]> Git Repo - linux.git/blob - net/tls/tls_main.c
rt2800: enable TX_PIN_CFG_LNA_PE_ bits per band
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149         ctx->sk_write_space(sk);
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 int tls_push_pending_closed_record(struct sock *sk,
213                                    struct tls_context *tls_ctx,
214                                    int flags, long *timeo)
215 {
216         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
217
218         if (tls_is_partially_sent_record(tls_ctx) ||
219             !list_empty(&ctx->tx_list))
220                 return tls_tx_records(sk, flags);
221         else
222                 return tls_ctx->push_pending_record(sk, flags);
223 }
224
225 static void tls_write_space(struct sock *sk)
226 {
227         struct tls_context *ctx = tls_get_ctx(sk);
228         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
229
230         /* If in_tcp_sendpages call lower protocol write space handler
231          * to ensure we wake up any waiting operations there. For example
232          * if do_tcp_sendpages where to call sk_wait_event.
233          */
234         if (ctx->in_tcp_sendpages) {
235                 ctx->sk_write_space(sk);
236                 return;
237         }
238
239         /* Schedule the transmission if tx list is ready */
240         if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
241                 /* Schedule the transmission */
242                 if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
243                         schedule_delayed_work(&tx_ctx->tx_work.work, 0);
244         }
245
246         ctx->sk_write_space(sk);
247 }
248
249 static void tls_ctx_free(struct tls_context *ctx)
250 {
251         if (!ctx)
252                 return;
253
254         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
255         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
256         kfree(ctx);
257 }
258
259 static void tls_sk_proto_close(struct sock *sk, long timeout)
260 {
261         struct tls_context *ctx = tls_get_ctx(sk);
262         long timeo = sock_sndtimeo(sk, 0);
263         void (*sk_proto_close)(struct sock *sk, long timeout);
264         bool free_ctx = false;
265
266         lock_sock(sk);
267         sk_proto_close = ctx->sk_proto_close;
268
269         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
270                 goto skip_tx_cleanup;
271
272         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
273                 free_ctx = true;
274                 goto skip_tx_cleanup;
275         }
276
277         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
278                 tls_handle_open_record(sk, 0);
279
280         /* We need these for tls_sw_fallback handling of other packets */
281         if (ctx->tx_conf == TLS_SW) {
282                 kfree(ctx->tx.rec_seq);
283                 kfree(ctx->tx.iv);
284                 tls_sw_free_resources_tx(sk);
285         }
286
287         if (ctx->rx_conf == TLS_SW) {
288                 kfree(ctx->rx.rec_seq);
289                 kfree(ctx->rx.iv);
290                 tls_sw_free_resources_rx(sk);
291         }
292
293 #ifdef CONFIG_TLS_DEVICE
294         if (ctx->rx_conf == TLS_HW)
295                 tls_device_offload_cleanup_rx(sk);
296
297         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
298 #else
299         {
300 #endif
301                 tls_ctx_free(ctx);
302                 ctx = NULL;
303         }
304
305 skip_tx_cleanup:
306         release_sock(sk);
307         sk_proto_close(sk, timeout);
308         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
309          * for sk->sk_prot->unhash [tls_hw_unhash]
310          */
311         if (free_ctx)
312                 tls_ctx_free(ctx);
313 }
314
315 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
316                                 int __user *optlen)
317 {
318         int rc = 0;
319         struct tls_context *ctx = tls_get_ctx(sk);
320         struct tls_crypto_info *crypto_info;
321         int len;
322
323         if (get_user(len, optlen))
324                 return -EFAULT;
325
326         if (!optval || (len < sizeof(*crypto_info))) {
327                 rc = -EINVAL;
328                 goto out;
329         }
330
331         if (!ctx) {
332                 rc = -EBUSY;
333                 goto out;
334         }
335
336         /* get user crypto info */
337         crypto_info = &ctx->crypto_send.info;
338
339         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
340                 rc = -EBUSY;
341                 goto out;
342         }
343
344         if (len == sizeof(*crypto_info)) {
345                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
346                         rc = -EFAULT;
347                 goto out;
348         }
349
350         switch (crypto_info->cipher_type) {
351         case TLS_CIPHER_AES_GCM_128: {
352                 struct tls12_crypto_info_aes_gcm_128 *
353                   crypto_info_aes_gcm_128 =
354                   container_of(crypto_info,
355                                struct tls12_crypto_info_aes_gcm_128,
356                                info);
357
358                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
359                         rc = -EINVAL;
360                         goto out;
361                 }
362                 lock_sock(sk);
363                 memcpy(crypto_info_aes_gcm_128->iv,
