1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
24 #include "xfs_buf_mem.h"
26 struct kmem_cache *xfs_buf_cache;
33 * b_sema (caller holds)
37 * b_sema (caller holds)
46 * xfs_buftarg_drain_rele
48 * b_lock (trylock due to inversion)
52 * b_lock (trylock due to inversion)
55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
66 return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
74 * Return true if the buffer is vmapped.
76 * b_addr is null if the buffer is not mapped, but the code is clever
77 * enough to know it doesn't have to map a single page, so the check has
78 * to be both for b_addr and bp->b_page_count > 1.
80 return bp->b_addr && bp->b_page_count > 1;
87 return (bp->b_page_count * PAGE_SIZE);
91 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
92 * this buffer. The count is incremented once per buffer (per hold cycle)
93 * because the corresponding decrement is deferred to buffer release. Buffers
94 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
95 * tracking adds unnecessary overhead. This is used for sychronization purposes
96 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
99 * Buffers that are never released (e.g., superblock, iclog buffers) must set
100 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101 * never reaches zero and unmount hangs indefinitely.
107 if (bp->b_flags & XBF_NO_IOACCT)
110 ASSERT(bp->b_flags & XBF_ASYNC);
111 spin_lock(&bp->b_lock);
112 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_inc(&bp->b_target->bt_io_count);
116 spin_unlock(&bp->b_lock);
120 * Clear the in-flight state on a buffer about to be released to the LRU or
121 * freed and unaccount from the buftarg.
124 __xfs_buf_ioacct_dec(
127 lockdep_assert_held(&bp->b_lock);
129 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131 percpu_counter_dec(&bp->b_target->bt_io_count);
139 spin_lock(&bp->b_lock);
140 __xfs_buf_ioacct_dec(bp);
141 spin_unlock(&bp->b_lock);
145 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146 * b_lru_ref count so that the buffer is freed immediately when the buffer
147 * reference count falls to zero. If the buffer is already on the LRU, we need
148 * to remove the reference that LRU holds on the buffer.
150 * This prevents build-up of stale buffers on the LRU.
156 ASSERT(xfs_buf_islocked(bp));
158 bp->b_flags |= XBF_STALE;
161 * Clear the delwri status so that a delwri queue walker will not
162 * flush this buffer to disk now that it is stale. The delwri queue has
163 * a reference to the buffer, so this is safe to do.
165 bp->b_flags &= ~_XBF_DELWRI_Q;
168 * Once the buffer is marked stale and unlocked, a subsequent lookup
169 * could reset b_flags. There is no guarantee that the buffer is
170 * unaccounted (released to LRU) before that occurs. Drop in-flight
171 * status now to preserve accounting consistency.
173 spin_lock(&bp->b_lock);
174 __xfs_buf_ioacct_dec(bp);
176 atomic_set(&bp->b_lru_ref, 0);
177 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179 atomic_dec(&bp->b_hold);
181 ASSERT(atomic_read(&bp->b_hold) >= 1);
182 spin_unlock(&bp->b_lock);
190 ASSERT(bp->b_maps == NULL);
191 bp->b_map_count = map_count;
193 if (map_count == 1) {
194 bp->b_maps = &bp->__b_map;
198 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
206 * Frees b_pages if it was allocated.
212 if (bp->b_maps != &bp->__b_map) {
220 struct xfs_buftarg *target,
221 struct xfs_buf_map *map,
223 xfs_buf_flags_t flags,
224 struct xfs_buf **bpp)
231 bp = kmem_cache_zalloc(xfs_buf_cache,
232 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
235 * We don't want certain flags to appear in b_flags unless they are
236 * specifically set by later operations on the buffer.
238 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
240 atomic_set(&bp->b_hold, 1);
241 atomic_set(&bp->b_lru_ref, 1);
242 init_completion(&bp->b_iowait);
243 INIT_LIST_HEAD(&bp->b_lru);
244 INIT_LIST_HEAD(&bp->b_list);
245 INIT_LIST_HEAD(&bp->b_li_list);
246 sema_init(&bp->b_sema, 0); /* held, no waiters */
247 spin_lock_init(&bp->b_lock);
248 bp->b_target = target;
249 bp->b_mount = target->bt_mount;
253 * Set length and io_length to the same value initially.
254 * I/O routines should use io_length, which will be the same in
255 * most cases but may be reset (e.g. XFS recovery).
257 error = xfs_buf_get_maps(bp, nmaps);
259 kmem_cache_free(xfs_buf_cache, bp);
263 bp->b_rhash_key = map[0].bm_bn;
265 for (i = 0; i < nmaps; i++) {
266 bp->b_maps[i].bm_bn = map[i].bm_bn;
267 bp->b_maps[i].bm_len = map[i].bm_len;
268 bp->b_length += map[i].bm_len;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
274 XFS_STATS_INC(bp->b_mount, xb_create);
275 trace_xfs_buf_init(bp, _RET_IP_);
287 ASSERT(bp->b_flags & _XBF_PAGES);
289 if (xfs_buf_is_vmapped(bp))
290 vm_unmap_ram(bp->b_addr, bp->b_page_count);
292 for (i = 0; i < bp->b_page_count; i++) {
294 __free_page(bp->b_pages[i]);
296 mm_account_reclaimed_pages(bp->b_page_count);
298 if (bp->b_pages != bp->b_page_array)
301 bp->b_flags &= ~_XBF_PAGES;
305 xfs_buf_free_callback(
306 struct callback_head *cb)
308 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
310 xfs_buf_free_maps(bp);
311 kmem_cache_free(xfs_buf_cache, bp);
318 trace_xfs_buf_free(bp, _RET_IP_);
320 ASSERT(list_empty(&bp->b_lru));
322 if (xfs_buftarg_is_mem(bp->b_target))
323 xmbuf_unmap_page(bp);
324 else if (bp->b_flags & _XBF_PAGES)
325 xfs_buf_free_pages(bp);
326 else if (bp->b_flags & _XBF_KMEM)
329 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
335 xfs_buf_flags_t flags)
337 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338 size_t size = BBTOB(bp->b_length);
340 /* Assure zeroed buffer for non-read cases. */
341 if (!(flags & XBF_READ))
342 gfp_mask |= __GFP_ZERO;
344 bp->b_addr = kmalloc(size, gfp_mask);
348 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349 ((unsigned long)bp->b_addr & PAGE_MASK)) {
350 /* b_addr spans two pages - use alloc_page instead */
355 bp->b_offset = offset_in_page(bp->b_addr);
356 bp->b_pages = bp->b_page_array;
357 bp->b_pages[0] = kmem_to_page(bp->b_addr);
358 bp->b_page_count = 1;
359 bp->b_flags |= _XBF_KMEM;
366 xfs_buf_flags_t flags)
368 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
371 if (flags & XBF_READ_AHEAD)
372 gfp_mask |= __GFP_NORETRY;
374 /* Make sure that we have a page list */
375 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376 if (bp->b_page_count <= XB_PAGES) {
377 bp->b_pages = bp->b_page_array;
379 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
384 bp->b_flags |= _XBF_PAGES;
386 /* Assure zeroed buffer for non-read cases. */
387 if (!(flags & XBF_READ))
388 gfp_mask |= __GFP_ZERO;
391 * Bulk filling of pages can take multiple calls. Not filling the entire
392 * array is not an allocation failure, so don't back off if we get at
393 * least one extra page.
