1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
74 #include <uapi/linux/wait.h>
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
82 * The default value should be high enough to not crash a system that randomly
83 * crashes its kernel from time to time, but low enough to at least not permit
84 * overflowing 32-bit refcounts or the ldsem writer count.
86 static unsigned int oops_limit = 10000;
89 static struct ctl_table kern_exit_table[] = {
91 .procname = "oops_limit",
93 .maxlen = sizeof(oops_limit),
95 .proc_handler = proc_douintvec,
99 static __init int kernel_exit_sysctls_init(void)
101 register_sysctl_init("kernel", kern_exit_table);
104 late_initcall(kernel_exit_sysctls_init);
107 static atomic_t oops_count = ATOMIC_INIT(0);
110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
113 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118 static __init int kernel_exit_sysfs_init(void)
120 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
123 late_initcall(kernel_exit_sysfs_init);
126 static void __unhash_process(struct task_struct *p, bool group_dead)
129 detach_pid(p, PIDTYPE_PID);
131 detach_pid(p, PIDTYPE_TGID);
132 detach_pid(p, PIDTYPE_PGID);
133 detach_pid(p, PIDTYPE_SID);
135 list_del_rcu(&p->tasks);
136 list_del_init(&p->sibling);
137 __this_cpu_dec(process_counts);
139 list_del_rcu(&p->thread_node);
143 * This function expects the tasklist_lock write-locked.
145 static void __exit_signal(struct task_struct *tsk)
147 struct signal_struct *sig = tsk->signal;
148 bool group_dead = thread_group_leader(tsk);
149 struct sighand_struct *sighand;
150 struct tty_struct *tty;
153 sighand = rcu_dereference_check(tsk->sighand,
154 lockdep_tasklist_lock_is_held());
155 spin_lock(&sighand->siglock);
157 #ifdef CONFIG_POSIX_TIMERS
158 posix_cpu_timers_exit(tsk);
160 posix_cpu_timers_exit_group(tsk);
168 * If there is any task waiting for the group exit
171 if (sig->notify_count > 0 && !--sig->notify_count)
172 wake_up_process(sig->group_exec_task);
174 if (tsk == sig->curr_target)
175 sig->curr_target = next_thread(tsk);
178 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
179 sizeof(unsigned long long));
182 * Accumulate here the counters for all threads as they die. We could
183 * skip the group leader because it is the last user of signal_struct,
184 * but we want to avoid the race with thread_group_cputime() which can
185 * see the empty ->thread_head list.
187 task_cputime(tsk, &utime, &stime);
188 write_seqlock(&sig->stats_lock);
191 sig->gtime += task_gtime(tsk);
192 sig->min_flt += tsk->min_flt;
193 sig->maj_flt += tsk->maj_flt;
194 sig->nvcsw += tsk->nvcsw;
195 sig->nivcsw += tsk->nivcsw;
196 sig->inblock += task_io_get_inblock(tsk);
197 sig->oublock += task_io_get_oublock(tsk);
198 task_io_accounting_add(&sig->ioac, &tsk->ioac);
199 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
201 __unhash_process(tsk, group_dead);
202 write_sequnlock(&sig->stats_lock);
205 * Do this under ->siglock, we can race with another thread
206 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
208 flush_sigqueue(&tsk->pending);
210 spin_unlock(&sighand->siglock);
212 __cleanup_sighand(sighand);
213 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
215 flush_sigqueue(&sig->shared_pending);
220 static void delayed_put_task_struct(struct rcu_head *rhp)
222 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
224 kprobe_flush_task(tsk);
225 rethook_flush_task(tsk);
226 perf_event_delayed_put(tsk);
227 trace_sched_process_free(tsk);
228 put_task_struct(tsk);
231 void put_task_struct_rcu_user(struct task_struct *task)
233 if (refcount_dec_and_test(&task->rcu_users))
234 call_rcu(&task->rcu, delayed_put_task_struct);
237 void __weak release_thread(struct task_struct *dead_task)
241 void release_task(struct task_struct *p)
243 struct task_struct *leader;
244 struct pid *thread_pid;
247 /* don't need to get the RCU readlock here - the process is dead and
248 * can't be modifying its own credentials. But shut RCU-lockdep up */
250 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
255 write_lock_irq(&tasklist_lock);
256 ptrace_release_task(p);
257 thread_pid = get_pid(p->thread_pid);
261 * If we are the last non-leader member of the thread
262 * group, and the leader is zombie, then notify the
263 * group leader's parent process. (if it wants notification.)
266 leader = p->group_leader;
267 if (leader != p && thread_group_empty(leader)
268 && leader->exit_state == EXIT_ZOMBIE) {
270 * If we were the last child thread and the leader has
271 * exited already, and the leader's parent ignores SIGCHLD,
272 * then we are the one who should release the leader.
