1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
101 /* work_structs for global per-cpu drains */
104 struct work_struct work;
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
115 * Array of node states.
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
129 EXPORT_SYMBOL(node_states);
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 EXPORT_SYMBOL(init_on_alloc);
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 EXPORT_SYMBOL(init_on_free);
152 static int __init early_init_on_alloc(char *buf)
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 static_branch_enable(&init_on_alloc);
165 static_branch_disable(&init_on_alloc);
168 early_param("init_on_alloc", early_init_on_alloc);
170 static int __init early_init_on_free(char *buf)
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 static_branch_enable(&init_on_free);
183 static_branch_disable(&init_on_free);
186 early_param("init_on_free", early_init_on_free);
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
196 static inline int get_pcppage_migratetype(struct page *page)
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 page->index = migratetype;
206 #ifdef CONFIG_PM_SLEEP
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
217 static gfp_t saved_gfp_mask;
219 void pm_restore_gfp_mask(void)
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
228 void pm_restrict_gfp_mask(void)
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236 bool pm_suspended_storage(void)
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
242 #endif /* CONFIG_PM_SLEEP */
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
248 static void __free_pages_ok(struct page *page, unsigned int order);
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
265 #ifdef CONFIG_ZONE_DMA32
269 #ifdef CONFIG_HIGHMEM
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
279 #ifdef CONFIG_ZONE_DMA32
283 #ifdef CONFIG_HIGHMEM
287 #ifdef CONFIG_ZONE_DEVICE
292 const char * const migratetype_names[MIGRATE_TYPES] = {
300 #ifdef CONFIG_MEMORY_ISOLATION
305 compound_page_dtor * const compound_page_dtors[] = {
308 #ifdef CONFIG_HUGETLB_PAGE
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
328 int watermark_boost_factor __read_mostly;
330 int watermark_boost_factor __read_mostly = 15000;
332 int watermark_scale_factor = 10;
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
360 int page_group_by_mobility_disabled __read_mostly;
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
392 int nid = early_pfn_to_nid(pfn);
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
407 static unsigned long prev_end_pfn, nr_initialised;
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
437 static inline bool early_page_uninitialised(unsigned long pfn)
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
477 * Return: pageblock_bits flags
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
481 unsigned long end_bitidx,
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long end_bitidx,
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
541 word = READ_ONCE(bitmap[word_bitidx]);
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
550 void set_pageblock_migratetype(struct page *page, int migratetype)
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
574 } while (zone_span_seqretry(zone, seq));
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
584 static int page_is_consistent(struct zone *zone, struct page *page)
586 if (!pfn_valid_within(page_to_pfn(page)))
588 if (zone != page_zone(page))
594 * Temporary debugging check for pages not lying within a given zone.
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
598 if (page_outside_zone_boundaries(zone, page))
600 if (!page_is_consistent(zone, page))
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
630 "BUG: Bad page state: %lu messages suppressed\n",
637 resume = jiffies + 60 * HZ;
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 * Higher-order pages are called "compound pages". They are structured thusly:
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
671 void free_compound_page(struct page *page)
673 __free_pages_ok(page, compound_order(page));
676 void prep_compound_page(struct page *page, unsigned int order)
679 int nr_pages = 1 << order;
681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
682 set_compound_order(page, order);
684 for (i = 1; i < nr_pages; i++) {
685 struct page *p = page + i;
686 set_page_count(p, 0);
687 p->mapping = TAIL_MAPPING;
688 set_compound_head(p, page);
690 atomic_set(compound_mapcount_ptr(page), -1);
693 #ifdef CONFIG_DEBUG_PAGEALLOC
694 unsigned int _debug_guardpage_minorder;
696 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
697 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705 static int __init early_debug_pagealloc(char *buf)
709 if (kstrtobool(buf, &enable))
713 static_branch_enable(&_debug_pagealloc_enabled);
717 early_param("debug_pagealloc", early_debug_pagealloc);
719 static void init_debug_guardpage(void)
721 if (!debug_pagealloc_enabled())
724 if (!debug_guardpage_minorder())
727 static_branch_enable(&_debug_guardpage_enabled);
730 static int __init debug_guardpage_minorder_setup(char *buf)
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
735 pr_err("Bad debug_guardpage_minorder value\n");
738 _debug_guardpage_minorder = res;
739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 unsigned int order, int migratetype)
747 if (!debug_guardpage_enabled())
750 if (order >= debug_guardpage_minorder())
753 __SetPageGuard(page);
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
765 if (!debug_guardpage_enabled())
768 __ClearPageGuard(page);
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
781 static inline void set_page_order(struct page *page, unsigned int order)
783 set_page_private(page, order);
784 __SetPageBuddy(page);
788 * This function checks whether a page is free && is the buddy
789 * we can coalesce a page and its buddy if
790 * (a) the buddy is not in a hole (check before calling!) &&
791 * (b) the buddy is in the buddy system &&
792 * (c) a page and its buddy have the same order &&
793 * (d) a page and its buddy are in the same zone.
795 * For recording whether a page is in the buddy system, we set PageBuddy.
796 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798 * For recording page's order, we use page_private(page).
800 static inline int page_is_buddy(struct page *page, struct page *buddy,
803 if (page_is_guard(buddy) && page_order(buddy) == order) {
804 if (page_zone_id(page) != page_zone_id(buddy))
807 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
812 if (PageBuddy(buddy) && page_order(buddy) == order) {
814 * zone check is done late to avoid uselessly
815 * calculating zone/node ids for pages that could
818 if (page_zone_id(page) != page_zone_id(buddy))
821 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
828 #ifdef CONFIG_COMPACTION
829 static inline struct capture_control *task_capc(struct zone *zone)
831 struct capture_control *capc = current->capture_control;
834 !(current->flags & PF_KTHREAD) &&
836 capc->cc->zone == zone &&
837 capc->cc->direct_compaction ? capc : NULL;
841 compaction_capture(struct capture_control *capc, struct page *page,
842 int order, int migratetype)
844 if (!capc || order != capc->cc->order)
847 /* Do not accidentally pollute CMA or isolated regions*/
848 if (is_migrate_cma(migratetype) ||
849 is_migrate_isolate(migratetype))
853 * Do not let lower order allocations polluate a movable pageblock.
854 * This might let an unmovable request use a reclaimable pageblock
855 * and vice-versa but no more than normal fallback logic which can
856 * have trouble finding a high-order free page.
858 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 static inline struct capture_control *task_capc(struct zone *zone)
872 compaction_capture(struct capture_control *capc, struct page *page,
873 int order, int migratetype)
877 #endif /* CONFIG_COMPACTION */
880 * Freeing function for a buddy system allocator.
882 * The concept of a buddy system is to maintain direct-mapped table
883 * (containing bit values) for memory blocks of various "orders".
884 * The bottom level table contains the map for the smallest allocatable
885 * units of memory (here, pages), and each level above it describes
886 * pairs of units from the levels below, hence, "buddies".
887 * At a high level, all that happens here is marking the table entry
888 * at the bottom level available, and propagating the changes upward
889 * as necessary, plus some accounting needed to play nicely with other
890 * parts of the VM system.
891 * At each level, we keep a list of pages, which are heads of continuous
892 * free pages of length of (1 << order) and marked with PageBuddy.
893 * Page's order is recorded in page_private(page) field.
894 * So when we are allocating or freeing one, we can derive the state of the
895 * other. That is, if we allocate a small block, and both were
896 * free, the remainder of the region must be split into blocks.
897 * If a block is freed, and its buddy is also free, then this
898 * triggers coalescing into a block of larger size.
903 static inline void __free_one_page(struct page *page,
905 struct zone *zone, unsigned int order,
908 unsigned long combined_pfn;
909 unsigned long uninitialized_var(buddy_pfn);
911 unsigned int max_order;
912 struct capture_control *capc = task_capc(zone);
914 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916 VM_BUG_ON(!zone_is_initialized(zone));
917 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919 VM_BUG_ON(migratetype == -1);
920 if (likely(!is_migrate_isolate(migratetype)))
921 __mod_zone_freepage_state(zone, 1 << order, migratetype);
923 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
924 VM_BUG_ON_PAGE(bad_range(zone, page), page);
927 while (order < max_order - 1) {
928 if (compaction_capture(capc, page, order, migratetype)) {
929 __mod_zone_freepage_state(zone, -(1 << order),
933 buddy_pfn = __find_buddy_pfn(pfn, order);
934 buddy = page + (buddy_pfn - pfn);
936 if (!pfn_valid_within(buddy_pfn))
938 if (!page_is_buddy(page, buddy, order))
941 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
942 * merge with it and move up one order.
944 if (page_is_guard(buddy))
945 clear_page_guard(zone, buddy, order, migratetype);
947 del_page_from_free_area(buddy, &zone->free_area[order]);
948 combined_pfn = buddy_pfn & pfn;
949 page = page + (combined_pfn - pfn);
953 if (max_order < MAX_ORDER) {
954 /* If we are here, it means order is >= pageblock_order.
955 * We want to prevent merge between freepages on isolate
956 * pageblock and normal pageblock. Without this, pageblock
957 * isolation could cause incorrect freepage or CMA accounting.
959 * We don't want to hit this code for the more frequent
962 if (unlikely(has_isolate_pageblock(zone))) {
965 buddy_pfn = __find_buddy_pfn(pfn, order);
966 buddy = page + (buddy_pfn - pfn);
967 buddy_mt = get_pageblock_migratetype(buddy);
969 if (migratetype != buddy_mt
970 && (is_migrate_isolate(migratetype) ||
971 is_migrate_isolate(buddy_mt)))
975 goto continue_merging;
979 set_page_order(page, order);
982 * If this is not the largest possible page, check if the buddy
983 * of the next-highest order is free. If it is, it's possible
984 * that pages are being freed that will coalesce soon. In case,
985 * that is happening, add the free page to the tail of the list
986 * so it's less likely to be used soon and more likely to be merged
987 * as a higher order page
989 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
990 && !is_shuffle_order(order)) {
991 struct page *higher_page, *higher_buddy;
992 combined_pfn = buddy_pfn & pfn;
993 higher_page = page + (combined_pfn - pfn);
994 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
995 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
996 if (pfn_valid_within(buddy_pfn) &&
997 page_is_buddy(higher_page, higher_buddy, order + 1)) {
998 add_to_free_area_tail(page, &zone->free_area[order],
1004 if (is_shuffle_order(order))
1005 add_to_free_area_random(page, &zone->free_area[order],
1008 add_to_free_area(page, &zone->free_area[order], migratetype);
1013 * A bad page could be due to a number of fields. Instead of multiple branches,
1014 * try and check multiple fields with one check. The caller must do a detailed
1015 * check if necessary.
1017 static inline bool page_expected_state(struct page *page,
1018 unsigned long check_flags)
1020 if (unlikely(atomic_read(&page->_mapcount) != -1))
1023 if (unlikely((unsigned long)page->mapping |
1024 page_ref_count(page) |
1026 (unsigned long)page->mem_cgroup |
1028 (page->flags & check_flags)))
1034 static void free_pages_check_bad(struct page *page)
1036 const char *bad_reason;
1037 unsigned long bad_flags;
1042 if (unlikely(atomic_read(&page->_mapcount) != -1))
1043 bad_reason = "nonzero mapcount";
1044 if (unlikely(page->mapping != NULL))
1045 bad_reason = "non-NULL mapping";
1046 if (unlikely(page_ref_count(page) != 0))
1047 bad_reason = "nonzero _refcount";
1048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1049 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1050 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1053 if (unlikely(page->mem_cgroup))
1054 bad_reason = "page still charged to cgroup";
1056 bad_page(page, bad_reason, bad_flags);
1059 static inline int free_pages_check(struct page *page)
1061 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1064 /* Something has gone sideways, find it */
1065 free_pages_check_bad(page);
1069 static int free_tail_pages_check(struct page *head_page, struct page *page)
1074 * We rely page->lru.next never has bit 0 set, unless the page
1075 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1083 switch (page - head_page) {
1085 /* the first tail page: ->mapping may be compound_mapcount() */
1086 if (unlikely(compound_mapcount(page))) {
1087 bad_page(page, "nonzero compound_mapcount", 0);
1093 * the second tail page: ->mapping is
1094 * deferred_list.next -- ignore value.
1098 if (page->mapping != TAIL_MAPPING) {
1099 bad_page(page, "corrupted mapping in tail page", 0);
1104 if (unlikely(!PageTail(page))) {
1105 bad_page(page, "PageTail not set", 0);
1108 if (unlikely(compound_head(page) != head_page)) {
1109 bad_page(page, "compound_head not consistent", 0);
1114 page->mapping = NULL;
1115 clear_compound_head(page);
1119 static void kernel_init_free_pages(struct page *page, int numpages)
1123 for (i = 0; i < numpages; i++)
1124 clear_highpage(page + i);
1127 static __always_inline bool free_pages_prepare(struct page *page,
1128 unsigned int order, bool check_free)
1132 VM_BUG_ON_PAGE(PageTail(page), page);
1134 trace_mm_page_free(page, order);
1137 * Check tail pages before head page information is cleared to
1138 * avoid checking PageCompound for order-0 pages.
1140 if (unlikely(order)) {
1141 bool compound = PageCompound(page);
1144 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1147 ClearPageDoubleMap(page);
1148 for (i = 1; i < (1 << order); i++) {
1150 bad += free_tail_pages_check(page, page + i);
1151 if (unlikely(free_pages_check(page + i))) {
1155 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1158 if (PageMappingFlags(page))
1159 page->mapping = NULL;
1160 if (memcg_kmem_enabled() && PageKmemcg(page))
1161 __memcg_kmem_uncharge(page, order);
1163 bad += free_pages_check(page);
1167 page_cpupid_reset_last(page);
1168 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1169 reset_page_owner(page, order);
1171 if (!PageHighMem(page)) {
1172 debug_check_no_locks_freed(page_address(page),
1173 PAGE_SIZE << order);
1174 debug_check_no_obj_freed(page_address(page),
1175 PAGE_SIZE << order);
1177 arch_free_page(page, order);
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1181 kernel_poison_pages(page, 1 << order, 0);
1182 if (debug_pagealloc_enabled())
1183 kernel_map_pages(page, 1 << order, 0);
1185 kasan_free_nondeferred_pages(page, order);
1190 #ifdef CONFIG_DEBUG_VM
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1196 static bool free_pcp_prepare(struct page *page)
1198 return free_pages_prepare(page, 0, true);
1201 static bool bulkfree_pcp_prepare(struct page *page)
1203 if (debug_pagealloc_enabled())
1204 return free_pages_check(page);
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1215 static bool free_pcp_prepare(struct page *page)
1217 if (debug_pagealloc_enabled())
1218 return free_pages_prepare(page, 0, true);
1220 return free_pages_prepare(page, 0, false);
1223 static bool bulkfree_pcp_prepare(struct page *page)
1225 return free_pages_check(page);
1227 #endif /* CONFIG_DEBUG_VM */
1229 static inline void prefetch_buddy(struct page *page)
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1239 * Frees a number of pages from the PCP lists
1240 * Assumes all pages on list are in same zone, and of same order.
1241 * count is the number of pages to free.
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1249 static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1252 int migratetype = 0;
1254 int prefetch_nr = 0;
1255 bool isolated_pageblocks;
1256 struct page *page, *tmp;
1260 struct list_head *list;
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1271 if (++migratetype == MIGRATE_PCPTYPES)
1273 list = &pcp->lists[migratetype];
1274 } while (list_empty(list));
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free == MIGRATE_PCPTYPES)
1281 page = list_last_entry(list, struct page, lru);
1282 /* must delete to avoid corrupting pcp list */
1283 list_del(&page->lru);
1286 if (bulkfree_pcp_prepare(page))
1289 list_add_tail(&page->lru, &head);
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1300 if (prefetch_nr++ < pcp->batch)
1301 prefetch_buddy(page);
1302 } while (--count && --batch_free && !list_empty(list));
1305 spin_lock(&zone->lock);
1306 isolated_pageblocks = has_isolate_pageblock(zone);
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1312 list_for_each_entry_safe(page, tmp, &head, lru) {
1313 int mt = get_pcppage_migratetype(page);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks))
1318 mt = get_pageblock_migratetype(page);
1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 trace_mm_page_pcpu_drain(page, 0, mt);
1323 spin_unlock(&zone->lock);
1326 static void free_one_page(struct zone *zone,
1327 struct page *page, unsigned long pfn,
1331 spin_lock(&zone->lock);
1332 if (unlikely(has_isolate_pageblock(zone) ||
1333 is_migrate_isolate(migratetype))) {
1334 migratetype = get_pfnblock_migratetype(page, pfn);
1336 __free_one_page(page, pfn, zone, order, migratetype);
1337 spin_unlock(&zone->lock);
1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341 unsigned long zone, int nid)
1343 mm_zero_struct_page(page);
1344 set_page_links(page, zone, nid, pfn);
1345 init_page_count(page);
1346 page_mapcount_reset(page);
1347 page_cpupid_reset_last(page);
1348 page_kasan_tag_reset(page);
1350 INIT_LIST_HEAD(&page->lru);
1351 #ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone))
1354 set_page_address(page, __va(pfn << PAGE_SHIFT));
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 static void __meminit init_reserved_page(unsigned long pfn)
1364 if (!early_page_uninitialised(pfn))
1367 nid = early_pfn_to_nid(pfn);
1368 pgdat = NODE_DATA(nid);
1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 struct zone *zone = &pgdat->node_zones[zid];
1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1379 static inline void init_reserved_page(unsigned long pfn)
1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1392 unsigned long start_pfn = PFN_DOWN(start);
1393 unsigned long end_pfn = PFN_UP(end);
1395 for (; start_pfn < end_pfn; start_pfn++) {
1396 if (pfn_valid(start_pfn)) {
1397 struct page *page = pfn_to_page(start_pfn);
1399 init_reserved_page(start_pfn);
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page->lru);
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1409 __SetPageReserved(page);
1414 static void __free_pages_ok(struct page *page, unsigned int order)
1416 unsigned long flags;
1418 unsigned long pfn = page_to_pfn(page);
1420 if (!free_pages_prepare(page, order, true))
1423 migratetype = get_pfnblock_migratetype(page, pfn);
1424 local_irq_save(flags);
1425 __count_vm_events(PGFREE, 1 << order);
1426 free_one_page(page_zone(page), page, pfn, order, migratetype);
1427 local_irq_restore(flags);
1430 void __free_pages_core(struct page *page, unsigned int order)
1432 unsigned int nr_pages = 1 << order;
1433 struct page *p = page;
1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1439 __ClearPageReserved(p);
1440 set_page_count(p, 0);
1442 __ClearPageReserved(p);
1443 set_page_count(p, 0);
1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 set_page_refcounted(page);
1447 __free_pages(page, order);
1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1455 int __meminit early_pfn_to_nid(unsigned long pfn)
1457 static DEFINE_SPINLOCK(early_pfn_lock);
1460 spin_lock(&early_pfn_lock);
1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1463 nid = first_online_node;
1464 spin_unlock(&early_pfn_lock);
1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 /* Only safe to use early in boot when initialisation is single-threaded */
1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 if (nid >= 0 && nid != node)
1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1490 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1493 if (early_page_uninitialised(pfn))
1495 __free_pages_core(page, order);
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1518 struct page *start_page;
1519 struct page *end_page;
1521 /* end_pfn is one past the range we are checking */
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1527 start_page = pfn_to_online_page(start_pfn);
1531 if (page_zone(start_page) != zone)
1534 end_page = pfn_to_page(end_pfn);
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1543 void set_zone_contiguous(struct zone *zone)
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1560 /* We confirm that there is no hole */
1561 zone->contiguous = true;
1564 void clear_zone_contiguous(struct zone *zone)
1566 zone->contiguous = false;
1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 static void __init deferred_free_range(unsigned long pfn,
1571 unsigned long nr_pages)
1579 page = pfn_to_page(pfn);
1581 /* Free a large naturally-aligned chunk if possible */
1582 if (nr_pages == pageblock_nr_pages &&
1583 (pfn & (pageblock_nr_pages - 1)) == 0) {
1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585 __free_pages_core(page, pageblock_order);
1589 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, 0);
1596 /* Completion tracking for deferred_init_memmap() threads */
1597 static atomic_t pgdat_init_n_undone __initdata;
1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1600 static inline void __init pgdat_init_report_one_done(void)
1602 if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 complete(&pgdat_init_all_done_comp);
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1613 * Then, we check if a current large page is valid by only checking the validity
1616 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1618 if (!pfn_valid_within(pfn))
1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1629 static void __init deferred_free_pages(unsigned long pfn,
1630 unsigned long end_pfn)
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 unsigned long nr_free = 0;
1635 for (; pfn < end_pfn; pfn++) {
1636 if (!deferred_pfn_valid(pfn)) {
1637 deferred_free_range(pfn - nr_free, nr_free);
1639 } else if (!(pfn & nr_pgmask)) {
1640 deferred_free_range(pfn - nr_free, nr_free);
1642 touch_nmi_watchdog();
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn - nr_free, nr_free);
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1656 static unsigned long __init deferred_init_pages(struct zone *zone,
1658 unsigned long end_pfn)
1660 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661 int nid = zone_to_nid(zone);
1662 unsigned long nr_pages = 0;
1663 int zid = zone_idx(zone);
1664 struct page *page = NULL;
1666 for (; pfn < end_pfn; pfn++) {
1667 if (!deferred_pfn_valid(pfn)) {
1670 } else if (!page || !(pfn & nr_pgmask)) {
1671 page = pfn_to_page(pfn);
1672 touch_nmi_watchdog();
1676 __init_single_page(page, pfn, zid, nid);
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 unsigned long *spfn, unsigned long *epfn,
1691 unsigned long first_init_pfn)
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 if (*epfn <= first_init_pfn)
1703 if (*spfn < first_init_pfn)
1704 *spfn = first_init_pfn;
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1722 static unsigned long __init
1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 unsigned long *end_pfn)
1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 unsigned long nr_pages = 0;
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1735 if (mo_pfn <= *start_pfn)
1738 t = min(mo_pfn, *end_pfn);
1739 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1741 if (mo_pfn < *end_pfn) {
1742 *start_pfn = mo_pfn;
1747 /* Reset values and now loop through freeing pages as needed */
1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1756 t = min(mo_pfn, epfn);
1757 deferred_free_pages(spfn, t);
1766 /* Initialise remaining memory on a node */
1767 static int __init deferred_init_memmap(void *data)
1769 pg_data_t *pgdat = data;
1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 unsigned long first_init_pfn, flags;
1773 unsigned long start = jiffies;
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask))
1780 set_cpus_allowed_ptr(current, cpumask);
1782 pgdat_resize_lock(pgdat, &flags);
1783 first_init_pfn = pgdat->first_deferred_pfn;
1784 if (first_init_pfn == ULONG_MAX) {
1785 pgdat_resize_unlock(pgdat, &flags);
1786 pgdat_init_report_one_done();
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 pgdat->first_deferred_pfn = ULONG_MAX;
1795 /* Only the highest zone is deferred so find it */
1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 zone = pgdat->node_zones + zid;
1798 if (first_init_pfn < zone_end_pfn(zone))
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1815 pgdat_resize_unlock(pgdat, &flags);
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1823 pgdat_init_report_one_done();
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1842 static noinline bool __init
1843 deferred_grow_zone(struct zone *zone, unsigned int order)
1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846 pg_data_t *pgdat = zone->zone_pgdat;
1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 unsigned long spfn, epfn, flags;
1849 unsigned long nr_pages = 0;
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1856 pgdat_resize_lock(pgdat, &flags);
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1864 if (!static_branch_unlikely(&deferred_pages)) {
1865 pgdat_resize_unlock(pgdat, &flags);
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
1882 pgdat_resize_unlock(pgdat, &flags);
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1902 /* If our quota has been met we can stop here */
1903 if (nr_pages >= nr_pages_needed)
1907 pgdat->first_deferred_pfn = spfn;
1908 pgdat_resize_unlock(pgdat, &flags);
1910 return nr_pages > 0;
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1920 _deferred_grow_zone(struct zone *zone, unsigned int order)
1922 return deferred_grow_zone(zone, order);
1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1927 void __init page_alloc_init_late(void)
1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 for_each_node_state(nid, N_MEMORY) {
1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1940 /* Block until all are initialised */
1941 wait_for_completion(&pgdat_init_all_done_comp);
1944 * We initialized the rest of the deferred pages. Permanently disable
1945 * on-demand struct page initialization.