398 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
400 if (filled == bp->b_page_count) {
401 XFS_STATS_INC(bp->b_mount, xb_page_found);
408 if (flags & XBF_READ_AHEAD) {
409 xfs_buf_free_pages(bp);
413 XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 memalloc_retry_wait(gfp_mask);
420 * Map buffer into kernel address-space if necessary.
425 xfs_buf_flags_t flags)
427 ASSERT(bp->b_flags & _XBF_PAGES);
428 if (bp->b_page_count == 1) {
429 /* A single page buffer is always mappable */
430 bp->b_addr = page_address(bp->b_pages[0]);
431 } else if (flags & XBF_UNMAPPED) {
438 * vm_map_ram() will allocate auxiliary structures (e.g.
439 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441 * from the same call site that can be run from both above and
442 * below memory reclaim causes lockdep false positives. Hence we
443 * always need to force this allocation to nofs context because
444 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445 * prevent false positive lockdep reports.
447 * XXX(dgc): I think dquot reclaim is the only place we can get
448 * to this function from memory reclaim context now. If we fix
449 * that like we've fixed inode reclaim to avoid writeback from
450 * reclaim, this nofs wrapping can go away.
452 nofs_flag = memalloc_nofs_save();
454 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 } while (retried++ <= 1);
460 memalloc_nofs_restore(nofs_flag);
470 * Finding and Reading Buffers
474 struct rhashtable_compare_arg *arg,
477 const struct xfs_buf_map *map = arg->key;
478 const struct xfs_buf *bp = obj;
481 * The key hashing in the lookup path depends on the key being the
482 * first element of the compare_arg, make sure to assert this.
484 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
486 if (bp->b_rhash_key != map->bm_bn)
489 if (unlikely(bp->b_length != map->bm_len)) {
491 * found a block number match. If the range doesn't
492 * match, the only way this is allowed is if the buffer
493 * in the cache is stale and the transaction that made
494 * it stale has not yet committed. i.e. we are
495 * reallocating a busy extent. Skip this buffer and
496 * continue searching for an exact match.
498 * Note: If we're scanning for incore buffers to stale, don't
499 * complain if we find non-stale buffers.
501 if (!(map->bm_flags & XBM_LIVESCAN))
502 ASSERT(bp->b_flags & XBF_STALE);
508 static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
520 struct xfs_buf_cache *bch)
522 spin_lock_init(&bch->bc_lock);
523 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
527 xfs_buf_cache_destroy(
528 struct xfs_buf_cache *bch)
530 rhashtable_destroy(&bch->bc_hash);
535 struct xfs_buftarg *btp,
536 struct xfs_buf_map *map)
540 /* Check for IOs smaller than the sector size / not sector aligned */
541 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
542 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
545 * Corrupted block numbers can get through to here, unfortunately, so we
546 * have to check that the buffer falls within the filesystem bounds.
548 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
549 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
550 xfs_alert(btp->bt_mount,
551 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552 __func__, map->bm_bn, eofs);
554 return -EFSCORRUPTED;
562 xfs_buf_flags_t flags)
564 if (flags & XBF_TRYLOCK) {
565 if (!xfs_buf_trylock(bp)) {
566 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
571 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
575 * if the buffer is stale, clear all the external state associated with
576 * it. We need to keep flags such as how we allocated the buffer memory
579 if (bp->b_flags & XBF_STALE) {
580 if (flags & XBF_LIVESCAN) {
584 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
585 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
593 struct xfs_buf_cache *bch,
594 struct xfs_buf_map *map,
595 xfs_buf_flags_t flags,
596 struct xfs_buf **bpp)
602 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
603 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
609 error = xfs_buf_find_lock(bp, flags);
615 trace_xfs_buf_find(bp, flags, _RET_IP_);
621 * Insert the new_bp into the hash table. This consumes the perag reference
622 * taken for the lookup regardless of the result of the insert.
626 struct xfs_buftarg *btp,
627 struct xfs_buf_cache *bch,
628 struct xfs_perag *pag,
629 struct xfs_buf_map *cmap,
630 struct xfs_buf_map *map,
632 xfs_buf_flags_t flags,
633 struct xfs_buf **bpp)
635 struct xfs_buf *new_bp;
639 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
643 if (xfs_buftarg_is_mem(new_bp->b_target)) {
644 error = xmbuf_map_page(new_bp);
645 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
646 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
648 * For buffers that fit entirely within a single page, first
649 * attempt to allocate the memory from the heap to minimise
650 * memory usage. If we can't get heap memory for these small
651 * buffers, we fall back to using the page allocator.
653 error = xfs_buf_alloc_pages(new_bp, flags);
658 spin_lock(&bch->bc_lock);
659 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 &new_bp->b_rhash_head, xfs_buf_hash_params);
663 spin_unlock(&bch->bc_lock);
667 /* found an existing buffer */
668 atomic_inc(&bp->b_hold);
669 spin_unlock(&bch->bc_lock);
670 error = xfs_buf_find_lock(bp, flags);
678 /* The new buffer keeps the perag reference until it is freed. */
680 spin_unlock(&bch->bc_lock);
685 xfs_buf_free(new_bp);
692 static inline struct xfs_perag *
694 struct xfs_buftarg *btp,
695 const struct xfs_buf_map *map)
697 struct xfs_mount *mp = btp->bt_mount;
699 if (xfs_buftarg_is_mem(btp))
701 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
704 static inline struct xfs_buf_cache *
705 xfs_buftarg_buf_cache(
706 struct xfs_buftarg *btp,
707 struct xfs_perag *pag)
710 return &pag->pag_bcache;
711 return btp->bt_cache;
715 * Assembles a buffer covering the specified range. The code is optimised for
716 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
717 * more hits than misses.
