread in our thread group, if such a member exists
615  * 2. give it to the first ancestor process which prctl'd itself as a
616  *    child_subreaper for its children (like a service manager)
617  * 3. give it to the init process (PID 1) in our pid namespace
618  */
619 static struct task_struct *find_new_reaper(struct task_struct *father,
620                                            struct task_struct *child_reaper)
621 {
622         struct task_struct *thread, *reaper;
623
624         thread = find_alive_thread(father);
625         if (thread)
626                 return thread;
627
628         if (father->signal->has_child_subreaper) {
629                 unsigned int ns_level = task_pid(father)->level;
630                 /*
631                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
632                  * We can't check reaper != child_reaper to ensure we do not
633                  * cross the namespaces, the exiting parent could be injected
634                  * by setns() + fork().
635                  * We check pid->level, this is slightly more efficient than
636                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
637                  */
638                 for (reaper = father->real_parent;
639                      task_pid(reaper)->level == ns_level;
640                      reaper = reaper->real_parent) {
641                         if (reaper == &init_task)
642                                 break;
643                         if (!reaper->signal->is_child_subreaper)
644                                 continue;
645                         thread = find_alive_thread(reaper);
646                         if (thread)
647                                 return thread;
648                 }
649         }
650
651         return child_reaper;
652 }
653
654 /*
655 * Any that need to be release_task'd are put on the @dead list.
656  */
657 static void reparent_leader(struct task_struct *father, struct task_struct *p,
658                                 struct list_head *dead)
659 {
660         if (unlikely(p->exit_state == EXIT_DEAD))
661                 return;
662
663         /* We don't want people slaying init. */
664         p->exit_signal = SIGCHLD;
665
666         /* If it has exited notify the new parent about this child's death. */
667         if (!p->ptrace &&
668             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
669                 if (do_notify_parent(p, p->exit_signal)) {
670                         p->exit_state = EXIT_DEAD;
671                         list_add(&p->ptrace_entry, dead);
672                 }
673         }
674
675         kill_orphaned_pgrp(p, father);
676 }
677
678 /*
679  * This does two things:
680  *
681  * A.  Make init inherit all the child processes
682  * B.  Check to see if any process groups have become orphaned
683  *      as a result of our exiting, and if they have any stopped
684  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
685  */
686 static void forget_original_parent(struct task_struct *father,
687                                         struct list_head *dead)
688 {
689         struct task_struct *p, *t, *reaper;
690
691         if (unlikely(!list_empty(&father->ptraced)))
692                 exit_ptrace(father, dead);
693
694         /* Can drop and reacquire tasklist_lock */
695         reaper = find_child_reaper(father, dead);
696         if (list_empty(&father->children))
697                 return;
698
699         reaper = find_new_reaper(father, reaper);
700         list_for_each_entry(p, &father->children, sibling) {
701                 for_each_thread(p, t) {
702                         RCU_INIT_POINTER(t->real_parent, reaper);
703                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
704                         if (likely(!t->ptrace))
705                                 t->parent = t->real_parent;
706                         if (t->pdeath_signal)
707                                 group_send_sig_info(t->pdeath_signal,
708                                                     SEND_SIG_NOINFO, t,
709                                                     PIDTYPE_TGID);
710                 }
711                 /*
712                  * If this is a threaded reparent there is no need to
713                  * notify anyone anything has happened.
714                  */
715                 if (!same_thread_group(reaper, father))
716                         reparent_leader(father, p, dead);
717         }
718         list_splice_tail_init(&father->children, &reaper->children);
719 }
720
721 /*
722  * Send signals to all our closest relatives so that they know
723  * to properly mourn us..
724  */
725 static void exit_notify(struct task_struct *tsk, int group_dead)
726 {
727         bool autoreap;
728         struct task_struct *p, *n;
729         LIST_HEAD(dead);
730
731         write_lock_irq(&tasklist_lock);
732         forget_original_parent(tsk, &dead);
733
734         if (group_dead)
735                 kill_orphaned_pgrp(tsk->group_leader, NULL);
736
737         tsk->exit_state = EXIT_ZOMBIE;
738         /*
739          * sub-thread or delay_group_leader(), wake up the
740          * PIDFD_THREAD waiters.
741          */
742         if (!thread_group_empty(tsk))
743                 do_notify_pidfd(tsk);
744
745         if (unlikely(tsk->ptrace)) {
746                 int sig = thread_group_leader(tsk) &&
747                                 thread_group_empty(tsk) &&
748                                 !ptrace_reparented(tsk) ?