274 zap_leader = do_notify_parent(leader, leader->exit_signal);
276 leader->exit_state = EXIT_DEAD;
279 write_unlock_irq(&tasklist_lock);
280 seccomp_filter_release(p);
281 proc_flush_pid(thread_pid);
284 put_task_struct_rcu_user(p);
287 if (unlikely(zap_leader))
291 int rcuwait_wake_up(struct rcuwait *w)
294 struct task_struct *task;
299 * Order condition vs @task, such that everything prior to the load
300 * of @task is visible. This is the condition as to why the user called
301 * rcuwait_wake() in the first place. Pairs with set_current_state()
302 * barrier (A) in rcuwait_wait_event().
305 * [S] tsk = current [S] cond = true
311 task = rcu_dereference(w->task);
313 ret = wake_up_process(task);
318 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
321 * Determine if a process group is "orphaned", according to the POSIX
322 * definition in 2.2.2.52. Orphaned process groups are not to be affected
323 * by terminal-generated stop signals. Newly orphaned process groups are
324 * to receive a SIGHUP and a SIGCONT.
326 * "I ask you, have you ever known what it is to be an orphan?"
328 static int will_become_orphaned_pgrp(struct pid *pgrp,
329 struct task_struct *ignored_task)
331 struct task_struct *p;
333 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 if ((p == ignored_task) ||
335 (p->exit_state && thread_group_empty(p)) ||
336 is_global_init(p->real_parent))
339 if (task_pgrp(p->real_parent) != pgrp &&
340 task_session(p->real_parent) == task_session(p))
342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
347 int is_current_pgrp_orphaned(void)
351 read_lock(&tasklist_lock);
352 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
353 read_unlock(&tasklist_lock);
358 static bool has_stopped_jobs(struct pid *pgrp)
360 struct task_struct *p;
362 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
363 if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
371 * Check to see if any process groups have become orphaned as
372 * a result of our exiting, and if they have any stopped jobs,
373 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 struct pid *pgrp = task_pgrp(tsk);
379 struct task_struct *ignored_task = tsk;
382 /* exit: our father is in a different pgrp than
383 * we are and we were the only connection outside.
385 parent = tsk->real_parent;
387 /* reparent: our child is in a different pgrp than
388 * we are, and it was the only connection outside.
392 if (task_pgrp(parent) != pgrp &&
393 task_session(parent) == task_session(tsk) &&
394 will_become_orphaned_pgrp(pgrp, ignored_task) &&
395 has_stopped_jobs(pgrp)) {
396 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
397 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
401 static void coredump_task_exit(struct task_struct *tsk)
403 struct core_state *core_state;
406 * Serialize with any possible pending coredump.
407 * We must hold siglock around checking core_state
408 * and setting PF_POSTCOREDUMP. The core-inducing thread
409 * will increment ->nr_threads for each thread in the
410 * group without PF_POSTCOREDUMP set.
412 spin_lock_irq(&tsk->sighand->siglock);
413 tsk->flags |= PF_POSTCOREDUMP;
414 core_state = tsk->signal->core_state;
415 spin_unlock_irq(&tsk->sighand->siglock);
417 struct core_thread self;
420 if (self.task->flags & PF_SIGNALED)
421 self.next = xchg(&core_state->dumper.next, &self);
425 * Implies mb(), the result of xchg() must be visible
426 * to core_state->dumper.
428 if (atomic_dec_and_test(&core_state->nr_threads))
429 complete(&core_state->startup);
432 set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
433 if (!self.task) /* see coredump_finish() */
437 __set_current_state(TASK_RUNNING);
443 * A task is exiting. If it owned this mm, find a new owner for the mm.
445 void mm_update_next_owner(struct mm_struct *mm)
447 struct task_struct *c, *g, *p = current;
451 * If the exiting or execing task is not the owner, it's
452 * someone else's problem.
457 * The current owner is exiting/execing and there are no other
458 * candidates. Do not leave the mm pointing to a possibly
459 * freed task structure.
461 if (atomic_read(&mm->mm_users) <= 1) {
462 WRITE_ONCE(mm->owner, NULL);
466 read_lock(&tasklist_lock);
468 * Search in the children
470 list_for_each_entry(c, &p->children, sibling) {
472 goto assign_new_owner;
476 * Search in the siblings
478 list_for_each_entry(c, &p->real_parent->children, sibling) {
480 goto assign_new_owner;
484 * Search through everything else, we should not get here often.
486 for_each_process(g) {
487 if (g->flags & PF_KTHREAD)
489 for_each_thread(g, c) {
491 goto assign_new_owner;
496 read_unlock(&tasklist_lock);
498 * We found no owner yet mm_users > 1: this implies that we are
499 * most likely racing with swapoff (try_to_unuse()) or /proc or
500 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
502 WRITE_ONCE(mm->owner, NULL);
509 * The task_lock protects c->mm from changing.
