2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79 add_wait_queue(sk_sleep(sk), &wait);
86 if (signal_pending(current)) {
87 rc = sock_intr_errno(*timeo);
91 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 remove_wait_queue(sk_sleep(sk), &wait);
98 int tls_push_sg(struct sock *sk,
99 struct tls_context *ctx,
100 struct scatterlist *sg,
104 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
108 int offset = first_offset;
110 size = sg->length - offset;
111 offset += sg->offset;
113 ctx->in_tcp_sendpages = true;
116 sendpage_flags = flags;
118 /* is sending application-limited? */
119 tcp_rate_check_app_limited(sk);
122 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
131 offset -= sg->offset;
132 ctx->partially_sent_offset = offset;
133 ctx->partially_sent_record = (void *)sg;
134 ctx->in_tcp_sendpages = false;
139 sk_mem_uncharge(sk, sg->length);
148 ctx->in_tcp_sendpages = false;
149 ctx->sk_write_space(sk);
154 static int tls_handle_open_record(struct sock *sk, int flags)
156 struct tls_context *ctx = tls_get_ctx(sk);
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
167 struct cmsghdr *cmsg;
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
173 if (cmsg->cmsg_level != SOL_TLS)
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
181 if (msg->msg_flags & MSG_MORE)
184 rc = tls_handle_open_record(sk, msg->msg_flags);
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
202 struct scatterlist *sg;
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
212 int tls_push_pending_closed_record(struct sock *sk,
213 struct tls_context *tls_ctx,
214 int flags, long *timeo)
216 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
218 if (tls_is_partially_sent_record(tls_ctx) ||
219 !list_empty(&ctx->tx_list))
220 return tls_tx_records(sk, flags);
222 return tls_ctx->push_pending_record(sk, flags);
225 static void tls_write_space(struct sock *sk)
227 struct tls_context *ctx = tls_get_ctx(sk);
228 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
230 /* If in_tcp_sendpages call lower protocol write space handler
231 * to ensure we wake up any waiting operations there. For example
232 * if do_tcp_sendpages where to call sk_wait_event.
234 if (ctx->in_tcp_sendpages) {
235 ctx->sk_write_space(sk);
239 /* Schedule the transmission if tx list is ready */
240 if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
241 /* Schedule the transmission */
242 if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
243 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
246 ctx->sk_write_space(sk);
249 static void tls_ctx_free(struct tls_context *ctx)
254 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
255 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
259 static void tls_sk_proto_close(struct sock *sk, long timeout)
261 struct tls_context *ctx = tls_get_ctx(sk);
262 long timeo = sock_sndtimeo(sk, 0);
263 void (*sk_proto_close)(struct sock *sk, long timeout);
264 bool free_ctx = false;
267 sk_proto_close = ctx->sk_proto_close;
269 if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
270 goto skip_tx_cleanup;
272 if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
274 goto skip_tx_cleanup;
277 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
278 tls_handle_open_record(sk, 0);
280 /* We need these for tls_sw_fallback handling of other packets */
281 if (ctx->tx_conf == TLS_SW) {
282 kfree(ctx->tx.rec_seq);
284 tls_sw_free_resources_tx(sk);
287 if (ctx->rx_conf == TLS_SW) {
288 kfree(ctx->rx.rec_seq);
290 tls_sw_free_resources_rx(sk);
293 #ifdef CONFIG_TLS_DEVICE
294 if (ctx->rx_conf == TLS_HW)
295 tls_device_offload_cleanup_rx(sk);
297 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
307 sk_proto_close(sk, timeout);
308 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
309 * for sk->sk_prot->unhash [tls_hw_unhash]
315 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
319 struct tls_context *ctx = tls_get_ctx(sk);
320 struct tls_crypto_info *crypto_info;
323 if (get_user(len, optlen))
326 if (!optval || (len < sizeof(*crypto_info))) {
336 /* get user crypto info */
337 crypto_info = &ctx->crypto_send.info;
339 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
344 if (len == sizeof(*crypto_info)) {
345 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
350 switch (crypto_info->cipher_type) {
351 case TLS_CIPHER_AES_GCM_128: {
352 struct tls12_crypto_info_aes_gcm_128 *
353 crypto_info_aes_gcm_128 =
354 container_of(crypto_info,
355 struct tls12_crypto_info_aes_gcm_128,
358 if (len != sizeof(*crypto_info_aes_gcm_128)) {
363 memcpy(crypto_info_aes_gcm_128->iv,
364 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
365 TLS_CIPHER_AES_GCM_128_IV_SIZE);