749                         tsk->exit_signal : SIGCHLD;
750                 autoreap = do_notify_parent(tsk, sig);
751         } else if (thread_group_leader(tsk)) {
752                 autoreap = thread_group_empty(tsk) &&
753                         do_notify_parent(tsk, tsk->exit_signal);
754         } else {
755                 autoreap = true;
756         }
757
758         if (autoreap) {
759                 tsk->exit_state = EXIT_DEAD;
760                 list_add(&tsk->ptrace_entry, &dead);
761         }
762
763         /* mt-exec, de_thread() is waiting for group leader */
764         if (unlikely(tsk->signal->notify_count < 0))
765                 wake_up_process(tsk->signal->group_exec_task);
766         write_unlock_irq(&tasklist_lock);
767
768         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
769                 list_del_init(&p->ptrace_entry);
770                 release_task(p);
771         }
772 }
773
774 #ifdef CONFIG_DEBUG_STACK_USAGE
775 static void check_stack_usage(void)
776 {
777         static DEFINE_SPINLOCK(low_water_lock);
778         static int lowest_to_date = THREAD_SIZE;
779         unsigned long free;
780
781         free = stack_not_used(current);
782
783         if (free >= lowest_to_date)
784                 return;
785
786         spin_lock(&low_water_lock);
787         if (free < lowest_to_date) {
788                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
789                         current->comm, task_pid_nr(current), free);
790                 lowest_to_date = free;
791         }
792         spin_unlock(&low_water_lock);
793 }
794 #else
795 static inline void check_stack_usage(void) {}
796 #endif
797
798 static void synchronize_group_exit(struct task_struct *tsk, long code)
799 {
800         struct sighand_struct *sighand = tsk->sighand;
801         struct signal_struct *signal = tsk->signal;
802
803         spin_lock_irq(&sighand->siglock);
804         signal->quick_threads--;
805         if ((signal->quick_threads == 0) &&
806             !(signal->flags & SIGNAL_GROUP_EXIT)) {
807                 signal->flags = SIGNAL_GROUP_EXIT;
808                 signal->group_exit_code = code;
809                 signal->group_stop_count = 0;
810         }
811         spin_unlock_irq(&sighand->siglock);
812 }
813
814 void __noreturn do_exit(long code)
815 {
816         struct task_struct *tsk = current;
817         int group_dead;
818
819         WARN_ON(irqs_disabled());
820
821         synchronize_group_exit(tsk, code);
822
823         WARN_ON(tsk->plug);
824
825         kcov_task_exit(tsk);
826         kmsan_task_exit(tsk);
827
828         coredump_task_exit(tsk);
829         ptrace_event(PTRACE_EVENT_EXIT, code);
830         user_events_exit(tsk);
831
832         io_uring_files_cancel();
833         exit_signals(tsk);  /* sets PF_EXITING */
834
835         acct_update_integrals(tsk);
836         group_dead = atomic_dec_and_test(&tsk->signal->live);
837         if (group_dead) {
838                 /*
839                  * If the last thread of global init has exited, panic
840                  * immediately to get a useable coredump.
841                  */
842                 if (unlikely(is_global_init(tsk)))
843                         panic("Attempted to kill init! exitcode=0x%08x\n",
844                                 tsk->signal->group_exit_code ?: (int)code);
845
846 #ifdef CONFIG_POSIX_TIMERS
847                 hrtimer_cancel(&tsk->signal->real_timer);
848                 exit_itimers(tsk);
849 #endif
850                 if (tsk->mm)
851                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852         }
853         acct_collect(code, group_dead);
854         if (group_dead)
855                 tty_audit_exit();
856         audit_free(tsk);
857
858         tsk->exit_code = code;
859         taskstats_exit(tsk, group_dead);
860
861         exit_mm();
862
863         if (group_dead)
864                 acct_process();
865         trace_sched_process_exit(tsk);
866
867         exit_sem(tsk);
868         exit_shm(tsk);
869         exit_files(tsk);
870         exit_fs(tsk);
871         if (group_dead)
872                 disassociate_ctty(1);
873         exit_task_namespaces(tsk);
874         exit_task_work(tsk);
875         exit_thread(tsk);
876
877         /*
878          * Flush inherited counters to the parent - before the parent
879          * gets woken up by child-exit notifications.
880          *
881          * because of cgroup mode, must be called before cgroup_exit()
882          */
883         perf_event_exit_task(tsk);
884
885         sched_autogroup_exit_task(tsk);
886         cgroup_exit(tsk);
887
888         /*
889          * FIXME: do that only when needed, using sched_exit tracepoint
890          */
891         flush_ptrace_hw_breakpoint(tsk);
892
893         exit_tasks_rcu_start();
894         exit_notify(tsk, group_dead);
895         proc_exit_connector(tsk);
896         mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898         if (unlikely(current->pi_state_cache))
899                 kfree(current->pi_state_cache);
900 #endif
901         /*
902          * Make sure we are holding no locks:
903          */
904         debug_check_no_locks_held();
905
906         if (tsk->io_context)
907                 exit_io_context(tsk);
908
909         if (tsk->splice_pipe)
910                 free_pipe_info(tsk->splice_pipe);
911
912         if (tsk->task_frag.page)
913                 put_page(tsk->task_frag.page);
914
915         exit_task_stack_account(tsk);
916
917         check_stack_usage();
918         preempt_disable();
919         if (tsk->nr_dirtied)
920                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921         exit_rcu();
922         exit_tasks_rcu_finish();
923
924         lockdep_free_task(tsk);
925         do_task_dead();
926 }
927
928 void __noreturn make_task_dead(int signr)
929 {
930         /*
931          * Take the task off the cpu after something catastrophic has
932          * happened.