364                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
365                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
366                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
367                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
368                 release_sock(sk);
369                 if (copy_to_user(optval,
370                                  crypto_info_aes_gcm_128,
371                                  sizeof(*crypto_info_aes_gcm_128)))
372                         rc = -EFAULT;
373                 break;
374         }
375         case TLS_CIPHER_AES_GCM_256: {
376                 struct tls12_crypto_info_aes_gcm_256 *
377                   crypto_info_aes_gcm_256 =
378                   container_of(crypto_info,
379                                struct tls12_crypto_info_aes_gcm_256,
380                                info);
381
382                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
383                         rc = -EINVAL;
384                         goto out;
385                 }
386                 lock_sock(sk);
387                 memcpy(crypto_info_aes_gcm_256->iv,
388                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
389                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
390                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
391                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
392                 release_sock(sk);
393                 if (copy_to_user(optval,
394                                  crypto_info_aes_gcm_256,
395                                  sizeof(*crypto_info_aes_gcm_256)))
396                         rc = -EFAULT;
397                 break;
398         }
399         default:
400                 rc = -EINVAL;
401         }
402
403 out:
404         return rc;
405 }
406
407 static int do_tls_getsockopt(struct sock *sk, int optname,
408                              char __user *optval, int __user *optlen)
409 {
410         int rc = 0;
411
412         switch (optname) {
413         case TLS_TX:
414                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
415                 break;
416         default:
417                 rc = -ENOPROTOOPT;
418                 break;
419         }
420         return rc;
421 }
422
423 static int tls_getsockopt(struct sock *sk, int level, int optname,
424                           char __user *optval, int __user *optlen)
425 {
426         struct tls_context *ctx = tls_get_ctx(sk);
427
428         if (level != SOL_TLS)
429                 return ctx->getsockopt(sk, level, optname, optval, optlen);
430
431         return do_tls_getsockopt(sk, optname, optval, optlen);
432 }
433
434 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
435                                   unsigned int optlen, int tx)
436 {
437         struct tls_crypto_info *crypto_info;
438         struct tls_context *ctx = tls_get_ctx(sk);
439         size_t optsize;
440         int rc = 0;
441         int conf;
442
443         if (!optval || (optlen < sizeof(*crypto_info))) {
444                 rc = -EINVAL;
445                 goto out;
446         }
447
448         if (tx)
449                 crypto_info = &ctx->crypto_send.info;
450         else
451                 crypto_info = &ctx->crypto_recv.info;
452
453         /* Currently we don't support set crypto info more than one time */
454         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
455                 rc = -EBUSY;
456                 goto out;
457         }
458
459         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
460         if (rc) {
461                 rc = -EFAULT;
462                 goto err_crypto_info;
463         }
464
465         /* check version */
466         if (crypto_info->version != TLS_1_2_VERSION &&
467             crypto_info->version != TLS_1_3_VERSION) {
468                 rc = -ENOTSUPP;
469                 goto err_crypto_info;
470         }
471
472         switch (crypto_info->cipher_type) {
473         case TLS_CIPHER_AES_GCM_128:
474         case TLS_CIPHER_AES_GCM_256: {
475                 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
476                         sizeof(struct tls12_crypto_info_aes_gcm_128) :
477                         sizeof(struct tls12_crypto_info_aes_gcm_256);
478                 if (optlen != optsize) {
479                         rc = -EINVAL;
480                         goto err_crypto_info;
481                 }
482                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
483                                     optlen - sizeof(*crypto_info));
484                 if (rc) {
485                         rc = -EFAULT;
486                         goto err_crypto_info;
487                 }
488                 break;
489         }
490         default:
491                 rc = -EINVAL;
492                 goto err_crypto_info;
493         }
494
495         if (tx) {
496 #ifdef CONFIG_TLS_DEVICE
497                 rc = tls_set_device_offload(sk, ctx);
498                 conf = TLS_HW;
499                 if (rc) {
500 #else
501                 {
502 #endif
503                         rc = tls_set_sw_offload(sk, ctx, 1);
504                         conf = TLS_SW;
505                 }
506         } else {
507 #ifdef CONFIG_TLS_DEVICE
508                 rc = tls_set_device_offload_rx(sk, ctx);
509                 conf = TLS_HW;