366 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
367 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
369 if (copy_to_user(optval,
370 crypto_info_aes_gcm_128,
371 sizeof(*crypto_info_aes_gcm_128)))
375 case TLS_CIPHER_AES_GCM_256: {
376 struct tls12_crypto_info_aes_gcm_256 *
377 crypto_info_aes_gcm_256 =
378 container_of(crypto_info,
379 struct tls12_crypto_info_aes_gcm_256,
382 if (len != sizeof(*crypto_info_aes_gcm_256)) {
387 memcpy(crypto_info_aes_gcm_256->iv,
388 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
389 TLS_CIPHER_AES_GCM_256_IV_SIZE);
390 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
391 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
393 if (copy_to_user(optval,
394 crypto_info_aes_gcm_256,
395 sizeof(*crypto_info_aes_gcm_256)))
407 static int do_tls_getsockopt(struct sock *sk, int optname,
408 char __user *optval, int __user *optlen)
414 rc = do_tls_getsockopt_tx(sk, optval, optlen);
423 static int tls_getsockopt(struct sock *sk, int level, int optname,
424 char __user *optval, int __user *optlen)
426 struct tls_context *ctx = tls_get_ctx(sk);
428 if (level != SOL_TLS)
429 return ctx->getsockopt(sk, level, optname, optval, optlen);
431 return do_tls_getsockopt(sk, optname, optval, optlen);
434 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
435 unsigned int optlen, int tx)
437 struct tls_crypto_info *crypto_info;
438 struct tls_context *ctx = tls_get_ctx(sk);
443 if (!optval || (optlen < sizeof(*crypto_info))) {
449 crypto_info = &ctx->crypto_send.info;
451 crypto_info = &ctx->crypto_recv.info;
453 /* Currently we don't support set crypto info more than one time */
454 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
459 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
462 goto err_crypto_info;
466 if (crypto_info->version != TLS_1_2_VERSION &&
467 crypto_info->version != TLS_1_3_VERSION) {
469 goto err_crypto_info;
472 switch (crypto_info->cipher_type) {
473 case TLS_CIPHER_AES_GCM_128:
474 case TLS_CIPHER_AES_GCM_256: {
475 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
476 sizeof(struct tls12_crypto_info_aes_gcm_128) :
477 sizeof(struct tls12_crypto_info_aes_gcm_256);
478 if (optlen != optsize) {
480 goto err_crypto_info;
482 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
483 optlen - sizeof(*crypto_info));
486 goto err_crypto_info;
492 goto err_crypto_info;
496 #ifdef CONFIG_TLS_DEVICE
497 rc = tls_set_device_offload(sk, ctx);
503 rc = tls_set_sw_offload(sk, ctx, 1);
507 #ifdef CONFIG_TLS_DEVICE
508 rc = tls_set_device_offload_rx(sk, ctx);
514 rc = tls_set_sw_offload(sk, ctx, 0);
520 goto err_crypto_info;
526 update_sk_prot(sk, ctx);
528 ctx->sk_write_space = sk->sk_write_space;
529 sk->sk_write_space = tls_write_space;
531 sk->sk_socket->ops = &tls_sw_proto_ops;
536 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
541 static int do_tls_setsockopt(struct sock *sk, int optname,
542 char __user *optval, unsigned int optlen)
550 rc = do_tls_setsockopt_conf(sk, optval, optlen,
561 static int tls_setsockopt(struct sock *sk, int level, int optname,
562 char __user *optval, unsigned int optlen)
564 struct tls_context *ctx = tls_get_ctx(sk);
566 if (level != SOL_TLS)
567 return ctx->setsockopt(sk, level, optname, optval, optlen);
569 return do_tls_setsockopt(sk, optname, optval, optlen);
572 static struct tls_context *create_ctx(struct sock *sk)
574 struct inet_connection_sock *icsk = inet_csk(sk);
575 struct tls_context *ctx;
577 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
581 icsk->icsk_ulp_data = ctx;
582 ctx->setsockopt = sk->sk_prot->setsockopt;
583 ctx->getsockopt = sk->sk_prot->getsockopt;
584 ctx->sk_proto_close = sk->sk_prot->close;
588 static void tls_build_proto(struct sock *sk)
590 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
592 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
593 if (ip_ver == TLSV6 &&
594 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
595 mutex_lock(&tcpv6_prot_mutex);
596 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
597 build_protos(tls_prots[TLSV6], sk->sk_prot);
598 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
600 mutex_unlock(&tcpv6_prot_mutex);
603 if (ip_ver == TLSV4 &&
604 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
605 mutex_lock(&tcpv4_prot_mutex);
606 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
607 build_protos(tls_prots[TLSV4], sk->sk_prot);
608 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
610 mutex_unlock(&tcpv4_prot_mutex);
614 static void tls_hw_sk_destruct(struct sock *sk)
616 struct tls_context *ctx = tls_get_ctx(sk);
617 struct inet_connection_sock *icsk = inet_csk(sk);