721 struct xfs_buftarg *btp,
722 struct xfs_buf_map *map,
724 xfs_buf_flags_t flags,
725 struct xfs_buf **bpp)
727 struct xfs_buf_cache *bch;
728 struct xfs_perag *pag;
729 struct xfs_buf *bp = NULL;
730 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
734 if (flags & XBF_LIVESCAN)
735 cmap.bm_flags |= XBM_LIVESCAN;
736 for (i = 0; i < nmaps; i++)
737 cmap.bm_len += map[i].bm_len;
739 error = xfs_buf_map_verify(btp, &cmap);
743 pag = xfs_buftarg_get_pag(btp, &cmap);
744 bch = xfs_buftarg_buf_cache(btp, pag);
746 error = xfs_buf_lookup(bch, &cmap, flags, &bp);
747 if (error && error != -ENOENT)
750 /* cache hits always outnumber misses by at least 10:1 */
752 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
754 if (flags & XBF_INCORE)
757 /* xfs_buf_find_insert() consumes the perag reference. */
758 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
763 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
768 /* We do not hold a perag reference anymore. */
770 error = _xfs_buf_map_pages(bp, flags);
771 if (unlikely(error)) {
772 xfs_warn_ratelimited(btp->bt_mount,
773 "%s: failed to map %u pages", __func__,
781 * Clear b_error if this is a lookup from a caller that doesn't expect
782 * valid data to be found in the buffer.
784 if (!(flags & XBF_READ))
785 xfs_buf_ioerror(bp, 0);
787 XFS_STATS_INC(btp->bt_mount, xb_get);
788 trace_xfs_buf_get(bp, flags, _RET_IP_);
801 xfs_buf_flags_t flags)
803 ASSERT(!(flags & XBF_WRITE));
804 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
806 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
807 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
809 return xfs_buf_submit(bp);
813 * Reverify a buffer found in cache without an attached ->b_ops.
815 * If the caller passed an ops structure and the buffer doesn't have ops
816 * assigned, set the ops and use it to verify the contents. If verification
817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818 * already in XBF_DONE state on entry.
820 * Under normal operations, every in-core buffer is verified on read I/O
821 * completion. There are two scenarios that can lead to in-core buffers without
822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823 * filesystem, though these buffers are purged at the end of recovery. The
824 * other is online repair, which intentionally reads with a NULL buffer ops to
825 * run several verifiers across an in-core buffer in order to establish buffer
826 * type. If repair can't establish that, the buffer will be left in memory
827 * with NULL buffer ops.
832 const struct xfs_buf_ops *ops)
834 ASSERT(bp->b_flags & XBF_DONE);
835 ASSERT(bp->b_error == 0);
837 if (!ops || bp->b_ops)
841 bp->b_ops->verify_read(bp);
843 bp->b_flags &= ~XBF_DONE;
849 struct xfs_buftarg *target,
850 struct xfs_buf_map *map,
852 xfs_buf_flags_t flags,
853 struct xfs_buf **bpp,
854 const struct xfs_buf_ops *ops,
863 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
867 trace_xfs_buf_read(bp, flags, _RET_IP_);
869 if (!(bp->b_flags & XBF_DONE)) {
870 /* Initiate the buffer read and wait. */
871 XFS_STATS_INC(target->bt_mount, xb_get_read);
873 error = _xfs_buf_read(bp, flags);
875 /* Readahead iodone already dropped the buffer, so exit. */
876 if (flags & XBF_ASYNC)
879 /* Buffer already read; all we need to do is check it. */
880 error = xfs_buf_reverify(bp, ops);
882 /* Readahead already finished; drop the buffer and exit. */
883 if (flags & XBF_ASYNC) {
888 /* We do not want read in the flags */
889 bp->b_flags &= ~XBF_READ;
890 ASSERT(bp->b_ops != NULL || ops == NULL);
894 * If we've had a read error, then the contents of the buffer are
895 * invalid and should not be used. To ensure that a followup read tries
896 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 * mark the buffer stale. This ensures that anyone who has a current
898 * reference to the buffer will interpret it's contents correctly and
899 * future cache lookups will also treat it as an empty, uninitialised
904 * Check against log shutdown for error reporting because
905 * metadata writeback may require a read first and we need to
906 * report errors in metadata writeback until the log is shut
907 * down. High level transaction read functions already check
908 * against mount shutdown, anyway, so we only need to be
909 * concerned about low level IO interactions here.
911 if (!xlog_is_shutdown(target->bt_mount->m_log))
912 xfs_buf_ioerror_alert(bp, fa);
914 bp->b_flags &= ~XBF_DONE;
918 /* bad CRC means corrupted metadata */
919 if (error == -EFSBADCRC)
920 error = -EFSCORRUPTED;
929 * If we are not low on memory then do the readahead in a deadlock
933 xfs_buf_readahead_map(
934 struct xfs_buftarg *target,
935 struct xfs_buf_map *map,
937 const struct xfs_buf_ops *ops)
942 * Currently we don't have a good means or justification for performing
943 * xmbuf_map_page asynchronously, so we don't do readahead.
945 if (xfs_buftarg_is_mem(target))
948 xfs_buf_read_map(target, map, nmaps,
949 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
954 * Read an uncached buffer from disk. Allocates and returns a locked
955 * buffer containing the disk contents or nothing. Uncached buffers always have
956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957 * is cached or uncached during fault diagnosis.
960 xfs_buf_read_uncached(
961 struct xfs_buftarg *target,
964 xfs_buf_flags_t flags,
965 struct xfs_buf **bpp,
966 const struct xfs_buf_ops *ops)
973 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
977 /* set up the buffer for a read IO */
978 ASSERT(bp->b_map_count == 1);
979 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
980 bp->b_maps[0].bm_bn = daddr;
981 bp->b_flags |= XBF_READ;
996 xfs_buf_get_uncached(
997 struct xfs_buftarg *target,
999 xfs_buf_flags_t flags,
1000 struct xfs_buf **bpp)
1004 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1008 /* flags might contain irrelevant bits, pass only what we care about */
1009 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1013 if (xfs_buftarg_is_mem(bp->b_target))
1014 error = xmbuf_map_page(bp);
1016 error = xfs_buf_alloc_pages(bp, flags);
1020 error = _xfs_buf_map_pages(bp, 0);
1021 if (unlikely(error)) {
1022 xfs_warn(target->bt_mount,
1023 "%s: failed to map pages", __func__);
1027 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1037 * Increment reference count on buffer, to hold the buffer concurrently
1038 * with another thread which may release (free) the buffer asynchronously.