933          *
934          * We can get here from a kernel oops, sometimes with preemption off.
935          * Start by checking for critical errors.
936          * Then fix up important state like USER_DS and preemption.
937          * Then do everything else.
938          */
939         struct task_struct *tsk = current;
940         unsigned int limit;
941
942         if (unlikely(in_interrupt()))
943                 panic("Aiee, killing interrupt handler!");
944         if (unlikely(!tsk->pid))
945                 panic("Attempted to kill the idle task!");
946
947         if (unlikely(irqs_disabled())) {
948                 pr_info("note: %s[%d] exited with irqs disabled\n",
949                         current->comm, task_pid_nr(current));
950                 local_irq_enable();
951         }
952         if (unlikely(in_atomic())) {
953                 pr_info("note: %s[%d] exited with preempt_count %d\n",
954                         current->comm, task_pid_nr(current),
955                         preempt_count());
956                 preempt_count_set(PREEMPT_ENABLED);
957         }
958
959         /*
960          * Every time the system oopses, if the oops happens while a reference
961          * to an object was held, the reference leaks.
962          * If the oops doesn't also leak memory, repeated oopsing can cause
963          * reference counters to wrap around (if they're not using refcount_t).
964          * This means that repeated oopsing can make unexploitable-looking bugs
965          * exploitable through repeated oopsing.
966          * To make sure this can't happen, place an upper bound on how often the
967          * kernel may oops without panic().
968          */
969         limit = READ_ONCE(oops_limit);
970         if (atomic_inc_return(&oops_count) >= limit && limit)
971                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
972
973         /*
974          * We're taking recursive faults here in make_task_dead. Safest is to just
975          * leave this task alone and wait for reboot.
976          */
977         if (unlikely(tsk->flags & PF_EXITING)) {
978                 pr_alert("Fixing recursive fault but reboot is needed!\n");
979                 futex_exit_recursive(tsk);
980                 tsk->exit_state = EXIT_DEAD;
981                 refcount_inc(&tsk->rcu_users);
982                 do_task_dead();
983         }
984
985         do_exit(signr);
986 }
987
988 SYSCALL_DEFINE1(exit, int, error_code)
989 {
990         do_exit((error_code&0xff)<<8);
991 }
992
993 /*
994  * Take down every thread in the group.  This is called by fatal signals
995  * as well as by sys_exit_group (below).
996  */
997 void __noreturn
998 do_group_exit(int exit_code)
999 {
1000         struct signal_struct *sig = current->signal;
1001
1002         if (sig->flags & SIGNAL_GROUP_EXIT)
1003                 exit_code = sig->group_exit_code;
1004         else if (sig->group_exec_task)
1005                 exit_code = 0;
1006         else {
1007                 struct sighand_struct *const sighand = current->sighand;
1008
1009                 spin_lock_irq(&sighand->siglock);
1010                 if (sig->flags & SIGNAL_GROUP_EXIT)
1011                         /* Another thread got here before we took the lock.  */
1012                         exit_code = sig->group_exit_code;
1013                 else if (sig->group_exec_task)
1014                         exit_code = 0;
1015                 else {
1016                         sig->group_exit_code = exit_code;
1017                         sig->flags = SIGNAL_GROUP_EXIT;
1018                         zap_other_threads(current);
1019                 }
1020                 spin_unlock_irq(&sighand->siglock);
1021         }
1022
1023         do_exit(exit_code);
1024         /* NOTREACHED */
1025 }
1026
1027 /*
1028  * this kills every thread in the thread group. Note that any externally
1029  * wait4()-ing process will get the correct exit code - even if this
1030  * thread is not the thread group leader.
1031  */
1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1033 {
1034         do_group_exit((error_code & 0xff) << 8);
1035         /* NOTREACHED */
1036         return 0;
1037 }
1038
1039 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1040 {
1041         return  wo->wo_type == PIDTYPE_MAX ||
1042                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1043 }
1044
1045 static int
1046 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1047 {
1048         if (!eligible_pid(wo, p))
1049                 return 0;
1050
1051         /*
1052          * Wait for all children (clone and not) if __WALL is set or
1053          * if it is traced by us.
1054          */
1055         if (ptrace || (wo->wo_flags & __WALL))
1056                 return 1;
1057
1058         /*
1059          * Otherwise, wait for clone children *only* if __WCLONE is set;
1060          * otherwise, wait for non-clone children *only*.
1061          *
1062          * Note: a "clone" child here is one that reports to its parent
1063          * using a signal other than SIGCHLD, or a non-leader thread which
1064          * we can only see if it is traced by us.
1065          */
1066         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1067                 return 0;
1068
1069         return 1;
1070 }
1071
1072 /*
1073  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1074  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1075  * the lock and this task is uninteresting.  If we return nonzero, we have
1076  * released the lock and the system call should return.