510 * We always want mm->owner->mm == mm
514 * Delay read_unlock() till we have the task_lock()
515 * to ensure that c does not slip away underneath us
517 read_unlock(&tasklist_lock);
523 WRITE_ONCE(mm->owner, c);
524 lru_gen_migrate_mm(mm);
528 #endif /* CONFIG_MEMCG */
531 * Turn us into a lazy TLB process if we
534 static void exit_mm(void)
536 struct mm_struct *mm = current->mm;
538 exit_mm_release(current, mm);
543 BUG_ON(mm != current->active_mm);
544 /* more a memory barrier than a real lock */
547 * When a thread stops operating on an address space, the loop
548 * in membarrier_private_expedited() may not observe that
549 * tsk->mm, and the loop in membarrier_global_expedited() may
550 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
551 * rq->membarrier_state, so those would not issue an IPI.
552 * Membarrier requires a memory barrier after accessing
553 * user-space memory, before clearing tsk->mm or the
554 * rq->membarrier_state.
556 smp_mb__after_spinlock();
559 membarrier_update_current_mm(NULL);
560 enter_lazy_tlb(mm, current);
562 task_unlock(current);
563 mmap_read_unlock(mm);
564 mm_update_next_owner(mm);
566 if (test_thread_flag(TIF_MEMDIE))
570 static struct task_struct *find_alive_thread(struct task_struct *p)
572 struct task_struct *t;
574 for_each_thread(p, t) {
575 if (!(t->flags & PF_EXITING))
581 static struct task_struct *find_child_reaper(struct task_struct *father,
582 struct list_head *dead)
583 __releases(&tasklist_lock)
584 __acquires(&tasklist_lock)
586 struct pid_namespace *pid_ns = task_active_pid_ns(father);
587 struct task_struct *reaper = pid_ns->child_reaper;
588 struct task_struct *p, *n;
590 if (likely(reaper != father))
593 reaper = find_alive_thread(father);
595 pid_ns->child_reaper = reaper;
599 write_unlock_irq(&tasklist_lock);
601 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
602 list_del_init(&p->ptrace_entry);
606 zap_pid_ns_processes(pid_ns);
607 write_lock_irq(&tasklist_lock);
613 * When we die, we re-parent all our children, and try to:
614 * 1. give them to another thread in our thread group, if such a member exists
615 * 2. give it to the first ancestor process which prctl'd itself as a
616 * child_subreaper for its children (like a service manager)
617 * 3. give it to the init process (PID 1) in our pid namespace
619 static struct task_struct *find_new_reaper(struct task_struct *father,
620 struct task_struct *child_reaper)
622 struct task_struct *thread, *reaper;
624 thread = find_alive_thread(father);
628 if (father->signal->has_child_subreaper) {
629 unsigned int ns_level = task_pid(father)->level;
631 * Find the first ->is_child_subreaper ancestor in our pid_ns.
632 * We can't check reaper != child_reaper to ensure we do not
633 * cross the namespaces, the exiting parent could be injected
634 * by setns() + fork().
635 * We check pid->level, this is slightly more efficient than
636 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
638 for (reaper = father->real_parent;
639 task_pid(reaper)->level == ns_level;
640 reaper = reaper->real_parent) {
641 if (reaper == &init_task)
643 if (!reaper->signal->is_child_subreaper)
645 thread = find_alive_thread(reaper);
655 * Any that need to be release_task'd are put on the @dead list.
657 static void reparent_leader(struct task_struct *father, struct task_struct *p,
658 struct list_head *dead)
660 if (unlikely(p->exit_state == EXIT_DEAD))
663 /* We don't want people slaying init. */
664 p->exit_signal = SIGCHLD;
666 /* If it has exited notify the new parent about this child's death. */
668 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
669 if (do_notify_parent(p, p->exit_signal)) {
670 p->exit_state = EXIT_DEAD;
671 list_add(&p->ptrace_entry, dead);
675 kill_orphaned_pgrp(p, father);
679 * This does two things:
681 * A. Make init inherit all the child processes
682 * B. Check to see if any process groups have become orphaned
683 * as a result of our exiting, and if they have any stopped
684 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
686 static void forget_original_parent(struct task_struct *father,
687 struct list_head *dead)
689 struct task_struct *p, *t, *reaper;
691 if (unlikely(!list_empty(&father->ptraced)))
692 exit_ptrace(father, dead);
694 /* Can drop and reacquire tasklist_lock */
695 reaper = find_child_reaper(father, dead);
696 if (list_empty(&father->children))
699 reaper = find_new_reaper(father, reaper);
700 list_for_each_entry(p, &father->children, sibling) {
701 for_each_thread(p, t) {
702 RCU_INIT_POINTER(t->real_parent, reaper);
703 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
704 if (likely(!t->ptrace))
705 t->parent = t->real_parent;
706 if (t->pdeath_signal)
707 group_send_sig_info(t->pdeath_signal,
712 * If this is a threaded reparent there is no need to
713 * notify anyone anything has happened.
715 if (!same_thread_group(reaper, father))
716 reparent_leader(father, p, dead);
718 list_splice_tail_init(&father->children, &reaper->children);
722 * Send signals to all our closest relatives so that they know
723 * to properly mourn us..