1039 * Must hold the buffer already to call this function.
1045 trace_xfs_buf_hold(bp, _RET_IP_);
1046 atomic_inc(&bp->b_hold);
1050 xfs_buf_rele_uncached(
1053 ASSERT(list_empty(&bp->b_lru));
1054 if (atomic_dec_and_test(&bp->b_hold)) {
1055 xfs_buf_ioacct_dec(bp);
1061 xfs_buf_rele_cached(
1064 struct xfs_buftarg *btp = bp->b_target;
1065 struct xfs_perag *pag = bp->b_pag;
1066 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag);
1068 bool freebuf = false;
1070 trace_xfs_buf_rele(bp, _RET_IP_);
1072 ASSERT(atomic_read(&bp->b_hold) > 0);
1075 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1076 * calls. The pag_buf_lock being taken on the last reference only
1077 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1078 * to last reference we drop here is not serialised against the last
1079 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1080 * first, the last "release" reference can win the race to the lock and
1081 * free the buffer before the second-to-last reference is processed,
1082 * leading to a use-after-free scenario.
1084 spin_lock(&bp->b_lock);
1085 release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1088 * Drop the in-flight state if the buffer is already on the LRU
1089 * and it holds the only reference. This is racy because we
1090 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1091 * ensures the decrement occurs only once per-buf.
1093 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1094 __xfs_buf_ioacct_dec(bp);
1098 /* the last reference has been dropped ... */
1099 __xfs_buf_ioacct_dec(bp);
1100 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1102 * If the buffer is added to the LRU take a new reference to the
1103 * buffer for the LRU and clear the (now stale) dispose list
1106 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1107 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1108 atomic_inc(&bp->b_hold);
1110 spin_unlock(&bch->bc_lock);
1113 * most of the time buffers will already be removed from the
1114 * LRU, so optimise that case by checking for the
1115 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1116 * was on was the disposal list
1118 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1119 list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1121 ASSERT(list_empty(&bp->b_lru));
1124 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1125 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1126 xfs_buf_hash_params);
1127 spin_unlock(&bch->bc_lock);
1134 spin_unlock(&bp->b_lock);
1141 * Release a hold on the specified buffer.
1147 trace_xfs_buf_rele(bp, _RET_IP_);
1148 if (xfs_buf_is_uncached(bp))
1149 xfs_buf_rele_uncached(bp);
1151 xfs_buf_rele_cached(bp);
1155 * Lock a buffer object, if it is not already locked.
1157 * If we come across a stale, pinned, locked buffer, we know that we are
1158 * being asked to lock a buffer that has been reallocated. Because it is
1159 * pinned, we know that the log has not been pushed to disk and hence it
1160 * will still be locked. Rather than continuing to have trylock attempts
1161 * fail until someone else pushes the log, push it ourselves before
1162 * returning. This means that the xfsaild will not get stuck trying
1163 * to push on stale inode buffers.
1171 locked = down_trylock(&bp->b_sema) == 0;
1173 trace_xfs_buf_trylock(bp, _RET_IP_);
1175 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1180 * Lock a buffer object.
1182 * If we come across a stale, pinned, locked buffer, we know that we
1183 * are being asked to lock a buffer that has been reallocated. Because
1184 * it is pinned, we know that the log has not been pushed to disk and
1185 * hence it will still be locked. Rather than sleeping until someone
1186 * else pushes the log, push it ourselves before trying to get the lock.
1192 trace_xfs_buf_lock(bp, _RET_IP_);
1194 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1195 xfs_log_force(bp->b_mount, 0);
1198 trace_xfs_buf_lock_done(bp, _RET_IP_);
1205 ASSERT(xfs_buf_islocked(bp));
1208 trace_xfs_buf_unlock(bp, _RET_IP_);
1215 DECLARE_WAITQUEUE (wait, current);
1217 if (atomic_read(&bp->b_pin_count) == 0)
1220 add_wait_queue(&bp->b_waiters, &wait);
1222 set_current_state(TASK_UNINTERRUPTIBLE);
1223 if (atomic_read(&bp->b_pin_count) == 0)
1227 remove_wait_queue(&bp->b_waiters, &wait);
1228 set_current_state(TASK_RUNNING);
1232 xfs_buf_ioerror_alert_ratelimited(
1235 static unsigned long lasttime;
1236 static struct xfs_buftarg *lasttarg;
1238 if (bp->b_target != lasttarg ||
1239 time_after(jiffies, (lasttime + 5*HZ))) {
1241 xfs_buf_ioerror_alert(bp, __this_address);
1243 lasttarg = bp->b_target;
1247 * Account for this latest trip around the retry handler, and decide if
1248 * we've failed enough times to constitute a permanent failure.
1251 xfs_buf_ioerror_permanent(
1253 struct xfs_error_cfg *cfg)
1255 struct xfs_mount *mp = bp->b_mount;
1257 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1258 ++bp->b_retries > cfg->max_retries)
1260 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1261 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1264 /* At unmount we may treat errors differently */
1265 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1272 * On a sync write or shutdown we just want to stale the buffer and let the
1273 * caller handle the error in bp->b_error appropriately.
1275 * If the write was asynchronous then no one will be looking for the error. If
1276 * this is the first failure of this type, clear the error state and write the
1277 * buffer out again. This means we always retry an async write failure at least
1278 * once, but we also need to set the buffer up to behave correctly now for
1279 * repeated failures.
1281 * If we get repeated async write failures, then we take action according to the
1282 * error configuration we have been set up to use.
1284 * Returns true if this function took care of error handling and the caller must
1285 * not touch the buffer again. Return false if the caller should proceed with
1286 * normal I/O completion handling.
1289 xfs_buf_ioend_handle_error(
1292 struct xfs_mount *mp = bp->b_mount;
1293 struct xfs_error_cfg *cfg;
1296 * If we've already shutdown the journal because of I/O errors, there's
1297 * no point in giving this a retry.