1947 static_branch_disable(&deferred_pages);
1949 /* Reinit limits that are based on free pages after the kernel is up */
1950 files_maxfiles_init();
1953 /* Discard memblock private memory */
1956 for_each_node_state(nid, N_MEMORY)
1957 shuffle_free_memory(NODE_DATA(nid));
1959 for_each_populated_zone(zone)
1960 set_zone_contiguous(zone);
1962 #ifdef CONFIG_DEBUG_PAGEALLOC
1963 init_debug_guardpage();
1968 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1969 void __init init_cma_reserved_pageblock(struct page *page)
1971 unsigned i = pageblock_nr_pages;
1972 struct page *p = page;
1975 __ClearPageReserved(p);
1976 set_page_count(p, 0);
1979 set_pageblock_migratetype(page, MIGRATE_CMA);
1981 if (pageblock_order >= MAX_ORDER) {
1982 i = pageblock_nr_pages;
1985 set_page_refcounted(p);
1986 __free_pages(p, MAX_ORDER - 1);
1987 p += MAX_ORDER_NR_PAGES;
1988 } while (i -= MAX_ORDER_NR_PAGES);
1990 set_page_refcounted(page);
1991 __free_pages(page, pageblock_order);
1994 adjust_managed_page_count(page, pageblock_nr_pages);
1999 * The order of subdivision here is critical for the IO subsystem.
2000 * Please do not alter this order without good reasons and regression
2001 * testing. Specifically, as large blocks of memory are subdivided,
2002 * the order in which smaller blocks are delivered depends on the order
2003 * they're subdivided in this function. This is the primary factor
2004 * influencing the order in which pages are delivered to the IO
2005 * subsystem according to empirical testing, and this is also justified
2006 * by considering the behavior of a buddy system containing a single
2007 * large block of memory acted on by a series of small allocations.
2008 * This behavior is a critical factor in sglist merging's success.
2012 static inline void expand(struct zone *zone, struct page *page,
2013 int low, int high, struct free_area *area,
2016 unsigned long size = 1 << high;
2018 while (high > low) {
2022 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2025 * Mark as guard pages (or page), that will allow to
2026 * merge back to allocator when buddy will be freed.
2027 * Corresponding page table entries will not be touched,
2028 * pages will stay not present in virtual address space
2030 if (set_page_guard(zone, &page[size], high, migratetype))
2033 add_to_free_area(&page[size], area, migratetype);
2034 set_page_order(&page[size], high);
2038 static void check_new_page_bad(struct page *page)
2040 const char *bad_reason = NULL;
2041 unsigned long bad_flags = 0;
2043 if (unlikely(atomic_read(&page->_mapcount) != -1))
2044 bad_reason = "nonzero mapcount";
2045 if (unlikely(page->mapping != NULL))
2046 bad_reason = "non-NULL mapping";
2047 if (unlikely(page_ref_count(page) != 0))
2048 bad_reason = "nonzero _refcount";
2049 if (unlikely(page->flags & __PG_HWPOISON)) {
2050 bad_reason = "HWPoisoned (hardware-corrupted)";
2051 bad_flags = __PG_HWPOISON;
2052 /* Don't complain about hwpoisoned pages */
2053 page_mapcount_reset(page); /* remove PageBuddy */
2056 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2057 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2058 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2061 if (unlikely(page->mem_cgroup))
2062 bad_reason = "page still charged to cgroup";
2064 bad_page(page, bad_reason, bad_flags);
2068 * This page is about to be returned from the page allocator
2070 static inline int check_new_page(struct page *page)
2072 if (likely(page_expected_state(page,
2073 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2076 check_new_page_bad(page);
2080 static inline bool free_pages_prezeroed(void)
2082 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2083 page_poisoning_enabled()) || want_init_on_free();
2086 #ifdef CONFIG_DEBUG_VM
2088 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2089 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2090 * also checked when pcp lists are refilled from the free lists.
2092 static inline bool check_pcp_refill(struct page *page)
2094 if (debug_pagealloc_enabled())
2095 return check_new_page(page);
2100 static inline bool check_new_pcp(struct page *page)
2102 return check_new_page(page);
2106 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2107 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2108 * enabled, they are also checked when being allocated from the pcp lists.
2110 static inline bool check_pcp_refill(struct page *page)
2112 return check_new_page(page);
2114 static inline bool check_new_pcp(struct page *page)
2116 if (debug_pagealloc_enabled())
2117 return check_new_page(page);
2121 #endif /* CONFIG_DEBUG_VM */
2123 static bool check_new_pages(struct page *page, unsigned int order)
2126 for (i = 0; i < (1 << order); i++) {
2127 struct page *p = page + i;
2129 if (unlikely(check_new_page(p)))
2136 inline void post_alloc_hook(struct page *page, unsigned int order,
2139 set_page_private(page, 0);
2140 set_page_refcounted(page);
2142 arch_alloc_page(page, order);
2143 if (debug_pagealloc_enabled())
2144 kernel_map_pages(page, 1 << order, 1);
2145 kasan_alloc_pages(page, order);
2146 kernel_poison_pages(page, 1 << order, 1);
2147 set_page_owner(page, order, gfp_flags);
2150 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2151 unsigned int alloc_flags)
2153 post_alloc_hook(page, order, gfp_flags);
2155 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2156 kernel_init_free_pages(page, 1 << order);
2158 if (order && (gfp_flags & __GFP_COMP))
2159 prep_compound_page(page, order);
2162 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2163 * allocate the page. The expectation is that the caller is taking
2164 * steps that will free more memory. The caller should avoid the page
2165 * being used for !PFMEMALLOC purposes.
2167 if (alloc_flags & ALLOC_NO_WATERMARKS)
2168 set_page_pfmemalloc(page);
2170 clear_page_pfmemalloc(page);
2174 * Go through the free lists for the given migratetype and remove
2175 * the smallest available page from the freelists
2177 static __always_inline
2178 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2181 unsigned int current_order;
2182 struct free_area *area;
2185 /* Find a page of the appropriate size in the preferred list */
2186 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2187 area = &(zone->free_area[current_order]);
2188 page = get_page_from_free_area(area, migratetype);
2191 del_page_from_free_area(page, area);
2192 expand(zone, page, order, current_order, area, migratetype);
2193 set_pcppage_migratetype(page, migratetype);
2202 * This array describes the order lists are fallen back to when
2203 * the free lists for the desirable migrate type are depleted
2205 static int fallbacks[MIGRATE_TYPES][4] = {
2206 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2207 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2208 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2210 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2212 #ifdef CONFIG_MEMORY_ISOLATION
2213 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2218 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2221 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2224 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2225 unsigned int order) { return NULL; }
2229 * Move the free pages in a range to the free lists of the requested type.
2230 * Note that start_page and end_pages are not aligned on a pageblock
2231 * boundary. If alignment is required, use move_freepages_block()
2233 static int move_freepages(struct zone *zone,
2234 struct page *start_page, struct page *end_page,
2235 int migratetype, int *num_movable)
2239 int pages_moved = 0;
2241 for (page = start_page; page <= end_page;) {
2242 if (!pfn_valid_within(page_to_pfn(page))) {
2247 if (!PageBuddy(page)) {
2249 * We assume that pages that could be isolated for
2250 * migration are movable. But we don't actually try
2251 * isolating, as that would be expensive.
2254 (PageLRU(page) || __PageMovable(page)))
2261 /* Make sure we are not inadvertently changing nodes */
2262 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2263 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2265 order = page_order(page);
2266 move_to_free_area(page, &zone->free_area[order], migratetype);
2268 pages_moved += 1 << order;
2274 int move_freepages_block(struct zone *zone, struct page *page,
2275 int migratetype, int *num_movable)
2277 unsigned long start_pfn, end_pfn;
2278 struct page *start_page, *end_page;
2283 start_pfn = page_to_pfn(page);
2284 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2285 start_page = pfn_to_page(start_pfn);
2286 end_page = start_page + pageblock_nr_pages - 1;
2287 end_pfn = start_pfn + pageblock_nr_pages - 1;
2289 /* Do not cross zone boundaries */
2290 if (!zone_spans_pfn(zone, start_pfn))
2292 if (!zone_spans_pfn(zone, end_pfn))
2295 return move_freepages(zone, start_page, end_page, migratetype,
2299 static void change_pageblock_range(struct page *pageblock_page,
2300 int start_order, int migratetype)
2302 int nr_pageblocks = 1 << (start_order - pageblock_order);
2304 while (nr_pageblocks--) {
2305 set_pageblock_migratetype(pageblock_page, migratetype);
2306 pageblock_page += pageblock_nr_pages;
2311 * When we are falling back to another migratetype during allocation, try to
2312 * steal extra free pages from the same pageblocks to satisfy further
2313 * allocations, instead of polluting multiple pageblocks.
2315 * If we are stealing a relatively large buddy page, it is likely there will
2316 * be more free pages in the pageblock, so try to steal them all. For
2317 * reclaimable and unmovable allocations, we steal regardless of page size,
2318 * as fragmentation caused by those allocations polluting movable pageblocks
2319 * is worse than movable allocations stealing from unmovable and reclaimable
2322 static bool can_steal_fallback(unsigned int order, int start_mt)
2325 * Leaving this order check is intended, although there is
2326 * relaxed order check in next check. The reason is that
2327 * we can actually steal whole pageblock if this condition met,
2328 * but, below check doesn't guarantee it and that is just heuristic
2329 * so could be changed anytime.
2331 if (order >= pageblock_order)
2334 if (order >= pageblock_order / 2 ||
2335 start_mt == MIGRATE_RECLAIMABLE ||
2336 start_mt == MIGRATE_UNMOVABLE ||
2337 page_group_by_mobility_disabled)
2343 static inline void boost_watermark(struct zone *zone)
2345 unsigned long max_boost;
2347 if (!watermark_boost_factor)
2350 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2351 watermark_boost_factor, 10000);
2354 * high watermark may be uninitialised if fragmentation occurs
2355 * very early in boot so do not boost. We do not fall
2356 * through and boost by pageblock_nr_pages as failing
2357 * allocations that early means that reclaim is not going
2358 * to help and it may even be impossible to reclaim the
2359 * boosted watermark resulting in a hang.
2364 max_boost = max(pageblock_nr_pages, max_boost);
2366 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2371 * This function implements actual steal behaviour. If order is large enough,
2372 * we can steal whole pageblock. If not, we first move freepages in this
2373 * pageblock to our migratetype and determine how many already-allocated pages
2374 * are there in the pageblock with a compatible migratetype. If at least half
2375 * of pages are free or compatible, we can change migratetype of the pageblock
2376 * itself, so pages freed in the future will be put on the correct free list.
2378 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2379 unsigned int alloc_flags, int start_type, bool whole_block)
2381 unsigned int current_order = page_order(page);
2382 struct free_area *area;
2383 int free_pages, movable_pages, alike_pages;
2386 old_block_type = get_pageblock_migratetype(page);
2389 * This can happen due to races and we want to prevent broken
2390 * highatomic accounting.
2392 if (is_migrate_highatomic(old_block_type))
2395 /* Take ownership for orders >= pageblock_order */
2396 if (current_order >= pageblock_order) {
2397 change_pageblock_range(page, current_order, start_type);
2402 * Boost watermarks to increase reclaim pressure to reduce the
2403 * likelihood of future fallbacks. Wake kswapd now as the node
2404 * may be balanced overall and kswapd will not wake naturally.
2406 boost_watermark(zone);
2407 if (alloc_flags & ALLOC_KSWAPD)
2408 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2410 /* We are not allowed to try stealing from the whole block */
2414 free_pages = move_freepages_block(zone, page, start_type,
2417 * Determine how many pages are compatible with our allocation.
2418 * For movable allocation, it's the number of movable pages which
2419 * we just obtained. For other types it's a bit more tricky.
2421 if (start_type == MIGRATE_MOVABLE) {
2422 alike_pages = movable_pages;
2425 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2426 * to MOVABLE pageblock, consider all non-movable pages as
2427 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2428 * vice versa, be conservative since we can't distinguish the
2429 * exact migratetype of non-movable pages.
2431 if (old_block_type == MIGRATE_MOVABLE)
2432 alike_pages = pageblock_nr_pages
2433 - (free_pages + movable_pages);
2438 /* moving whole block can fail due to zone boundary conditions */
2443 * If a sufficient number of pages in the block are either free or of
2444 * comparable migratability as our allocation, claim the whole block.
2446 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2447 page_group_by_mobility_disabled)
2448 set_pageblock_migratetype(page, start_type);
2453 area = &zone->free_area[current_order];
2454 move_to_free_area(page, area, start_type);
2458 * Check whether there is a suitable fallback freepage with requested order.
2459 * If only_stealable is true, this function returns fallback_mt only if
2460 * we can steal other freepages all together. This would help to reduce
2461 * fragmentation due to mixed migratetype pages in one pageblock.
2463 int find_suitable_fallback(struct free_area *area, unsigned int order,
2464 int migratetype, bool only_stealable, bool *can_steal)
2469 if (area->nr_free == 0)
2474 fallback_mt = fallbacks[migratetype][i];
2475 if (fallback_mt == MIGRATE_TYPES)
2478 if (free_area_empty(area, fallback_mt))
2481 if (can_steal_fallback(order, migratetype))
2484 if (!only_stealable)
2495 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2496 * there are no empty page blocks that contain a page with a suitable order
2498 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2499 unsigned int alloc_order)
2502 unsigned long max_managed, flags;
2505 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2506 * Check is race-prone but harmless.
2508 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2509 if (zone->nr_reserved_highatomic >= max_managed)
2512 spin_lock_irqsave(&zone->lock, flags);
2514 /* Recheck the nr_reserved_highatomic limit under the lock */
2515 if (zone->nr_reserved_highatomic >= max_managed)
2519 mt = get_pageblock_migratetype(page);
2520 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2521 && !is_migrate_cma(mt)) {
2522 zone->nr_reserved_highatomic += pageblock_nr_pages;
2523 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2524 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2528 spin_unlock_irqrestore(&zone->lock, flags);
2532 * Used when an allocation is about to fail under memory pressure. This
2533 * potentially hurts the reliability of high-order allocations when under
2534 * intense memory pressure but failed atomic allocations should be easier
2535 * to recover from than an OOM.
2537 * If @force is true, try to unreserve a pageblock even though highatomic
2538 * pageblock is exhausted.
2540 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2543 struct zonelist *zonelist = ac->zonelist;
2544 unsigned long flags;
2551 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2554 * Preserve at least one pageblock unless memory pressure
2557 if (!force && zone->nr_reserved_highatomic <=
2561 spin_lock_irqsave(&zone->lock, flags);
2562 for (order = 0; order < MAX_ORDER; order++) {
2563 struct free_area *area = &(zone->free_area[order]);
2565 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2570 * In page freeing path, migratetype change is racy so
2571 * we can counter several free pages in a pageblock
2572 * in this loop althoug we changed the pageblock type
2573 * from highatomic to ac->migratetype. So we should
2574 * adjust the count once.
2576 if (is_migrate_highatomic_page(page)) {
2578 * It should never happen but changes to
2579 * locking could inadvertently allow a per-cpu
2580 * drain to add pages to MIGRATE_HIGHATOMIC
2581 * while unreserving so be safe and watch for
2584 zone->nr_reserved_highatomic -= min(
2586 zone->nr_reserved_highatomic);
2590 * Convert to ac->migratetype and avoid the normal
2591 * pageblock stealing heuristics. Minimally, the caller
2592 * is doing the work and needs the pages. More
2593 * importantly, if the block was always converted to
2594 * MIGRATE_UNMOVABLE or another type then the number
2595 * of pageblocks that cannot be completely freed
2598 set_pageblock_migratetype(page, ac->migratetype);
2599 ret = move_freepages_block(zone, page, ac->migratetype,
2602 spin_unlock_irqrestore(&zone->lock, flags);
2606 spin_unlock_irqrestore(&zone->lock, flags);
2613 * Try finding a free buddy page on the fallback list and put it on the free
2614 * list of requested migratetype, possibly along with other pages from the same
2615 * block, depending on fragmentation avoidance heuristics. Returns true if
2616 * fallback was found so that __rmqueue_smallest() can grab it.
2618 * The use of signed ints for order and current_order is a deliberate
2619 * deviation from the rest of this file, to make the for loop
2620 * condition simpler.
2622 static __always_inline bool
2623 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2624 unsigned int alloc_flags)
2626 struct free_area *area;
2628 int min_order = order;
2634 * Do not steal pages from freelists belonging to other pageblocks
2635 * i.e. orders < pageblock_order. If there are no local zones free,
2636 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2638 if (alloc_flags & ALLOC_NOFRAGMENT)
2639 min_order = pageblock_order;
2642 * Find the largest available free page in the other list. This roughly
2643 * approximates finding the pageblock with the most free pages, which
2644 * would be too costly to do exactly.
2646 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2648 area = &(zone->free_area[current_order]);
2649 fallback_mt = find_suitable_fallback(area, current_order,
2650 start_migratetype, false, &can_steal);
2651 if (fallback_mt == -1)
2655 * We cannot steal all free pages from the pageblock and the
2656 * requested migratetype is movable. In that case it's better to
2657 * steal and split the smallest available page instead of the
2658 * largest available page, because even if the next movable
2659 * allocation falls back into a different pageblock than this
2660 * one, it won't cause permanent fragmentation.
2662 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2663 && current_order > order)
2672 for (current_order = order; current_order < MAX_ORDER;
2674 area = &(zone->free_area[current_order]);
2675 fallback_mt = find_suitable_fallback(area, current_order,
2676 start_migratetype, false, &can_steal);
2677 if (fallback_mt != -1)
2682 * This should not happen - we already found a suitable fallback
2683 * when looking for the largest page.
2685 VM_BUG_ON(current_order == MAX_ORDER);
2688 page = get_page_from_free_area(area, fallback_mt);
2690 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2693 trace_mm_page_alloc_extfrag(page, order, current_order,
2694 start_migratetype, fallback_mt);
2701 * Do the hard work of removing an element from the buddy allocator.
2702 * Call me with the zone->lock already held.
2704 static __always_inline struct page *
2705 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2706 unsigned int alloc_flags)
2711 page = __rmqueue_smallest(zone, order, migratetype);
2712 if (unlikely(!page)) {
2713 if (migratetype == MIGRATE_MOVABLE)
2714 page = __rmqueue_cma_fallback(zone, order);
2716 if (!page && __rmqueue_fallback(zone, order, migratetype,
2721 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726 * Obtain a specified number of elements from the buddy allocator, all under
2727 * a single hold of the lock, for efficiency. Add them to the supplied list.
2728 * Returns the number of new pages which were placed at *list.
2730 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2731 unsigned long count, struct list_head *list,
2732 int migratetype, unsigned int alloc_flags)
2736 spin_lock(&zone->lock);
2737 for (i = 0; i < count; ++i) {
2738 struct page *page = __rmqueue(zone, order, migratetype,
2740 if (unlikely(page == NULL))
2743 if (unlikely(check_pcp_refill(page)))
2747 * Split buddy pages returned by expand() are received here in
2748 * physical page order. The page is added to the tail of
2749 * caller's list. From the callers perspective, the linked list
2750 * is ordered by page number under some conditions. This is
2751 * useful for IO devices that can forward direction from the
2752 * head, thus also in the physical page order. This is useful
2753 * for IO devices that can merge IO requests if the physical
2754 * pages are ordered properly.
2756 list_add_tail(&page->lru, list);
2758 if (is_migrate_cma(get_pcppage_migratetype(page)))
2759 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2764 * i pages were removed from the buddy list even if some leak due
2765 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2766 * on i. Do not confuse with 'alloced' which is the number of
2767 * pages added to the pcp list.
2769 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2770 spin_unlock(&zone->lock);
2776 * Called from the vmstat counter updater to drain pagesets of this
2777 * currently executing processor on remote nodes after they have
2780 * Note that this function must be called with the thread pinned to
2781 * a single processor.
2783 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2785 unsigned long flags;
2786 int to_drain, batch;
2788 local_irq_save(flags);
2789 batch = READ_ONCE(pcp->batch);
2790 to_drain = min(pcp->count, batch);
2792 free_pcppages_bulk(zone, to_drain, pcp);
2793 local_irq_restore(flags);
2798 * Drain pcplists of the indicated processor and zone.
2800 * The processor must either be the current processor and the
2801 * thread pinned to the current processor or a processor that
2804 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2806 unsigned long flags;
2807 struct per_cpu_pageset *pset;
2808 struct per_cpu_pages *pcp;
2810 local_irq_save(flags);
2811 pset = per_cpu_ptr(zone->pageset, cpu);
2815 free_pcppages_bulk(zone, pcp->count, pcp);
2816 local_irq_restore(flags);
2820 * Drain pcplists of all zones on the indicated processor.