725 static void exit_notify(struct task_struct *tsk, int group_dead)
728 struct task_struct *p, *n;
731 write_lock_irq(&tasklist_lock);
732 forget_original_parent(tsk, &dead);
735 kill_orphaned_pgrp(tsk->group_leader, NULL);
737 tsk->exit_state = EXIT_ZOMBIE;
739 * sub-thread or delay_group_leader(), wake up the
740 * PIDFD_THREAD waiters.
742 if (!thread_group_empty(tsk))
743 do_notify_pidfd(tsk);
745 if (unlikely(tsk->ptrace)) {
746 int sig = thread_group_leader(tsk) &&
747 thread_group_empty(tsk) &&
748 !ptrace_reparented(tsk) ?
749 tsk->exit_signal : SIGCHLD;
750 autoreap = do_notify_parent(tsk, sig);
751 } else if (thread_group_leader(tsk)) {
752 autoreap = thread_group_empty(tsk) &&
753 do_notify_parent(tsk, tsk->exit_signal);
759 tsk->exit_state = EXIT_DEAD;
760 list_add(&tsk->ptrace_entry, &dead);
763 /* mt-exec, de_thread() is waiting for group leader */
764 if (unlikely(tsk->signal->notify_count < 0))
765 wake_up_process(tsk->signal->group_exec_task);
766 write_unlock_irq(&tasklist_lock);
768 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
769 list_del_init(&p->ptrace_entry);
774 #ifdef CONFIG_DEBUG_STACK_USAGE
775 static void check_stack_usage(void)
777 static DEFINE_SPINLOCK(low_water_lock);
778 static int lowest_to_date = THREAD_SIZE;
781 free = stack_not_used(current);
783 if (free >= lowest_to_date)
786 spin_lock(&low_water_lock);
787 if (free < lowest_to_date) {
788 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
789 current->comm, task_pid_nr(current), free);
790 lowest_to_date = free;
792 spin_unlock(&low_water_lock);
795 static inline void check_stack_usage(void) {}
798 static void synchronize_group_exit(struct task_struct *tsk, long code)
800 struct sighand_struct *sighand = tsk->sighand;
801 struct signal_struct *signal = tsk->signal;
803 spin_lock_irq(&sighand->siglock);
804 signal->quick_threads--;
805 if ((signal->quick_threads == 0) &&
806 !(signal->flags & SIGNAL_GROUP_EXIT)) {
807 signal->flags = SIGNAL_GROUP_EXIT;
808 signal->group_exit_code = code;
809 signal->group_stop_count = 0;
811 spin_unlock_irq(&sighand->siglock);
814 void __noreturn do_exit(long code)
816 struct task_struct *tsk = current;
819 WARN_ON(irqs_disabled());
821 synchronize_group_exit(tsk, code);
826 kmsan_task_exit(tsk);
828 coredump_task_exit(tsk);
829 ptrace_event(PTRACE_EVENT_EXIT, code);
830 user_events_exit(tsk);
832 io_uring_files_cancel();
833 exit_signals(tsk); /* sets PF_EXITING */
835 acct_update_integrals(tsk);
836 group_dead = atomic_dec_and_test(&tsk->signal->live);
839 * If the last thread of global init has exited, panic
840 * immediately to get a useable coredump.
842 if (unlikely(is_global_init(tsk)))
843 panic("Attempted to kill init! exitcode=0x%08x\n",
844 tsk->signal->group_exit_code ?: (int)code);
846 #ifdef CONFIG_POSIX_TIMERS
847 hrtimer_cancel(&tsk->signal->real_timer);
851 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 acct_collect(code, group_dead);
858 tsk->exit_code = code;
859 taskstats_exit(tsk, group_dead);
865 trace_sched_process_exit(tsk);
872 disassociate_ctty(1);
873 exit_task_namespaces(tsk);
878 * Flush inherited counters to the parent - before the parent
879 * gets woken up by child-exit notifications.
881 * because of cgroup mode, must be called before cgroup_exit()
883 perf_event_exit_task(tsk);
885 sched_autogroup_exit_task(tsk);
889 * FIXME: do that only when needed, using sched_exit tracepoint
891 flush_ptrace_hw_breakpoint(tsk);
893 exit_tasks_rcu_start();
894 exit_notify(tsk, group_dead);
895 proc_exit_connector(tsk);
896 mpol_put_task_policy(tsk);
898 if (unlikely(current->pi_state_cache))
899 kfree(current->pi_state_cache);
902 * Make sure we are holding no locks:
904 debug_check_no_locks_held();
907 exit_io_context(tsk);
909 if (tsk->splice_pipe)
910 free_pipe_info(tsk->splice_pipe);
912 if (tsk->task_frag.page)
913 put_page(tsk->task_frag.page);
915 exit_task_stack_account(tsk);
920 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 exit_tasks_rcu_finish();
924 lockdep_free_task(tsk);
928 void __noreturn make_task_dead(int signr)
931 * Take the task off the cpu after something catastrophic has
934 * We can get here from a kernel oops, sometimes with preemption off.
935 * Start by checking for critical errors.
936 * Then fix up important state like USER_DS and preemption.
937 * Then do everything else.