619 ctx->sk_destruct(sk);
622 icsk->icsk_ulp_data = NULL;
625 static int tls_hw_prot(struct sock *sk)
627 struct tls_context *ctx;
628 struct tls_device *dev;
631 spin_lock_bh(&device_spinlock);
632 list_for_each_entry(dev, &device_list, dev_list) {
633 if (dev->feature && dev->feature(dev)) {
634 ctx = create_ctx(sk);
638 spin_unlock_bh(&device_spinlock);
640 ctx->hash = sk->sk_prot->hash;
641 ctx->unhash = sk->sk_prot->unhash;
642 ctx->sk_proto_close = sk->sk_prot->close;
643 ctx->sk_destruct = sk->sk_destruct;
644 sk->sk_destruct = tls_hw_sk_destruct;
645 ctx->rx_conf = TLS_HW_RECORD;
646 ctx->tx_conf = TLS_HW_RECORD;
647 update_sk_prot(sk, ctx);
648 spin_lock_bh(&device_spinlock);
654 spin_unlock_bh(&device_spinlock);
658 static void tls_hw_unhash(struct sock *sk)
660 struct tls_context *ctx = tls_get_ctx(sk);
661 struct tls_device *dev;
663 spin_lock_bh(&device_spinlock);
664 list_for_each_entry(dev, &device_list, dev_list) {
666 kref_get(&dev->kref);
667 spin_unlock_bh(&device_spinlock);
668 dev->unhash(dev, sk);
669 kref_put(&dev->kref, dev->release);
670 spin_lock_bh(&device_spinlock);
673 spin_unlock_bh(&device_spinlock);
677 static int tls_hw_hash(struct sock *sk)
679 struct tls_context *ctx = tls_get_ctx(sk);
680 struct tls_device *dev;
684 spin_lock_bh(&device_spinlock);
685 list_for_each_entry(dev, &device_list, dev_list) {
687 kref_get(&dev->kref);
688 spin_unlock_bh(&device_spinlock);
689 err |= dev->hash(dev, sk);
690 kref_put(&dev->kref, dev->release);
691 spin_lock_bh(&device_spinlock);
694 spin_unlock_bh(&device_spinlock);
701 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
704 prot[TLS_BASE][TLS_BASE] = *base;
705 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
706 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
707 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
709 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
710 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
711 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
713 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
714 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
715 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
716 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
718 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
719 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
720 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
721 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
723 #ifdef CONFIG_TLS_DEVICE
724 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
725 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
726 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
728 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
729 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
730 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
732 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
734 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
736 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
739 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
740 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
741 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
742 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
745 static int tls_init(struct sock *sk)
747 struct tls_context *ctx;
753 /* The TLS ulp is currently supported only for TCP sockets
754 * in ESTABLISHED state.
755 * Supporting sockets in LISTEN state will require us
756 * to modify the accept implementation to clone rather then
757 * share the ulp context.
759 if (sk->sk_state != TCP_ESTABLISHED)
762 /* allocate tls context */
763 ctx = create_ctx(sk);
770 ctx->tx_conf = TLS_BASE;
771 ctx->rx_conf = TLS_BASE;
772 update_sk_prot(sk, ctx);
777 void tls_register_device(struct tls_device *device)
779 spin_lock_bh(&device_spinlock);
780 list_add_tail(&device->dev_list, &device_list);
781 spin_unlock_bh(&device_spinlock);
783 EXPORT_SYMBOL(tls_register_device);
785 void tls_unregister_device(struct tls_device *device)
787 spin_lock_bh(&device_spinlock);
788 list_del(&device->dev_list);
789 spin_unlock_bh(&device_spinlock);
791 EXPORT_SYMBOL(tls_unregister_device);
793 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
795 .owner = THIS_MODULE,
799 static int __init tls_register(void)
801 tls_sw_proto_ops = inet_stream_ops;
802 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
804 #ifdef CONFIG_TLS_DEVICE
807 tcp_register_ulp(&tcp_tls_ulp_ops);
812 static void __exit tls_unregister(void)
814 tcp_unregister_ulp(&tcp_tls_ulp_ops);
815 #ifdef CONFIG_TLS_DEVICE
816 tls_device_cleanup();
820 module_init(tls_register);
821 module_exit(tls_unregister);