2822 * The processor must either be the current processor and the
2823 * thread pinned to the current processor or a processor that
2826 static void drain_pages(unsigned int cpu)
2830 for_each_populated_zone(zone) {
2831 drain_pages_zone(cpu, zone);
2836 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2838 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2839 * the single zone's pages.
2841 void drain_local_pages(struct zone *zone)
2843 int cpu = smp_processor_id();
2846 drain_pages_zone(cpu, zone);
2851 static void drain_local_pages_wq(struct work_struct *work)
2853 struct pcpu_drain *drain;
2855 drain = container_of(work, struct pcpu_drain, work);
2858 * drain_all_pages doesn't use proper cpu hotplug protection so
2859 * we can race with cpu offline when the WQ can move this from
2860 * a cpu pinned worker to an unbound one. We can operate on a different
2861 * cpu which is allright but we also have to make sure to not move to
2865 drain_local_pages(drain->zone);
2870 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2872 * When zone parameter is non-NULL, spill just the single zone's pages.
2874 * Note that this can be extremely slow as the draining happens in a workqueue.
2876 void drain_all_pages(struct zone *zone)
2881 * Allocate in the BSS so we wont require allocation in
2882 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2884 static cpumask_t cpus_with_pcps;
2887 * Make sure nobody triggers this path before mm_percpu_wq is fully
2890 if (WARN_ON_ONCE(!mm_percpu_wq))
2894 * Do not drain if one is already in progress unless it's specific to
2895 * a zone. Such callers are primarily CMA and memory hotplug and need
2896 * the drain to be complete when the call returns.
2898 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2901 mutex_lock(&pcpu_drain_mutex);
2905 * We don't care about racing with CPU hotplug event
2906 * as offline notification will cause the notified
2907 * cpu to drain that CPU pcps and on_each_cpu_mask
2908 * disables preemption as part of its processing
2910 for_each_online_cpu(cpu) {
2911 struct per_cpu_pageset *pcp;
2913 bool has_pcps = false;
2916 pcp = per_cpu_ptr(zone->pageset, cpu);
2920 for_each_populated_zone(z) {
2921 pcp = per_cpu_ptr(z->pageset, cpu);
2922 if (pcp->pcp.count) {
2930 cpumask_set_cpu(cpu, &cpus_with_pcps);
2932 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2935 for_each_cpu(cpu, &cpus_with_pcps) {
2936 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2939 INIT_WORK(&drain->work, drain_local_pages_wq);
2940 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2942 for_each_cpu(cpu, &cpus_with_pcps)
2943 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2945 mutex_unlock(&pcpu_drain_mutex);
2948 #ifdef CONFIG_HIBERNATION
2951 * Touch the watchdog for every WD_PAGE_COUNT pages.
2953 #define WD_PAGE_COUNT (128*1024)
2955 void mark_free_pages(struct zone *zone)
2957 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2958 unsigned long flags;
2959 unsigned int order, t;
2962 if (zone_is_empty(zone))
2965 spin_lock_irqsave(&zone->lock, flags);
2967 max_zone_pfn = zone_end_pfn(zone);
2968 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2969 if (pfn_valid(pfn)) {
2970 page = pfn_to_page(pfn);
2972 if (!--page_count) {
2973 touch_nmi_watchdog();
2974 page_count = WD_PAGE_COUNT;
2977 if (page_zone(page) != zone)
2980 if (!swsusp_page_is_forbidden(page))
2981 swsusp_unset_page_free(page);
2984 for_each_migratetype_order(order, t) {
2985 list_for_each_entry(page,
2986 &zone->free_area[order].free_list[t], lru) {
2989 pfn = page_to_pfn(page);
2990 for (i = 0; i < (1UL << order); i++) {
2991 if (!--page_count) {
2992 touch_nmi_watchdog();
2993 page_count = WD_PAGE_COUNT;
2995 swsusp_set_page_free(pfn_to_page(pfn + i));
2999 spin_unlock_irqrestore(&zone->lock, flags);
3001 #endif /* CONFIG_PM */
3003 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3007 if (!free_pcp_prepare(page))
3010 migratetype = get_pfnblock_migratetype(page, pfn);
3011 set_pcppage_migratetype(page, migratetype);
3015 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3017 struct zone *zone = page_zone(page);
3018 struct per_cpu_pages *pcp;
3021 migratetype = get_pcppage_migratetype(page);
3022 __count_vm_event(PGFREE);
3025 * We only track unmovable, reclaimable and movable on pcp lists.
3026 * Free ISOLATE pages back to the allocator because they are being
3027 * offlined but treat HIGHATOMIC as movable pages so we can get those
3028 * areas back if necessary. Otherwise, we may have to free
3029 * excessively into the page allocator
3031 if (migratetype >= MIGRATE_PCPTYPES) {
3032 if (unlikely(is_migrate_isolate(migratetype))) {
3033 free_one_page(zone, page, pfn, 0, migratetype);
3036 migratetype = MIGRATE_MOVABLE;
3039 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3040 list_add(&page->lru, &pcp->lists[migratetype]);
3042 if (pcp->count >= pcp->high) {
3043 unsigned long batch = READ_ONCE(pcp->batch);
3044 free_pcppages_bulk(zone, batch, pcp);
3049 * Free a 0-order page
3051 void free_unref_page(struct page *page)
3053 unsigned long flags;
3054 unsigned long pfn = page_to_pfn(page);
3056 if (!free_unref_page_prepare(page, pfn))
3059 local_irq_save(flags);
3060 free_unref_page_commit(page, pfn);
3061 local_irq_restore(flags);
3065 * Free a list of 0-order pages
3067 void free_unref_page_list(struct list_head *list)
3069 struct page *page, *next;
3070 unsigned long flags, pfn;
3071 int batch_count = 0;
3073 /* Prepare pages for freeing */
3074 list_for_each_entry_safe(page, next, list, lru) {
3075 pfn = page_to_pfn(page);
3076 if (!free_unref_page_prepare(page, pfn))
3077 list_del(&page->lru);
3078 set_page_private(page, pfn);
3081 local_irq_save(flags);
3082 list_for_each_entry_safe(page, next, list, lru) {
3083 unsigned long pfn = page_private(page);
3085 set_page_private(page, 0);
3086 trace_mm_page_free_batched(page);
3087 free_unref_page_commit(page, pfn);
3090 * Guard against excessive IRQ disabled times when we get
3091 * a large list of pages to free.
3093 if (++batch_count == SWAP_CLUSTER_MAX) {
3094 local_irq_restore(flags);
3096 local_irq_save(flags);
3099 local_irq_restore(flags);
3103 * split_page takes a non-compound higher-order page, and splits it into
3104 * n (1<<order) sub-pages: page[0..n]
3105 * Each sub-page must be freed individually.
3107 * Note: this is probably too low level an operation for use in drivers.
3108 * Please consult with lkml before using this in your driver.
3110 void split_page(struct page *page, unsigned int order)
3114 VM_BUG_ON_PAGE(PageCompound(page), page);
3115 VM_BUG_ON_PAGE(!page_count(page), page);
3117 for (i = 1; i < (1 << order); i++)
3118 set_page_refcounted(page + i);
3119 split_page_owner(page, order);
3121 EXPORT_SYMBOL_GPL(split_page);
3123 int __isolate_free_page(struct page *page, unsigned int order)
3125 struct free_area *area = &page_zone(page)->free_area[order];
3126 unsigned long watermark;
3130 BUG_ON(!PageBuddy(page));
3132 zone = page_zone(page);
3133 mt = get_pageblock_migratetype(page);
3135 if (!is_migrate_isolate(mt)) {
3137 * Obey watermarks as if the page was being allocated. We can
3138 * emulate a high-order watermark check with a raised order-0
3139 * watermark, because we already know our high-order page
3142 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3143 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3146 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3149 /* Remove page from free list */
3151 del_page_from_free_area(page, area);
3154 * Set the pageblock if the isolated page is at least half of a
3157 if (order >= pageblock_order - 1) {
3158 struct page *endpage = page + (1 << order) - 1;
3159 for (; page < endpage; page += pageblock_nr_pages) {
3160 int mt = get_pageblock_migratetype(page);
3161 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3162 && !is_migrate_highatomic(mt))
3163 set_pageblock_migratetype(page,
3169 return 1UL << order;
3173 * Update NUMA hit/miss statistics
3175 * Must be called with interrupts disabled.
3177 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3180 enum numa_stat_item local_stat = NUMA_LOCAL;
3182 /* skip numa counters update if numa stats is disabled */
3183 if (!static_branch_likely(&vm_numa_stat_key))
3186 if (zone_to_nid(z) != numa_node_id())
3187 local_stat = NUMA_OTHER;
3189 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3190 __inc_numa_state(z, NUMA_HIT);
3192 __inc_numa_state(z, NUMA_MISS);
3193 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3195 __inc_numa_state(z, local_stat);
3199 /* Remove page from the per-cpu list, caller must protect the list */
3200 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3201 unsigned int alloc_flags,
3202 struct per_cpu_pages *pcp,
3203 struct list_head *list)
3208 if (list_empty(list)) {
3209 pcp->count += rmqueue_bulk(zone, 0,
3211 migratetype, alloc_flags);
3212 if (unlikely(list_empty(list)))
3216 page = list_first_entry(list, struct page, lru);
3217 list_del(&page->lru);
3219 } while (check_new_pcp(page));
3224 /* Lock and remove page from the per-cpu list */
3225 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3226 struct zone *zone, gfp_t gfp_flags,
3227 int migratetype, unsigned int alloc_flags)
3229 struct per_cpu_pages *pcp;
3230 struct list_head *list;
3232 unsigned long flags;
3234 local_irq_save(flags);
3235 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3236 list = &pcp->lists[migratetype];
3237 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3239 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3240 zone_statistics(preferred_zone, zone);
3242 local_irq_restore(flags);
3247 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3250 struct page *rmqueue(struct zone *preferred_zone,
3251 struct zone *zone, unsigned int order,
3252 gfp_t gfp_flags, unsigned int alloc_flags,
3255 unsigned long flags;
3258 if (likely(order == 0)) {
3259 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3260 migratetype, alloc_flags);
3265 * We most definitely don't want callers attempting to
3266 * allocate greater than order-1 page units with __GFP_NOFAIL.
3268 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3269 spin_lock_irqsave(&zone->lock, flags);
3273 if (alloc_flags & ALLOC_HARDER) {
3274 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3276 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3279 page = __rmqueue(zone, order, migratetype, alloc_flags);
3280 } while (page && check_new_pages(page, order));
3281 spin_unlock(&zone->lock);
3284 __mod_zone_freepage_state(zone, -(1 << order),
3285 get_pcppage_migratetype(page));
3287 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3288 zone_statistics(preferred_zone, zone);
3289 local_irq_restore(flags);
3292 /* Separate test+clear to avoid unnecessary atomics */
3293 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3294 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3295 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3298 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3302 local_irq_restore(flags);
3306 #ifdef CONFIG_FAIL_PAGE_ALLOC
3309 struct fault_attr attr;
3311 bool ignore_gfp_highmem;
3312 bool ignore_gfp_reclaim;
3314 } fail_page_alloc = {
3315 .attr = FAULT_ATTR_INITIALIZER,
3316 .ignore_gfp_reclaim = true,
3317 .ignore_gfp_highmem = true,
3321 static int __init setup_fail_page_alloc(char *str)
3323 return setup_fault_attr(&fail_page_alloc.attr, str);
3325 __setup("fail_page_alloc=", setup_fail_page_alloc);
3327 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3329 if (order < fail_page_alloc.min_order)
3331 if (gfp_mask & __GFP_NOFAIL)
3333 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3335 if (fail_page_alloc.ignore_gfp_reclaim &&
3336 (gfp_mask & __GFP_DIRECT_RECLAIM))
3339 return should_fail(&fail_page_alloc.attr, 1 << order);
3342 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3344 static int __init fail_page_alloc_debugfs(void)
3346 umode_t mode = S_IFREG | 0600;
3349 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3350 &fail_page_alloc.attr);
3352 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3353 &fail_page_alloc.ignore_gfp_reclaim);
3354 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3355 &fail_page_alloc.ignore_gfp_highmem);
3356 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3361 late_initcall(fail_page_alloc_debugfs);
3363 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3365 #else /* CONFIG_FAIL_PAGE_ALLOC */
3367 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3372 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3374 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3376 return __should_fail_alloc_page(gfp_mask, order);
3378 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3381 * Return true if free base pages are above 'mark'. For high-order checks it
3382 * will return true of the order-0 watermark is reached and there is at least
3383 * one free page of a suitable size. Checking now avoids taking the zone lock
3384 * to check in the allocation paths if no pages are free.
3386 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3387 int classzone_idx, unsigned int alloc_flags,
3392 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3394 /* free_pages may go negative - that's OK */
3395 free_pages -= (1 << order) - 1;
3397 if (alloc_flags & ALLOC_HIGH)
3401 * If the caller does not have rights to ALLOC_HARDER then subtract
3402 * the high-atomic reserves. This will over-estimate the size of the
3403 * atomic reserve but it avoids a search.
3405 if (likely(!alloc_harder)) {
3406 free_pages -= z->nr_reserved_highatomic;
3409 * OOM victims can try even harder than normal ALLOC_HARDER
3410 * users on the grounds that it's definitely going to be in
3411 * the exit path shortly and free memory. Any allocation it
3412 * makes during the free path will be small and short-lived.
3414 if (alloc_flags & ALLOC_OOM)
3422 /* If allocation can't use CMA areas don't use free CMA pages */
3423 if (!(alloc_flags & ALLOC_CMA))
3424 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3428 * Check watermarks for an order-0 allocation request. If these
3429 * are not met, then a high-order request also cannot go ahead
3430 * even if a suitable page happened to be free.
3432 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3435 /* If this is an order-0 request then the watermark is fine */
3439 /* For a high-order request, check at least one suitable page is free */
3440 for (o = order; o < MAX_ORDER; o++) {
3441 struct free_area *area = &z->free_area[o];
3447 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3448 if (!free_area_empty(area, mt))
3453 if ((alloc_flags & ALLOC_CMA) &&
3454 !free_area_empty(area, MIGRATE_CMA)) {
3459 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3465 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3466 int classzone_idx, unsigned int alloc_flags)
3468 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3469 zone_page_state(z, NR_FREE_PAGES));
3472 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3473 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3475 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3479 /* If allocation can't use CMA areas don't use free CMA pages */
3480 if (!(alloc_flags & ALLOC_CMA))
3481 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3485 * Fast check for order-0 only. If this fails then the reserves
3486 * need to be calculated. There is a corner case where the check
3487 * passes but only the high-order atomic reserve are free. If
3488 * the caller is !atomic then it'll uselessly search the free
3489 * list. That corner case is then slower but it is harmless.
3491 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3494 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3498 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3499 unsigned long mark, int classzone_idx)
3501 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3503 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3504 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3506 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3511 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3513 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3514 node_reclaim_distance;
3516 #else /* CONFIG_NUMA */
3517 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3521 #endif /* CONFIG_NUMA */
3524 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3525 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3526 * premature use of a lower zone may cause lowmem pressure problems that
3527 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3528 * probably too small. It only makes sense to spread allocations to avoid
3529 * fragmentation between the Normal and DMA32 zones.
3531 static inline unsigned int
3532 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3534 unsigned int alloc_flags = 0;
3536 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3537 alloc_flags |= ALLOC_KSWAPD;
3539 #ifdef CONFIG_ZONE_DMA32
3543 if (zone_idx(zone) != ZONE_NORMAL)
3547 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3548 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3549 * on UMA that if Normal is populated then so is DMA32.
3551 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3552 if (nr_online_nodes > 1 && !populated_zone(--zone))
3555 alloc_flags |= ALLOC_NOFRAGMENT;
3556 #endif /* CONFIG_ZONE_DMA32 */
3561 * get_page_from_freelist goes through the zonelist trying to allocate
3564 static struct page *
3565 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3566 const struct alloc_context *ac)
3570 struct pglist_data *last_pgdat_dirty_limit = NULL;
3575 * Scan zonelist, looking for a zone with enough free.
3576 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3578 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3579 z = ac->preferred_zoneref;
3580 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3585 if (cpusets_enabled() &&
3586 (alloc_flags & ALLOC_CPUSET) &&
3587 !__cpuset_zone_allowed(zone, gfp_mask))
3590 * When allocating a page cache page for writing, we
3591 * want to get it from a node that is within its dirty
3592 * limit, such that no single node holds more than its
3593 * proportional share of globally allowed dirty pages.
3594 * The dirty limits take into account the node's
3595 * lowmem reserves and high watermark so that kswapd
3596 * should be able to balance it without having to
3597 * write pages from its LRU list.
3599 * XXX: For now, allow allocations to potentially
3600 * exceed the per-node dirty limit in the slowpath
3601 * (spread_dirty_pages unset) before going into reclaim,
3602 * which is important when on a NUMA setup the allowed
3603 * nodes are together not big enough to reach the
3604 * global limit. The proper fix for these situations
3605 * will require awareness of nodes in the
3606 * dirty-throttling and the flusher threads.
3608 if (ac->spread_dirty_pages) {
3609 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3612 if (!node_dirty_ok(zone->zone_pgdat)) {
3613 last_pgdat_dirty_limit = zone->zone_pgdat;
3618 if (no_fallback && nr_online_nodes > 1 &&
3619 zone != ac->preferred_zoneref->zone) {
3623 * If moving to a remote node, retry but allow
3624 * fragmenting fallbacks. Locality is more important
3625 * than fragmentation avoidance.
3627 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3628 if (zone_to_nid(zone) != local_nid) {
3629 alloc_flags &= ~ALLOC_NOFRAGMENT;
3634 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3635 if (!zone_watermark_fast(zone, order, mark,
3636 ac_classzone_idx(ac), alloc_flags)) {
3639 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3641 * Watermark failed for this zone, but see if we can
3642 * grow this zone if it contains deferred pages.
3644 if (static_branch_unlikely(&deferred_pages)) {
3645 if (_deferred_grow_zone(zone, order))
3649 /* Checked here to keep the fast path fast */
3650 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 if (alloc_flags & ALLOC_NO_WATERMARKS)
3654 if (node_reclaim_mode == 0 ||
3655 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3658 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3660 case NODE_RECLAIM_NOSCAN:
3663 case NODE_RECLAIM_FULL:
3664 /* scanned but unreclaimable */
3667 /* did we reclaim enough */
3668 if (zone_watermark_ok(zone, order, mark,
3669 ac_classzone_idx(ac), alloc_flags))
3677 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3678 gfp_mask, alloc_flags, ac->migratetype);
3680 prep_new_page(page, order, gfp_mask, alloc_flags);
3683 * If this is a high-order atomic allocation then check
3684 * if the pageblock should be reserved for the future
3686 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3687 reserve_highatomic_pageblock(page, zone, order);
3691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3692 /* Try again if zone has deferred pages */
3693 if (static_branch_unlikely(&deferred_pages)) {
3694 if (_deferred_grow_zone(zone, order))
3702 * It's possible on a UMA machine to get through all zones that are
3703 * fragmented. If avoiding fragmentation, reset and try again.
3706 alloc_flags &= ~ALLOC_NOFRAGMENT;
3713 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3715 unsigned int filter = SHOW_MEM_FILTER_NODES;
3716 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3718 if (!__ratelimit(&show_mem_rs))
3722 * This documents exceptions given to allocations in certain
3723 * contexts that are allowed to allocate outside current's set
3726 if (!(gfp_mask & __GFP_NOMEMALLOC))
3727 if (tsk_is_oom_victim(current) ||
3728 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3729 filter &= ~SHOW_MEM_FILTER_NODES;
3730 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 filter &= ~SHOW_MEM_FILTER_NODES;
3733 show_mem(filter, nodemask);
3736 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3738 struct va_format vaf;
3740 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3741 DEFAULT_RATELIMIT_BURST);
3743 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3746 va_start(args, fmt);
3749 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3750 current->comm, &vaf, gfp_mask, &gfp_mask,
3751 nodemask_pr_args(nodemask));
3754 cpuset_print_current_mems_allowed();
3757 warn_alloc_show_mem(gfp_mask, nodemask);
3760 static inline struct page *
3761 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3762 unsigned int alloc_flags,
3763 const struct alloc_context *ac)
3767 page = get_page_from_freelist(gfp_mask, order,
3768 alloc_flags|ALLOC_CPUSET, ac);
3770 * fallback to ignore cpuset restriction if our nodes
3774 page = get_page_from_freelist(gfp_mask, order,
3780 static inline struct page *
3781 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3782 const struct alloc_context *ac, unsigned long *did_some_progress)
3784 struct oom_control oc = {
3785 .zonelist = ac->zonelist,
3786 .nodemask = ac->nodemask,
3788 .gfp_mask = gfp_mask,
3793 *did_some_progress = 0;
3796 * Acquire the oom lock. If that fails, somebody else is
3797 * making progress for us.
3799 if (!mutex_trylock(&oom_lock)) {
3800 *did_some_progress = 1;
3801 schedule_timeout_uninterruptible(1);
3806 * Go through the zonelist yet one more time, keep very high watermark
3807 * here, this is only to catch a parallel oom killing, we must fail if
3808 * we're still under heavy pressure. But make sure that this reclaim
3809 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3810 * allocation which will never fail due to oom_lock already held.
3812 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3813 ~__GFP_DIRECT_RECLAIM, order,
3814 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3818 /* Coredumps can quickly deplete all memory reserves */
3819 if (current->flags & PF_DUMPCORE)
3821 /* The OOM killer will not help higher order allocs */
3822 if (order > PAGE_ALLOC_COSTLY_ORDER)
3825 * We have already exhausted all our reclaim opportunities without any
3826 * success so it is time to admit defeat. We will skip the OOM killer
3827 * because it is very likely that the caller has a more reasonable
3828 * fallback than shooting a random task.
3830 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3832 /* The OOM killer does not needlessly kill tasks for lowmem */
3833 if (ac->high_zoneidx < ZONE_NORMAL)
3835 if (pm_suspended_storage())
3838 * XXX: GFP_NOFS allocations should rather fail than rely on
3839 * other request to make a forward progress.
3840 * We are in an unfortunate situation where out_of_memory cannot
3841 * do much for this context but let's try it to at least get
3842 * access to memory reserved if the current task is killed (see
3843 * out_of_memory). Once filesystems are ready to handle allocation
3844 * failures more gracefully we should just bail out here.