1299 if (xlog_is_shutdown(mp->m_log))
1302 xfs_buf_ioerror_alert_ratelimited(bp);
1305 * We're not going to bother about retrying this during recovery.
1308 if (bp->b_flags & _XBF_LOGRECOVERY) {
1309 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1314 * Synchronous writes will have callers process the error.
1316 if (!(bp->b_flags & XBF_ASYNC))
1319 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1321 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1322 if (bp->b_last_error != bp->b_error ||
1323 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1324 bp->b_last_error = bp->b_error;
1325 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1326 !bp->b_first_retry_time)
1327 bp->b_first_retry_time = jiffies;
1332 * Permanent error - we need to trigger a shutdown if we haven't already
1333 * to indicate that inconsistency will result from this action.
1335 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1336 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340 /* Still considered a transient error. Caller will schedule retries. */
1341 if (bp->b_flags & _XBF_INODES)
1342 xfs_buf_inode_io_fail(bp);
1343 else if (bp->b_flags & _XBF_DQUOTS)
1344 xfs_buf_dquot_io_fail(bp);
1346 ASSERT(list_empty(&bp->b_li_list));
1347 xfs_buf_ioerror(bp, 0);
1352 xfs_buf_ioerror(bp, 0);
1353 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1358 bp->b_flags |= XBF_DONE;
1359 bp->b_flags &= ~XBF_WRITE;
1360 trace_xfs_buf_error_relse(bp, _RET_IP_);
1368 trace_xfs_buf_iodone(bp, _RET_IP_);
1371 * Pull in IO completion errors now. We are guaranteed to be running
1372 * single threaded, so we don't need the lock to read b_io_error.
1374 if (!bp->b_error && bp->b_io_error)
1375 xfs_buf_ioerror(bp, bp->b_io_error);
1377 if (bp->b_flags & XBF_READ) {
1378 if (!bp->b_error && bp->b_ops)
1379 bp->b_ops->verify_read(bp);
1381 bp->b_flags |= XBF_DONE;
1384 bp->b_flags &= ~XBF_WRITE_FAIL;
1385 bp->b_flags |= XBF_DONE;
1388 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1391 /* clear the retry state */
1392 bp->b_last_error = 0;
1394 bp->b_first_retry_time = 0;
1397 * Note that for things like remote attribute buffers, there may
1398 * not be a buffer log item here, so processing the buffer log
1399 * item must remain optional.
1402 xfs_buf_item_done(bp);
1404 if (bp->b_flags & _XBF_INODES)
1405 xfs_buf_inode_iodone(bp);
1406 else if (bp->b_flags & _XBF_DQUOTS)
1407 xfs_buf_dquot_iodone(bp);
1411 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1414 if (bp->b_flags & XBF_ASYNC)
1417 complete(&bp->b_iowait);
1422 struct work_struct *work)
1424 struct xfs_buf *bp =
1425 container_of(work, struct xfs_buf, b_ioend_work);
1431 xfs_buf_ioend_async(
1434 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1435 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1442 xfs_failaddr_t failaddr)
1444 ASSERT(error <= 0 && error >= -1000);
1445 bp->b_error = error;
1446 trace_xfs_buf_ioerror(bp, error, failaddr);
1450 xfs_buf_ioerror_alert(
1452 xfs_failaddr_t func)
1454 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1455 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1456 func, (uint64_t)xfs_buf_daddr(bp),
1457 bp->b_length, -bp->b_error);
1461 * To simulate an I/O failure, the buffer must be locked and held with at least
1462 * three references. The LRU reference is dropped by the stale call. The buf
1463 * item reference is dropped via ioend processing. The third reference is owned
1464 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1470 bp->b_flags &= ~XBF_DONE;
1472 xfs_buf_ioerror(bp, -EIO);
1482 ASSERT(xfs_buf_islocked(bp));
1484 bp->b_flags |= XBF_WRITE;
1485 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1488 error = xfs_buf_submit(bp);
1490 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1498 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1500 if (!bio->bi_status &&
1501 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1502 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1503 bio->bi_status = BLK_STS_IOERR;
1506 * don't overwrite existing errors - otherwise we can lose errors on
1507 * buffers that require multiple bios to complete.
1509 if (bio->bi_status) {
1510 int error = blk_status_to_errno(bio->bi_status);
1512 cmpxchg(&bp->b_io_error, 0, error);
1515 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1516 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1518 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1519 xfs_buf_ioend_async(bp);
1524 xfs_buf_ioapply_map(
1532 unsigned int total_nr_pages = bp->b_page_count;
1535 sector_t sector = bp->b_maps[map].bm_bn;
1539 /* skip the pages in the buffer before the start offset */
1541 offset = *buf_offset;
1542 while (offset >= PAGE_SIZE) {
1544 offset -= PAGE_SIZE;
1548 * Limit the IO size to the length of the current vector, and update the
1549 * remaining IO count for the next time around.
1551 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1553 *buf_offset += size;
1556 atomic_inc(&bp->b_io_remaining);
1557 nr_pages = bio_max_segs(total_nr_pages);
1559 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1560 bio->bi_iter.bi_sector = sector;
1561 bio->bi_end_io = xfs_buf_bio_end_io;
1562 bio->bi_private = bp;
1564 for (; size && nr_pages; nr_pages--, page_index++) {
1565 int rbytes, nbytes = PAGE_SIZE - offset;
1570 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1572 if (rbytes < nbytes)
1576 sector += BTOBB(nbytes);
1581 if (likely(bio->bi_iter.bi_size)) {
1582 if (xfs_buf_is_vmapped(bp)) {
1583 flush_kernel_vmap_range(bp->b_addr,
1584 xfs_buf_vmap_len(bp));
1591 * This is guaranteed not to be the last io reference count
1592 * because the caller (xfs_buf_submit) holds a count itself.
1594 atomic_dec(&bp->b_io_remaining);
1595 xfs_buf_ioerror(bp, -EIO);
1605 struct blk_plug plug;
1612 * Make sure we capture only current IO errors rather than stale errors
1613 * left over from previous use of the buffer (e.g. failed readahead).
1617 if (bp->b_flags & XBF_WRITE) {
1621 * Run the write verifier callback function if it exists. If
1622 * this function fails it will mark the buffer with an error and
1623 * the IO should not be dispatched.
1626 bp->b_ops->verify_write(bp);
1628 xfs_force_shutdown(bp->b_mount,
1629 SHUTDOWN_CORRUPT_INCORE);
1632 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1633 struct xfs_mount *mp = bp->b_mount;
1636 * non-crc filesystems don't attach verifiers during
1637 * log recovery, so don't warn for such filesystems.