1077  */
1078 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1079 {
1080         int state, status;
1081         pid_t pid = task_pid_vnr(p);
1082         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1083         struct waitid_info *infop;
1084
1085         if (!likely(wo->wo_flags & WEXITED))
1086                 return 0;
1087
1088         if (unlikely(wo->wo_flags & WNOWAIT)) {
1089                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090                         ? p->signal->group_exit_code : p->exit_code;
1091                 get_task_struct(p);
1092                 read_unlock(&tasklist_lock);
1093                 sched_annotate_sleep();
1094                 if (wo->wo_rusage)
1095                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1096                 put_task_struct(p);
1097                 goto out_info;
1098         }
1099         /*
1100          * Move the task's state to DEAD/TRACE, only one thread can do this.
1101          */
1102         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1103                 EXIT_TRACE : EXIT_DEAD;
1104         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1105                 return 0;
1106         /*
1107          * We own this thread, nobody else can reap it.
1108          */
1109         read_unlock(&tasklist_lock);
1110         sched_annotate_sleep();
1111
1112         /*
1113          * Check thread_group_leader() to exclude the traced sub-threads.
1114          */
1115         if (state == EXIT_DEAD && thread_group_leader(p)) {
1116                 struct signal_struct *sig = p->signal;
1117                 struct signal_struct *psig = current->signal;
1118                 unsigned long maxrss;
1119                 u64 tgutime, tgstime;
1120
1121                 /*
1122                  * The resource counters for the group leader are in its
1123                  * own task_struct.  Those for dead threads in the group
1124                  * are in its signal_struct, as are those for the child
1125                  * processes it has previously reaped.  All these
1126                  * accumulate in the parent's signal_struct c* fields.
1127                  *
1128                  * We don't bother to take a lock here to protect these
1129                  * p->signal fields because the whole thread group is dead
1130                  * and nobody can change them.
1131                  *
1132                  * psig->stats_lock also protects us from our sub-threads
1133                  * which can reap other children at the same time.
1134                  *
1135                  * We use thread_group_cputime_adjusted() to get times for
1136                  * the thread group, which consolidates times for all threads
1137                  * in the group including the group leader.
1138                  */
1139                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1140                 write_seqlock_irq(&psig->stats_lock);
1141                 psig->cutime += tgutime + sig->cutime;
1142                 psig->cstime += tgstime + sig->cstime;
1143                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1144                 psig->cmin_flt +=
1145                         p->min_flt + sig->min_flt + sig->cmin_flt;
1146                 psig->cmaj_flt +=
1147                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1148                 psig->cnvcsw +=
1149                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1150                 psig->cnivcsw +=
1151                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1152                 psig->cinblock +=
1153                         task_io_get_inblock(p) +
1154                         sig->inblock + sig->cinblock;
1155                 psig->coublock +=
1156                         task_io_get_oublock(p) +
1157                         sig->oublock + sig->coublock;
1158                 maxrss = max(sig->maxrss, sig->cmaxrss);
1159                 if (psig->cmaxrss < maxrss)
1160                         psig->cmaxrss = maxrss;
1161                 task_io_accounting_add(&psig->ioac, &p->ioac);
1162                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163                 write_sequnlock_irq(&psig->stats_lock);
1164         }
1165
1166         if (wo->wo_rusage)
1167                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169                 ? p->signal->group_exit_code : p->exit_code;
1170         wo->wo_stat = status;
1171
1172         if (state == EXIT_TRACE) {
1173                 write_lock_irq(&tasklist_lock);
1174                 /* We dropped tasklist, ptracer could die and untrace */
1175                 ptrace_unlink(p);
1176
1177                 /* If parent wants a zombie, don't release it now */
1178                 state = EXIT_ZOMBIE;
1179                 if (do_notify_parent(p, p->exit_signal))
1180                         state = EXIT_DEAD;
1181                 p->exit_state = state;
1182                 write_unlock_irq(&tasklist_lock);
1183         }
1184         if (state == EXIT_DEAD)
1185                 release_task(p);
1186
1187 out_info:
1188         infop = wo->wo_info;
1189         if (infop) {
1190                 if ((status & 0x7f) == 0) {
1191                         infop->cause = CLD_EXITED;
1192                         infop->status = status >> 8;
1193                 } else {
1194                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195                         infop->status = status & 0x7f;
1196                 }
1197                 infop->pid = pid;
1198                 infop->uid = uid;
1199         }
1200
1201         return pid;
1202 }
1203
1204 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1205 {
1206         if (ptrace) {
1207                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1208                         return &p->exit_code;
1209         } else {
1210                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211                         return &p->signal->group_exit_code;
1212         }
1213         return NULL;
1214 }
1215
1216 /**
1217  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1218  * @wo: wait options
1219  * @ptrace: is the wait for ptrace
1220  * @p: task to wait for
1221  *
1222  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1223  *
1224  * CONTEXT:
1225  * read_lock(&tasklist_lock), which is released if return value is
1226  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1227  *
1228  * RETURNS:
1229  * 0 if wait condition didn't exist and search for other wait conditions
1230  * should continue.  Non-zero return, -errno on failure and @p's pid on
1231  * success, implies that tasklist_lock is released and wait condition
1232  * search should terminate.