3847 /* The OOM killer may not free memory on a specific node */
3848 if (gfp_mask & __GFP_THISNODE)
3851 /* Exhausted what can be done so it's blame time */
3852 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3853 *did_some_progress = 1;
3856 * Help non-failing allocations by giving them access to memory
3859 if (gfp_mask & __GFP_NOFAIL)
3860 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3861 ALLOC_NO_WATERMARKS, ac);
3864 mutex_unlock(&oom_lock);
3869 * Maximum number of compaction retries wit a progress before OOM
3870 * killer is consider as the only way to move forward.
3872 #define MAX_COMPACT_RETRIES 16
3874 #ifdef CONFIG_COMPACTION
3875 /* Try memory compaction for high-order allocations before reclaim */
3876 static struct page *
3877 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3878 unsigned int alloc_flags, const struct alloc_context *ac,
3879 enum compact_priority prio, enum compact_result *compact_result)
3881 struct page *page = NULL;
3882 unsigned long pflags;
3883 unsigned int noreclaim_flag;
3888 psi_memstall_enter(&pflags);
3889 noreclaim_flag = memalloc_noreclaim_save();
3891 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3894 memalloc_noreclaim_restore(noreclaim_flag);
3895 psi_memstall_leave(&pflags);
3898 * At least in one zone compaction wasn't deferred or skipped, so let's
3899 * count a compaction stall
3901 count_vm_event(COMPACTSTALL);
3903 /* Prep a captured page if available */
3905 prep_new_page(page, order, gfp_mask, alloc_flags);
3907 /* Try get a page from the freelist if available */
3909 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3912 struct zone *zone = page_zone(page);
3914 zone->compact_blockskip_flush = false;
3915 compaction_defer_reset(zone, order, true);
3916 count_vm_event(COMPACTSUCCESS);
3921 * It's bad if compaction run occurs and fails. The most likely reason
3922 * is that pages exist, but not enough to satisfy watermarks.
3924 count_vm_event(COMPACTFAIL);
3932 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3933 enum compact_result compact_result,
3934 enum compact_priority *compact_priority,
3935 int *compaction_retries)
3937 int max_retries = MAX_COMPACT_RETRIES;
3940 int retries = *compaction_retries;
3941 enum compact_priority priority = *compact_priority;
3946 if (compaction_made_progress(compact_result))
3947 (*compaction_retries)++;
3950 * compaction considers all the zone as desperately out of memory
3951 * so it doesn't really make much sense to retry except when the
3952 * failure could be caused by insufficient priority
3954 if (compaction_failed(compact_result))
3955 goto check_priority;
3958 * make sure the compaction wasn't deferred or didn't bail out early
3959 * due to locks contention before we declare that we should give up.
3960 * But do not retry if the given zonelist is not suitable for
3963 if (compaction_withdrawn(compact_result)) {
3964 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3969 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3970 * costly ones because they are de facto nofail and invoke OOM
3971 * killer to move on while costly can fail and users are ready
3972 * to cope with that. 1/4 retries is rather arbitrary but we
3973 * would need much more detailed feedback from compaction to
3974 * make a better decision.
3976 if (order > PAGE_ALLOC_COSTLY_ORDER)
3978 if (*compaction_retries <= max_retries) {
3984 * Make sure there are attempts at the highest priority if we exhausted
3985 * all retries or failed at the lower priorities.
3988 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3989 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3991 if (*compact_priority > min_priority) {
3992 (*compact_priority)--;
3993 *compaction_retries = 0;
3997 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4001 static inline struct page *
4002 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4003 unsigned int alloc_flags, const struct alloc_context *ac,
4004 enum compact_priority prio, enum compact_result *compact_result)
4006 *compact_result = COMPACT_SKIPPED;
4011 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4012 enum compact_result compact_result,
4013 enum compact_priority *compact_priority,
4014 int *compaction_retries)
4019 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4023 * There are setups with compaction disabled which would prefer to loop
4024 * inside the allocator rather than hit the oom killer prematurely.
4025 * Let's give them a good hope and keep retrying while the order-0
4026 * watermarks are OK.
4028 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4030 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4031 ac_classzone_idx(ac), alloc_flags))
4036 #endif /* CONFIG_COMPACTION */
4038 #ifdef CONFIG_LOCKDEP
4039 static struct lockdep_map __fs_reclaim_map =
4040 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4042 static bool __need_fs_reclaim(gfp_t gfp_mask)
4044 gfp_mask = current_gfp_context(gfp_mask);
4046 /* no reclaim without waiting on it */
4047 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4050 /* this guy won't enter reclaim */
4051 if (current->flags & PF_MEMALLOC)
4054 /* We're only interested __GFP_FS allocations for now */
4055 if (!(gfp_mask & __GFP_FS))
4058 if (gfp_mask & __GFP_NOLOCKDEP)
4064 void __fs_reclaim_acquire(void)
4066 lock_map_acquire(&__fs_reclaim_map);
4069 void __fs_reclaim_release(void)
4071 lock_map_release(&__fs_reclaim_map);
4074 void fs_reclaim_acquire(gfp_t gfp_mask)
4076 if (__need_fs_reclaim(gfp_mask))
4077 __fs_reclaim_acquire();
4079 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4081 void fs_reclaim_release(gfp_t gfp_mask)
4083 if (__need_fs_reclaim(gfp_mask))
4084 __fs_reclaim_release();
4086 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4089 /* Perform direct synchronous page reclaim */
4091 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4092 const struct alloc_context *ac)
4095 unsigned int noreclaim_flag;
4096 unsigned long pflags;
4100 /* We now go into synchronous reclaim */
4101 cpuset_memory_pressure_bump();
4102 psi_memstall_enter(&pflags);
4103 fs_reclaim_acquire(gfp_mask);
4104 noreclaim_flag = memalloc_noreclaim_save();
4106 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4109 memalloc_noreclaim_restore(noreclaim_flag);
4110 fs_reclaim_release(gfp_mask);
4111 psi_memstall_leave(&pflags);
4118 /* The really slow allocator path where we enter direct reclaim */
4119 static inline struct page *
4120 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4121 unsigned int alloc_flags, const struct alloc_context *ac,
4122 unsigned long *did_some_progress)
4124 struct page *page = NULL;
4125 bool drained = false;
4127 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4128 if (unlikely(!(*did_some_progress)))
4132 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4135 * If an allocation failed after direct reclaim, it could be because
4136 * pages are pinned on the per-cpu lists or in high alloc reserves.
4137 * Shrink them them and try again
4139 if (!page && !drained) {
4140 unreserve_highatomic_pageblock(ac, false);
4141 drain_all_pages(NULL);
4149 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4150 const struct alloc_context *ac)
4154 pg_data_t *last_pgdat = NULL;
4155 enum zone_type high_zoneidx = ac->high_zoneidx;
4157 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4159 if (last_pgdat != zone->zone_pgdat)
4160 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4161 last_pgdat = zone->zone_pgdat;
4165 static inline unsigned int
4166 gfp_to_alloc_flags(gfp_t gfp_mask)
4168 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4170 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4171 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4174 * The caller may dip into page reserves a bit more if the caller
4175 * cannot run direct reclaim, or if the caller has realtime scheduling
4176 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4177 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4179 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4181 if (gfp_mask & __GFP_ATOMIC) {
4183 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4184 * if it can't schedule.
4186 if (!(gfp_mask & __GFP_NOMEMALLOC))
4187 alloc_flags |= ALLOC_HARDER;
4189 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4190 * comment for __cpuset_node_allowed().
4192 alloc_flags &= ~ALLOC_CPUSET;
4193 } else if (unlikely(rt_task(current)) && !in_interrupt())
4194 alloc_flags |= ALLOC_HARDER;
4196 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4197 alloc_flags |= ALLOC_KSWAPD;
4200 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4201 alloc_flags |= ALLOC_CMA;
4206 static bool oom_reserves_allowed(struct task_struct *tsk)
4208 if (!tsk_is_oom_victim(tsk))
4212 * !MMU doesn't have oom reaper so give access to memory reserves
4213 * only to the thread with TIF_MEMDIE set
4215 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4222 * Distinguish requests which really need access to full memory
4223 * reserves from oom victims which can live with a portion of it
4225 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4227 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4229 if (gfp_mask & __GFP_MEMALLOC)
4230 return ALLOC_NO_WATERMARKS;
4231 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4232 return ALLOC_NO_WATERMARKS;
4233 if (!in_interrupt()) {
4234 if (current->flags & PF_MEMALLOC)
4235 return ALLOC_NO_WATERMARKS;
4236 else if (oom_reserves_allowed(current))
4243 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4245 return !!__gfp_pfmemalloc_flags(gfp_mask);
4249 * Checks whether it makes sense to retry the reclaim to make a forward progress
4250 * for the given allocation request.
4252 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4253 * without success, or when we couldn't even meet the watermark if we
4254 * reclaimed all remaining pages on the LRU lists.
4256 * Returns true if a retry is viable or false to enter the oom path.
4259 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4260 struct alloc_context *ac, int alloc_flags,
4261 bool did_some_progress, int *no_progress_loops)
4268 * Costly allocations might have made a progress but this doesn't mean
4269 * their order will become available due to high fragmentation so
4270 * always increment the no progress counter for them
4272 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4273 *no_progress_loops = 0;
4275 (*no_progress_loops)++;
4278 * Make sure we converge to OOM if we cannot make any progress
4279 * several times in the row.
4281 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4282 /* Before OOM, exhaust highatomic_reserve */
4283 return unreserve_highatomic_pageblock(ac, true);
4287 * Keep reclaiming pages while there is a chance this will lead
4288 * somewhere. If none of the target zones can satisfy our allocation
4289 * request even if all reclaimable pages are considered then we are
4290 * screwed and have to go OOM.
4292 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4294 unsigned long available;
4295 unsigned long reclaimable;
4296 unsigned long min_wmark = min_wmark_pages(zone);
4299 available = reclaimable = zone_reclaimable_pages(zone);
4300 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4303 * Would the allocation succeed if we reclaimed all
4304 * reclaimable pages?
4306 wmark = __zone_watermark_ok(zone, order, min_wmark,
4307 ac_classzone_idx(ac), alloc_flags, available);
4308 trace_reclaim_retry_zone(z, order, reclaimable,
4309 available, min_wmark, *no_progress_loops, wmark);
4312 * If we didn't make any progress and have a lot of
4313 * dirty + writeback pages then we should wait for
4314 * an IO to complete to slow down the reclaim and
4315 * prevent from pre mature OOM
4317 if (!did_some_progress) {
4318 unsigned long write_pending;
4320 write_pending = zone_page_state_snapshot(zone,
4321 NR_ZONE_WRITE_PENDING);
4323 if (2 * write_pending > reclaimable) {
4324 congestion_wait(BLK_RW_ASYNC, HZ/10);
4336 * Memory allocation/reclaim might be called from a WQ context and the
4337 * current implementation of the WQ concurrency control doesn't
4338 * recognize that a particular WQ is congested if the worker thread is
4339 * looping without ever sleeping. Therefore we have to do a short sleep
4340 * here rather than calling cond_resched().
4342 if (current->flags & PF_WQ_WORKER)
4343 schedule_timeout_uninterruptible(1);
4350 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4353 * It's possible that cpuset's mems_allowed and the nodemask from
4354 * mempolicy don't intersect. This should be normally dealt with by
4355 * policy_nodemask(), but it's possible to race with cpuset update in
4356 * such a way the check therein was true, and then it became false
4357 * before we got our cpuset_mems_cookie here.
4358 * This assumes that for all allocations, ac->nodemask can come only
4359 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4360 * when it does not intersect with the cpuset restrictions) or the
4361 * caller can deal with a violated nodemask.
4363 if (cpusets_enabled() && ac->nodemask &&
4364 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4365 ac->nodemask = NULL;
4370 * When updating a task's mems_allowed or mempolicy nodemask, it is
4371 * possible to race with parallel threads in such a way that our
4372 * allocation can fail while the mask is being updated. If we are about
4373 * to fail, check if the cpuset changed during allocation and if so,
4376 if (read_mems_allowed_retry(cpuset_mems_cookie))
4382 static inline struct page *
4383 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4384 struct alloc_context *ac)
4386 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4387 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4388 struct page *page = NULL;
4389 unsigned int alloc_flags;
4390 unsigned long did_some_progress;
4391 enum compact_priority compact_priority;
4392 enum compact_result compact_result;
4393 int compaction_retries;
4394 int no_progress_loops;
4395 unsigned int cpuset_mems_cookie;
4399 * We also sanity check to catch abuse of atomic reserves being used by
4400 * callers that are not in atomic context.
4402 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4403 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4404 gfp_mask &= ~__GFP_ATOMIC;
4407 compaction_retries = 0;
4408 no_progress_loops = 0;
4409 compact_priority = DEF_COMPACT_PRIORITY;
4410 cpuset_mems_cookie = read_mems_allowed_begin();
4413 * The fast path uses conservative alloc_flags to succeed only until
4414 * kswapd needs to be woken up, and to avoid the cost of setting up
4415 * alloc_flags precisely. So we do that now.
4417 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4420 * We need to recalculate the starting point for the zonelist iterator
4421 * because we might have used different nodemask in the fast path, or
4422 * there was a cpuset modification and we are retrying - otherwise we
4423 * could end up iterating over non-eligible zones endlessly.
4425 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4426 ac->high_zoneidx, ac->nodemask);
4427 if (!ac->preferred_zoneref->zone)
4430 if (alloc_flags & ALLOC_KSWAPD)
4431 wake_all_kswapds(order, gfp_mask, ac);
4434 * The adjusted alloc_flags might result in immediate success, so try
4437 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4442 * For costly allocations, try direct compaction first, as it's likely
4443 * that we have enough base pages and don't need to reclaim. For non-
4444 * movable high-order allocations, do that as well, as compaction will
4445 * try prevent permanent fragmentation by migrating from blocks of the
4447 * Don't try this for allocations that are allowed to ignore
4448 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4450 if (can_direct_reclaim &&
4452 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4453 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4454 page = __alloc_pages_direct_compact(gfp_mask, order,
4456 INIT_COMPACT_PRIORITY,
4462 * Checks for costly allocations with __GFP_NORETRY, which
4463 * includes THP page fault allocations
4465 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4467 * If compaction is deferred for high-order allocations,
4468 * it is because sync compaction recently failed. If
4469 * this is the case and the caller requested a THP
4470 * allocation, we do not want to heavily disrupt the
4471 * system, so we fail the allocation instead of entering
4474 if (compact_result == COMPACT_DEFERRED)
4478 * Looks like reclaim/compaction is worth trying, but
4479 * sync compaction could be very expensive, so keep
4480 * using async compaction.
4482 compact_priority = INIT_COMPACT_PRIORITY;
4487 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4488 if (alloc_flags & ALLOC_KSWAPD)
4489 wake_all_kswapds(order, gfp_mask, ac);
4491 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4493 alloc_flags = reserve_flags;
4496 * Reset the nodemask and zonelist iterators if memory policies can be
4497 * ignored. These allocations are high priority and system rather than
4500 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4501 ac->nodemask = NULL;
4502 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4503 ac->high_zoneidx, ac->nodemask);
4506 /* Attempt with potentially adjusted zonelist and alloc_flags */
4507 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4511 /* Caller is not willing to reclaim, we can't balance anything */
4512 if (!can_direct_reclaim)
4515 /* Avoid recursion of direct reclaim */
4516 if (current->flags & PF_MEMALLOC)
4519 /* Try direct reclaim and then allocating */
4520 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4521 &did_some_progress);
4525 /* Try direct compaction and then allocating */
4526 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4527 compact_priority, &compact_result);
4531 /* Do not loop if specifically requested */
4532 if (gfp_mask & __GFP_NORETRY)
4536 * Do not retry costly high order allocations unless they are
4537 * __GFP_RETRY_MAYFAIL
4539 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4542 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4543 did_some_progress > 0, &no_progress_loops))
4547 * It doesn't make any sense to retry for the compaction if the order-0
4548 * reclaim is not able to make any progress because the current
4549 * implementation of the compaction depends on the sufficient amount
4550 * of free memory (see __compaction_suitable)
4552 if (did_some_progress > 0 &&
4553 should_compact_retry(ac, order, alloc_flags,
4554 compact_result, &compact_priority,
4555 &compaction_retries))
4559 /* Deal with possible cpuset update races before we start OOM killing */
4560 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4563 /* Reclaim has failed us, start killing things */
4564 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4568 /* Avoid allocations with no watermarks from looping endlessly */
4569 if (tsk_is_oom_victim(current) &&
4570 (alloc_flags == ALLOC_OOM ||
4571 (gfp_mask & __GFP_NOMEMALLOC)))
4574 /* Retry as long as the OOM killer is making progress */
4575 if (did_some_progress) {
4576 no_progress_loops = 0;
4581 /* Deal with possible cpuset update races before we fail */
4582 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4586 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4589 if (gfp_mask & __GFP_NOFAIL) {
4591 * All existing users of the __GFP_NOFAIL are blockable, so warn
4592 * of any new users that actually require GFP_NOWAIT
4594 if (WARN_ON_ONCE(!can_direct_reclaim))
4598 * PF_MEMALLOC request from this context is rather bizarre
4599 * because we cannot reclaim anything and only can loop waiting
4600 * for somebody to do a work for us
4602 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4605 * non failing costly orders are a hard requirement which we
4606 * are not prepared for much so let's warn about these users
4607 * so that we can identify them and convert them to something
4610 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4613 * Help non-failing allocations by giving them access to memory
4614 * reserves but do not use ALLOC_NO_WATERMARKS because this
4615 * could deplete whole memory reserves which would just make
4616 * the situation worse
4618 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4626 warn_alloc(gfp_mask, ac->nodemask,
4627 "page allocation failure: order:%u", order);
4632 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4633 int preferred_nid, nodemask_t *nodemask,
4634 struct alloc_context *ac, gfp_t *alloc_mask,
4635 unsigned int *alloc_flags)
4637 ac->high_zoneidx = gfp_zone(gfp_mask);
4638 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4639 ac->nodemask = nodemask;
4640 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4642 if (cpusets_enabled()) {
4643 *alloc_mask |= __GFP_HARDWALL;
4645 ac->nodemask = &cpuset_current_mems_allowed;
4647 *alloc_flags |= ALLOC_CPUSET;
4650 fs_reclaim_acquire(gfp_mask);
4651 fs_reclaim_release(gfp_mask);
4653 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4655 if (should_fail_alloc_page(gfp_mask, order))
4658 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4659 *alloc_flags |= ALLOC_CMA;
4664 /* Determine whether to spread dirty pages and what the first usable zone */
4665 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4667 /* Dirty zone balancing only done in the fast path */
4668 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4671 * The preferred zone is used for statistics but crucially it is
4672 * also used as the starting point for the zonelist iterator. It
4673 * may get reset for allocations that ignore memory policies.
4675 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4676 ac->high_zoneidx, ac->nodemask);
4680 * This is the 'heart' of the zoned buddy allocator.
4683 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4684 nodemask_t *nodemask)
4687 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4688 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4689 struct alloc_context ac = { };
4692 * There are several places where we assume that the order value is sane
4693 * so bail out early if the request is out of bound.
4695 if (unlikely(order >= MAX_ORDER)) {
4696 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4700 gfp_mask &= gfp_allowed_mask;
4701 alloc_mask = gfp_mask;
4702 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4705 finalise_ac(gfp_mask, &ac);
4708 * Forbid the first pass from falling back to types that fragment
4709 * memory until all local zones are considered.
4711 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4713 /* First allocation attempt */
4714 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4719 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4720 * resp. GFP_NOIO which has to be inherited for all allocation requests
4721 * from a particular context which has been marked by
4722 * memalloc_no{fs,io}_{save,restore}.
4724 alloc_mask = current_gfp_context(gfp_mask);
4725 ac.spread_dirty_pages = false;
4728 * Restore the original nodemask if it was potentially replaced with
4729 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4731 if (unlikely(ac.nodemask != nodemask))
4732 ac.nodemask = nodemask;
4734 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4737 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4738 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4739 __free_pages(page, order);
4743 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4747 EXPORT_SYMBOL(__alloc_pages_nodemask);
4750 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4751 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4752 * you need to access high mem.
4754 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4758 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4761 return (unsigned long) page_address(page);
4763 EXPORT_SYMBOL(__get_free_pages);
4765 unsigned long get_zeroed_page(gfp_t gfp_mask)
4767 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4769 EXPORT_SYMBOL(get_zeroed_page);
4771 static inline void free_the_page(struct page *page, unsigned int order)
4773 if (order == 0) /* Via pcp? */
4774 free_unref_page(page);
4776 __free_pages_ok(page, order);
4779 void __free_pages(struct page *page, unsigned int order)
4781 if (put_page_testzero(page))
4782 free_the_page(page, order);
4784 EXPORT_SYMBOL(__free_pages);
4786 void free_pages(unsigned long addr, unsigned int order)
4789 VM_BUG_ON(!virt_addr_valid((void *)addr));
4790 __free_pages(virt_to_page((void *)addr), order);
4794 EXPORT_SYMBOL(free_pages);
4798 * An arbitrary-length arbitrary-offset area of memory which resides
4799 * within a 0 or higher order page. Multiple fragments within that page
4800 * are individually refcounted, in the page's reference counter.
4802 * The page_frag functions below provide a simple allocation framework for
4803 * page fragments. This is used by the network stack and network device
4804 * drivers to provide a backing region of memory for use as either an
4805 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4807 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4810 struct page *page = NULL;
4811 gfp_t gfp = gfp_mask;
4813 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4814 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4816 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4817 PAGE_FRAG_CACHE_MAX_ORDER);
4818 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4820 if (unlikely(!page))
4821 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4823 nc->va = page ? page_address(page) : NULL;
4828 void __page_frag_cache_drain(struct page *page, unsigned int count)
4830 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4832 if (page_ref_sub_and_test(page, count))
4833 free_the_page(page, compound_order(page));
4835 EXPORT_SYMBOL(__page_frag_cache_drain);
4837 void *page_frag_alloc(struct page_frag_cache *nc,
4838 unsigned int fragsz, gfp_t gfp_mask)
4840 unsigned int size = PAGE_SIZE;
4844 if (unlikely(!nc->va)) {
4846 page = __page_frag_cache_refill(nc, gfp_mask);
4850 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4851 /* if size can vary use size else just use PAGE_SIZE */
4854 /* Even if we own the page, we do not use atomic_set().
4855 * This would break get_page_unless_zero() users.
4857 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4859 /* reset page count bias and offset to start of new frag */
4860 nc->pfmemalloc = page_is_pfmemalloc(page);
4861 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4865 offset = nc->offset - fragsz;
4866 if (unlikely(offset < 0)) {
4867 page = virt_to_page(nc->va);
4869 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4872 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4873 /* if size can vary use size else just use PAGE_SIZE */
4876 /* OK, page count is 0, we can safely set it */
4877 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4879 /* reset page count bias and offset to start of new frag */
4880 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4881 offset = size - fragsz;
4885 nc->offset = offset;
4887 return nc->va + offset;
4889 EXPORT_SYMBOL(page_frag_alloc);
4892 * Frees a page fragment allocated out of either a compound or order 0 page.