510                 if (rc) {
511 #else
512                 {
513 #endif
514                         rc = tls_set_sw_offload(sk, ctx, 0);
515                         conf = TLS_SW;
516                 }
517         }
518
519         if (rc)
520                 goto err_crypto_info;
521
522         if (tx)
523                 ctx->tx_conf = conf;
524         else
525                 ctx->rx_conf = conf;
526         update_sk_prot(sk, ctx);
527         if (tx) {
528                 ctx->sk_write_space = sk->sk_write_space;
529                 sk->sk_write_space = tls_write_space;
530         } else {
531                 sk->sk_socket->ops = &tls_sw_proto_ops;
532         }
533         goto out;
534
535 err_crypto_info:
536         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
537 out:
538         return rc;
539 }
540
541 static int do_tls_setsockopt(struct sock *sk, int optname,
542                              char __user *optval, unsigned int optlen)
543 {
544         int rc = 0;
545
546         switch (optname) {
547         case TLS_TX:
548         case TLS_RX:
549                 lock_sock(sk);
550                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
551                                             optname == TLS_TX);
552                 release_sock(sk);
553                 break;
554         default:
555                 rc = -ENOPROTOOPT;
556                 break;
557         }
558         return rc;
559 }
560
561 static int tls_setsockopt(struct sock *sk, int level, int optname,
562                           char __user *optval, unsigned int optlen)
563 {
564         struct tls_context *ctx = tls_get_ctx(sk);
565
566         if (level != SOL_TLS)
567                 return ctx->setsockopt(sk, level, optname, optval, optlen);
568
569         return do_tls_setsockopt(sk, optname, optval, optlen);
570 }
571
572 static struct tls_context *create_ctx(struct sock *sk)
573 {
574         struct inet_connection_sock *icsk = inet_csk(sk);
575         struct tls_context *ctx;
576
577         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
578         if (!ctx)
579                 return NULL;
580
581         icsk->icsk_ulp_data = ctx;
582         ctx->setsockopt = sk->sk_prot->setsockopt;
583         ctx->getsockopt = sk->sk_prot->getsockopt;
584         ctx->sk_proto_close = sk->sk_prot->close;
585         return ctx;
586 }
587
588 static void tls_build_proto(struct sock *sk)
589 {
590         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
591
592         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
593         if (ip_ver == TLSV6 &&
594             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
595                 mutex_lock(&tcpv6_prot_mutex);
596                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
597                         build_protos(tls_prots[TLSV6], sk->sk_prot);
598                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
599                 }
600                 mutex_unlock(&tcpv6_prot_mutex);
601         }
602
603         if (ip_ver == TLSV4 &&
604             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
605                 mutex_lock(&tcpv4_prot_mutex);
606                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
607                         build_protos(tls_prots[TLSV4], sk->sk_prot);
608                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
609                 }
610                 mutex_unlock(&tcpv4_prot_mutex);
611         }
612 }
613
614 static void tls_hw_sk_destruct(struct sock *sk)
615 {
616         struct tls_context *ctx = tls_get_ctx(sk);
617         struct inet_connection_sock *icsk = inet_csk(sk);
618
619         ctx->sk_destruct(sk);
620         /* Free ctx */
621         kfree(ctx);
622         icsk->icsk_ulp_data = NULL;
623 }
624
625 static int tls_hw_prot(struct sock *sk)
626 {
627         struct tls_context *ctx;
628         struct tls_device *dev;
629         int rc = 0;
630
631         spin_lock_bh(&device_spinlock);
632         list_for_each_entry(dev, &device_list, dev_list) {
633                 if (dev->feature && dev->feature(dev)) {
634                         ctx = create_ctx(sk);
635                         if (!ctx)
636                                 goto out;
637
638                         spin_unlock_bh(&device_spinlock);
639                         tls_build_proto(sk);
640                         ctx->hash = sk->sk_prot->hash;
641                         ctx->unhash = sk->sk_prot->unhash;
642                         ctx->sk_proto_close = sk->sk_prot->close;
643                         ctx->sk_destruct = sk->sk_destruct;
644                         sk->sk_destruct = tls_hw_sk_destruct;
645                         ctx->rx_conf = TLS_HW_RECORD;
646                         ctx->tx_conf = TLS_HW_RECORD;
647                         update_sk_prot(sk, ctx);
648                         spin_lock_bh(&device_spinlock);
649                         rc = 1;
650                         break;
651                 }
652         }
653 out:
654         spin_unlock_bh(&device_spinlock);
655         return rc;
656 }
657
658 static void tls_hw_unhash(struct sock *sk)
659 {
660         struct tls_context *ctx = tls_get_ctx(sk);
661         struct tls_device *dev;
662
663         spin_lock_bh(&device_spinlock);
664         list_for_each_entry(dev, &device_list, dev_list) {
665                 if (dev->unhash) {
666                         kref_get(&dev->kref);