1639 if (xfs_has_crc(mp)) {
1641 "%s: no buf ops on daddr 0x%llx len %d",
1642 __func__, xfs_buf_daddr(bp),
1644 xfs_hex_dump(bp->b_addr,
1645 XFS_CORRUPTION_DUMP_LEN);
1651 if (bp->b_flags & XBF_READ_AHEAD)
1655 /* we only use the buffer cache for meta-data */
1658 /* in-memory targets are directly mapped, no IO required. */
1659 if (xfs_buftarg_is_mem(bp->b_target)) {
1665 * Walk all the vectors issuing IO on them. Set up the initial offset
1666 * into the buffer and the desired IO size before we start -
1667 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1670 offset = bp->b_offset;
1671 size = BBTOB(bp->b_length);
1672 blk_start_plug(&plug);
1673 for (i = 0; i < bp->b_map_count; i++) {
1674 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1678 break; /* all done */
1680 blk_finish_plug(&plug);
1684 * Wait for I/O completion of a sync buffer and return the I/O error code.
1690 ASSERT(!(bp->b_flags & XBF_ASYNC));
1692 trace_xfs_buf_iowait(bp, _RET_IP_);
1693 wait_for_completion(&bp->b_iowait);
1694 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1700 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1701 * the buffer lock ownership and the current reference to the IO. It is not
1702 * safe to reference the buffer after a call to this function unless the caller
1703 * holds an additional reference itself.
1712 trace_xfs_buf_submit(bp, _RET_IP_);
1714 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1717 * On log shutdown we stale and complete the buffer immediately. We can
1718 * be called to read the superblock before the log has been set up, so
1719 * be careful checking the log state.
1721 * Checking the mount shutdown state here can result in the log tail
1722 * moving inappropriately on disk as the log may not yet be shut down.
1723 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1724 * and move the tail of the log forwards without having written this
1725 * buffer to disk. This corrupts the log tail state in memory, and
1726 * because the log may not be shut down yet, it can then be propagated
1727 * to disk before the log is shutdown. Hence we check log shutdown
1728 * state here rather than mount state to avoid corrupting the log tail
1731 if (bp->b_mount->m_log &&
1732 xlog_is_shutdown(bp->b_mount->m_log)) {
1733 xfs_buf_ioend_fail(bp);
1738 * Grab a reference so the buffer does not go away underneath us. For
1739 * async buffers, I/O completion drops the callers reference, which
1740 * could occur before submission returns.
1744 if (bp->b_flags & XBF_WRITE)
1745 xfs_buf_wait_unpin(bp);
1747 /* clear the internal error state to avoid spurious errors */
1751 * Set the count to 1 initially, this will stop an I/O completion
1752 * callout which happens before we have started all the I/O from calling
1753 * xfs_buf_ioend too early.
1755 atomic_set(&bp->b_io_remaining, 1);
1756 if (bp->b_flags & XBF_ASYNC)
1757 xfs_buf_ioacct_inc(bp);
1758 _xfs_buf_ioapply(bp);
1761 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1762 * reference we took above. If we drop it to zero, run completion so
1763 * that we don't return to the caller with completion still pending.
1765 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1766 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1769 xfs_buf_ioend_async(bp);
1773 error = xfs_buf_iowait(bp);
1776 * Release the hold that keeps the buffer referenced for the entire
1777 * I/O. Note that if the buffer is async, it is not safe to reference
1778 * after this release.
1792 return bp->b_addr + offset;
1794 page = bp->b_pages[offset >> PAGE_SHIFT];
1795 return page_address(page) + (offset & (PAGE_SIZE-1));
1806 bend = boff + bsize;
1807 while (boff < bend) {
1809 int page_index, page_offset, csize;
1811 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1812 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1813 page = bp->b_pages[page_index];
1814 csize = min_t(size_t, PAGE_SIZE - page_offset,
1815 BBTOB(bp->b_length) - boff);
1817 ASSERT((csize + page_offset) <= PAGE_SIZE);
1819 memset(page_address(page) + page_offset, 0, csize);
1826 * Log a message about and stale a buffer that a caller has decided is corrupt.
1828 * This function should be called for the kinds of metadata corruption that
1829 * cannot be detect from a verifier, such as incorrect inter-block relationship
1830 * data. Do /not/ call this function from a verifier function.
1832 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1833 * be marked stale, but b_error will not be set. The caller is responsible for
1834 * releasing the buffer or fixing it.
1837 __xfs_buf_mark_corrupt(
1841 ASSERT(bp->b_flags & XBF_DONE);
1843 xfs_buf_corruption_error(bp, fa);
1848 * Handling of buffer targets (buftargs).
1852 * Wait for any bufs with callbacks that have been submitted but have not yet
1853 * returned. These buffers will have an elevated hold count, so wait on those
1854 * while freeing all the buffers only held by the LRU.
1856 static enum lru_status
1857 xfs_buftarg_drain_rele(
1858 struct list_head *item,
1859 struct list_lru_one *lru,
1860 spinlock_t *lru_lock,
1864 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1865 struct list_head *dispose = arg;
1867 if (atomic_read(&bp->b_hold) > 1) {
1868 /* need to wait, so skip it this pass */
1869 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1872 if (!spin_trylock(&bp->b_lock))
1876 * clear the LRU reference count so the buffer doesn't get
1877 * ignored in xfs_buf_rele().
1879 atomic_set(&bp->b_lru_ref, 0);
1880 bp->b_state |= XFS_BSTATE_DISPOSE;
1881 list_lru_isolate_move(lru, item, dispose);
1882 spin_unlock(&bp->b_lock);
1887 * Wait for outstanding I/O on the buftarg to complete.
1891 struct xfs_buftarg *btp)
1894 * First wait on the buftarg I/O count for all in-flight buffers to be
1895 * released. This is critical as new buffers do not make the LRU until
1896 * they are released.