4894 void page_frag_free(void *addr)
4896 struct page *page = virt_to_head_page(addr);
4898 if (unlikely(put_page_testzero(page)))
4899 free_the_page(page, compound_order(page));
4901 EXPORT_SYMBOL(page_frag_free);
4903 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4907 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4908 unsigned long used = addr + PAGE_ALIGN(size);
4910 split_page(virt_to_page((void *)addr), order);
4911 while (used < alloc_end) {
4916 return (void *)addr;
4920 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4921 * @size: the number of bytes to allocate
4922 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4924 * This function is similar to alloc_pages(), except that it allocates the
4925 * minimum number of pages to satisfy the request. alloc_pages() can only
4926 * allocate memory in power-of-two pages.
4928 * This function is also limited by MAX_ORDER.
4930 * Memory allocated by this function must be released by free_pages_exact().
4932 * Return: pointer to the allocated area or %NULL in case of error.
4934 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4936 unsigned int order = get_order(size);
4939 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4940 gfp_mask &= ~__GFP_COMP;
4942 addr = __get_free_pages(gfp_mask, order);
4943 return make_alloc_exact(addr, order, size);
4945 EXPORT_SYMBOL(alloc_pages_exact);
4948 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4950 * @nid: the preferred node ID where memory should be allocated
4951 * @size: the number of bytes to allocate
4952 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4954 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4957 * Return: pointer to the allocated area or %NULL in case of error.
4959 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4961 unsigned int order = get_order(size);
4964 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4965 gfp_mask &= ~__GFP_COMP;
4967 p = alloc_pages_node(nid, gfp_mask, order);
4970 return make_alloc_exact((unsigned long)page_address(p), order, size);
4974 * free_pages_exact - release memory allocated via alloc_pages_exact()
4975 * @virt: the value returned by alloc_pages_exact.
4976 * @size: size of allocation, same value as passed to alloc_pages_exact().
4978 * Release the memory allocated by a previous call to alloc_pages_exact.
4980 void free_pages_exact(void *virt, size_t size)
4982 unsigned long addr = (unsigned long)virt;
4983 unsigned long end = addr + PAGE_ALIGN(size);
4985 while (addr < end) {
4990 EXPORT_SYMBOL(free_pages_exact);
4993 * nr_free_zone_pages - count number of pages beyond high watermark
4994 * @offset: The zone index of the highest zone
4996 * nr_free_zone_pages() counts the number of pages which are beyond the
4997 * high watermark within all zones at or below a given zone index. For each
4998 * zone, the number of pages is calculated as:
5000 * nr_free_zone_pages = managed_pages - high_pages
5002 * Return: number of pages beyond high watermark.
5004 static unsigned long nr_free_zone_pages(int offset)
5009 /* Just pick one node, since fallback list is circular */
5010 unsigned long sum = 0;
5012 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5014 for_each_zone_zonelist(zone, z, zonelist, offset) {
5015 unsigned long size = zone_managed_pages(zone);
5016 unsigned long high = high_wmark_pages(zone);
5025 * nr_free_buffer_pages - count number of pages beyond high watermark
5027 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5028 * watermark within ZONE_DMA and ZONE_NORMAL.
5030 * Return: number of pages beyond high watermark within ZONE_DMA and
5033 unsigned long nr_free_buffer_pages(void)
5035 return nr_free_zone_pages(gfp_zone(GFP_USER));
5037 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5040 * nr_free_pagecache_pages - count number of pages beyond high watermark
5042 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5043 * high watermark within all zones.
5045 * Return: number of pages beyond high watermark within all zones.
5047 unsigned long nr_free_pagecache_pages(void)
5049 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5052 static inline void show_node(struct zone *zone)
5054 if (IS_ENABLED(CONFIG_NUMA))
5055 printk("Node %d ", zone_to_nid(zone));
5058 long si_mem_available(void)
5061 unsigned long pagecache;
5062 unsigned long wmark_low = 0;
5063 unsigned long pages[NR_LRU_LISTS];
5064 unsigned long reclaimable;
5068 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5069 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5072 wmark_low += low_wmark_pages(zone);
5075 * Estimate the amount of memory available for userspace allocations,
5076 * without causing swapping.
5078 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5081 * Not all the page cache can be freed, otherwise the system will
5082 * start swapping. Assume at least half of the page cache, or the
5083 * low watermark worth of cache, needs to stay.
5085 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5086 pagecache -= min(pagecache / 2, wmark_low);
5087 available += pagecache;
5090 * Part of the reclaimable slab and other kernel memory consists of
5091 * items that are in use, and cannot be freed. Cap this estimate at the
5094 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5095 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5096 available += reclaimable - min(reclaimable / 2, wmark_low);
5102 EXPORT_SYMBOL_GPL(si_mem_available);
5104 void si_meminfo(struct sysinfo *val)
5106 val->totalram = totalram_pages();
5107 val->sharedram = global_node_page_state(NR_SHMEM);
5108 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5109 val->bufferram = nr_blockdev_pages();
5110 val->totalhigh = totalhigh_pages();
5111 val->freehigh = nr_free_highpages();
5112 val->mem_unit = PAGE_SIZE;
5115 EXPORT_SYMBOL(si_meminfo);
5118 void si_meminfo_node(struct sysinfo *val, int nid)
5120 int zone_type; /* needs to be signed */
5121 unsigned long managed_pages = 0;
5122 unsigned long managed_highpages = 0;
5123 unsigned long free_highpages = 0;
5124 pg_data_t *pgdat = NODE_DATA(nid);
5126 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5127 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5128 val->totalram = managed_pages;
5129 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5130 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5131 #ifdef CONFIG_HIGHMEM
5132 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5133 struct zone *zone = &pgdat->node_zones[zone_type];
5135 if (is_highmem(zone)) {
5136 managed_highpages += zone_managed_pages(zone);
5137 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5140 val->totalhigh = managed_highpages;
5141 val->freehigh = free_highpages;
5143 val->totalhigh = managed_highpages;
5144 val->freehigh = free_highpages;
5146 val->mem_unit = PAGE_SIZE;
5151 * Determine whether the node should be displayed or not, depending on whether
5152 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5154 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5156 if (!(flags & SHOW_MEM_FILTER_NODES))
5160 * no node mask - aka implicit memory numa policy. Do not bother with
5161 * the synchronization - read_mems_allowed_begin - because we do not
5162 * have to be precise here.
5165 nodemask = &cpuset_current_mems_allowed;
5167 return !node_isset(nid, *nodemask);
5170 #define K(x) ((x) << (PAGE_SHIFT-10))
5172 static void show_migration_types(unsigned char type)
5174 static const char types[MIGRATE_TYPES] = {
5175 [MIGRATE_UNMOVABLE] = 'U',
5176 [MIGRATE_MOVABLE] = 'M',
5177 [MIGRATE_RECLAIMABLE] = 'E',
5178 [MIGRATE_HIGHATOMIC] = 'H',
5180 [MIGRATE_CMA] = 'C',
5182 #ifdef CONFIG_MEMORY_ISOLATION
5183 [MIGRATE_ISOLATE] = 'I',
5186 char tmp[MIGRATE_TYPES + 1];
5190 for (i = 0; i < MIGRATE_TYPES; i++) {
5191 if (type & (1 << i))
5196 printk(KERN_CONT "(%s) ", tmp);
5200 * Show free area list (used inside shift_scroll-lock stuff)
5201 * We also calculate the percentage fragmentation. We do this by counting the
5202 * memory on each free list with the exception of the first item on the list.
5205 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5208 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5210 unsigned long free_pcp = 0;
5215 for_each_populated_zone(zone) {
5216 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5219 for_each_online_cpu(cpu)
5220 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5223 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5224 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5225 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5226 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5227 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5228 " free:%lu free_pcp:%lu free_cma:%lu\n",
5229 global_node_page_state(NR_ACTIVE_ANON),
5230 global_node_page_state(NR_INACTIVE_ANON),
5231 global_node_page_state(NR_ISOLATED_ANON),
5232 global_node_page_state(NR_ACTIVE_FILE),
5233 global_node_page_state(NR_INACTIVE_FILE),
5234 global_node_page_state(NR_ISOLATED_FILE),
5235 global_node_page_state(NR_UNEVICTABLE),
5236 global_node_page_state(NR_FILE_DIRTY),
5237 global_node_page_state(NR_WRITEBACK),
5238 global_node_page_state(NR_UNSTABLE_NFS),
5239 global_node_page_state(NR_SLAB_RECLAIMABLE),
5240 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5241 global_node_page_state(NR_FILE_MAPPED),
5242 global_node_page_state(NR_SHMEM),
5243 global_zone_page_state(NR_PAGETABLE),
5244 global_zone_page_state(NR_BOUNCE),
5245 global_zone_page_state(NR_FREE_PAGES),
5247 global_zone_page_state(NR_FREE_CMA_PAGES));
5249 for_each_online_pgdat(pgdat) {
5250 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5254 " active_anon:%lukB"
5255 " inactive_anon:%lukB"
5256 " active_file:%lukB"
5257 " inactive_file:%lukB"
5258 " unevictable:%lukB"
5259 " isolated(anon):%lukB"
5260 " isolated(file):%lukB"
5265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5267 " shmem_pmdmapped: %lukB"
5270 " writeback_tmp:%lukB"
5272 " all_unreclaimable? %s"
5275 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5276 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5277 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5278 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5279 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5280 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5281 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5282 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5283 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5284 K(node_page_state(pgdat, NR_WRITEBACK)),
5285 K(node_page_state(pgdat, NR_SHMEM)),
5286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5287 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5288 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5290 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5292 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5293 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5294 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5298 for_each_populated_zone(zone) {
5301 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 for_each_online_cpu(cpu)
5306 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5315 " active_anon:%lukB"
5316 " inactive_anon:%lukB"
5317 " active_file:%lukB"
5318 " inactive_file:%lukB"
5319 " unevictable:%lukB"
5320 " writepending:%lukB"
5324 " kernel_stack:%lukB"
5332 K(zone_page_state(zone, NR_FREE_PAGES)),
5333 K(min_wmark_pages(zone)),
5334 K(low_wmark_pages(zone)),
5335 K(high_wmark_pages(zone)),
5336 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5337 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5338 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5339 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5340 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5341 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5342 K(zone->present_pages),
5343 K(zone_managed_pages(zone)),
5344 K(zone_page_state(zone, NR_MLOCK)),
5345 zone_page_state(zone, NR_KERNEL_STACK_KB),
5346 K(zone_page_state(zone, NR_PAGETABLE)),
5347 K(zone_page_state(zone, NR_BOUNCE)),
5349 K(this_cpu_read(zone->pageset->pcp.count)),
5350 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5351 printk("lowmem_reserve[]:");
5352 for (i = 0; i < MAX_NR_ZONES; i++)
5353 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5354 printk(KERN_CONT "\n");
5357 for_each_populated_zone(zone) {
5359 unsigned long nr[MAX_ORDER], flags, total = 0;
5360 unsigned char types[MAX_ORDER];
5362 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5365 printk(KERN_CONT "%s: ", zone->name);
5367 spin_lock_irqsave(&zone->lock, flags);
5368 for (order = 0; order < MAX_ORDER; order++) {
5369 struct free_area *area = &zone->free_area[order];
5372 nr[order] = area->nr_free;
5373 total += nr[order] << order;
5376 for (type = 0; type < MIGRATE_TYPES; type++) {
5377 if (!free_area_empty(area, type))
5378 types[order] |= 1 << type;
5381 spin_unlock_irqrestore(&zone->lock, flags);
5382 for (order = 0; order < MAX_ORDER; order++) {
5383 printk(KERN_CONT "%lu*%lukB ",
5384 nr[order], K(1UL) << order);
5386 show_migration_types(types[order]);
5388 printk(KERN_CONT "= %lukB\n", K(total));
5391 hugetlb_show_meminfo();
5393 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5395 show_swap_cache_info();
5398 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5400 zoneref->zone = zone;
5401 zoneref->zone_idx = zone_idx(zone);
5405 * Builds allocation fallback zone lists.
5407 * Add all populated zones of a node to the zonelist.
5409 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5412 enum zone_type zone_type = MAX_NR_ZONES;
5417 zone = pgdat->node_zones + zone_type;
5418 if (managed_zone(zone)) {
5419 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5420 check_highest_zone(zone_type);
5422 } while (zone_type);
5429 static int __parse_numa_zonelist_order(char *s)
5432 * We used to support different zonlists modes but they turned
5433 * out to be just not useful. Let's keep the warning in place
5434 * if somebody still use the cmd line parameter so that we do
5435 * not fail it silently
5437 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5438 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5444 static __init int setup_numa_zonelist_order(char *s)
5449 return __parse_numa_zonelist_order(s);
5451 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5453 char numa_zonelist_order[] = "Node";
5456 * sysctl handler for numa_zonelist_order
5458 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5459 void __user *buffer, size_t *length,
5466 return proc_dostring(table, write, buffer, length, ppos);
5467 str = memdup_user_nul(buffer, 16);
5469 return PTR_ERR(str);
5471 ret = __parse_numa_zonelist_order(str);
5477 #define MAX_NODE_LOAD (nr_online_nodes)
5478 static int node_load[MAX_NUMNODES];
5481 * find_next_best_node - find the next node that should appear in a given node's fallback list
5482 * @node: node whose fallback list we're appending
5483 * @used_node_mask: nodemask_t of already used nodes
5485 * We use a number of factors to determine which is the next node that should
5486 * appear on a given node's fallback list. The node should not have appeared
5487 * already in @node's fallback list, and it should be the next closest node
5488 * according to the distance array (which contains arbitrary distance values
5489 * from each node to each node in the system), and should also prefer nodes
5490 * with no CPUs, since presumably they'll have very little allocation pressure
5491 * on them otherwise.
5493 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5495 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5498 int min_val = INT_MAX;
5499 int best_node = NUMA_NO_NODE;
5500 const struct cpumask *tmp = cpumask_of_node(0);
5502 /* Use the local node if we haven't already */
5503 if (!node_isset(node, *used_node_mask)) {
5504 node_set(node, *used_node_mask);
5508 for_each_node_state(n, N_MEMORY) {
5510 /* Don't want a node to appear more than once */
5511 if (node_isset(n, *used_node_mask))
5514 /* Use the distance array to find the distance */
5515 val = node_distance(node, n);
5517 /* Penalize nodes under us ("prefer the next node") */
5520 /* Give preference to headless and unused nodes */
5521 tmp = cpumask_of_node(n);
5522 if (!cpumask_empty(tmp))
5523 val += PENALTY_FOR_NODE_WITH_CPUS;
5525 /* Slight preference for less loaded node */
5526 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5527 val += node_load[n];
5529 if (val < min_val) {
5536 node_set(best_node, *used_node_mask);
5543 * Build zonelists ordered by node and zones within node.
5544 * This results in maximum locality--normal zone overflows into local
5545 * DMA zone, if any--but risks exhausting DMA zone.
5547 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5550 struct zoneref *zonerefs;
5553 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5555 for (i = 0; i < nr_nodes; i++) {
5558 pg_data_t *node = NODE_DATA(node_order[i]);
5560 nr_zones = build_zonerefs_node(node, zonerefs);
5561 zonerefs += nr_zones;
5563 zonerefs->zone = NULL;
5564 zonerefs->zone_idx = 0;
5568 * Build gfp_thisnode zonelists
5570 static void build_thisnode_zonelists(pg_data_t *pgdat)
5572 struct zoneref *zonerefs;
5575 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5576 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5577 zonerefs += nr_zones;
5578 zonerefs->zone = NULL;
5579 zonerefs->zone_idx = 0;
5583 * Build zonelists ordered by zone and nodes within zones.
5584 * This results in conserving DMA zone[s] until all Normal memory is
5585 * exhausted, but results in overflowing to remote node while memory
5586 * may still exist in local DMA zone.
5589 static void build_zonelists(pg_data_t *pgdat)
5591 static int node_order[MAX_NUMNODES];
5592 int node, load, nr_nodes = 0;
5593 nodemask_t used_mask;
5594 int local_node, prev_node;
5596 /* NUMA-aware ordering of nodes */
5597 local_node = pgdat->node_id;
5598 load = nr_online_nodes;
5599 prev_node = local_node;
5600 nodes_clear(used_mask);
5602 memset(node_order, 0, sizeof(node_order));
5603 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5605 * We don't want to pressure a particular node.
5606 * So adding penalty to the first node in same
5607 * distance group to make it round-robin.
5609 if (node_distance(local_node, node) !=
5610 node_distance(local_node, prev_node))
5611 node_load[node] = load;
5613 node_order[nr_nodes++] = node;
5618 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5619 build_thisnode_zonelists(pgdat);
5622 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5624 * Return node id of node used for "local" allocations.
5625 * I.e., first node id of first zone in arg node's generic zonelist.
5626 * Used for initializing percpu 'numa_mem', which is used primarily
5627 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5629 int local_memory_node(int node)
5633 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5634 gfp_zone(GFP_KERNEL),
5636 return zone_to_nid(z->zone);
5640 static void setup_min_unmapped_ratio(void);
5641 static void setup_min_slab_ratio(void);
5642 #else /* CONFIG_NUMA */
5644 static void build_zonelists(pg_data_t *pgdat)
5646 int node, local_node;
5647 struct zoneref *zonerefs;
5650 local_node = pgdat->node_id;
5652 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5653 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5654 zonerefs += nr_zones;
5657 * Now we build the zonelist so that it contains the zones
5658 * of all the other nodes.
5659 * We don't want to pressure a particular node, so when
5660 * building the zones for node N, we make sure that the
5661 * zones coming right after the local ones are those from
5662 * node N+1 (modulo N)
5664 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5665 if (!node_online(node))
5667 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5668 zonerefs += nr_zones;
5670 for (node = 0; node < local_node; node++) {
5671 if (!node_online(node))
5673 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5674 zonerefs += nr_zones;
5677 zonerefs->zone = NULL;
5678 zonerefs->zone_idx = 0;
5681 #endif /* CONFIG_NUMA */
5684 * Boot pageset table. One per cpu which is going to be used for all
5685 * zones and all nodes. The parameters will be set in such a way
5686 * that an item put on a list will immediately be handed over to
5687 * the buddy list. This is safe since pageset manipulation is done
5688 * with interrupts disabled.
5690 * The boot_pagesets must be kept even after bootup is complete for
5691 * unused processors and/or zones. They do play a role for bootstrapping
5692 * hotplugged processors.
5694 * zoneinfo_show() and maybe other functions do
5695 * not check if the processor is online before following the pageset pointer.
5696 * Other parts of the kernel may not check if the zone is available.
5698 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5699 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5700 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5702 static void __build_all_zonelists(void *data)
5705 int __maybe_unused cpu;
5706 pg_data_t *self = data;
5707 static DEFINE_SPINLOCK(lock);
5712 memset(node_load, 0, sizeof(node_load));
5716 * This node is hotadded and no memory is yet present. So just
5717 * building zonelists is fine - no need to touch other nodes.
5719 if (self && !node_online(self->node_id)) {
5720 build_zonelists(self);
5722 for_each_online_node(nid) {
5723 pg_data_t *pgdat = NODE_DATA(nid);
5725 build_zonelists(pgdat);
5728 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5730 * We now know the "local memory node" for each node--
5731 * i.e., the node of the first zone in the generic zonelist.
5732 * Set up numa_mem percpu variable for on-line cpus. During
5733 * boot, only the boot cpu should be on-line; we'll init the
5734 * secondary cpus' numa_mem as they come on-line. During
5735 * node/memory hotplug, we'll fixup all on-line cpus.
5737 for_each_online_cpu(cpu)
5738 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5745 static noinline void __init
5746 build_all_zonelists_init(void)
5750 __build_all_zonelists(NULL);
5753 * Initialize the boot_pagesets that are going to be used
5754 * for bootstrapping processors. The real pagesets for
5755 * each zone will be allocated later when the per cpu
5756 * allocator is available.
5758 * boot_pagesets are used also for bootstrapping offline
5759 * cpus if the system is already booted because the pagesets
5760 * are needed to initialize allocators on a specific cpu too.
5761 * F.e. the percpu allocator needs the page allocator which
5762 * needs the percpu allocator in order to allocate its pagesets
5763 * (a chicken-egg dilemma).
5765 for_each_possible_cpu(cpu)
5766 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5768 mminit_verify_zonelist();
5769 cpuset_init_current_mems_allowed();
5773 * unless system_state == SYSTEM_BOOTING.
5775 * __ref due to call of __init annotated helper build_all_zonelists_init
5776 * [protected by SYSTEM_BOOTING].
5778 void __ref build_all_zonelists(pg_data_t *pgdat)
5780 if (system_state == SYSTEM_BOOTING) {
5781 build_all_zonelists_init();
5783 __build_all_zonelists(pgdat);
5784 /* cpuset refresh routine should be here */
5786 vm_total_pages = nr_free_pagecache_pages();
5788 * Disable grouping by mobility if the number of pages in the
5789 * system is too low to allow the mechanism to work. It would be
5790 * more accurate, but expensive to check per-zone. This check is
5791 * made on memory-hotadd so a system can start with mobility
5792 * disabled and enable it later
5794 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5795 page_group_by_mobility_disabled = 1;
5797 page_group_by_mobility_disabled = 0;
5799 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5801 page_group_by_mobility_disabled ? "off" : "on",
5804 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5808 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5809 static bool __meminit
5810 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5812 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5813 static struct memblock_region *r;
5815 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5816 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5817 for_each_memblock(memory, r) {
5818 if (*pfn < memblock_region_memory_end_pfn(r))
5822 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5823 memblock_is_mirror(r)) {
5824 *pfn = memblock_region_memory_end_pfn(r);
5833 * Initially all pages are reserved - free ones are freed
5834 * up by memblock_free_all() once the early boot process is
5835 * done. Non-atomic initialization, single-pass.
5837 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5838 unsigned long start_pfn, enum memmap_context context,
5839 struct vmem_altmap *altmap)
5841 unsigned long pfn, end_pfn = start_pfn + size;
5844 if (highest_memmap_pfn < end_pfn - 1)
5845 highest_memmap_pfn = end_pfn - 1;
5847 #ifdef CONFIG_ZONE_DEVICE
5849 * Honor reservation requested by the driver for this ZONE_DEVICE
5850 * memory. We limit the total number of pages to initialize to just
5851 * those that might contain the memory mapping. We will defer the
5852 * ZONE_DEVICE page initialization until after we have released
5855 if (zone == ZONE_DEVICE) {
5859 if (start_pfn == altmap->base_pfn)
5860 start_pfn += altmap->reserve;
5861 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5865 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5867 * There can be holes in boot-time mem_map[]s handed to this
5868 * function. They do not exist on hotplugged memory.