667                         spin_unlock_bh(&device_spinlock);
668                         dev->unhash(dev, sk);
669                         kref_put(&dev->kref, dev->release);
670                         spin_lock_bh(&device_spinlock);
671                 }
672         }
673         spin_unlock_bh(&device_spinlock);
674         ctx->unhash(sk);
675 }
676
677 static int tls_hw_hash(struct sock *sk)
678 {
679         struct tls_context *ctx = tls_get_ctx(sk);
680         struct tls_device *dev;
681         int err;
682
683         err = ctx->hash(sk);
684         spin_lock_bh(&device_spinlock);
685         list_for_each_entry(dev, &device_list, dev_list) {
686                 if (dev->hash) {
687                         kref_get(&dev->kref);
688                         spin_unlock_bh(&device_spinlock);
689                         err |= dev->hash(dev, sk);
690                         kref_put(&dev->kref, dev->release);
691                         spin_lock_bh(&device_spinlock);
692                 }
693         }
694         spin_unlock_bh(&device_spinlock);
695
696         if (err)
697                 tls_hw_unhash(sk);
698         return err;
699 }
700
701 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
702                          struct proto *base)
703 {
704         prot[TLS_BASE][TLS_BASE] = *base;
705         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
706         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
707         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
708
709         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
710         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
711         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
712
713         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
714         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
715         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
716         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
717
718         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
719         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
720         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
721         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
722
723 #ifdef CONFIG_TLS_DEVICE
724         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
725         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
726         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
727
728         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
729         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
730         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
731
732         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
733
734         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
735
736         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
737 #endif
738
739         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
740         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
741         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
742         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
743 }
744
745 static int tls_init(struct sock *sk)
746 {
747         struct tls_context *ctx;
748         int rc = 0;
749
750         if (tls_hw_prot(sk))
751                 goto out;
752
753         /* The TLS ulp is currently supported only for TCP sockets
754          * in ESTABLISHED state.
755          * Supporting sockets in LISTEN state will require us
756          * to modify the accept implementation to clone rather then
757          * share the ulp context.
758          */
759         if (sk->sk_state != TCP_ESTABLISHED)
760                 return -ENOTSUPP;
761
762         /* allocate tls context */
763         ctx = create_ctx(sk);
764         if (!ctx) {
765                 rc = -ENOMEM;
766                 goto out;
767         }
768
769         tls_build_proto(sk);
770         ctx->tx_conf = TLS_BASE;
771         ctx->rx_conf = TLS_BASE;
772         update_sk_prot(sk, ctx);
773 out:
774         return rc;
775 }
776
777 void tls_register_device(struct tls_device *device)
778 {
779         spin_lock_bh(&device_spinlock);
780         list_add_tail(&device->dev_list, &device_list);
781         spin_unlock_bh(&device_spinlock);
782 }
783 EXPORT_SYMBOL(tls_register_device);
784
785 void tls_unregister_device(struct tls_device *device)
786 {
787         spin_lock_bh(&device_spinlock);
788         list_del(&device->dev_list);
789         spin_unlock_bh(&device_spinlock);
790 }
791 EXPORT_SYMBOL(tls_unregister_device);
792
793 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
794         .name                   = "tls",
795         .owner                  = THIS_MODULE,
796         .init                   = tls_init,
797 };
798
799 static int __init tls_register(void)
800 {
801         tls_sw_proto_ops = inet_stream_ops;
802         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
803
804 #ifdef CONFIG_TLS_DEVICE
805         tls_device_init();
806 #endif
807         tcp_register_ulp(&tcp_tls_ulp_ops);
808
809         return 0;
810 }
811
812 static void __exit tls_unregister(void)
813 {
814         tcp_unregister_ulp(&tcp_tls_ulp_ops);
815 #ifdef CONFIG_TLS_DEVICE
816         tls_device_cleanup();
817 #endif
818 }
819
820 module_init(tls_register);
821 module_exit(tls_unregister);
This page took 0.07994 seconds and 4 git commands to generate.