1898 * Next, flush the buffer workqueue to ensure all completion processing
1899 * has finished. Just waiting on buffer locks is not sufficient for
1900 * async IO as the reference count held over IO is not released until
1901 * after the buffer lock is dropped. Hence we need to ensure here that
1902 * all reference counts have been dropped before we start walking the
1905 while (percpu_counter_sum(&btp->bt_io_count))
1907 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1912 struct xfs_buftarg *btp)
1916 bool write_fail = false;
1918 xfs_buftarg_wait(btp);
1920 /* loop until there is nothing left on the lru list. */
1921 while (list_lru_count(&btp->bt_lru)) {
1922 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1923 &dispose, LONG_MAX);
1925 while (!list_empty(&dispose)) {
1927 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1928 list_del_init(&bp->b_lru);
1929 if (bp->b_flags & XBF_WRITE_FAIL) {
1931 xfs_buf_alert_ratelimited(bp,
1932 "XFS: Corruption Alert",
1933 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1934 (long long)xfs_buf_daddr(bp));
1943 * If one or more failed buffers were freed, that means dirty metadata
1944 * was thrown away. This should only ever happen after I/O completion
1945 * handling has elevated I/O error(s) to permanent failures and shuts
1949 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1950 xfs_alert(btp->bt_mount,
1951 "Please run xfs_repair to determine the extent of the problem.");
1955 static enum lru_status
1956 xfs_buftarg_isolate(
1957 struct list_head *item,
1958 struct list_lru_one *lru,
1959 spinlock_t *lru_lock,
1962 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1963 struct list_head *dispose = arg;
1966 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1967 * If we fail to get the lock, just skip it.
1969 if (!spin_trylock(&bp->b_lock))
1972 * Decrement the b_lru_ref count unless the value is already
1973 * zero. If the value is already zero, we need to reclaim the
1974 * buffer, otherwise it gets another trip through the LRU.
1976 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1977 spin_unlock(&bp->b_lock);
1981 bp->b_state |= XFS_BSTATE_DISPOSE;
1982 list_lru_isolate_move(lru, item, dispose);
1983 spin_unlock(&bp->b_lock);
1987 static unsigned long
1988 xfs_buftarg_shrink_scan(
1989 struct shrinker *shrink,
1990 struct shrink_control *sc)
1992 struct xfs_buftarg *btp = shrink->private_data;
1994 unsigned long freed;
1996 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1997 xfs_buftarg_isolate, &dispose);
1999 while (!list_empty(&dispose)) {
2001 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
2002 list_del_init(&bp->b_lru);
2009 static unsigned long
2010 xfs_buftarg_shrink_count(
2011 struct shrinker *shrink,
2012 struct shrink_control *sc)
2014 struct xfs_buftarg *btp = shrink->private_data;
2015 return list_lru_shrink_count(&btp->bt_lru, sc);
2019 xfs_destroy_buftarg(
2020 struct xfs_buftarg *btp)
2022 shrinker_free(btp->bt_shrinker);
2023 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2024 percpu_counter_destroy(&btp->bt_io_count);
2025 list_lru_destroy(&btp->bt_lru);
2030 struct xfs_buftarg *btp)
2032 xfs_destroy_buftarg(btp);
2033 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2034 /* the main block device is closed by kill_block_super */
2035 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2036 bdev_fput(btp->bt_bdev_file);
2041 xfs_setsize_buftarg(
2042 struct xfs_buftarg *btp,
2043 unsigned int sectorsize)
2045 /* Set up metadata sector size info */
2046 btp->bt_meta_sectorsize = sectorsize;
2047 btp->bt_meta_sectormask = sectorsize - 1;
2049 if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
2050 xfs_warn(btp->bt_mount,
2051 "Cannot set_blocksize to %u on device %pg",
2052 sectorsize, btp->bt_bdev);
2061 struct xfs_buftarg *btp,
2062 size_t logical_sectorsize,
2065 /* Set up device logical sector size mask */
2066 btp->bt_logical_sectorsize = logical_sectorsize;
2067 btp->bt_logical_sectormask = logical_sectorsize - 1;
2070 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2071 * per 30 seconds so as to not spam logs too much on repeated errors.
2073 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2074 DEFAULT_RATELIMIT_BURST);
2076 if (list_lru_init(&btp->bt_lru))
2078 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2079 goto out_destroy_lru;
2082 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2083 if (!btp->bt_shrinker)
2084 goto out_destroy_io_count;
2085 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2086 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2087 btp->bt_shrinker->private_data = btp;
2088 shrinker_register(btp->bt_shrinker);
2091 out_destroy_io_count:
2092 percpu_counter_destroy(&btp->bt_io_count);
2094 list_lru_destroy(&btp->bt_lru);
2098 struct xfs_buftarg *
2100 struct xfs_mount *mp,
2101 struct file *bdev_file)
2103 struct xfs_buftarg *btp;
2104 const struct dax_holder_operations *ops = NULL;
2106 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2107 ops = &xfs_dax_holder_operations;
2109 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2112 btp->bt_bdev_file = bdev_file;
2113 btp->bt_bdev = file_bdev(bdev_file);
2114 btp->bt_dev = btp->bt_bdev->bd_dev;
2115 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2119 * When allocating the buftargs we have not yet read the super block and
2120 * thus don't know the file system sector size yet.
2122 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2124 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2139 list_del_init(&bp->b_list);
2140 wake_up_var(&bp->b_list);
2144 * Cancel a delayed write list.
2146 * Remove each buffer from the list, clear the delwri queue flag and drop the
2147 * associated buffer reference.
2150 xfs_buf_delwri_cancel(
2151 struct list_head *list)
2155 while (!list_empty(list)) {
2156 bp = list_first_entry(list, struct xfs_buf, b_list);
2159 bp->b_flags &= ~_XBF_DELWRI_Q;
2160 xfs_buf_list_del(bp);
2166 * Add a buffer to the delayed write list.
2168 * This queues a buffer for writeout if it hasn't already been. Note that
2169 * neither this routine nor the buffer list submission functions perform
2170 * any internal synchronization. It is expected that the lists are thread-local
2173 * Returns true if we queued up the buffer, or false if it already had
2174 * been on the buffer list.
2177 xfs_buf_delwri_queue(
2179 struct list_head *list)
2181 ASSERT(xfs_buf_islocked(bp));
2182 ASSERT(!(bp->b_flags & XBF_READ));
2185 * If the buffer is already marked delwri it already is queued up
2186 * by someone else for imediate writeout. Just ignore it in that
2189 if (bp->b_flags & _XBF_DELWRI_Q) {
2190 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2194 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2197 * If a buffer gets written out synchronously or marked stale while it
2198 * is on a delwri list we lazily remove it. To do this, the other party
2199 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2200 * It remains referenced and on the list. In a rare corner case it
2201 * might get readded to a delwri list after the synchronous writeout, in
2202 * which case we need just need to re-add the flag here.