5870 if (context == MEMMAP_EARLY) {
5871 if (!early_pfn_valid(pfn))
5873 if (!early_pfn_in_nid(pfn, nid))
5875 if (overlap_memmap_init(zone, &pfn))
5877 if (defer_init(nid, pfn, end_pfn))
5881 page = pfn_to_page(pfn);
5882 __init_single_page(page, pfn, zone, nid);
5883 if (context == MEMMAP_HOTPLUG)
5884 __SetPageReserved(page);
5887 * Mark the block movable so that blocks are reserved for
5888 * movable at startup. This will force kernel allocations
5889 * to reserve their blocks rather than leaking throughout
5890 * the address space during boot when many long-lived
5891 * kernel allocations are made.
5893 * bitmap is created for zone's valid pfn range. but memmap
5894 * can be created for invalid pages (for alignment)
5895 * check here not to call set_pageblock_migratetype() against
5898 if (!(pfn & (pageblock_nr_pages - 1))) {
5899 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5905 #ifdef CONFIG_ZONE_DEVICE
5906 void __ref memmap_init_zone_device(struct zone *zone,
5907 unsigned long start_pfn,
5909 struct dev_pagemap *pgmap)
5911 unsigned long pfn, end_pfn = start_pfn + size;
5912 struct pglist_data *pgdat = zone->zone_pgdat;
5913 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5914 unsigned long zone_idx = zone_idx(zone);
5915 unsigned long start = jiffies;
5916 int nid = pgdat->node_id;
5918 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5922 * The call to memmap_init_zone should have already taken care
5923 * of the pages reserved for the memmap, so we can just jump to
5924 * the end of that region and start processing the device pages.
5927 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5928 size = end_pfn - start_pfn;
5931 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5932 struct page *page = pfn_to_page(pfn);
5934 __init_single_page(page, pfn, zone_idx, nid);
5937 * Mark page reserved as it will need to wait for onlining
5938 * phase for it to be fully associated with a zone.
5940 * We can use the non-atomic __set_bit operation for setting
5941 * the flag as we are still initializing the pages.
5943 __SetPageReserved(page);
5946 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5947 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5948 * ever freed or placed on a driver-private list.
5950 page->pgmap = pgmap;
5951 page->zone_device_data = NULL;
5954 * Mark the block movable so that blocks are reserved for
5955 * movable at startup. This will force kernel allocations
5956 * to reserve their blocks rather than leaking throughout
5957 * the address space during boot when many long-lived
5958 * kernel allocations are made.
5960 * bitmap is created for zone's valid pfn range. but memmap
5961 * can be created for invalid pages (for alignment)
5962 * check here not to call set_pageblock_migratetype() against
5965 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5966 * because this is done early in section_activate()
5968 if (!(pfn & (pageblock_nr_pages - 1))) {
5969 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5974 pr_info("%s initialised %lu pages in %ums\n", __func__,
5975 size, jiffies_to_msecs(jiffies - start));
5979 static void __meminit zone_init_free_lists(struct zone *zone)
5981 unsigned int order, t;
5982 for_each_migratetype_order(order, t) {
5983 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5984 zone->free_area[order].nr_free = 0;
5988 void __meminit __weak memmap_init(unsigned long size, int nid,
5989 unsigned long zone, unsigned long start_pfn)
5991 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5994 static int zone_batchsize(struct zone *zone)
6000 * The per-cpu-pages pools are set to around 1000th of the
6003 batch = zone_managed_pages(zone) / 1024;
6004 /* But no more than a meg. */
6005 if (batch * PAGE_SIZE > 1024 * 1024)
6006 batch = (1024 * 1024) / PAGE_SIZE;
6007 batch /= 4; /* We effectively *= 4 below */
6012 * Clamp the batch to a 2^n - 1 value. Having a power
6013 * of 2 value was found to be more likely to have
6014 * suboptimal cache aliasing properties in some cases.
6016 * For example if 2 tasks are alternately allocating
6017 * batches of pages, one task can end up with a lot
6018 * of pages of one half of the possible page colors
6019 * and the other with pages of the other colors.
6021 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6026 /* The deferral and batching of frees should be suppressed under NOMMU
6029 * The problem is that NOMMU needs to be able to allocate large chunks
6030 * of contiguous memory as there's no hardware page translation to
6031 * assemble apparent contiguous memory from discontiguous pages.
6033 * Queueing large contiguous runs of pages for batching, however,
6034 * causes the pages to actually be freed in smaller chunks. As there
6035 * can be a significant delay between the individual batches being
6036 * recycled, this leads to the once large chunks of space being
6037 * fragmented and becoming unavailable for high-order allocations.
6044 * pcp->high and pcp->batch values are related and dependent on one another:
6045 * ->batch must never be higher then ->high.
6046 * The following function updates them in a safe manner without read side
6049 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6050 * those fields changing asynchronously (acording the the above rule).
6052 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6053 * outside of boot time (or some other assurance that no concurrent updaters
6056 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6057 unsigned long batch)
6059 /* start with a fail safe value for batch */
6063 /* Update high, then batch, in order */
6070 /* a companion to pageset_set_high() */
6071 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6073 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6076 static void pageset_init(struct per_cpu_pageset *p)
6078 struct per_cpu_pages *pcp;
6081 memset(p, 0, sizeof(*p));
6084 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6085 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6088 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6091 pageset_set_batch(p, batch);
6095 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6096 * to the value high for the pageset p.
6098 static void pageset_set_high(struct per_cpu_pageset *p,
6101 unsigned long batch = max(1UL, high / 4);
6102 if ((high / 4) > (PAGE_SHIFT * 8))
6103 batch = PAGE_SHIFT * 8;
6105 pageset_update(&p->pcp, high, batch);
6108 static void pageset_set_high_and_batch(struct zone *zone,
6109 struct per_cpu_pageset *pcp)
6111 if (percpu_pagelist_fraction)
6112 pageset_set_high(pcp,
6113 (zone_managed_pages(zone) /
6114 percpu_pagelist_fraction));
6116 pageset_set_batch(pcp, zone_batchsize(zone));
6119 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6121 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6124 pageset_set_high_and_batch(zone, pcp);
6127 void __meminit setup_zone_pageset(struct zone *zone)
6130 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6131 for_each_possible_cpu(cpu)
6132 zone_pageset_init(zone, cpu);
6136 * Allocate per cpu pagesets and initialize them.
6137 * Before this call only boot pagesets were available.
6139 void __init setup_per_cpu_pageset(void)
6141 struct pglist_data *pgdat;
6144 for_each_populated_zone(zone)
6145 setup_zone_pageset(zone);
6147 for_each_online_pgdat(pgdat)
6148 pgdat->per_cpu_nodestats =
6149 alloc_percpu(struct per_cpu_nodestat);
6152 static __meminit void zone_pcp_init(struct zone *zone)
6155 * per cpu subsystem is not up at this point. The following code
6156 * relies on the ability of the linker to provide the
6157 * offset of a (static) per cpu variable into the per cpu area.
6159 zone->pageset = &boot_pageset;
6161 if (populated_zone(zone))
6162 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6163 zone->name, zone->present_pages,
6164 zone_batchsize(zone));
6167 void __meminit init_currently_empty_zone(struct zone *zone,
6168 unsigned long zone_start_pfn,
6171 struct pglist_data *pgdat = zone->zone_pgdat;
6172 int zone_idx = zone_idx(zone) + 1;
6174 if (zone_idx > pgdat->nr_zones)
6175 pgdat->nr_zones = zone_idx;
6177 zone->zone_start_pfn = zone_start_pfn;
6179 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6180 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6182 (unsigned long)zone_idx(zone),
6183 zone_start_pfn, (zone_start_pfn + size));
6185 zone_init_free_lists(zone);
6186 zone->initialized = 1;
6189 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6190 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6193 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6195 int __meminit __early_pfn_to_nid(unsigned long pfn,
6196 struct mminit_pfnnid_cache *state)
6198 unsigned long start_pfn, end_pfn;
6201 if (state->last_start <= pfn && pfn < state->last_end)
6202 return state->last_nid;
6204 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6205 if (nid != NUMA_NO_NODE) {
6206 state->last_start = start_pfn;
6207 state->last_end = end_pfn;
6208 state->last_nid = nid;
6213 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6216 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6217 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6218 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6220 * If an architecture guarantees that all ranges registered contain no holes
6221 * and may be freed, this this function may be used instead of calling
6222 * memblock_free_early_nid() manually.
6224 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6226 unsigned long start_pfn, end_pfn;
6229 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6230 start_pfn = min(start_pfn, max_low_pfn);
6231 end_pfn = min(end_pfn, max_low_pfn);
6233 if (start_pfn < end_pfn)
6234 memblock_free_early_nid(PFN_PHYS(start_pfn),
6235 (end_pfn - start_pfn) << PAGE_SHIFT,
6241 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6242 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6244 * If an architecture guarantees that all ranges registered contain no holes and may
6245 * be freed, this function may be used instead of calling memory_present() manually.
6247 void __init sparse_memory_present_with_active_regions(int nid)
6249 unsigned long start_pfn, end_pfn;
6252 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6253 memory_present(this_nid, start_pfn, end_pfn);
6257 * get_pfn_range_for_nid - Return the start and end page frames for a node
6258 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6259 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6260 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6262 * It returns the start and end page frame of a node based on information
6263 * provided by memblock_set_node(). If called for a node
6264 * with no available memory, a warning is printed and the start and end
6267 void __init get_pfn_range_for_nid(unsigned int nid,
6268 unsigned long *start_pfn, unsigned long *end_pfn)
6270 unsigned long this_start_pfn, this_end_pfn;
6276 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6277 *start_pfn = min(*start_pfn, this_start_pfn);
6278 *end_pfn = max(*end_pfn, this_end_pfn);
6281 if (*start_pfn == -1UL)
6286 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6287 * assumption is made that zones within a node are ordered in monotonic
6288 * increasing memory addresses so that the "highest" populated zone is used
6290 static void __init find_usable_zone_for_movable(void)
6293 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6294 if (zone_index == ZONE_MOVABLE)
6297 if (arch_zone_highest_possible_pfn[zone_index] >
6298 arch_zone_lowest_possible_pfn[zone_index])
6302 VM_BUG_ON(zone_index == -1);
6303 movable_zone = zone_index;
6307 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6308 * because it is sized independent of architecture. Unlike the other zones,
6309 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6310 * in each node depending on the size of each node and how evenly kernelcore
6311 * is distributed. This helper function adjusts the zone ranges
6312 * provided by the architecture for a given node by using the end of the
6313 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6314 * zones within a node are in order of monotonic increases memory addresses
6316 static void __init adjust_zone_range_for_zone_movable(int nid,
6317 unsigned long zone_type,
6318 unsigned long node_start_pfn,
6319 unsigned long node_end_pfn,
6320 unsigned long *zone_start_pfn,
6321 unsigned long *zone_end_pfn)
6323 /* Only adjust if ZONE_MOVABLE is on this node */
6324 if (zone_movable_pfn[nid]) {
6325 /* Size ZONE_MOVABLE */
6326 if (zone_type == ZONE_MOVABLE) {
6327 *zone_start_pfn = zone_movable_pfn[nid];
6328 *zone_end_pfn = min(node_end_pfn,
6329 arch_zone_highest_possible_pfn[movable_zone]);
6331 /* Adjust for ZONE_MOVABLE starting within this range */
6332 } else if (!mirrored_kernelcore &&
6333 *zone_start_pfn < zone_movable_pfn[nid] &&
6334 *zone_end_pfn > zone_movable_pfn[nid]) {
6335 *zone_end_pfn = zone_movable_pfn[nid];
6337 /* Check if this whole range is within ZONE_MOVABLE */
6338 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6339 *zone_start_pfn = *zone_end_pfn;
6344 * Return the number of pages a zone spans in a node, including holes
6345 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6347 static unsigned long __init zone_spanned_pages_in_node(int nid,
6348 unsigned long zone_type,
6349 unsigned long node_start_pfn,
6350 unsigned long node_end_pfn,
6351 unsigned long *zone_start_pfn,
6352 unsigned long *zone_end_pfn,
6353 unsigned long *ignored)
6355 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6356 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6357 /* When hotadd a new node from cpu_up(), the node should be empty */
6358 if (!node_start_pfn && !node_end_pfn)
6361 /* Get the start and end of the zone */
6362 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6363 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6364 adjust_zone_range_for_zone_movable(nid, zone_type,
6365 node_start_pfn, node_end_pfn,
6366 zone_start_pfn, zone_end_pfn);
6368 /* Check that this node has pages within the zone's required range */
6369 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6372 /* Move the zone boundaries inside the node if necessary */
6373 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6374 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6376 /* Return the spanned pages */
6377 return *zone_end_pfn - *zone_start_pfn;
6381 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6382 * then all holes in the requested range will be accounted for.
6384 unsigned long __init __absent_pages_in_range(int nid,
6385 unsigned long range_start_pfn,
6386 unsigned long range_end_pfn)
6388 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6389 unsigned long start_pfn, end_pfn;
6392 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6393 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6394 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6395 nr_absent -= end_pfn - start_pfn;
6401 * absent_pages_in_range - Return number of page frames in holes within a range
6402 * @start_pfn: The start PFN to start searching for holes
6403 * @end_pfn: The end PFN to stop searching for holes
6405 * Return: the number of pages frames in memory holes within a range.
6407 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6408 unsigned long end_pfn)
6410 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6413 /* Return the number of page frames in holes in a zone on a node */
6414 static unsigned long __init zone_absent_pages_in_node(int nid,
6415 unsigned long zone_type,
6416 unsigned long node_start_pfn,
6417 unsigned long node_end_pfn,
6418 unsigned long *ignored)
6420 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6421 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6422 unsigned long zone_start_pfn, zone_end_pfn;
6423 unsigned long nr_absent;
6425 /* When hotadd a new node from cpu_up(), the node should be empty */
6426 if (!node_start_pfn && !node_end_pfn)
6429 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6430 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6432 adjust_zone_range_for_zone_movable(nid, zone_type,
6433 node_start_pfn, node_end_pfn,
6434 &zone_start_pfn, &zone_end_pfn);
6435 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6438 * ZONE_MOVABLE handling.
6439 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6442 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6443 unsigned long start_pfn, end_pfn;
6444 struct memblock_region *r;
6446 for_each_memblock(memory, r) {
6447 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6448 zone_start_pfn, zone_end_pfn);
6449 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6450 zone_start_pfn, zone_end_pfn);
6452 if (zone_type == ZONE_MOVABLE &&
6453 memblock_is_mirror(r))
6454 nr_absent += end_pfn - start_pfn;
6456 if (zone_type == ZONE_NORMAL &&
6457 !memblock_is_mirror(r))
6458 nr_absent += end_pfn - start_pfn;
6465 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6466 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6467 unsigned long zone_type,
6468 unsigned long node_start_pfn,
6469 unsigned long node_end_pfn,
6470 unsigned long *zone_start_pfn,
6471 unsigned long *zone_end_pfn,
6472 unsigned long *zones_size)
6476 *zone_start_pfn = node_start_pfn;
6477 for (zone = 0; zone < zone_type; zone++)
6478 *zone_start_pfn += zones_size[zone];
6480 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6482 return zones_size[zone_type];
6485 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6486 unsigned long zone_type,
6487 unsigned long node_start_pfn,
6488 unsigned long node_end_pfn,
6489 unsigned long *zholes_size)
6494 return zholes_size[zone_type];
6497 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6499 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6500 unsigned long node_start_pfn,
6501 unsigned long node_end_pfn,
6502 unsigned long *zones_size,
6503 unsigned long *zholes_size)
6505 unsigned long realtotalpages = 0, totalpages = 0;
6508 for (i = 0; i < MAX_NR_ZONES; i++) {
6509 struct zone *zone = pgdat->node_zones + i;
6510 unsigned long zone_start_pfn, zone_end_pfn;
6511 unsigned long size, real_size;
6513 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6519 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6520 node_start_pfn, node_end_pfn,
6523 zone->zone_start_pfn = zone_start_pfn;
6525 zone->zone_start_pfn = 0;
6526 zone->spanned_pages = size;
6527 zone->present_pages = real_size;
6530 realtotalpages += real_size;
6533 pgdat->node_spanned_pages = totalpages;
6534 pgdat->node_present_pages = realtotalpages;
6535 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6539 #ifndef CONFIG_SPARSEMEM
6541 * Calculate the size of the zone->blockflags rounded to an unsigned long
6542 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6543 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6544 * round what is now in bits to nearest long in bits, then return it in
6547 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6549 unsigned long usemapsize;
6551 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6552 usemapsize = roundup(zonesize, pageblock_nr_pages);
6553 usemapsize = usemapsize >> pageblock_order;
6554 usemapsize *= NR_PAGEBLOCK_BITS;
6555 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6557 return usemapsize / 8;
6560 static void __ref setup_usemap(struct pglist_data *pgdat,
6562 unsigned long zone_start_pfn,
6563 unsigned long zonesize)
6565 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6566 zone->pageblock_flags = NULL;
6568 zone->pageblock_flags =
6569 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6571 if (!zone->pageblock_flags)
6572 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6573 usemapsize, zone->name, pgdat->node_id);
6577 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6578 unsigned long zone_start_pfn, unsigned long zonesize) {}
6579 #endif /* CONFIG_SPARSEMEM */
6581 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6583 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6584 void __init set_pageblock_order(void)
6588 /* Check that pageblock_nr_pages has not already been setup */
6589 if (pageblock_order)
6592 if (HPAGE_SHIFT > PAGE_SHIFT)
6593 order = HUGETLB_PAGE_ORDER;
6595 order = MAX_ORDER - 1;
6598 * Assume the largest contiguous order of interest is a huge page.
6599 * This value may be variable depending on boot parameters on IA64 and
6602 pageblock_order = order;
6604 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6607 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6608 * is unused as pageblock_order is set at compile-time. See
6609 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6612 void __init set_pageblock_order(void)
6616 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6618 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6619 unsigned long present_pages)
6621 unsigned long pages = spanned_pages;
6624 * Provide a more accurate estimation if there are holes within
6625 * the zone and SPARSEMEM is in use. If there are holes within the
6626 * zone, each populated memory region may cost us one or two extra
6627 * memmap pages due to alignment because memmap pages for each
6628 * populated regions may not be naturally aligned on page boundary.
6629 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6631 if (spanned_pages > present_pages + (present_pages >> 4) &&
6632 IS_ENABLED(CONFIG_SPARSEMEM))
6633 pages = present_pages;
6635 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6639 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6641 spin_lock_init(&pgdat->split_queue_lock);
6642 INIT_LIST_HEAD(&pgdat->split_queue);
6643 pgdat->split_queue_len = 0;
6646 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6649 #ifdef CONFIG_COMPACTION
6650 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6652 init_waitqueue_head(&pgdat->kcompactd_wait);
6655 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6658 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6660 pgdat_resize_init(pgdat);
6662 pgdat_init_split_queue(pgdat);
6663 pgdat_init_kcompactd(pgdat);
6665 init_waitqueue_head(&pgdat->kswapd_wait);
6666 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6668 pgdat_page_ext_init(pgdat);
6669 spin_lock_init(&pgdat->lru_lock);
6670 lruvec_init(node_lruvec(pgdat));
6673 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6674 unsigned long remaining_pages)
6676 atomic_long_set(&zone->managed_pages, remaining_pages);
6677 zone_set_nid(zone, nid);
6678 zone->name = zone_names[idx];
6679 zone->zone_pgdat = NODE_DATA(nid);
6680 spin_lock_init(&zone->lock);
6681 zone_seqlock_init(zone);
6682 zone_pcp_init(zone);
6686 * Set up the zone data structures
6687 * - init pgdat internals
6688 * - init all zones belonging to this node
6690 * NOTE: this function is only called during memory hotplug
6692 #ifdef CONFIG_MEMORY_HOTPLUG
6693 void __ref free_area_init_core_hotplug(int nid)
6696 pg_data_t *pgdat = NODE_DATA(nid);
6698 pgdat_init_internals(pgdat);
6699 for (z = 0; z < MAX_NR_ZONES; z++)
6700 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6705 * Set up the zone data structures:
6706 * - mark all pages reserved
6707 * - mark all memory queues empty
6708 * - clear the memory bitmaps
6710 * NOTE: pgdat should get zeroed by caller.
6711 * NOTE: this function is only called during early init.
6713 static void __init free_area_init_core(struct pglist_data *pgdat)
6716 int nid = pgdat->node_id;
6718 pgdat_init_internals(pgdat);
6719 pgdat->per_cpu_nodestats = &boot_nodestats;
6721 for (j = 0; j < MAX_NR_ZONES; j++) {
6722 struct zone *zone = pgdat->node_zones + j;
6723 unsigned long size, freesize, memmap_pages;
6724 unsigned long zone_start_pfn = zone->zone_start_pfn;
6726 size = zone->spanned_pages;
6727 freesize = zone->present_pages;
6730 * Adjust freesize so that it accounts for how much memory
6731 * is used by this zone for memmap. This affects the watermark
6732 * and per-cpu initialisations
6734 memmap_pages = calc_memmap_size(size, freesize);
6735 if (!is_highmem_idx(j)) {
6736 if (freesize >= memmap_pages) {
6737 freesize -= memmap_pages;
6740 " %s zone: %lu pages used for memmap\n",
6741 zone_names[j], memmap_pages);
6743 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6744 zone_names[j], memmap_pages, freesize);
6747 /* Account for reserved pages */
6748 if (j == 0 && freesize > dma_reserve) {
6749 freesize -= dma_reserve;
6750 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6751 zone_names[0], dma_reserve);
6754 if (!is_highmem_idx(j))
6755 nr_kernel_pages += freesize;
6756 /* Charge for highmem memmap if there are enough kernel pages */
6757 else if (nr_kernel_pages > memmap_pages * 2)
6758 nr_kernel_pages -= memmap_pages;
6759 nr_all_pages += freesize;
6762 * Set an approximate value for lowmem here, it will be adjusted
6763 * when the bootmem allocator frees pages into the buddy system.
6764 * And all highmem pages will be managed by the buddy system.