1233  */
1234 static int wait_task_stopped(struct wait_opts *wo,
1235                                 int ptrace, struct task_struct *p)
1236 {
1237         struct waitid_info *infop;
1238         int exit_code, *p_code, why;
1239         uid_t uid = 0; /* unneeded, required by compiler */
1240         pid_t pid;
1241
1242         /*
1243          * Traditionally we see ptrace'd stopped tasks regardless of options.
1244          */
1245         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1246                 return 0;
1247
1248         if (!task_stopped_code(p, ptrace))
1249                 return 0;
1250
1251         exit_code = 0;
1252         spin_lock_irq(&p->sighand->siglock);
1253
1254         p_code = task_stopped_code(p, ptrace);
1255         if (unlikely(!p_code))
1256                 goto unlock_sig;
1257
1258         exit_code = *p_code;
1259         if (!exit_code)
1260                 goto unlock_sig;
1261
1262         if (!unlikely(wo->wo_flags & WNOWAIT))
1263                 *p_code = 0;
1264
1265         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1266 unlock_sig:
1267         spin_unlock_irq(&p->sighand->siglock);
1268         if (!exit_code)
1269                 return 0;
1270
1271         /*
1272          * Now we are pretty sure this task is interesting.
1273          * Make sure it doesn't get reaped out from under us while we
1274          * give up the lock and then examine it below.  We don't want to
1275          * keep holding onto the tasklist_lock while we call getrusage and
1276          * possibly take page faults for user memory.
1277          */
1278         get_task_struct(p);
1279         pid = task_pid_vnr(p);
1280         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281         read_unlock(&tasklist_lock);
1282         sched_annotate_sleep();
1283         if (wo->wo_rusage)
1284                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1285         put_task_struct(p);
1286
1287         if (likely(!(wo->wo_flags & WNOWAIT)))
1288                 wo->wo_stat = (exit_code << 8) | 0x7f;
1289
1290         infop = wo->wo_info;
1291         if (infop) {
1292                 infop->cause = why;
1293                 infop->status = exit_code;
1294                 infop->pid = pid;
1295                 infop->uid = uid;
1296         }
1297         return pid;
1298 }
1299
1300 /*
1301  * Handle do_wait work for one task in a live, non-stopped state.
1302  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1303  * the lock and this task is uninteresting.  If we return nonzero, we have
1304  * released the lock and the system call should return.
1305  */
1306 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1307 {
1308         struct waitid_info *infop;
1309         pid_t pid;
1310         uid_t uid;
1311
1312         if (!unlikely(wo->wo_flags & WCONTINUED))
1313                 return 0;
1314
1315         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1316                 return 0;
1317
1318         spin_lock_irq(&p->sighand->siglock);
1319         /* Re-check with the lock held.  */
1320         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1321                 spin_unlock_irq(&p->sighand->siglock);
1322                 return 0;
1323         }
1324         if (!unlikely(wo->wo_flags & WNOWAIT))
1325                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1326         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1327         spin_unlock_irq(&p->sighand->siglock);
1328
1329         pid = task_pid_vnr(p);
1330         get_task_struct(p);
1331         read_unlock(&tasklist_lock);
1332         sched_annotate_sleep();
1333         if (wo->wo_rusage)
1334                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1335         put_task_struct(p);
1336
1337         infop = wo->wo_info;
1338         if (!infop) {
1339                 wo->wo_stat = 0xffff;
1340         } else {
1341                 infop->cause = CLD_CONTINUED;
1342                 infop->pid = pid;
1343                 infop->uid = uid;
1344                 infop->status = SIGCONT;
1345         }
1346         return pid;
1347 }
1348
1349 /*
1350  * Consider @p for a wait by @parent.
1351  *
1352  * -ECHILD should be in ->notask_error before the first call.
1353  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354  * Returns zero if the search for a child should continue;
1355  * then ->notask_error is 0 if @p is an eligible child,
1356  * or still -ECHILD.
1357  */
1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359                                 struct task_struct *p)
1360 {
1361         /*
1362          * We can race with wait_task_zombie() from another thread.
1363          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1364          * can't confuse the checks below.
1365          */
1366         int exit_state = READ_ONCE(p->exit_state);
1367         int ret;
1368
1369         if (unlikely(exit_state == EXIT_DEAD))
1370                 return 0;
1371
1372         ret = eligible_child(wo, ptrace, p);
1373         if (!ret)
1374                 return ret;
1375
1376         if (unlikely(exit_state == EXIT_TRACE)) {
1377                 /*
1378                  * ptrace == 0 means we are the natural parent. In this case
1379                  * we should clear notask_error, debugger will notify us.
1380                  */
1381                 if (likely(!ptrace))
1382                         wo->notask_error = 0;
1383                 return 0;
1384         }
1385
1386         if (likely(!ptrace) && unlikely(p->ptrace)) {
1387                 /*
1388                  * If it is traced by its real parent's group, just pretend
1389                  * the caller is ptrace_do_wait() and reap this child if it
1390                  * is zombie.
1391                  *
1392                  * This also hides group stop state from real parent; otherwise
1393                  * a single stop can be reported twice as group and ptrace stop.