939 struct task_struct *tsk = current;
942 if (unlikely(in_interrupt()))
943 panic("Aiee, killing interrupt handler!");
944 if (unlikely(!tsk->pid))
945 panic("Attempted to kill the idle task!");
947 if (unlikely(irqs_disabled())) {
948 pr_info("note: %s[%d] exited with irqs disabled\n",
949 current->comm, task_pid_nr(current));
952 if (unlikely(in_atomic())) {
953 pr_info("note: %s[%d] exited with preempt_count %d\n",
954 current->comm, task_pid_nr(current),
956 preempt_count_set(PREEMPT_ENABLED);
960 * Every time the system oopses, if the oops happens while a reference
961 * to an object was held, the reference leaks.
962 * If the oops doesn't also leak memory, repeated oopsing can cause
963 * reference counters to wrap around (if they're not using refcount_t).
964 * This means that repeated oopsing can make unexploitable-looking bugs
965 * exploitable through repeated oopsing.
966 * To make sure this can't happen, place an upper bound on how often the
967 * kernel may oops without panic().
969 limit = READ_ONCE(oops_limit);
970 if (atomic_inc_return(&oops_count) >= limit && limit)
971 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
974 * We're taking recursive faults here in make_task_dead. Safest is to just
975 * leave this task alone and wait for reboot.
977 if (unlikely(tsk->flags & PF_EXITING)) {
978 pr_alert("Fixing recursive fault but reboot is needed!\n");
979 futex_exit_recursive(tsk);
980 tsk->exit_state = EXIT_DEAD;
981 refcount_inc(&tsk->rcu_users);
988 SYSCALL_DEFINE1(exit, int, error_code)
990 do_exit((error_code&0xff)<<8);
994 * Take down every thread in the group. This is called by fatal signals
995 * as well as by sys_exit_group (below).
998 do_group_exit(int exit_code)
1000 struct signal_struct *sig = current->signal;
1002 if (sig->flags & SIGNAL_GROUP_EXIT)
1003 exit_code = sig->group_exit_code;
1004 else if (sig->group_exec_task)
1007 struct sighand_struct *const sighand = current->sighand;
1009 spin_lock_irq(&sighand->siglock);
1010 if (sig->flags & SIGNAL_GROUP_EXIT)
1011 /* Another thread got here before we took the lock. */
1012 exit_code = sig->group_exit_code;
1013 else if (sig->group_exec_task)
1016 sig->group_exit_code = exit_code;
1017 sig->flags = SIGNAL_GROUP_EXIT;
1018 zap_other_threads(current);
1020 spin_unlock_irq(&sighand->siglock);
1028 * this kills every thread in the thread group. Note that any externally
1029 * wait4()-ing process will get the correct exit code - even if this
1030 * thread is not the thread group leader.
1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1034 do_group_exit((error_code & 0xff) << 8);
1039 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1041 return wo->wo_type == PIDTYPE_MAX ||
1042 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1046 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1048 if (!eligible_pid(wo, p))
1052 * Wait for all children (clone and not) if __WALL is set or
1053 * if it is traced by us.
1055 if (ptrace || (wo->wo_flags & __WALL))
1059 * Otherwise, wait for clone children *only* if __WCLONE is set;
1060 * otherwise, wait for non-clone children *only*.
1062 * Note: a "clone" child here is one that reports to its parent
1063 * using a signal other than SIGCHLD, or a non-leader thread which
1064 * we can only see if it is traced by us.
1066 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1073 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1074 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1075 * the lock and this task is uninteresting. If we return nonzero, we have
1076 * released the lock and the system call should return.
1078 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1081 pid_t pid = task_pid_vnr(p);
1082 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1083 struct waitid_info *infop;
1085 if (!likely(wo->wo_flags & WEXITED))
1088 if (unlikely(wo->wo_flags & WNOWAIT)) {
1089 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090 ? p->signal->group_exit_code : p->exit_code;
1092 read_unlock(&tasklist_lock);
1093 sched_annotate_sleep();
1095 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1100 * Move the task's state to DEAD/TRACE, only one thread can do this.
1102 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1103 EXIT_TRACE : EXIT_DEAD;
1104 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1107 * We own this thread, nobody else can reap it.
1109 read_unlock(&tasklist_lock);
1110 sched_annotate_sleep();
1113 * Check thread_group_leader() to exclude the traced sub-threads.
1115 if (state == EXIT_DEAD && thread_group_leader(p)) {
1116 struct signal_struct *sig = p->signal;
1117 struct signal_struct *psig = current->signal;
1118 unsigned long maxrss;
1119 u64 tgutime, tgstime;
1122 * The resource counters for the group leader are in its
1123 * own task_struct. Those for dead threads in the group
1124 * are in its signal_struct, as are those for the child
1125 * processes it has previously reaped. All these
1126 * accumulate in the parent's signal_struct c* fields.
1128 * We don't bother to take a lock here to protect these
1129 * p->signal fields because the whole thread group is dead
1130 * and nobody can change them.
1132 * psig->stats_lock also protects us from our sub-threads
1133 * which can reap other children at the same time.