2204 bp->b_flags |= _XBF_DELWRI_Q;
2205 if (list_empty(&bp->b_list)) {
2206 atomic_inc(&bp->b_hold);
2207 list_add_tail(&bp->b_list, list);
2214 * Queue a buffer to this delwri list as part of a data integrity operation.
2215 * If the buffer is on any other delwri list, we'll wait for that to clear
2216 * so that the caller can submit the buffer for IO and wait for the result.
2217 * Callers must ensure the buffer is not already on the list.
2220 xfs_buf_delwri_queue_here(
2222 struct list_head *buffer_list)
2225 * We need this buffer to end up on the /caller's/ delwri list, not any
2226 * old list. This can happen if the buffer is marked stale (which
2227 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2228 * before the AIL has a chance to submit the list.
2230 while (!list_empty(&bp->b_list)) {
2232 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2236 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2238 xfs_buf_delwri_queue(bp, buffer_list);
2242 * Compare function is more complex than it needs to be because
2243 * the return value is only 32 bits and we are doing comparisons
2249 const struct list_head *a,
2250 const struct list_head *b)
2252 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2253 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2256 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2265 * Submit buffers for write. If wait_list is specified, the buffers are
2266 * submitted using sync I/O and placed on the wait list such that the caller can
2267 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2268 * at I/O completion time. In either case, buffers remain locked until I/O
2269 * completes and the buffer is released from the queue.
2272 xfs_buf_delwri_submit_buffers(
2273 struct list_head *buffer_list,
2274 struct list_head *wait_list)
2276 struct xfs_buf *bp, *n;
2278 struct blk_plug plug;
2280 list_sort(NULL, buffer_list, xfs_buf_cmp);
2282 blk_start_plug(&plug);
2283 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2285 if (!xfs_buf_trylock(bp))
2287 if (xfs_buf_ispinned(bp)) {
2297 * Someone else might have written the buffer synchronously or
2298 * marked it stale in the meantime. In that case only the
2299 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2300 * reference and remove it from the list here.
2302 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2303 xfs_buf_list_del(bp);
2308 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2311 * If we have a wait list, each buffer (and associated delwri
2312 * queue reference) transfers to it and is submitted
2313 * synchronously. Otherwise, drop the buffer from the delwri
2314 * queue and submit async.
2316 bp->b_flags &= ~_XBF_DELWRI_Q;
2317 bp->b_flags |= XBF_WRITE;
2319 bp->b_flags &= ~XBF_ASYNC;
2320 list_move_tail(&bp->b_list, wait_list);
2322 bp->b_flags |= XBF_ASYNC;
2323 xfs_buf_list_del(bp);
2325 __xfs_buf_submit(bp, false);
2327 blk_finish_plug(&plug);
2333 * Write out a buffer list asynchronously.
2335 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2336 * out and not wait for I/O completion on any of the buffers. This interface
2337 * is only safely useable for callers that can track I/O completion by higher
2338 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2341 * Note: this function will skip buffers it would block on, and in doing so
2342 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2343 * it is up to the caller to ensure that the buffer list is fully submitted or
2344 * cancelled appropriately when they are finished with the list. Failure to
2345 * cancel or resubmit the list until it is empty will result in leaked buffers
2349 xfs_buf_delwri_submit_nowait(
2350 struct list_head *buffer_list)
2352 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2356 * Write out a buffer list synchronously.
2358 * This will take the @buffer_list, write all buffers out and wait for I/O
2359 * completion on all of the buffers. @buffer_list is consumed by the function,
2360 * so callers must have some other way of tracking buffers if they require such
2364 xfs_buf_delwri_submit(
2365 struct list_head *buffer_list)
2367 LIST_HEAD (wait_list);
2368 int error = 0, error2;
2371 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2373 /* Wait for IO to complete. */
2374 while (!list_empty(&wait_list)) {
2375 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2377 xfs_buf_list_del(bp);
2380 * Wait on the locked buffer, check for errors and unlock and
2381 * release the delwri queue reference.
2383 error2 = xfs_buf_iowait(bp);
2393 * Push a single buffer on a delwri queue.
2395 * The purpose of this function is to submit a single buffer of a delwri queue
2396 * and return with the buffer still on the original queue. The waiting delwri
2397 * buffer submission infrastructure guarantees transfer of the delwri queue
2398 * buffer reference to a temporary wait list. We reuse this infrastructure to
2399 * transfer the buffer back to the original queue.
2401 * Note the buffer transitions from the queued state, to the submitted and wait
2402 * listed state and back to the queued state during this call. The buffer
2403 * locking and queue management logic between _delwri_pushbuf() and
2404 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2408 xfs_buf_delwri_pushbuf(
2410 struct list_head *buffer_list)
2412 LIST_HEAD (submit_list);
2415 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2417 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2420 * Isolate the buffer to a new local list so we can submit it for I/O
2421 * independently from the rest of the original list.
2424 list_move(&bp->b_list, &submit_list);
2428 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2429 * the buffer on the wait list with the original reference. Rather than
2430 * bounce the buffer from a local wait list back to the original list
2431 * after I/O completion, reuse the original list as the wait list.
2433 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2436 * The buffer is now locked, under I/O and wait listed on the original
2437 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2438 * return with the buffer unlocked and on the original queue.
2440 error = xfs_buf_iowait(bp);
2441 bp->b_flags |= _XBF_DELWRI_Q;
2447 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2450 * Set the lru reference count to 0 based on the error injection tag.
2451 * This allows userspace to disrupt buffer caching for debug/testing
2454 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2457 atomic_set(&bp->b_lru_ref, lru_ref);
2461 * Verify an on-disk magic value against the magic value specified in the
2462 * verifier structure. The verifier magic is in disk byte order so the caller is
2463 * expected to pass the value directly from disk.
2470 struct xfs_mount *mp = bp->b_mount;
2473 idx = xfs_has_crc(mp);
2474 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2476 return dmagic == bp->b_ops->magic[idx];
2479 * Verify an on-disk magic value against the magic value specified in the
2480 * verifier structure. The verifier magic is in disk byte order so the caller is
2481 * expected to pass the value directly from disk.
2488 struct xfs_mount *mp = bp->b_mount;
2491 idx = xfs_has_crc(mp);
2492 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2494 return dmagic == bp->b_ops->magic16[idx];