1394                  * If a ptracer wants to distinguish these two events for its
1395                  * own children it should create a separate process which takes
1396                  * the role of real parent.
1397                  */
1398                 if (!ptrace_reparented(p))
1399                         ptrace = 1;
1400         }
1401
1402         /* slay zombie? */
1403         if (exit_state == EXIT_ZOMBIE) {
1404                 /* we don't reap group leaders with subthreads */
1405                 if (!delay_group_leader(p)) {
1406                         /*
1407                          * A zombie ptracee is only visible to its ptracer.
1408                          * Notification and reaping will be cascaded to the
1409                          * real parent when the ptracer detaches.
1410                          */
1411                         if (unlikely(ptrace) || likely(!p->ptrace))
1412                                 return wait_task_zombie(wo, p);
1413                 }
1414
1415                 /*
1416                  * Allow access to stopped/continued state via zombie by
1417                  * falling through.  Clearing of notask_error is complex.
1418                  *
1419                  * When !@ptrace:
1420                  *
1421                  * If WEXITED is set, notask_error should naturally be
1422                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1423                  * so, if there are live subthreads, there are events to
1424                  * wait for.  If all subthreads are dead, it's still safe
1425                  * to clear - this function will be called again in finite
1426                  * amount time once all the subthreads are released and
1427                  * will then return without clearing.
1428                  *
1429                  * When @ptrace:
1430                  *
1431                  * Stopped state is per-task and thus can't change once the
1432                  * target task dies.  Only continued and exited can happen.
1433                  * Clear notask_error if WCONTINUED | WEXITED.
1434                  */
1435                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1436                         wo->notask_error = 0;
1437         } else {
1438                 /*
1439                  * @p is alive and it's gonna stop, continue or exit, so
1440                  * there always is something to wait for.
1441                  */
1442                 wo->notask_error = 0;
1443         }
1444
1445         /*
1446          * Wait for stopped.  Depending on @ptrace, different stopped state
1447          * is used and the two don't interact with each other.
1448          */
1449         ret = wait_task_stopped(wo, ptrace, p);
1450         if (ret)
1451                 return ret;
1452
1453         /*
1454          * Wait for continued.  There's only one continued state and the
1455          * ptracer can consume it which can confuse the real parent.  Don't
1456          * use WCONTINUED from ptracer.  You don't need or want it.
1457          */
1458         return wait_task_continued(wo, p);
1459 }
1460
1461 /*
1462  * Do the work of do_wait() for one thread in the group, @tsk.
1463  *
1464  * -ECHILD should be in ->notask_error before the first call.
1465  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466  * Returns zero if the search for a child should continue; then
1467  * ->notask_error is 0 if there were any eligible children,
1468  * or still -ECHILD.
1469  */
1470 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1471 {
1472         struct task_struct *p;
1473
1474         list_for_each_entry(p, &tsk->children, sibling) {
1475                 int ret = wait_consider_task(wo, 0, p);
1476
1477                 if (ret)
1478                         return ret;
1479         }
1480
1481         return 0;
1482 }
1483
1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1485 {
1486         struct task_struct *p;
1487
1488         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489                 int ret = wait_consider_task(wo, 1, p);
1490
1491                 if (ret)
1492                         return ret;
1493         }
1494
1495         return 0;
1496 }
1497
1498 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1499 {
1500         if (!eligible_pid(wo, p))
1501                 return false;
1502
1503         if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1504                 return false;
1505
1506         return true;
1507 }
1508
1509 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1510                                 int sync, void *key)
1511 {
1512         struct wait_opts *wo = container_of(wait, struct wait_opts,
1513                                                 child_wait);
1514         struct task_struct *p = key;
1515
1516         if (pid_child_should_wake(wo, p))
1517                 return default_wake_function(wait, mode, sync, key);
1518
1519         return 0;
1520 }
1521
1522 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1523 {
1524         __wake_up_sync_key(&parent->signal->wait_chldexit,
1525                            TASK_INTERRUPTIBLE, p);
1526 }
1527
1528 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1529                                  struct task_struct *target)
1530 {
1531         struct task_struct *parent =
1532                 !ptrace ? target->real_parent : target->parent;
1533
1534         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1535                                      same_thread_group(current, parent));
1536 }
1537
1538 /*
1539  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1540  * and tracee lists to find the target task.
1541  */
1542 static int do_wait_pid(struct wait_opts *wo)
1543 {
1544         bool ptrace;
1545         struct task_struct *target;
1546         int retval;
1547
1548         ptrace = false;
1549         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1550         if (target && is_effectively_child(wo, ptrace, target)) {
1551                 retval = wait_consider_task(wo, ptrace, target);
1552                 if (retval)
1553                         return retval;
1554         }
1555
1556         ptrace = true;
1557         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1558         if (target && target->ptrace &&
1559             is_effectively_child(wo, ptrace, target)) {
1560                 retval = wait_consider_task(wo, ptrace, target);
1561                 if (retval)
1562                         return retval;
1563         }
1564
1565         return 0;
1566 }
1567
1568 long __do_wait(struct wait_opts *wo)
1569 {
1570         long retval;
1571
1572         /*
1573          * If there is nothing that can match our criteria, just get out.