1135 * We use thread_group_cputime_adjusted() to get times for
1136 * the thread group, which consolidates times for all threads
1137 * in the group including the group leader.
1139 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1140 write_seqlock_irq(&psig->stats_lock);
1141 psig->cutime += tgutime + sig->cutime;
1142 psig->cstime += tgstime + sig->cstime;
1143 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1145 p->min_flt + sig->min_flt + sig->cmin_flt;
1147 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1149 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1151 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1153 task_io_get_inblock(p) +
1154 sig->inblock + sig->cinblock;
1156 task_io_get_oublock(p) +
1157 sig->oublock + sig->coublock;
1158 maxrss = max(sig->maxrss, sig->cmaxrss);
1159 if (psig->cmaxrss < maxrss)
1160 psig->cmaxrss = maxrss;
1161 task_io_accounting_add(&psig->ioac, &p->ioac);
1162 task_io_accounting_add(&psig->ioac, &sig->ioac);
1163 write_sequnlock_irq(&psig->stats_lock);
1167 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 ? p->signal->group_exit_code : p->exit_code;
1170 wo->wo_stat = status;
1172 if (state == EXIT_TRACE) {
1173 write_lock_irq(&tasklist_lock);
1174 /* We dropped tasklist, ptracer could die and untrace */
1177 /* If parent wants a zombie, don't release it now */
1178 state = EXIT_ZOMBIE;
1179 if (do_notify_parent(p, p->exit_signal))
1181 p->exit_state = state;
1182 write_unlock_irq(&tasklist_lock);
1184 if (state == EXIT_DEAD)
1188 infop = wo->wo_info;
1190 if ((status & 0x7f) == 0) {
1191 infop->cause = CLD_EXITED;
1192 infop->status = status >> 8;
1194 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 infop->status = status & 0x7f;
1204 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1207 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1208 return &p->exit_code;
1210 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1211 return &p->signal->group_exit_code;
1217 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1219 * @ptrace: is the wait for ptrace
1220 * @p: task to wait for
1222 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1225 * read_lock(&tasklist_lock), which is released if return value is
1226 * non-zero. Also, grabs and releases @p->sighand->siglock.
1229 * 0 if wait condition didn't exist and search for other wait conditions
1230 * should continue. Non-zero return, -errno on failure and @p's pid on
1231 * success, implies that tasklist_lock is released and wait condition
1232 * search should terminate.
1234 static int wait_task_stopped(struct wait_opts *wo,
1235 int ptrace, struct task_struct *p)
1237 struct waitid_info *infop;
1238 int exit_code, *p_code, why;
1239 uid_t uid = 0; /* unneeded, required by compiler */
1243 * Traditionally we see ptrace'd stopped tasks regardless of options.
1245 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1248 if (!task_stopped_code(p, ptrace))
1252 spin_lock_irq(&p->sighand->siglock);
1254 p_code = task_stopped_code(p, ptrace);
1255 if (unlikely(!p_code))
1258 exit_code = *p_code;
1262 if (!unlikely(wo->wo_flags & WNOWAIT))
1265 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 spin_unlock_irq(&p->sighand->siglock);
1272 * Now we are pretty sure this task is interesting.
1273 * Make sure it doesn't get reaped out from under us while we
1274 * give up the lock and then examine it below. We don't want to
1275 * keep holding onto the tasklist_lock while we call getrusage and
1276 * possibly take page faults for user memory.
1279 pid = task_pid_vnr(p);
1280 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1281 read_unlock(&tasklist_lock);
1282 sched_annotate_sleep();
1284 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1287 if (likely(!(wo->wo_flags & WNOWAIT)))
1288 wo->wo_stat = (exit_code << 8) | 0x7f;
1290 infop = wo->wo_info;
1293 infop->status = exit_code;
1301 * Handle do_wait work for one task in a live, non-stopped state.
1302 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1303 * the lock and this task is uninteresting. If we return nonzero, we have
1304 * released the lock and the system call should return.
1306 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1308 struct waitid_info *infop;
1312 if (!unlikely(wo->wo_flags & WCONTINUED))
1315 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1318 spin_lock_irq(&p->sighand->siglock);
1319 /* Re-check with the lock held. */
1320 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1321 spin_unlock_irq(&p->sighand->siglock);
1324 if (!unlikely(wo->wo_flags & WNOWAIT))
1325 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1326 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1327 spin_unlock_irq(&p->sighand->siglock);
1329 pid = task_pid_vnr(p);
1331 read_unlock(&tasklist_lock);
1332 sched_annotate_sleep();
1334 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1337 infop = wo->wo_info;
1339 wo->wo_stat = 0xffff;
1341 infop->cause = CLD_CONTINUED;
1344 infop->status = SIGCONT;
1350 * Consider @p for a wait by @parent.
1352 * -ECHILD should be in ->notask_error before the first call.
1353 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1354 * Returns zero if the search for a child should continue;
1355 * then ->notask_error is 0 if @p is an eligible child,
1358 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1359 struct task_struct *p)
1362 * We can race with wait_task_zombie() from another thread.