6766 zone_init_internals(zone, j, nid, freesize);
6771 set_pageblock_order();
6772 setup_usemap(pgdat, zone, zone_start_pfn, size);
6773 init_currently_empty_zone(zone, zone_start_pfn, size);
6774 memmap_init(size, nid, j, zone_start_pfn);
6778 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6779 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6781 unsigned long __maybe_unused start = 0;
6782 unsigned long __maybe_unused offset = 0;
6784 /* Skip empty nodes */
6785 if (!pgdat->node_spanned_pages)
6788 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6789 offset = pgdat->node_start_pfn - start;
6790 /* ia64 gets its own node_mem_map, before this, without bootmem */
6791 if (!pgdat->node_mem_map) {
6792 unsigned long size, end;
6796 * The zone's endpoints aren't required to be MAX_ORDER
6797 * aligned but the node_mem_map endpoints must be in order
6798 * for the buddy allocator to function correctly.
6800 end = pgdat_end_pfn(pgdat);
6801 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6802 size = (end - start) * sizeof(struct page);
6803 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6806 panic("Failed to allocate %ld bytes for node %d memory map\n",
6807 size, pgdat->node_id);
6808 pgdat->node_mem_map = map + offset;
6810 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6811 __func__, pgdat->node_id, (unsigned long)pgdat,
6812 (unsigned long)pgdat->node_mem_map);
6813 #ifndef CONFIG_NEED_MULTIPLE_NODES
6815 * With no DISCONTIG, the global mem_map is just set as node 0's
6817 if (pgdat == NODE_DATA(0)) {
6818 mem_map = NODE_DATA(0)->node_mem_map;
6819 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6820 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6822 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6827 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6828 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6830 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6831 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6833 pgdat->first_deferred_pfn = ULONG_MAX;
6836 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6839 void __init free_area_init_node(int nid, unsigned long *zones_size,
6840 unsigned long node_start_pfn,
6841 unsigned long *zholes_size)
6843 pg_data_t *pgdat = NODE_DATA(nid);
6844 unsigned long start_pfn = 0;
6845 unsigned long end_pfn = 0;
6847 /* pg_data_t should be reset to zero when it's allocated */
6848 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6850 pgdat->node_id = nid;
6851 pgdat->node_start_pfn = node_start_pfn;
6852 pgdat->per_cpu_nodestats = NULL;
6853 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6854 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6855 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6856 (u64)start_pfn << PAGE_SHIFT,
6857 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6859 start_pfn = node_start_pfn;
6861 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6862 zones_size, zholes_size);
6864 alloc_node_mem_map(pgdat);
6865 pgdat_set_deferred_range(pgdat);
6867 free_area_init_core(pgdat);
6870 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6872 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6875 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6880 for (pfn = spfn; pfn < epfn; pfn++) {
6881 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6882 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6883 + pageblock_nr_pages - 1;
6886 mm_zero_struct_page(pfn_to_page(pfn));
6894 * Only struct pages that are backed by physical memory are zeroed and
6895 * initialized by going through __init_single_page(). But, there are some
6896 * struct pages which are reserved in memblock allocator and their fields
6897 * may be accessed (for example page_to_pfn() on some configuration accesses
6898 * flags). We must explicitly zero those struct pages.
6900 * This function also addresses a similar issue where struct pages are left
6901 * uninitialized because the physical address range is not covered by
6902 * memblock.memory or memblock.reserved. That could happen when memblock
6903 * layout is manually configured via memmap=.
6905 void __init zero_resv_unavail(void)
6907 phys_addr_t start, end;
6909 phys_addr_t next = 0;
6912 * Loop through unavailable ranges not covered by memblock.memory.
6915 for_each_mem_range(i, &memblock.memory, NULL,
6916 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6918 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6921 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6924 * Struct pages that do not have backing memory. This could be because
6925 * firmware is using some of this memory, or for some other reasons.
6928 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6930 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6932 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6934 #if MAX_NUMNODES > 1
6936 * Figure out the number of possible node ids.
6938 void __init setup_nr_node_ids(void)
6940 unsigned int highest;
6942 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6943 nr_node_ids = highest + 1;
6948 * node_map_pfn_alignment - determine the maximum internode alignment
6950 * This function should be called after node map is populated and sorted.
6951 * It calculates the maximum power of two alignment which can distinguish
6954 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6955 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6956 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6957 * shifted, 1GiB is enough and this function will indicate so.
6959 * This is used to test whether pfn -> nid mapping of the chosen memory
6960 * model has fine enough granularity to avoid incorrect mapping for the
6961 * populated node map.
6963 * Return: the determined alignment in pfn's. 0 if there is no alignment
6964 * requirement (single node).
6966 unsigned long __init node_map_pfn_alignment(void)
6968 unsigned long accl_mask = 0, last_end = 0;
6969 unsigned long start, end, mask;
6970 int last_nid = NUMA_NO_NODE;
6973 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6974 if (!start || last_nid < 0 || last_nid == nid) {
6981 * Start with a mask granular enough to pin-point to the
6982 * start pfn and tick off bits one-by-one until it becomes
6983 * too coarse to separate the current node from the last.
6985 mask = ~((1 << __ffs(start)) - 1);
6986 while (mask && last_end <= (start & (mask << 1)))
6989 /* accumulate all internode masks */
6993 /* convert mask to number of pages */
6994 return ~accl_mask + 1;
6997 /* Find the lowest pfn for a node */
6998 static unsigned long __init find_min_pfn_for_node(int nid)
7000 unsigned long min_pfn = ULONG_MAX;
7001 unsigned long start_pfn;
7004 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7005 min_pfn = min(min_pfn, start_pfn);
7007 if (min_pfn == ULONG_MAX) {
7008 pr_warn("Could not find start_pfn for node %d\n", nid);
7016 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7018 * Return: the minimum PFN based on information provided via
7019 * memblock_set_node().
7021 unsigned long __init find_min_pfn_with_active_regions(void)
7023 return find_min_pfn_for_node(MAX_NUMNODES);
7027 * early_calculate_totalpages()
7028 * Sum pages in active regions for movable zone.
7029 * Populate N_MEMORY for calculating usable_nodes.
7031 static unsigned long __init early_calculate_totalpages(void)
7033 unsigned long totalpages = 0;
7034 unsigned long start_pfn, end_pfn;
7037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7038 unsigned long pages = end_pfn - start_pfn;
7040 totalpages += pages;
7042 node_set_state(nid, N_MEMORY);
7048 * Find the PFN the Movable zone begins in each node. Kernel memory
7049 * is spread evenly between nodes as long as the nodes have enough
7050 * memory. When they don't, some nodes will have more kernelcore than
7053 static void __init find_zone_movable_pfns_for_nodes(void)
7056 unsigned long usable_startpfn;
7057 unsigned long kernelcore_node, kernelcore_remaining;
7058 /* save the state before borrow the nodemask */
7059 nodemask_t saved_node_state = node_states[N_MEMORY];
7060 unsigned long totalpages = early_calculate_totalpages();
7061 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7062 struct memblock_region *r;
7064 /* Need to find movable_zone earlier when movable_node is specified. */
7065 find_usable_zone_for_movable();
7068 * If movable_node is specified, ignore kernelcore and movablecore
7071 if (movable_node_is_enabled()) {
7072 for_each_memblock(memory, r) {
7073 if (!memblock_is_hotpluggable(r))
7078 usable_startpfn = PFN_DOWN(r->base);
7079 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7080 min(usable_startpfn, zone_movable_pfn[nid]) :
7088 * If kernelcore=mirror is specified, ignore movablecore option
7090 if (mirrored_kernelcore) {
7091 bool mem_below_4gb_not_mirrored = false;
7093 for_each_memblock(memory, r) {
7094 if (memblock_is_mirror(r))
7099 usable_startpfn = memblock_region_memory_base_pfn(r);
7101 if (usable_startpfn < 0x100000) {
7102 mem_below_4gb_not_mirrored = true;
7106 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7107 min(usable_startpfn, zone_movable_pfn[nid]) :
7111 if (mem_below_4gb_not_mirrored)
7112 pr_warn("This configuration results in unmirrored kernel memory.");
7118 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7119 * amount of necessary memory.
7121 if (required_kernelcore_percent)
7122 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7124 if (required_movablecore_percent)
7125 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7129 * If movablecore= was specified, calculate what size of
7130 * kernelcore that corresponds so that memory usable for
7131 * any allocation type is evenly spread. If both kernelcore
7132 * and movablecore are specified, then the value of kernelcore
7133 * will be used for required_kernelcore if it's greater than
7134 * what movablecore would have allowed.
7136 if (required_movablecore) {
7137 unsigned long corepages;
7140 * Round-up so that ZONE_MOVABLE is at least as large as what
7141 * was requested by the user
7143 required_movablecore =
7144 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7145 required_movablecore = min(totalpages, required_movablecore);
7146 corepages = totalpages - required_movablecore;
7148 required_kernelcore = max(required_kernelcore, corepages);
7152 * If kernelcore was not specified or kernelcore size is larger
7153 * than totalpages, there is no ZONE_MOVABLE.
7155 if (!required_kernelcore || required_kernelcore >= totalpages)
7158 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7159 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7162 /* Spread kernelcore memory as evenly as possible throughout nodes */
7163 kernelcore_node = required_kernelcore / usable_nodes;
7164 for_each_node_state(nid, N_MEMORY) {
7165 unsigned long start_pfn, end_pfn;
7168 * Recalculate kernelcore_node if the division per node
7169 * now exceeds what is necessary to satisfy the requested
7170 * amount of memory for the kernel
7172 if (required_kernelcore < kernelcore_node)
7173 kernelcore_node = required_kernelcore / usable_nodes;
7176 * As the map is walked, we track how much memory is usable
7177 * by the kernel using kernelcore_remaining. When it is
7178 * 0, the rest of the node is usable by ZONE_MOVABLE
7180 kernelcore_remaining = kernelcore_node;
7182 /* Go through each range of PFNs within this node */
7183 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7184 unsigned long size_pages;
7186 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7187 if (start_pfn >= end_pfn)
7190 /* Account for what is only usable for kernelcore */
7191 if (start_pfn < usable_startpfn) {
7192 unsigned long kernel_pages;
7193 kernel_pages = min(end_pfn, usable_startpfn)
7196 kernelcore_remaining -= min(kernel_pages,
7197 kernelcore_remaining);
7198 required_kernelcore -= min(kernel_pages,
7199 required_kernelcore);
7201 /* Continue if range is now fully accounted */
7202 if (end_pfn <= usable_startpfn) {
7205 * Push zone_movable_pfn to the end so
7206 * that if we have to rebalance
7207 * kernelcore across nodes, we will
7208 * not double account here
7210 zone_movable_pfn[nid] = end_pfn;
7213 start_pfn = usable_startpfn;
7217 * The usable PFN range for ZONE_MOVABLE is from
7218 * start_pfn->end_pfn. Calculate size_pages as the
7219 * number of pages used as kernelcore
7221 size_pages = end_pfn - start_pfn;
7222 if (size_pages > kernelcore_remaining)
7223 size_pages = kernelcore_remaining;
7224 zone_movable_pfn[nid] = start_pfn + size_pages;
7227 * Some kernelcore has been met, update counts and
7228 * break if the kernelcore for this node has been
7231 required_kernelcore -= min(required_kernelcore,
7233 kernelcore_remaining -= size_pages;
7234 if (!kernelcore_remaining)
7240 * If there is still required_kernelcore, we do another pass with one
7241 * less node in the count. This will push zone_movable_pfn[nid] further
7242 * along on the nodes that still have memory until kernelcore is
7246 if (usable_nodes && required_kernelcore > usable_nodes)
7250 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7251 for (nid = 0; nid < MAX_NUMNODES; nid++)
7252 zone_movable_pfn[nid] =
7253 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7256 /* restore the node_state */
7257 node_states[N_MEMORY] = saved_node_state;
7260 /* Any regular or high memory on that node ? */
7261 static void check_for_memory(pg_data_t *pgdat, int nid)
7263 enum zone_type zone_type;
7265 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7266 struct zone *zone = &pgdat->node_zones[zone_type];
7267 if (populated_zone(zone)) {
7268 if (IS_ENABLED(CONFIG_HIGHMEM))
7269 node_set_state(nid, N_HIGH_MEMORY);
7270 if (zone_type <= ZONE_NORMAL)
7271 node_set_state(nid, N_NORMAL_MEMORY);
7278 * free_area_init_nodes - Initialise all pg_data_t and zone data
7279 * @max_zone_pfn: an array of max PFNs for each zone
7281 * This will call free_area_init_node() for each active node in the system.
7282 * Using the page ranges provided by memblock_set_node(), the size of each
7283 * zone in each node and their holes is calculated. If the maximum PFN
7284 * between two adjacent zones match, it is assumed that the zone is empty.
7285 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7286 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7287 * starts where the previous one ended. For example, ZONE_DMA32 starts
7288 * at arch_max_dma_pfn.
7290 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7292 unsigned long start_pfn, end_pfn;
7295 /* Record where the zone boundaries are */
7296 memset(arch_zone_lowest_possible_pfn, 0,
7297 sizeof(arch_zone_lowest_possible_pfn));
7298 memset(arch_zone_highest_possible_pfn, 0,
7299 sizeof(arch_zone_highest_possible_pfn));
7301 start_pfn = find_min_pfn_with_active_regions();
7303 for (i = 0; i < MAX_NR_ZONES; i++) {
7304 if (i == ZONE_MOVABLE)
7307 end_pfn = max(max_zone_pfn[i], start_pfn);
7308 arch_zone_lowest_possible_pfn[i] = start_pfn;
7309 arch_zone_highest_possible_pfn[i] = end_pfn;
7311 start_pfn = end_pfn;
7314 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7315 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7316 find_zone_movable_pfns_for_nodes();
7318 /* Print out the zone ranges */
7319 pr_info("Zone ranges:\n");
7320 for (i = 0; i < MAX_NR_ZONES; i++) {
7321 if (i == ZONE_MOVABLE)
7323 pr_info(" %-8s ", zone_names[i]);
7324 if (arch_zone_lowest_possible_pfn[i] ==
7325 arch_zone_highest_possible_pfn[i])
7328 pr_cont("[mem %#018Lx-%#018Lx]\n",
7329 (u64)arch_zone_lowest_possible_pfn[i]
7331 ((u64)arch_zone_highest_possible_pfn[i]
7332 << PAGE_SHIFT) - 1);
7335 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7336 pr_info("Movable zone start for each node\n");
7337 for (i = 0; i < MAX_NUMNODES; i++) {
7338 if (zone_movable_pfn[i])
7339 pr_info(" Node %d: %#018Lx\n", i,
7340 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7344 * Print out the early node map, and initialize the
7345 * subsection-map relative to active online memory ranges to
7346 * enable future "sub-section" extensions of the memory map.
7348 pr_info("Early memory node ranges\n");
7349 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7350 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7351 (u64)start_pfn << PAGE_SHIFT,
7352 ((u64)end_pfn << PAGE_SHIFT) - 1);
7353 subsection_map_init(start_pfn, end_pfn - start_pfn);
7356 /* Initialise every node */
7357 mminit_verify_pageflags_layout();
7358 setup_nr_node_ids();
7359 zero_resv_unavail();
7360 for_each_online_node(nid) {
7361 pg_data_t *pgdat = NODE_DATA(nid);
7362 free_area_init_node(nid, NULL,
7363 find_min_pfn_for_node(nid), NULL);
7365 /* Any memory on that node */
7366 if (pgdat->node_present_pages)
7367 node_set_state(nid, N_MEMORY);
7368 check_for_memory(pgdat, nid);
7372 static int __init cmdline_parse_core(char *p, unsigned long *core,
7373 unsigned long *percent)
7375 unsigned long long coremem;
7381 /* Value may be a percentage of total memory, otherwise bytes */
7382 coremem = simple_strtoull(p, &endptr, 0);
7383 if (*endptr == '%') {
7384 /* Paranoid check for percent values greater than 100 */
7385 WARN_ON(coremem > 100);
7389 coremem = memparse(p, &p);
7390 /* Paranoid check that UL is enough for the coremem value */
7391 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7393 *core = coremem >> PAGE_SHIFT;
7400 * kernelcore=size sets the amount of memory for use for allocations that
7401 * cannot be reclaimed or migrated.
7403 static int __init cmdline_parse_kernelcore(char *p)
7405 /* parse kernelcore=mirror */
7406 if (parse_option_str(p, "mirror")) {
7407 mirrored_kernelcore = true;
7411 return cmdline_parse_core(p, &required_kernelcore,
7412 &required_kernelcore_percent);
7416 * movablecore=size sets the amount of memory for use for allocations that
7417 * can be reclaimed or migrated.
7419 static int __init cmdline_parse_movablecore(char *p)
7421 return cmdline_parse_core(p, &required_movablecore,
7422 &required_movablecore_percent);
7425 early_param("kernelcore", cmdline_parse_kernelcore);
7426 early_param("movablecore", cmdline_parse_movablecore);
7428 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7430 void adjust_managed_page_count(struct page *page, long count)
7432 atomic_long_add(count, &page_zone(page)->managed_pages);
7433 totalram_pages_add(count);
7434 #ifdef CONFIG_HIGHMEM
7435 if (PageHighMem(page))
7436 totalhigh_pages_add(count);
7439 EXPORT_SYMBOL(adjust_managed_page_count);
7441 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7444 unsigned long pages = 0;
7446 start = (void *)PAGE_ALIGN((unsigned long)start);
7447 end = (void *)((unsigned long)end & PAGE_MASK);
7448 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7449 struct page *page = virt_to_page(pos);
7450 void *direct_map_addr;
7453 * 'direct_map_addr' might be different from 'pos'
7454 * because some architectures' virt_to_page()
7455 * work with aliases. Getting the direct map
7456 * address ensures that we get a _writeable_
7457 * alias for the memset().
7459 direct_map_addr = page_address(page);
7460 if ((unsigned int)poison <= 0xFF)
7461 memset(direct_map_addr, poison, PAGE_SIZE);
7463 free_reserved_page(page);
7467 pr_info("Freeing %s memory: %ldK\n",
7468 s, pages << (PAGE_SHIFT - 10));
7473 #ifdef CONFIG_HIGHMEM
7474 void free_highmem_page(struct page *page)
7476 __free_reserved_page(page);
7477 totalram_pages_inc();
7478 atomic_long_inc(&page_zone(page)->managed_pages);
7479 totalhigh_pages_inc();
7484 void __init mem_init_print_info(const char *str)
7486 unsigned long physpages, codesize, datasize, rosize, bss_size;
7487 unsigned long init_code_size, init_data_size;
7489 physpages = get_num_physpages();
7490 codesize = _etext - _stext;
7491 datasize = _edata - _sdata;
7492 rosize = __end_rodata - __start_rodata;
7493 bss_size = __bss_stop - __bss_start;
7494 init_data_size = __init_end - __init_begin;
7495 init_code_size = _einittext - _sinittext;
7498 * Detect special cases and adjust section sizes accordingly:
7499 * 1) .init.* may be embedded into .data sections
7500 * 2) .init.text.* may be out of [__init_begin, __init_end],
7501 * please refer to arch/tile/kernel/vmlinux.lds.S.
7502 * 3) .rodata.* may be embedded into .text or .data sections.
7504 #define adj_init_size(start, end, size, pos, adj) \
7506 if (start <= pos && pos < end && size > adj) \
7510 adj_init_size(__init_begin, __init_end, init_data_size,
7511 _sinittext, init_code_size);
7512 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7513 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7514 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7515 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7517 #undef adj_init_size
7519 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7520 #ifdef CONFIG_HIGHMEM
7524 nr_free_pages() << (PAGE_SHIFT - 10),
7525 physpages << (PAGE_SHIFT - 10),
7526 codesize >> 10, datasize >> 10, rosize >> 10,
7527 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7528 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7529 totalcma_pages << (PAGE_SHIFT - 10),
7530 #ifdef CONFIG_HIGHMEM
7531 totalhigh_pages() << (PAGE_SHIFT - 10),
7533 str ? ", " : "", str ? str : "");
7537 * set_dma_reserve - set the specified number of pages reserved in the first zone
7538 * @new_dma_reserve: The number of pages to mark reserved
7540 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7541 * In the DMA zone, a significant percentage may be consumed by kernel image
7542 * and other unfreeable allocations which can skew the watermarks badly. This
7543 * function may optionally be used to account for unfreeable pages in the
7544 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7545 * smaller per-cpu batchsize.
7547 void __init set_dma_reserve(unsigned long new_dma_reserve)
7549 dma_reserve = new_dma_reserve;
7552 void __init free_area_init(unsigned long *zones_size)
7554 zero_resv_unavail();
7555 free_area_init_node(0, zones_size,
7556 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7559 static int page_alloc_cpu_dead(unsigned int cpu)
7562 lru_add_drain_cpu(cpu);
7566 * Spill the event counters of the dead processor
7567 * into the current processors event counters.
7568 * This artificially elevates the count of the current
7571 vm_events_fold_cpu(cpu);
7574 * Zero the differential counters of the dead processor
7575 * so that the vm statistics are consistent.
7577 * This is only okay since the processor is dead and cannot
7578 * race with what we are doing.
7580 cpu_vm_stats_fold(cpu);
7585 int hashdist = HASHDIST_DEFAULT;
7587 static int __init set_hashdist(char *str)
7591 hashdist = simple_strtoul(str, &str, 0);
7594 __setup("hashdist=", set_hashdist);
7597 void __init page_alloc_init(void)
7602 if (num_node_state(N_MEMORY) == 1)
7606 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7607 "mm/page_alloc:dead", NULL,
7608 page_alloc_cpu_dead);
7613 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7614 * or min_free_kbytes changes.
7616 static void calculate_totalreserve_pages(void)
7618 struct pglist_data *pgdat;
7619 unsigned long reserve_pages = 0;
7620 enum zone_type i, j;
7622 for_each_online_pgdat(pgdat) {
7624 pgdat->totalreserve_pages = 0;
7626 for (i = 0; i < MAX_NR_ZONES; i++) {
7627 struct zone *zone = pgdat->node_zones + i;
7629 unsigned long managed_pages = zone_managed_pages(zone);
7631 /* Find valid and maximum lowmem_reserve in the zone */
7632 for (j = i; j < MAX_NR_ZONES; j++) {
7633 if (zone->lowmem_reserve[j] > max)
7634 max = zone->lowmem_reserve[j];
7637 /* we treat the high watermark as reserved pages. */
7638 max += high_wmark_pages(zone);
7640 if (max > managed_pages)
7641 max = managed_pages;
7643 pgdat->totalreserve_pages += max;
7645 reserve_pages += max;
7648 totalreserve_pages = reserve_pages;
7652 * setup_per_zone_lowmem_reserve - called whenever
7653 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7654 * has a correct pages reserved value, so an adequate number of
7655 * pages are left in the zone after a successful __alloc_pages().