1574          * We will clear ->notask_error to zero if we see any child that
1575          * might later match our criteria, even if we are not able to reap
1576          * it yet.
1577          */
1578         wo->notask_error = -ECHILD;
1579         if ((wo->wo_type < PIDTYPE_MAX) &&
1580            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1581                 goto notask;
1582
1583         read_lock(&tasklist_lock);
1584
1585         if (wo->wo_type == PIDTYPE_PID) {
1586                 retval = do_wait_pid(wo);
1587                 if (retval)
1588                         return retval;
1589         } else {
1590                 struct task_struct *tsk = current;
1591
1592                 do {
1593                         retval = do_wait_thread(wo, tsk);
1594                         if (retval)
1595                                 return retval;
1596
1597                         retval = ptrace_do_wait(wo, tsk);
1598                         if (retval)
1599                                 return retval;
1600
1601                         if (wo->wo_flags & __WNOTHREAD)
1602                                 break;
1603                 } while_each_thread(current, tsk);
1604         }
1605         read_unlock(&tasklist_lock);
1606
1607 notask:
1608         retval = wo->notask_error;
1609         if (!retval && !(wo->wo_flags & WNOHANG))
1610                 return -ERESTARTSYS;
1611
1612         return retval;
1613 }
1614
1615 static long do_wait(struct wait_opts *wo)
1616 {
1617         int retval;
1618
1619         trace_sched_process_wait(wo->wo_pid);
1620
1621         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1622         wo->child_wait.private = current;
1623         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1624
1625         do {
1626                 set_current_state(TASK_INTERRUPTIBLE);
1627                 retval = __do_wait(wo);
1628                 if (retval != -ERESTARTSYS)
1629                         break;
1630                 if (signal_pending(current))
1631                         break;
1632                 schedule();
1633         } while (1);
1634
1635         __set_current_state(TASK_RUNNING);
1636         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1637         return retval;
1638 }
1639
1640 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1641                           struct waitid_info *infop, int options,
1642                           struct rusage *ru)
1643 {
1644         unsigned int f_flags = 0;
1645         struct pid *pid = NULL;
1646         enum pid_type type;
1647
1648         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1649                         __WNOTHREAD|__WCLONE|__WALL))
1650                 return -EINVAL;
1651         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1652                 return -EINVAL;
1653
1654         switch (which) {
1655         case P_ALL:
1656                 type = PIDTYPE_MAX;
1657                 break;
1658         case P_PID:
1659                 type = PIDTYPE_PID;
1660                 if (upid <= 0)
1661                         return -EINVAL;
1662
1663                 pid = find_get_pid(upid);
1664                 break;
1665         case P_PGID:
1666                 type = PIDTYPE_PGID;
1667                 if (upid < 0)
1668                         return -EINVAL;
1669
1670                 if (upid)
1671                         pid = find_get_pid(upid);
1672                 else
1673                         pid = get_task_pid(current, PIDTYPE_PGID);
1674                 break;
1675         case P_PIDFD:
1676                 type = PIDTYPE_PID;
1677                 if (upid < 0)
1678                         return -EINVAL;
1679
1680                 pid = pidfd_get_pid(upid, &f_flags);
1681                 if (IS_ERR(pid))
1682                         return PTR_ERR(pid);
1683
1684                 break;
1685         default:
1686                 return -EINVAL;
1687         }
1688
1689         wo->wo_type     = type;
1690         wo->wo_pid      = pid;
1691         wo->wo_flags    = options;
1692         wo->wo_info     = infop;
1693         wo->wo_rusage   = ru;
1694         if (f_flags & O_NONBLOCK)
1695                 wo->wo_flags |= WNOHANG;
1696
1697         return 0;
1698 }
1699
1700 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1701                           int options, struct rusage *ru)
1702 {
1703         struct wait_opts wo;
1704         long ret;
1705
1706         ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1707         if (ret)
1708                 return ret;
1709
1710         ret = do_wait(&wo);
1711         if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1712                 ret = -EAGAIN;
1713
1714         put_pid(wo.wo_pid);
1715         return ret;
1716 }
1717
1718 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1719                 infop, int, options, struct rusage __user *, ru)
1720 {
1721         struct rusage r;
1722         struct waitid_info info = {.status = 0};
1723         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1724         int signo = 0;
1725
1726         if (err > 0) {
1727                 signo = SIGCHLD;
1728                 err = 0;
1729                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1730                         return -EFAULT;
1731         }
1732         if (!infop)
1733                 return err;
1734
1735         if (!user_write_access_begin(infop, sizeof(*infop)))
1736                 return -EFAULT;
1737
1738         unsafe_put_user(signo, &infop->si_signo, Efault);
1739         unsafe_put_user(0, &infop->si_errno, Efault);
1740         unsafe_put_user(info.cause, &infop->si_code, Efault);