1363 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1364 * can't confuse the checks below.
1366 int exit_state = READ_ONCE(p->exit_state);
1369 if (unlikely(exit_state == EXIT_DEAD))
1372 ret = eligible_child(wo, ptrace, p);
1376 if (unlikely(exit_state == EXIT_TRACE)) {
1378 * ptrace == 0 means we are the natural parent. In this case
1379 * we should clear notask_error, debugger will notify us.
1381 if (likely(!ptrace))
1382 wo->notask_error = 0;
1386 if (likely(!ptrace) && unlikely(p->ptrace)) {
1388 * If it is traced by its real parent's group, just pretend
1389 * the caller is ptrace_do_wait() and reap this child if it
1392 * This also hides group stop state from real parent; otherwise
1393 * a single stop can be reported twice as group and ptrace stop.
1394 * If a ptracer wants to distinguish these two events for its
1395 * own children it should create a separate process which takes
1396 * the role of real parent.
1398 if (!ptrace_reparented(p))
1403 if (exit_state == EXIT_ZOMBIE) {
1404 /* we don't reap group leaders with subthreads */
1405 if (!delay_group_leader(p)) {
1407 * A zombie ptracee is only visible to its ptracer.
1408 * Notification and reaping will be cascaded to the
1409 * real parent when the ptracer detaches.
1411 if (unlikely(ptrace) || likely(!p->ptrace))
1412 return wait_task_zombie(wo, p);
1416 * Allow access to stopped/continued state via zombie by
1417 * falling through. Clearing of notask_error is complex.
1421 * If WEXITED is set, notask_error should naturally be
1422 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1423 * so, if there are live subthreads, there are events to
1424 * wait for. If all subthreads are dead, it's still safe
1425 * to clear - this function will be called again in finite
1426 * amount time once all the subthreads are released and
1427 * will then return without clearing.
1431 * Stopped state is per-task and thus can't change once the
1432 * target task dies. Only continued and exited can happen.
1433 * Clear notask_error if WCONTINUED | WEXITED.
1435 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1436 wo->notask_error = 0;
1439 * @p is alive and it's gonna stop, continue or exit, so
1440 * there always is something to wait for.
1442 wo->notask_error = 0;
1446 * Wait for stopped. Depending on @ptrace, different stopped state
1447 * is used and the two don't interact with each other.
1449 ret = wait_task_stopped(wo, ptrace, p);
1454 * Wait for continued. There's only one continued state and the
1455 * ptracer can consume it which can confuse the real parent. Don't
1456 * use WCONTINUED from ptracer. You don't need or want it.
1458 return wait_task_continued(wo, p);
1462 * Do the work of do_wait() for one thread in the group, @tsk.
1464 * -ECHILD should be in ->notask_error before the first call.
1465 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1466 * Returns zero if the search for a child should continue; then
1467 * ->notask_error is 0 if there were any eligible children,
1470 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1472 struct task_struct *p;
1474 list_for_each_entry(p, &tsk->children, sibling) {
1475 int ret = wait_consider_task(wo, 0, p);
1484 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1486 struct task_struct *p;
1488 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1489 int ret = wait_consider_task(wo, 1, p);
1498 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1500 if (!eligible_pid(wo, p))
1503 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1509 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1510 int sync, void *key)
1512 struct wait_opts *wo = container_of(wait, struct wait_opts,
1514 struct task_struct *p = key;
1516 if (pid_child_should_wake(wo, p))
1517 return default_wake_function(wait, mode, sync, key);
1522 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1524 __wake_up_sync_key(&parent->signal->wait_chldexit,
1525 TASK_INTERRUPTIBLE, p);
1528 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1529 struct task_struct *target)
1531 struct task_struct *parent =
1532 !ptrace ? target->real_parent : target->parent;
1534 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1535 same_thread_group(current, parent));
1539 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1540 * and tracee lists to find the target task.
1542 static int do_wait_pid(struct wait_opts *wo)
1545 struct task_struct *target;
1549 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1550 if (target && is_effectively_child(wo, ptrace, target)) {
1551 retval = wait_consider_task(wo, ptrace, target);
1557 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1558 if (target && target->ptrace &&
1559 is_effectively_child(wo, ptrace, target)) {
1560 retval = wait_consider_task(wo, ptrace, target);
1568 long __do_wait(struct wait_opts *wo)
1573 * If there is nothing that can match our criteria, just get out.