7657 static void setup_per_zone_lowmem_reserve(void)
7659 struct pglist_data *pgdat;
7660 enum zone_type j, idx;
7662 for_each_online_pgdat(pgdat) {
7663 for (j = 0; j < MAX_NR_ZONES; j++) {
7664 struct zone *zone = pgdat->node_zones + j;
7665 unsigned long managed_pages = zone_managed_pages(zone);
7667 zone->lowmem_reserve[j] = 0;
7671 struct zone *lower_zone;
7674 lower_zone = pgdat->node_zones + idx;
7676 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7677 sysctl_lowmem_reserve_ratio[idx] = 0;
7678 lower_zone->lowmem_reserve[j] = 0;
7680 lower_zone->lowmem_reserve[j] =
7681 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7683 managed_pages += zone_managed_pages(lower_zone);
7688 /* update totalreserve_pages */
7689 calculate_totalreserve_pages();
7692 static void __setup_per_zone_wmarks(void)
7694 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7695 unsigned long lowmem_pages = 0;
7697 unsigned long flags;
7699 /* Calculate total number of !ZONE_HIGHMEM pages */
7700 for_each_zone(zone) {
7701 if (!is_highmem(zone))
7702 lowmem_pages += zone_managed_pages(zone);
7705 for_each_zone(zone) {
7708 spin_lock_irqsave(&zone->lock, flags);
7709 tmp = (u64)pages_min * zone_managed_pages(zone);
7710 do_div(tmp, lowmem_pages);
7711 if (is_highmem(zone)) {
7713 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7714 * need highmem pages, so cap pages_min to a small
7717 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7718 * deltas control async page reclaim, and so should
7719 * not be capped for highmem.
7721 unsigned long min_pages;
7723 min_pages = zone_managed_pages(zone) / 1024;
7724 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7725 zone->_watermark[WMARK_MIN] = min_pages;
7728 * If it's a lowmem zone, reserve a number of pages
7729 * proportionate to the zone's size.
7731 zone->_watermark[WMARK_MIN] = tmp;
7735 * Set the kswapd watermarks distance according to the
7736 * scale factor in proportion to available memory, but
7737 * ensure a minimum size on small systems.
7739 tmp = max_t(u64, tmp >> 2,
7740 mult_frac(zone_managed_pages(zone),
7741 watermark_scale_factor, 10000));
7743 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7744 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7745 zone->watermark_boost = 0;
7747 spin_unlock_irqrestore(&zone->lock, flags);
7750 /* update totalreserve_pages */
7751 calculate_totalreserve_pages();
7755 * setup_per_zone_wmarks - called when min_free_kbytes changes
7756 * or when memory is hot-{added|removed}
7758 * Ensures that the watermark[min,low,high] values for each zone are set
7759 * correctly with respect to min_free_kbytes.
7761 void setup_per_zone_wmarks(void)
7763 static DEFINE_SPINLOCK(lock);
7766 __setup_per_zone_wmarks();
7771 * Initialise min_free_kbytes.
7773 * For small machines we want it small (128k min). For large machines
7774 * we want it large (64MB max). But it is not linear, because network
7775 * bandwidth does not increase linearly with machine size. We use
7777 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7778 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7794 int __meminit init_per_zone_wmark_min(void)
7796 unsigned long lowmem_kbytes;
7797 int new_min_free_kbytes;
7799 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7800 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7802 if (new_min_free_kbytes > user_min_free_kbytes) {
7803 min_free_kbytes = new_min_free_kbytes;
7804 if (min_free_kbytes < 128)
7805 min_free_kbytes = 128;
7806 if (min_free_kbytes > 65536)
7807 min_free_kbytes = 65536;
7809 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7810 new_min_free_kbytes, user_min_free_kbytes);
7812 setup_per_zone_wmarks();
7813 refresh_zone_stat_thresholds();
7814 setup_per_zone_lowmem_reserve();
7817 setup_min_unmapped_ratio();
7818 setup_min_slab_ratio();
7823 core_initcall(init_per_zone_wmark_min)
7826 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7827 * that we can call two helper functions whenever min_free_kbytes
7830 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7831 void __user *buffer, size_t *length, loff_t *ppos)
7835 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7840 user_min_free_kbytes = min_free_kbytes;
7841 setup_per_zone_wmarks();
7846 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7847 void __user *buffer, size_t *length, loff_t *ppos)
7851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7858 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7859 void __user *buffer, size_t *length, loff_t *ppos)
7863 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7868 setup_per_zone_wmarks();
7874 static void setup_min_unmapped_ratio(void)
7879 for_each_online_pgdat(pgdat)
7880 pgdat->min_unmapped_pages = 0;
7883 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7884 sysctl_min_unmapped_ratio) / 100;
7888 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7889 void __user *buffer, size_t *length, loff_t *ppos)
7893 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7897 setup_min_unmapped_ratio();
7902 static void setup_min_slab_ratio(void)
7907 for_each_online_pgdat(pgdat)
7908 pgdat->min_slab_pages = 0;
7911 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7912 sysctl_min_slab_ratio) / 100;
7915 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7916 void __user *buffer, size_t *length, loff_t *ppos)
7920 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7924 setup_min_slab_ratio();
7931 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7932 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7933 * whenever sysctl_lowmem_reserve_ratio changes.
7935 * The reserve ratio obviously has absolutely no relation with the
7936 * minimum watermarks. The lowmem reserve ratio can only make sense
7937 * if in function of the boot time zone sizes.
7939 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7940 void __user *buffer, size_t *length, loff_t *ppos)
7942 proc_dointvec_minmax(table, write, buffer, length, ppos);
7943 setup_per_zone_lowmem_reserve();
7948 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7949 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7950 * pagelist can have before it gets flushed back to buddy allocator.
7952 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7953 void __user *buffer, size_t *length, loff_t *ppos)
7956 int old_percpu_pagelist_fraction;
7959 mutex_lock(&pcp_batch_high_lock);
7960 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7962 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7963 if (!write || ret < 0)
7966 /* Sanity checking to avoid pcp imbalance */
7967 if (percpu_pagelist_fraction &&
7968 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7969 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7975 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7978 for_each_populated_zone(zone) {
7981 for_each_possible_cpu(cpu)
7982 pageset_set_high_and_batch(zone,
7983 per_cpu_ptr(zone->pageset, cpu));
7986 mutex_unlock(&pcp_batch_high_lock);
7990 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7992 * Returns the number of pages that arch has reserved but
7993 * is not known to alloc_large_system_hash().
7995 static unsigned long __init arch_reserved_kernel_pages(void)
8002 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8003 * machines. As memory size is increased the scale is also increased but at
8004 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8005 * quadruples the scale is increased by one, which means the size of hash table
8006 * only doubles, instead of quadrupling as well.
8007 * Because 32-bit systems cannot have large physical memory, where this scaling
8008 * makes sense, it is disabled on such platforms.
8010 #if __BITS_PER_LONG > 32
8011 #define ADAPT_SCALE_BASE (64ul << 30)
8012 #define ADAPT_SCALE_SHIFT 2
8013 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8017 * allocate a large system hash table from bootmem
8018 * - it is assumed that the hash table must contain an exact power-of-2
8019 * quantity of entries
8020 * - limit is the number of hash buckets, not the total allocation size
8022 void *__init alloc_large_system_hash(const char *tablename,
8023 unsigned long bucketsize,
8024 unsigned long numentries,
8027 unsigned int *_hash_shift,
8028 unsigned int *_hash_mask,
8029 unsigned long low_limit,
8030 unsigned long high_limit)
8032 unsigned long long max = high_limit;
8033 unsigned long log2qty, size;
8038 /* allow the kernel cmdline to have a say */
8040 /* round applicable memory size up to nearest megabyte */
8041 numentries = nr_kernel_pages;
8042 numentries -= arch_reserved_kernel_pages();
8044 /* It isn't necessary when PAGE_SIZE >= 1MB */
8045 if (PAGE_SHIFT < 20)
8046 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8048 #if __BITS_PER_LONG > 32
8050 unsigned long adapt;
8052 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8053 adapt <<= ADAPT_SCALE_SHIFT)
8058 /* limit to 1 bucket per 2^scale bytes of low memory */
8059 if (scale > PAGE_SHIFT)
8060 numentries >>= (scale - PAGE_SHIFT);
8062 numentries <<= (PAGE_SHIFT - scale);
8064 /* Make sure we've got at least a 0-order allocation.. */
8065 if (unlikely(flags & HASH_SMALL)) {
8066 /* Makes no sense without HASH_EARLY */
8067 WARN_ON(!(flags & HASH_EARLY));
8068 if (!(numentries >> *_hash_shift)) {
8069 numentries = 1UL << *_hash_shift;
8070 BUG_ON(!numentries);
8072 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8073 numentries = PAGE_SIZE / bucketsize;
8075 numentries = roundup_pow_of_two(numentries);
8077 /* limit allocation size to 1/16 total memory by default */
8079 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8080 do_div(max, bucketsize);
8082 max = min(max, 0x80000000ULL);
8084 if (numentries < low_limit)
8085 numentries = low_limit;
8086 if (numentries > max)
8089 log2qty = ilog2(numentries);
8091 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8094 size = bucketsize << log2qty;
8095 if (flags & HASH_EARLY) {
8096 if (flags & HASH_ZERO)
8097 table = memblock_alloc(size, SMP_CACHE_BYTES);
8099 table = memblock_alloc_raw(size,
8101 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8102 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8106 * If bucketsize is not a power-of-two, we may free
8107 * some pages at the end of hash table which
8108 * alloc_pages_exact() automatically does
8110 table = alloc_pages_exact(size, gfp_flags);
8111 kmemleak_alloc(table, size, 1, gfp_flags);
8113 } while (!table && size > PAGE_SIZE && --log2qty);
8116 panic("Failed to allocate %s hash table\n", tablename);
8118 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8119 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8120 virt ? "vmalloc" : "linear");
8123 *_hash_shift = log2qty;
8125 *_hash_mask = (1 << log2qty) - 1;
8131 * This function checks whether pageblock includes unmovable pages or not.
8132 * If @count is not zero, it is okay to include less @count unmovable pages
8134 * PageLRU check without isolation or lru_lock could race so that
8135 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8136 * check without lock_page also may miss some movable non-lru pages at
8137 * race condition. So you can't expect this function should be exact.
8139 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8140 int migratetype, int flags)
8142 unsigned long found;
8143 unsigned long iter = 0;
8144 unsigned long pfn = page_to_pfn(page);
8145 const char *reason = "unmovable page";
8148 * TODO we could make this much more efficient by not checking every
8149 * page in the range if we know all of them are in MOVABLE_ZONE and
8150 * that the movable zone guarantees that pages are migratable but
8151 * the later is not the case right now unfortunatelly. E.g. movablecore
8152 * can still lead to having bootmem allocations in zone_movable.
8155 if (is_migrate_cma_page(page)) {
8157 * CMA allocations (alloc_contig_range) really need to mark
8158 * isolate CMA pageblocks even when they are not movable in fact
8159 * so consider them movable here.
8161 if (is_migrate_cma(migratetype))
8164 reason = "CMA page";
8168 for (found = 0; iter < pageblock_nr_pages; iter++) {
8169 unsigned long check = pfn + iter;
8171 if (!pfn_valid_within(check))
8174 page = pfn_to_page(check);
8176 if (PageReserved(page))
8180 * If the zone is movable and we have ruled out all reserved
8181 * pages then it should be reasonably safe to assume the rest
8184 if (zone_idx(zone) == ZONE_MOVABLE)
8188 * Hugepages are not in LRU lists, but they're movable.
8189 * We need not scan over tail pages because we don't
8190 * handle each tail page individually in migration.
8192 if (PageHuge(page)) {
8193 struct page *head = compound_head(page);
8194 unsigned int skip_pages;
8196 if (!hugepage_migration_supported(page_hstate(head)))
8199 skip_pages = (1 << compound_order(head)) - (page - head);
8200 iter += skip_pages - 1;
8205 * We can't use page_count without pin a page
8206 * because another CPU can free compound page.
8207 * This check already skips compound tails of THP
8208 * because their page->_refcount is zero at all time.
8210 if (!page_ref_count(page)) {
8211 if (PageBuddy(page))
8212 iter += (1 << page_order(page)) - 1;
8217 * The HWPoisoned page may be not in buddy system, and
8218 * page_count() is not 0.
8220 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8223 if (__PageMovable(page))
8229 * If there are RECLAIMABLE pages, we need to check
8230 * it. But now, memory offline itself doesn't call
8231 * shrink_node_slabs() and it still to be fixed.
8234 * If the page is not RAM, page_count()should be 0.
8235 * we don't need more check. This is an _used_ not-movable page.
8237 * The problematic thing here is PG_reserved pages. PG_reserved
8238 * is set to both of a memory hole page and a _used_ kernel
8246 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8247 if (flags & REPORT_FAILURE)
8248 dump_page(pfn_to_page(pfn + iter), reason);
8252 #ifdef CONFIG_CONTIG_ALLOC
8253 static unsigned long pfn_max_align_down(unsigned long pfn)
8255 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8256 pageblock_nr_pages) - 1);
8259 static unsigned long pfn_max_align_up(unsigned long pfn)
8261 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8262 pageblock_nr_pages));
8265 /* [start, end) must belong to a single zone. */
8266 static int __alloc_contig_migrate_range(struct compact_control *cc,
8267 unsigned long start, unsigned long end)
8269 /* This function is based on compact_zone() from compaction.c. */
8270 unsigned long nr_reclaimed;
8271 unsigned long pfn = start;
8272 unsigned int tries = 0;
8277 while (pfn < end || !list_empty(&cc->migratepages)) {
8278 if (fatal_signal_pending(current)) {
8283 if (list_empty(&cc->migratepages)) {
8284 cc->nr_migratepages = 0;
8285 pfn = isolate_migratepages_range(cc, pfn, end);
8291 } else if (++tries == 5) {
8292 ret = ret < 0 ? ret : -EBUSY;
8296 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8298 cc->nr_migratepages -= nr_reclaimed;
8300 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8301 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8304 putback_movable_pages(&cc->migratepages);
8311 * alloc_contig_range() -- tries to allocate given range of pages
8312 * @start: start PFN to allocate
8313 * @end: one-past-the-last PFN to allocate
8314 * @migratetype: migratetype of the underlaying pageblocks (either
8315 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8316 * in range must have the same migratetype and it must
8317 * be either of the two.
8318 * @gfp_mask: GFP mask to use during compaction
8320 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8321 * aligned. The PFN range must belong to a single zone.
8323 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8324 * pageblocks in the range. Once isolated, the pageblocks should not
8325 * be modified by others.
8327 * Return: zero on success or negative error code. On success all
8328 * pages which PFN is in [start, end) are allocated for the caller and
8329 * need to be freed with free_contig_range().
8331 int alloc_contig_range(unsigned long start, unsigned long end,
8332 unsigned migratetype, gfp_t gfp_mask)
8334 unsigned long outer_start, outer_end;
8338 struct compact_control cc = {
8339 .nr_migratepages = 0,
8341 .zone = page_zone(pfn_to_page(start)),
8342 .mode = MIGRATE_SYNC,
8343 .ignore_skip_hint = true,
8344 .no_set_skip_hint = true,
8345 .gfp_mask = current_gfp_context(gfp_mask),
8347 INIT_LIST_HEAD(&cc.migratepages);
8350 * What we do here is we mark all pageblocks in range as
8351 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8352 * have different sizes, and due to the way page allocator
8353 * work, we align the range to biggest of the two pages so
8354 * that page allocator won't try to merge buddies from
8355 * different pageblocks and change MIGRATE_ISOLATE to some
8356 * other migration type.
8358 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8359 * migrate the pages from an unaligned range (ie. pages that
8360 * we are interested in). This will put all the pages in
8361 * range back to page allocator as MIGRATE_ISOLATE.
8363 * When this is done, we take the pages in range from page
8364 * allocator removing them from the buddy system. This way
8365 * page allocator will never consider using them.
8367 * This lets us mark the pageblocks back as
8368 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8369 * aligned range but not in the unaligned, original range are
8370 * put back to page allocator so that buddy can use them.
8373 ret = start_isolate_page_range(pfn_max_align_down(start),
8374 pfn_max_align_up(end), migratetype, 0);
8379 * In case of -EBUSY, we'd like to know which page causes problem.
8380 * So, just fall through. test_pages_isolated() has a tracepoint
8381 * which will report the busy page.
8383 * It is possible that busy pages could become available before
8384 * the call to test_pages_isolated, and the range will actually be
8385 * allocated. So, if we fall through be sure to clear ret so that
8386 * -EBUSY is not accidentally used or returned to caller.
8388 ret = __alloc_contig_migrate_range(&cc, start, end);
8389 if (ret && ret != -EBUSY)
8394 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8395 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8396 * more, all pages in [start, end) are free in page allocator.
8397 * What we are going to do is to allocate all pages from
8398 * [start, end) (that is remove them from page allocator).
8400 * The only problem is that pages at the beginning and at the
8401 * end of interesting range may be not aligned with pages that
8402 * page allocator holds, ie. they can be part of higher order
8403 * pages. Because of this, we reserve the bigger range and
8404 * once this is done free the pages we are not interested in.
8406 * We don't have to hold zone->lock here because the pages are
8407 * isolated thus they won't get removed from buddy.
8410 lru_add_drain_all();
8413 outer_start = start;
8414 while (!PageBuddy(pfn_to_page(outer_start))) {
8415 if (++order >= MAX_ORDER) {
8416 outer_start = start;
8419 outer_start &= ~0UL << order;
8422 if (outer_start != start) {
8423 order = page_order(pfn_to_page(outer_start));
8426 * outer_start page could be small order buddy page and
8427 * it doesn't include start page. Adjust outer_start
8428 * in this case to report failed page properly
8429 * on tracepoint in test_pages_isolated()
8431 if (outer_start + (1UL << order) <= start)
8432 outer_start = start;
8435 /* Make sure the range is really isolated. */
8436 if (test_pages_isolated(outer_start, end, false)) {
8437 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8438 __func__, outer_start, end);
8443 /* Grab isolated pages from freelists. */
8444 outer_end = isolate_freepages_range(&cc, outer_start, end);
8450 /* Free head and tail (if any) */
8451 if (start != outer_start)
8452 free_contig_range(outer_start, start - outer_start);
8453 if (end != outer_end)
8454 free_contig_range(end, outer_end - end);
8457 undo_isolate_page_range(pfn_max_align_down(start),
8458 pfn_max_align_up(end), migratetype);
8461 #endif /* CONFIG_CONTIG_ALLOC */
8463 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8465 unsigned int count = 0;
8467 for (; nr_pages--; pfn++) {
8468 struct page *page = pfn_to_page(pfn);
8470 count += page_count(page) != 1;
8473 WARN(count != 0, "%d pages are still in use!\n", count);
8476 #ifdef CONFIG_MEMORY_HOTPLUG
8478 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8479 * page high values need to be recalulated.
8481 void __meminit zone_pcp_update(struct zone *zone)
8484 mutex_lock(&pcp_batch_high_lock);
8485 for_each_possible_cpu(cpu)
8486 pageset_set_high_and_batch(zone,
8487 per_cpu_ptr(zone->pageset, cpu));
8488 mutex_unlock(&pcp_batch_high_lock);
8492 void zone_pcp_reset(struct zone *zone)
8494 unsigned long flags;
8496 struct per_cpu_pageset *pset;
8498 /* avoid races with drain_pages() */
8499 local_irq_save(flags);
8500 if (zone->pageset != &boot_pageset) {
8501 for_each_online_cpu(cpu) {
8502 pset = per_cpu_ptr(zone->pageset, cpu);
8503 drain_zonestat(zone, pset);
8505 free_percpu(zone->pageset);
8506 zone->pageset = &boot_pageset;
8508 local_irq_restore(flags);
8511 #ifdef CONFIG_MEMORY_HOTREMOVE
8513 * All pages in the range must be in a single zone and isolated
8514 * before calling this.
8517 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8521 unsigned int order, i;
8523 unsigned long flags;
8524 unsigned long offlined_pages = 0;
8526 /* find the first valid pfn */
8527 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8531 return offlined_pages;
8533 offline_mem_sections(pfn, end_pfn);
8534 zone = page_zone(pfn_to_page(pfn));
8535 spin_lock_irqsave(&zone->lock, flags);
8537 while (pfn < end_pfn) {
8538 if (!pfn_valid(pfn)) {
8542 page = pfn_to_page(pfn);
8544 * The HWPoisoned page may be not in buddy system, and
8545 * page_count() is not 0.
8547 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8549 SetPageReserved(page);
8554 BUG_ON(page_count(page));
8555 BUG_ON(!PageBuddy(page));
8556 order = page_order(page);
8557 offlined_pages += 1 << order;
8558 #ifdef CONFIG_DEBUG_VM
8559 pr_info("remove from free list %lx %d %lx\n",
8560 pfn, 1 << order, end_pfn);
8562 del_page_from_free_area(page, &zone->free_area[order]);
8563 for (i = 0; i < (1 << order); i++)
8564 SetPageReserved((page+i));
8565 pfn += (1 << order);
8567 spin_unlock_irqrestore(&zone->lock, flags);
8569 return offlined_pages;
8573 bool is_free_buddy_page(struct page *page)
8575 struct zone *zone = page_zone(page);
8576 unsigned long pfn = page_to_pfn(page);
8577 unsigned long flags;
8580 spin_lock_irqsave(&zone->lock, flags);
8581 for (order = 0; order < MAX_ORDER; order++) {
8582 struct page *page_head = page - (pfn & ((1 << order) - 1));
8584 if (PageBuddy(page_head) && page_order(page_head) >= order)
8587 spin_unlock_irqrestore(&zone->lock, flags);
8589 return order < MAX_ORDER;
8592 #ifdef CONFIG_MEMORY_FAILURE
8594 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8595 * test is performed under the zone lock to prevent a race against page
8598 bool set_hwpoison_free_buddy_page(struct page *page)
8600 struct zone *zone = page_zone(page);
8601 unsigned long pfn = page_to_pfn(page);
8602 unsigned long flags;
8604 bool hwpoisoned = false;
8606 spin_lock_irqsave(&zone->lock, flags);
8607 for (order = 0; order < MAX_ORDER; order++) {
8608 struct page *page_head = page - (pfn & ((1 << order) - 1));
8610 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8611 if (!TestSetPageHWPoison(page))
8616 spin_unlock_irqrestore(&zone->lock, flags);