1741         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1742         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1743         unsafe_put_user(info.status, &infop->si_status, Efault);
1744         user_write_access_end();
1745         return err;
1746 Efault:
1747         user_write_access_end();
1748         return -EFAULT;
1749 }
1750
1751 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1752                   struct rusage *ru)
1753 {
1754         struct wait_opts wo;
1755         struct pid *pid = NULL;
1756         enum pid_type type;
1757         long ret;
1758
1759         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1760                         __WNOTHREAD|__WCLONE|__WALL))
1761                 return -EINVAL;
1762
1763         /* -INT_MIN is not defined */
1764         if (upid == INT_MIN)
1765                 return -ESRCH;
1766
1767         if (upid == -1)
1768                 type = PIDTYPE_MAX;
1769         else if (upid < 0) {
1770                 type = PIDTYPE_PGID;
1771                 pid = find_get_pid(-upid);
1772         } else if (upid == 0) {
1773                 type = PIDTYPE_PGID;
1774                 pid = get_task_pid(current, PIDTYPE_PGID);
1775         } else /* upid > 0 */ {
1776                 type = PIDTYPE_PID;
1777                 pid = find_get_pid(upid);
1778         }
1779
1780         wo.wo_type      = type;
1781         wo.wo_pid       = pid;
1782         wo.wo_flags     = options | WEXITED;
1783         wo.wo_info      = NULL;
1784         wo.wo_stat      = 0;
1785         wo.wo_rusage    = ru;
1786         ret = do_wait(&wo);
1787         put_pid(pid);
1788         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1789                 ret = -EFAULT;
1790
1791         return ret;
1792 }
1793
1794 int kernel_wait(pid_t pid, int *stat)
1795 {
1796         struct wait_opts wo = {
1797                 .wo_type        = PIDTYPE_PID,
1798                 .wo_pid         = find_get_pid(pid),
1799                 .wo_flags       = WEXITED,
1800         };
1801         int ret;
1802
1803         ret = do_wait(&wo);
1804         if (ret > 0 && wo.wo_stat)
1805                 *stat = wo.wo_stat;
1806         put_pid(wo.wo_pid);
1807         return ret;
1808 }
1809
1810 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1811                 int, options, struct rusage __user *, ru)
1812 {
1813         struct rusage r;
1814         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1815
1816         if (err > 0) {
1817                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1818                         return -EFAULT;
1819         }
1820         return err;
1821 }
1822
1823 #ifdef __ARCH_WANT_SYS_WAITPID
1824
1825 /*
1826  * sys_waitpid() remains for compatibility. waitpid() should be
1827  * implemented by calling sys_wait4() from libc.a.
1828  */
1829 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1830 {
1831         return kernel_wait4(pid, stat_addr, options, NULL);
1832 }
1833
1834 #endif
1835
1836 #ifdef CONFIG_COMPAT
1837 COMPAT_SYSCALL_DEFINE4(wait4,
1838         compat_pid_t, pid,
1839         compat_uint_t __user *, stat_addr,
1840         int, options,
1841         struct compat_rusage __user *, ru)
1842 {
1843         struct rusage r;
1844         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1845         if (err > 0) {
1846                 if (ru && put_compat_rusage(&r, ru))
1847                         return -EFAULT;
1848         }
1849         return err;
1850 }
1851
1852 COMPAT_SYSCALL_DEFINE5(waitid,
1853                 int, which, compat_pid_t, pid,
1854                 struct compat_siginfo __user *, infop, int, options,
1855                 struct compat_rusage __user *, uru)
1856 {
1857         struct rusage ru;
1858         struct waitid_info info = {.status = 0};
1859         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1860         int signo = 0;
1861         if (err > 0) {
1862                 signo = SIGCHLD;
1863                 err = 0;
1864                 if (uru) {
1865                         /* kernel_waitid() overwrites everything in ru */
1866                         if (COMPAT_USE_64BIT_TIME)
1867                                 err = copy_to_user(uru, &ru, sizeof(ru));
1868                         else
1869                                 err = put_compat_rusage(&ru, uru);
1870                         if (err)
1871                                 return -EFAULT;
1872                 }
1873         }
1874
1875         if (!infop)
1876                 return err;
1877
1878         if (!user_write_access_begin(infop, sizeof(*infop)))
1879                 return -EFAULT;
1880
1881         unsafe_put_user(signo, &infop->si_signo, Efault);
1882         unsafe_put_user(0, &infop->si_errno, Efault);
1883         unsafe_put_user(info.cause, &infop->si_code, Efault);
1884         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1885         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1886         unsafe_put_user(info.status, &infop->si_status, Efault);
1887         user_write_access_end();
1888         return err;
1889 Efault:
1890         user_write_access_end();
1891         return -EFAULT;
1892 }
1893 #endif
1894
1895 /*
1896  * This needs to be __function_aligned as GCC implicitly makes any
1897  * implementation of abort() cold and drops alignment specified by
1898  * -falign-functions=N.
1899  *
1900  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1901  */
1902 __weak __function_aligned void abort(void)
1903 {
1904         BUG();
1905
1906         /* if that doesn't kill us, halt */
1907         panic("Oops failed to kill thread");
1908 }
1909 EXPORT_SYMBOL(abort);
This page took 0.139808 seconds and 4 git commands to generate.