1574 * We will clear ->notask_error to zero if we see any child that
1575 * might later match our criteria, even if we are not able to reap
1578 wo->notask_error = -ECHILD;
1579 if ((wo->wo_type < PIDTYPE_MAX) &&
1580 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1583 read_lock(&tasklist_lock);
1585 if (wo->wo_type == PIDTYPE_PID) {
1586 retval = do_wait_pid(wo);
1590 struct task_struct *tsk = current;
1593 retval = do_wait_thread(wo, tsk);
1597 retval = ptrace_do_wait(wo, tsk);
1601 if (wo->wo_flags & __WNOTHREAD)
1603 } while_each_thread(current, tsk);
1605 read_unlock(&tasklist_lock);
1608 retval = wo->notask_error;
1609 if (!retval && !(wo->wo_flags & WNOHANG))
1610 return -ERESTARTSYS;
1615 static long do_wait(struct wait_opts *wo)
1619 trace_sched_process_wait(wo->wo_pid);
1621 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1622 wo->child_wait.private = current;
1623 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1626 set_current_state(TASK_INTERRUPTIBLE);
1627 retval = __do_wait(wo);
1628 if (retval != -ERESTARTSYS)
1630 if (signal_pending(current))
1635 __set_current_state(TASK_RUNNING);
1636 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1640 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1641 struct waitid_info *infop, int options,
1644 unsigned int f_flags = 0;
1645 struct pid *pid = NULL;
1648 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1649 __WNOTHREAD|__WCLONE|__WALL))
1651 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1663 pid = find_get_pid(upid);
1666 type = PIDTYPE_PGID;
1671 pid = find_get_pid(upid);
1673 pid = get_task_pid(current, PIDTYPE_PGID);
1680 pid = pidfd_get_pid(upid, &f_flags);
1682 return PTR_ERR(pid);
1691 wo->wo_flags = options;
1692 wo->wo_info = infop;
1694 if (f_flags & O_NONBLOCK)
1695 wo->wo_flags |= WNOHANG;
1700 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1701 int options, struct rusage *ru)
1703 struct wait_opts wo;
1706 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1711 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1718 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1719 infop, int, options, struct rusage __user *, ru)
1722 struct waitid_info info = {.status = 0};
1723 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1729 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1735 if (!user_write_access_begin(infop, sizeof(*infop)))
1738 unsafe_put_user(signo, &infop->si_signo, Efault);
1739 unsafe_put_user(0, &infop->si_errno, Efault);
1740 unsafe_put_user(info.cause, &infop->si_code, Efault);
1741 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1742 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1743 unsafe_put_user(info.status, &infop->si_status, Efault);
1744 user_write_access_end();
1747 user_write_access_end();
1751 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1754 struct wait_opts wo;
1755 struct pid *pid = NULL;
1759 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1760 __WNOTHREAD|__WCLONE|__WALL))
1763 /* -INT_MIN is not defined */
1764 if (upid == INT_MIN)
1769 else if (upid < 0) {
1770 type = PIDTYPE_PGID;
1771 pid = find_get_pid(-upid);
1772 } else if (upid == 0) {
1773 type = PIDTYPE_PGID;
1774 pid = get_task_pid(current, PIDTYPE_PGID);
1775 } else /* upid > 0 */ {
1777 pid = find_get_pid(upid);
1782 wo.wo_flags = options | WEXITED;
1788 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1794 int kernel_wait(pid_t pid, int *stat)
1796 struct wait_opts wo = {
1797 .wo_type = PIDTYPE_PID,
1798 .wo_pid = find_get_pid(pid),
1799 .wo_flags = WEXITED,
1804 if (ret > 0 && wo.wo_stat)
1810 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1811 int, options, struct rusage __user *, ru)
1814 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1817 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1823 #ifdef __ARCH_WANT_SYS_WAITPID
1826 * sys_waitpid() remains for compatibility. waitpid() should be
1827 * implemented by calling sys_wait4() from libc.a.
1829 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1831 return kernel_wait4(pid, stat_addr, options, NULL);
1836 #ifdef CONFIG_COMPAT
1837 COMPAT_SYSCALL_DEFINE4(wait4,
1839 compat_uint_t __user *, stat_addr,
1841 struct compat_rusage __user *, ru)
1844 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1846 if (ru && put_compat_rusage(&r, ru))
1852 COMPAT_SYSCALL_DEFINE5(waitid,
1853 int, which, compat_pid_t, pid,
1854 struct compat_siginfo __user *, infop, int, options,
1855 struct compat_rusage __user *, uru)
1858 struct waitid_info info = {.status = 0};
1859 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1865 /* kernel_waitid() overwrites everything in ru */
1866 if (COMPAT_USE_64BIT_TIME)
1867 err = copy_to_user(uru, &ru, sizeof(ru));
1869 err = put_compat_rusage(&ru, uru);
1878 if (!user_write_access_begin(infop, sizeof(*infop)))
1881 unsafe_put_user(signo, &infop->si_signo, Efault);
1882 unsafe_put_user(0, &infop->si_errno, Efault);
1883 unsafe_put_user(info.cause, &infop->si_code, Efault);
1884 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1885 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1886 unsafe_put_user(info.status, &infop->si_status, Efault);
1887 user_write_access_end();
1890 user_write_access_end();
1896 * This needs to be __function_aligned as GCC implicitly makes any
1897 * implementation of abort() cold and drops alignment specified by
1898 * -falign-functions=N.
1900 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1902 __weak __function_aligned void abort(void)
1906 /* if that doesn't kill us, halt */
1907 panic("Oops failed to kill thread");
1909 EXPORT_SYMBOL(abort);